WO2007026906A1 - Cooling facility and cooling method of steel plate - Google Patents

Cooling facility and cooling method of steel plate Download PDF

Info

Publication number
WO2007026906A1
WO2007026906A1 PCT/JP2006/317395 JP2006317395W WO2007026906A1 WO 2007026906 A1 WO2007026906 A1 WO 2007026906A1 JP 2006317395 W JP2006317395 W JP 2006317395W WO 2007026906 A1 WO2007026906 A1 WO 2007026906A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
cooling water
steel plate
steel sheet
rod
Prior art date
Application number
PCT/JP2006/317395
Other languages
French (fr)
Japanese (ja)
Inventor
Naoki Nakata
Takashi Kuroki
Akio Fujibayashi
Shogo Tomita
Masayuki Horie
Shunichi Nishida
Naoto Hirata
Michio Sato
Kyohei Ishida
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to EP06783167.7A priority Critical patent/EP1935522B1/en
Priority to CN2006800318003A priority patent/CN101253009B/en
Publication of WO2007026906A1 publication Critical patent/WO2007026906A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/44Control of flatness or profile during rolling of strip, sheets or plates using heating, lubricating or water-spray cooling of the product

Definitions

  • the present invention relates to a steel plate cooling equipment and a cooling method.
  • a steel plate is built in. That is, a slab heated to 100 ° C or higher is rolled to a predetermined plate thickness, and then the non-recrystallization temperature range) and temperature The rolling is performed to the finished plate thickness in a temperature range close to the range.
  • a slab with a thickness of 200-300 mm is heated to about 1100-120 ° C, then rolled to about 1.5-2 times the finished plate thickness, and then the temperature When the temperature of the non-recrystallized zone falls below 8500 ° C, controlled rolling is started and rolled to a finished sheet thickness (for example, 15 mm).
  • controlled rolling start temperature controlled rolling start temperature
  • controlled rolling start thickness the thickness of the controlled rolling
  • the rolled material is allowed to cool until it reaches the controlled rolling start temperature on the rolling line near the rolling mill (reversing rolling mill). I was waiting. As a result, the waiting time for cooling caused a waiting time in the rolling mill, resulting in a problem that rolling productivity was lowered.
  • Japanese Patent Application Laid-Open No. Sho 5 5-1 0 6 6 15 A controlled rolling method is shown in which a set of cooling devices is installed in front of and behind the rolling mill, and the rolling material is rolled in a reversible rolling mill while cooling with a cooling device in each rolling pass.
  • a temperature adjustment cooling equipment for cooling the rolled material to a predetermined controlled rolling start temperature is installed, and reversible rolling is performed.
  • the rolled material rolled to the specified plate thickness with the mill is cooled to the specified controlled rolling start temperature with the temperature adjustment cooling equipment (temperature adjustment 'cooling), and then rolled again to the finished plate thickness with the reversible rolling mill.
  • the technology is described.
  • This temperature-controlled cooling facility is installed at a position about 20 m away from the reversible rolling mill in order to avoid interference with the following material.
  • temperature-controlled cooling is performed up to a predetermined controlled rolling start temperature with a temperature-controlled cooling facility installed at a position about 20 m away from the rolling mill.
  • a temperature-controlled cooling facility installed at a position about 20 m away from the rolling mill.
  • JP-A-62-260022 As a technique for cooling a steel sheet by supplying cooling water, there is a technique described in JP-A-62-260022. This is to raise and lower a slit nozzle unit that injects cooling water in the direction of steel sheet conveyance, and can be used with a separate laminar nozzle or spray nozzle to ensure a wide range of cooling rates. Has been.
  • JP-A-62-260022 and JP-A-59-144513 have significant problems in ensuring cooling uniformity and equipment costs.
  • the slit nozzle must be brought close to the steel sheet, and the steel sheet with the warped tip and tail ends is cooled.
  • the steel plate may collide with the slit nozzle unit, damaging the slit nozzle unit, or the steel plate may not move, resulting in production line stoppage and yield reduction. Therefore, it is conceivable that when the tip and tail ends pass, the lifting mechanism is operated to retract the slit nozzle unit upward, but in that case the leading and trailing ends are not sufficiently cooled, and the target material is It can no longer be obtained.
  • the equipment cost for installing the lifting mechanism is high.
  • the cooling water film 53 is not formed well, the cooling water leaks in the upstream or downstream direction of the spraying region, and it stays on the steel plate 10 and partially causes the steel plate 10 to partially move. There is a problem of cooling and uneven temperature. There is also a technology to remove the cooling water staying on the upper surface of the steel plate 10 by side spraying, but when the amount of cooling water is large, it cannot be completely eliminated, and there is still a problem of uneven temperature.
  • the present invention has been made in view of the circumstances as described above, and in the case of performing controlled rolling of a steel sheet, the steel sheet can be appropriately cooled on a hot rolling line with a compact structure (compact size). Can steel plate cooling equipment and? The purpose is to provide a rejection method.
  • the present invention provides a steel sheet that can be cooled uniformly during the controlled rolling of the steel sheet to obtain a good product quality and also prevent a reduction in rolling efficiency due to waiting for cooling or the like.
  • the purpose is to provide equipment and a hot rolling method.
  • the present invention provides a steel plate cooling facility and a cooling method capable of cooling a steel plate uniformly and stably at a high cooling rate when cooling water is supplied to the upper surface of the steel plate. It is for the purpose. Disclosure disclosure
  • the present invention has the following features.
  • a cooling facility that supplies cooling water to the upper and lower surfaces of a steel sheet while passing the steel sheet while hot rolling the steel sheet, and supplies cooling water obliquely from above the steel sheet toward the upper surface of the steel sheet.
  • a steel sheet cooling facility comprising: a plurality of nozzles each arranged so that cooling water is opposed to each other in a conveying direction of the steel sheet on the steel sheet.
  • supplying the cooling water during hot rolling of the steel sheet refers to rolling at least once after cooling, or further supplying cooling water at least once thereafter for cooling.
  • the nozzle cools the steel plate spraying rod-shaped cooling water. 4.
  • a header connected to the nozzle for spraying the rod-shaped cooling water is provided above the steel plate, and a tilt angle between the rod-shaped cooling water and the steel plate is 30.
  • the components of the injection speed of 40 to 60% of the total number of nozzles for injecting the rod-shaped cooling water are in two directions toward the outside in the width direction of the steel sheet perpendicular to the conveying direction.
  • the number of rod-shaped cooling water having a component toward one direction and the number of rod-shaped cooling water having a component toward the other of the two directions toward the outside in the width direction of the steel sheet perpendicular to the conveying direction is equal.
  • a steel sheet cooling facility for setting the injection direction of the rod-shaped cooling water is equal.
  • each nozzle is placed in such a way that the component of the jet speed of the rod-shaped cooling water increases toward the outside in the steel plate width direction as the nozzle installation position goes from the center in the steel plate width direction to the outside. Installed steel sheet cooling equipment.
  • each nozzle is set so that the component of the jetting speed of the rod-shaped cooling water toward the outside in the steel plate width direction is constant, and the positions where the rod-shaped cooling water collides with the steel plate are equally spaced in the steel plate width direction. Installed steel sheet cooling equipment.
  • the lowermost end of the shielding object provided above the innermost row of rod-shaped cooling water jetting oppositely is positioned 30 to 500 mm above the upper surface of the hot steel plate.
  • the cooling area of the cooling facility is a position of the steel sheet that is close to the reversible rolling mill except the position of the side guide portion arranged on the entry side and / or the exit side from the reversible rolling mill. Cooling equipment.
  • the cooling area of the cooling facility is located on the upstream side of the side guide disposed on the entry side of the reversible rolling mill and in the vicinity of the reversible rolling mill and / or the reversible rolling mill.
  • a steel plate cooling facility located in the vicinity of the reversible rolling mill on the downstream side of the side guide placed on the exit side.
  • a cooling method in which cooling water is supplied to the upper and lower surfaces of the steel sheet while passing the steel plate while hot rolling the steel plate so that the cooling water faces each other in the direction of conveyance of the steel plate on the steel plate.
  • a method for cooling a steel sheet in which cooling water is supplied obliquely from above the steel sheet toward the upper surface of the steel sheet by means of nozzles arranged in the above.
  • a cooling facility is disposed at a position close to the reversible rolling mill on the entry side and / or the exit side of the reversible rolling mill that hot-rolls the steel sheet, and rolling is performed from the cooling facility.
  • a method of cooling a steel sheet in which cooling water having a water density of 4 ia. 3 m 2 min or more is applied to the upper and lower surfaces of the steel sheet while passing the steel sheet before and / or after rolling.
  • the nozzle is a method of cooling a steel plate that sprays rod-shaped cooling water.
  • a header connected to the nozzle for spraying the rod-shaped cooling water is provided above the steel plate, so that an inclination angle between the rod-shaped cooling water and the hot steel plate is 30 ° to 60 °.
  • the cooling method of the steel plate which cools by arrange
  • the nozzles are arranged in 3 or more rows, preferably 5 or more rows in the direction opposite to the conveying direction and the conveying direction of the hot steel plate, and more preferably 5 or more rows, and the steel plate injecting the rod-shaped cooling water at a speed of 8 mZs or more. Cooling method.
  • a steel plate cooling method in which the injection direction of the bar-shaped cooling water is set so that 35% is directed outward in the steel plate width direction perpendicular to the conveying direction.
  • the injection speed component of 40-60% of the total number of nozzles spraying the rod-shaped cooling water is directed outward in the steel plate width direction perpendicular to the conveying direction.
  • the steel sheet cooling method is to set the injection direction of the rod-shaped cooling water so as to be equal.
  • each component is set so that the component toward the outside in the steel plate width direction of the jet speed of the rod-shaped cooling water gradually increases as the nozzle installation position goes from the center in the steel plate width direction to the outside.
  • each component is set so that the component of the jetting speed of the rod-shaped cooling water toward the outside in the steel plate width direction is constant, and the positions where the rod-shaped cooling water collides with the steel plate are equally spaced in the steel plate width direction. Cooling method of installing the nozzle.
  • the lowermost end of the shield provided above the rod-shaped cooling water in the innermost row that projects oppositely is positioned 30 to 50 O mm above the upper surface of the steel plate. Steel plate cooling method.
  • the cooling area of the cooling facility is a position close to the reversible rolling mill excluding the length of the side guide portion arranged on the entry side and / or the exit side from the reversible rolling mill.
  • the cooling area of the cooling facility is located on the upstream side of the side guide disposed on the entry side of the reversible rolling mill and in the vicinity of the reversible rolling mill, and / or the reversible rolling mill.
  • a hot-rolling method for a steel sheet which is a position close to a reversible rolling mill on the downstream side of a side guide disposed on the exit side of the steel sheet.
  • a steel sheet hot rolling facility comprising: a nozzle for feeding, wherein the nozzles are arranged so that cooling water faces each other in a conveying direction of the steel plate on the steel plate.
  • a cooling facility is arranged at a position close to the reversible rolling machine on the inlet side and / or the outlet side of the reversible rolling mill for hot rolling the steel sheet, and before the rolling and / or rolling from the cooling facility. Cooling water with a water density of 4 m 3 Zin 2 min or more is supplied to the upper and lower surfaces of the steel plate while passing the later steel plate. At that time, the cooling water is applied to the upper surface of the steel plate on the steel plate.
  • a method of hot rolling a steel sheet characterized in that cooling water is supplied obliquely from above the steel sheet toward the steel sheet by nozzles arranged so as to face each other in the conveying direction.
  • the cooling area of the cooling facility is located between the reversible rolling mill and the side guides arranged on the entry side and / or exit side thereof, according to the above 3 2 or 3 -3. Hot rolling method for steel sheet.
  • a bar-shaped cooling water with a water density of 4 m 3 / m 2 min or more is sprayed above the hot steel plate.
  • the steel plate cooling equipment is characterized in that the nozzles are arranged so as to face each other in the conveying direction of the hot steel plate at ⁇ 60 °.
  • the hot steel plate provide a header with a nozzle that sprays rod-shaped cooling water with a water density of 4 m 3 / m 2 min or more, and the tilt angle between the rod-shaped cooling water and the hot steel plate is A cooling method for a steel sheet, wherein the nozzle is arranged to cool at 3 ° to 60 ° so as to face each other in the conveying direction of the hot steel sheet.
  • the cooling water is supplied to the upper and lower surfaces of the steel sheet while passing through the steel sheet, so that the equipment length can be shortened and the cooling water can be opposed to each other in the conveying direction on the steel sheet. Since the nozzles are arranged, the supplied cooling water itself dams up the stagnant cooling water on the steel plate and drains the water, so that the drainage can be performed appropriately even without an auxiliary device such as a draining roll. As a result, the steel sheet can be appropriately cooled with a compact structure on the hot rolling line when the steel sheet is subjected to controlled rolling.
  • the steel sheet is cooled while being rolled.
  • a predetermined controlled rolling start temperature can be obtained efficiently, and a reduction in rolling efficiency due to waiting for cooling or the like can be avoided.
  • the nozzles are arranged on the steel plate so that the cooling waters face each other in the transport direction, and cooling water having a large water density of 4 m 3 / m 2 min or more is supplied, so the supplied cooling water itself However, the stagnation cooling water on the steel plate is blocked and drained appropriately, and a stable cooling region can be obtained.
  • the steel sheet when performing the controlled rolling of the steel sheet, the steel sheet is uniformly cooled to obtain a good product quality, and it is also possible to prevent a reduction in rolling efficiency due to waiting for cooling. Further, by using the present invention, the steel sheet can be uniformly cooled to the target temperature at a high cooling rate. As a result, high quality steel sheets can be manufactured.
  • FIG. 1 is a layout diagram of hot-rolling equipment for steel sheets in one embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of the cooling facility according to the first embodiment of the present invention.
  • FIG. 3 is a detailed view of a cooling facility in one embodiment of the present invention.
  • Fig. 4 is a diagram showing an example of the nozzle arrangement of the upper header in one embodiment of the present efforts.
  • Fig. 5 is an explanatory diagram of another cooling facility according to the first embodiment of the present efforts.
  • FIG. 6 is an explanatory diagram of a steel sheet cooling facility according to the second embodiment of the present invention.
  • FIG. 7 is an explanatory diagram of another steel plate cooling facility according to the second embodiment of the present invention.
  • FIG. 8 is an explanatory diagram of the shooting direction in the second embodiment of this effort.
  • FIG. 9 is an explanatory diagram of the cooling facility according to the third embodiment of the present invention.
  • FIG. 10 is a view taken along arrows A—A in FIG.
  • FIG. 11 is an explanatory diagram of another cooling facility according to the third embodiment of the present invention.
  • Fig. 12 A diagram for explaining scattered cooling water.
  • Fig. 13 Comparison of rolling time in examples of the present invention.
  • Figure 14 Explanatory drawing of the hot rolling line and transport pattern for thick steel plates in the example of this effort.
  • ⁇ 15 A diagram showing the problems of the prior art.
  • FIG. 16 is a detailed view of a cooling facility in another embodiment of the present invention.
  • Fig. 17 An explanatory diagram of another cooling facility according to the third embodiment of the present invention.
  • FIG. 1 is a layout diagram of a steel sheet hot rolling facility according to an embodiment of the present invention.
  • the heating furnace 1 1, the reversible rolling mill 1 2, and the entry side (upstream side) and the exit side (downstream side) of the reversible rolling mill 1 2 are close to each other.
  • Cooling equipment 20 is placed at the position.
  • Cooling equipment (also referred to as a cooling unit) 20 is a passage-type cooling equipment, and as shown in FIG. 2, an upper header unit 2 1 for supplying cooling water toward the upper surface of the steel plate 10, A lower header 31 for supplying cooling water toward the lower surface of the steel plate 10 is provided.
  • Figure:! In Fig. 2, 1 3 is a table roller.
  • FIG. 3 and 16 are detailed views of the cooling facility 20.
  • the cooling facility 20 is disposed between the reversible rolling mill 12 and the side guide 14, and in FIG. 16, the cooling facility 20 is located upstream of the side guide 14 (heating ⁇ Side> at a position close to the reversible rolling mill 12 2.
  • the cooling facility 20 includes the upper header unit 21 and the lower header 31 as described above.
  • the upper header unit 2 1 is composed of a pair of upper headers 2 1 a and 2 1 b.
  • the upper header on the side close to the reversible rolling mill 1 2 is referred to as the first upper header 2 1 a.
  • the upper header far from the reversible rolling mill 1 2 will be called the second upper header 2 1.
  • the circular tube nozzles 2 2 a, 2 2 b (this is arranged in the width direction of the steel plate in each of the first upper header 2 1 a and the second upper header 2 1 b and provided in a plurality of rows in the conveying direction)
  • 6 rows in the conveying direction of the steel plate 10 are installed, and the circular nozzles of the first upper header 2 1 a (first upper nozzle) 2 2 a and the second upper header 2 1 b (No. 2 upper nozzles) 2 2 b are arranged so that the rod-shaped cooling water supplied from each of them faces each other in the carrying direction of the steel plate 10.
  • the first upper nozzle 2 2 a injects the rod-like cooling water 2 3 a from the reversible rolling mill 1 2 side at a tilt angle (injection angle) of 01, and the second upper nozzle 2 2 b is reversible rolling.
  • the rod-shaped cooling water 2 3 b is sprayed toward the machine 1 2 side with an inclination angle (injection angle) of ⁇ 2.
  • the rod-shaped cooling water (also referred to as columnar side cooling water) of the present invention refers to cooling water sprayed from a circular (including elliptical or polygonal) nozzle soot outlet.
  • the rod-shaped cooling water of the present invention is not a spray-like jet, but the cross-section of the water flow is maintained in a substantially circular shape until it collides with the steel plate from the outlet of the nozzle soot, thereby cooling the continuous and straight water flow.
  • the cooling region the region sandwiched between the positions where the rod-shaped cooling water from the circular tube nozzles in the row farthest from each other's upper header (outermost row) collides with the steel plate 10 is called the cooling region.
  • the staying zone length should be 1.5 m or less.
  • the ratio of cooling water 2 4 that cools the steel sheet 10 is relatively small, so that the cooling method changes greatly when the leading edge of the steel sheet 10 passes in an unsteady state. Can be prevented.
  • FIGS. 4A and 4B show examples of the arrangement of the circular tube nozzles 2 2 a and 2 2 b attached to the upper headers 2 1 a and 2 1 b.
  • the circular tube nozzles 2 2 a and 2 2 b are arranged in six rows in the conveying direction of the steel plate 10.
  • the reason for arranging a plurality of rows in the transport direction is that a single row of nozzles weakens the ability to dam the stagnant cooling water between the cooling water and the cooling water that collide with the steel sheet. Therefore, it is preferable to arrange three or more rows in the transport direction. More preferably, 5 or more rows are arranged. Ma
  • in the width direction it is installed so that cooling water can be supplied to the entire width of the passing steel sheet 10.
  • two upper headers are provided here, it is also possible to provide one header in which these are integrated, and to arrange the circular tube nozzles 22a and 22b. .
  • the lower header 3 here, two lower headers 3 1 are arranged, each having a circular nozzle 3 2 attached, and a rod-shaped cooling water 3 from the gap between the table rollers 1 3. 3 is sprayed to supply cooling water to the entire width of the passing steel plate 10.
  • the cooling facility 20 supplies cooling water from the upper headers 2 1 a and 2 1 b so that the water density of the steel plate surface is 4 m 3 / m 2 min or more toward the upper surface of the steel plate 10,
  • the cooling water is supplied from the lower header 3 1 toward the lower surface of the steel plate 10 so that the water density on the steel plate surface is 4 m 3 Zm 2 min or more.
  • the staying cooling water 24 shown in FIG. 3 and FIG. 16 is formed by damming with the rod-like cooling water 2 3 a and 2 3 b to be supplied. At this time, if the water density is small, the dam can not be dammed, and if the water density is larger than a certain amount, the amount of stagnant cooling water 24 that can be dammed increases, and the cooling discharged from the edge of the plate Stagnant cooling water 24 is kept constant by balancing the amount of water and the amount of cooling water supplied. In the case of thick steel plates, the typical plate width is 2 to 5 m. If cooling is performed with a water density of 4 m 3 2 in i ti or more, the stagnant cooling water can be kept constant at these plate widths and rolled. A desired temperature drop can be obtained while passing the steel plate 10 inside.
  • the residence area length is 1.5 m or less and the cooling area is reduced.
  • Cooling equipment 20 is placed so that it is located within 3 m and is located close to the reversible rolling mill 1 2 excluding the position of the side guides placed on the entry side and / or exit side of the reversible rolling mill 1 2 To do. In general, this position is within a range of 20 m from the center of the workpiece hole 1 2 a of the reversible rolling mill 12.
  • the cooling zone is a reversible rolling mill 1 2 Work roll center 1 2
  • cooling equipment 20 it is preferable to arrange the cooling equipment 20 so as to be positioned between the a and the side guide (about 2 to 4 m from the work roll center 12 to 2 m) because the rolling efficiency can be improved efficiently.
  • the cooling area of the cooling facility 20 is moved to the position close to the reversible rolling mill 1 2 by the upstream inversion of the side guide 14 arranged on the entry side of the reversible rolling mill 12 as shown in FIG. Installed force ⁇ Or, the side guide 14 located on the exit side of the reversible rolling mill 1 3 is installed on the downstream side of the side guide 14 near the reversible rolling mill 1 2 It is good because a cooling area can be secured.
  • a cooling region may be provided both between the work center G 1 of the reversible roll extender 12 and the side guide 14 and upstream of the side guide 14 shown in FIG. Needless to say, it is good.
  • the cooling water sprayed from the upper nozzles 2 2 a and 2 2 b is, for example, a rod-shaped cooling water rather than a film-shaped cooling water using a slit nozzle, so that the rod-shaped cooling water forms a more stable water flow. This is because the power to block the accumulated cooling water is great.
  • the injection angle ⁇ 1 of the first upper nozzle 22 2 a and the injection angle 0 2 of the second upper nozzle 22 b are preferably 30 ° to 60 °. If the injection angles ⁇ 1 and ⁇ 2 are smaller than 30 °, the first upper nozzle 2 2a and the second upper nozzle 2 2b must be separated from each other. Cooling water 2 3 a, 2 3 b in the vertical direction. Because the direction component becomes smaller, the collision with the steel plate 10 becomes weaker and the cooling capacity is reduced.
  • the incident angles ⁇ 1 and ⁇ 2 are This is because if it is larger than 60 °, the speed component in the conveying direction of the rod-shaped cooling water 2 3 a and 2 3 b becomes small, and the force to dam the stagnant cooling water 24 becomes weak.
  • the spray angle 0 1 and the injection angle ⁇ 2 are not necessarily equal. More preferable injection angles 0 1 and ⁇ 2 are 40 ° to 50 °.
  • the upper nozzle / le 22a and 2 2b should be arranged in 5 rows or more in the direction of conveyance of the steel sheet and in the direction opposite to the conveyance direction. It is preferable that the injection speed of the rod-shaped cooling waters 2 3 a and 2 3 b from a and 2 2 b is 8 mZ s or more.
  • the number of nozzles that spray cooling water in the direction opposite to the direction of conveyance and the direction of conveyance is preferably multiple, at least 3 or more, respectively. More preferably, there are at least 5 rows. The upper limit of the number of rows may be appropriately determined depending on the size of the steel sheet to be cooled, the conveyance speed, the target temperature drop amount, and the like.
  • the injection speed is preferably 3 O mZ s or less.
  • the inner diameter of the nozzle only needs to be in the range of 3 to 8 mm.
  • the interval between adjacent nozzles on the imaginary line drawn in the plate width direction should be within 10 times the nozzle inner diameter.
  • Figure 4A shows an array with six rows in the transport direction with an adjacent nozzle spacing of 40 mm
  • Figure 4B shows four rows in the transport direction with an adjacent nozzle spacing of 4 Oram.
  • An example of an arrangement is shown in which two rows are provided in the transport direction in which the interval between adjacent nozzles is 20 mm.
  • the positions of the tips of the upper nozzles 2 2 a and 2 2 b should be separated from the pass line.
  • the distance between the tip of the upper nozzles 2 2 a and 2 2 b and the pass line is set to 500 mm to 1.800 mm.
  • a predetermined control rolling start plate thickness (for example, 1.5 to 2 times the finished plate thickness) is used.
  • the steel sheet that passes through the cooling zone of the cooling equipment 20 before and / or during and / or after the rolling is controlled so that the controlled rolling start temperature (for example, 85 ° C. or lower) is reached.
  • Cooling equipment (also called cooling unit) 20 is not necessary to cool by the inlet and outlet side cooling facilities 20 in all rolling passes until the controlled rolling start temperature is reached, and the predetermined controlled rolling start temperature is set at the predetermined controlled rolling start plate thickness. Cooling equipment (also called cooling unit) 20
  • one or more cooling facilities (cooling units) 20 having a pair of upper headers 2 1 a and 2 1 b as shown in FIG. 2 are provided. If you want to obtain a larger cooling capacity by combining the units to some extent, you can install an intermediate header 2 1 c between the pair of upper headers 2 1 a and 2 1 b as shown in Figure 5. There can be any number.
  • cooling equipment 20 is arranged on the entry side and the exit side of the reversible rolling mill 12, but the cooling equipment 20 may be arranged on either one of them.
  • the equipment length can be shortened.
  • the upper nozzles 2 2 a, 2 2 b so that the cooling water faces each other in the transport direction on the steel plate 10
  • an auxiliary device such as a draining roll is installed. Even if it does not drain properly.
  • the steel sheet can be appropriately cooled with a compact structure on the hot rolling line when the steel sheet is controlled and rolled.
  • the passing type cooling equipment 20 having a large water density of 4 m 3 / m 2 min or more is arranged at a position close to the reversible rolling mill 12, the steel plate 10 is By cooling while rolling, a predetermined control temperature can be efficiently obtained, and a reduction in rolling efficiency due to waiting for cooling is avoided.
  • the circular nozzles 2 2 a and 22 b are arranged on the steel plate 10 so that the cooling water faces each other in the transport direction, and cooling water having a large water density of 4 m 3 / m 2 min or more is supplied. Therefore, the injected rod-shaped cooling waters 23a and 23b themselves dam the staying cooling water 24 on the steel plate 10 and appropriately drain the water, and a stable cooling region is obtained.
  • the steel sheet is uniformly cooled to obtain a good product quality, and it is also possible to prevent a reduction in rolling efficiency due to waiting for cooling or the like.
  • the rod-shaped cooling water is supplied to the lower surface of the steel sheet so that the water density on the steel sheet surface is 4 m 3 / m 2 min or more.
  • the present invention is not limited thereto. If it is possible to supply cooling water with a water density of 4m 3 Zm 2 min or more on the steel plate surface, the film cooling water from other slit nozzles can be sprayed cooling water from the spray nozzle, etc. Any form of cooling water may be used.
  • upper headers 2 1 a, 2 1 b connected to upper nozzles 22 a, 22 b for spraying rod-shaped cooling water having a water density of 4 m 3 Zm 2 min or more above steel plate 10
  • the upper nozzle 2 2 so that the slant angles 0 1 and 0 2 formed by the rod-shaped cooling water 23 a and 23 b and the steel plate 10 are 30 ° to 60 ° and face each other in the conveying direction of the steel plate 10. Since a and 22b are arranged so that cooling water is supplied to the upper surface of the steel plate 10 while passing the steel plate 10, it must be installed in the hot rolling line for thick steel plates and thin steel plates.
  • the steel sheet can be cooled uniformly and stably at a high cooling rate to the target temperature. As a result, high quality steel sheets can be manufactured.
  • the steel sheet cooling equipment in the first embodiment shown in FIG. 2 is 0 to 35% of the velocity component in the injection direction of the rod-like cooling water 2 3 a and 2 3 b.
  • the injection direction of the rod-shaped cooling waters 2 3 a and 2 3 is set so that becomes a component toward the outside in the steel plate width direction.
  • the component of the injection speed of 40 to 60% of the total number of nozzles for injecting the rod-shaped cooling water has a ratio of one of the two directions toward the outside in the steel plate width direction perpendicular to the transport direction. It is preferable that the injection direction of the rod-shaped cooling water is set so as to have a component toward the direction. Specifically, if the number of nozzles facing one side is 60% or more of the total, and if the cooling water discharge from the end of the plate is biased, the rod-like cooling will occur when the thickness of the stagnant cooling water increases. This is because the water can no longer block the accumulated cooling water and temperature unevenness in the width direction may occur. Moreover, if the amount of splashed water on one side becomes extremely large, the equipment cost for preventing this will increase.
  • the number of nozzles should be within 20% of the whole, and the remaining nozzles should face both outer sides. If the number of nozzles is almost equal, the accumulated cooling water can be discharged smoothly. It is most suitable to drain water by blocking the stagnant cooling water.
  • Fig. 8 shows the injection direction of the rod-shaped cooling water.
  • the angle between the jet line of the rod-shaped cooling water and the steel plate is . ⁇
  • the dip angle with respect to the transport direction is ⁇
  • the steel plate width is shown as ⁇ .
  • the spraying speed of rod-shaped cooling water is set to 0 to 35% as a component toward the outside in the steel plate width direction. That is, the ratio L of the steel plate width direction component L w to the cooling water injection length L wZ L
  • the (width direction velocity component ratio) is 0 to 35%.
  • Table 1 shows the calculation results when the nozzle height h is 90 mm and the dip angle ⁇ with respect to the transport direction is 45 ° and 50 °. The ratio of velocity component in the width direction is 0 to 35%.
  • the tilt angle ⁇ is 45 ° with respect to the transport direction
  • the outward angle a is 0 to 25 °
  • the tilt angle ⁇ force with respect to the transport direction is 50 °.
  • the outward angle ⁇ is 0 ⁇ 30. This is the case.
  • a preferable spray rate component in the width direction of the steel sheet is 10 to 25%.
  • FIG. 6 described above is a plan view showing an example when the upper nozzles 2 2 a and 2 2 b are installed based on the above.
  • the rod-shaped cooling water from the central nozzle in the steel sheet width direction has an outward angle ⁇ of 0 °, and the outward angle ⁇ gradually increases as the nozzle installation position goes outward in the steel sheet width direction.
  • each nozzle is installed so that the positions where the rod-shaped cooling water collides with the steel plate are equally spaced in the steel plate width direction (for example, 60 mm pitch).
  • FIG. 7 described above is a plan view showing another example when the upper nozzles 2 2 a and 2 2 b are installed based on the above.
  • the outward angle ct of the cooling water spray is constant (for example, 20 °), and the positions where the rod-shaped cooling water collides with the steel plate are equally spaced in the steel plate width direction.
  • Each nozzle was installed so as to be (for example, 60 mm pitch). At that time, in the vicinity of the center in the width direction of the steel sheet, nozzles that spray toward both the left and right sides must be installed. Nozzle row that injects toward the outside in the direction (for example, a nozzle row that has an injection component in the upward direction in Fig.
  • nozzle row that injects toward the outside in the other steel plate width direction (for example, " "Nozzle rows with a spray component in the F direction) are alternately shifted in the transport direction by a predetermined distance (for example, 20 mm), and within the two directions toward the outside of the steel sheet width direction perpendicular to the transport direction, Make sure that the number of rod-shaped cooling water with a component toward one direction is equal to the number of rod-shaped cooling water with a component toward the other.
  • the number of nozzles that spray rod-shaped cooling water having a component facing outward in one of the steel sheet width directions perpendicular to the conveying direction component of the steel plate and the rod-shaped cooling water having a component facing outward in the other side is made equal.
  • the outward angle ⁇ should be determined so as to obtain a uniform flow distribution in the width direction of the steel sheet, and considering the capacity of the pump that supplies water to the header and the thickness of the piping.
  • the velocity power of the rod-like cooling water 2 3 a and 2 3 b sprayed from the opposing upper nozzles 2 2 a ′ and 2 2 b is high, for example, 10 m / s or more
  • the rod-shaped cooling water 2 3 a and 2 3 b collide with the steel plate 10, collide with each other, and scatter upward. There is no problem if the scattered cooling water falls onto the stagnant cooling water 24.
  • the scattered cooling water 25 is scattered obliquely upward, and the rod-shaped cooling water 2 3a, 2 3b If it falls to the surface, the scattered cooling water 25 may leak from the gap between the rod-shaped cooling waters 2 3 a and 2 3 b, preventing complete draining. In particular, this problem is likely to occur when the length of the retention zone is within 200 mm. Furthermore, when the spraying speed of the cooling water is high, the scattered cooling water 24 may jump over the upper headers 21a and 21b and fall on the steel plate 10.
  • the cooling facility according to the third embodiment replaces the cooling unit 20 in FIG. 1 used in the first embodiment with a side view in FIG. 9 and an A in FIG. — As shown in the arrow A view, a cooling unit 40 is used in which shielding plates 2 6 a and 2 6 b are added above the rod-shaped cooling water in the outermost row.
  • the shielding plates 2 6 a and 2 6 b can be moved up and down by the cylinders 2 7 a and 2 7 b, and are used only when manufacturing products that require the shielding plates 2 6 a and 2 6 b. At other times, it can be pulled up to the retracted position.
  • the bottom end of the shielding plates 2 6 a and 2 6 b should be positioned 30 to 500 mm above the upper surface of the steel plate 10. Is preferable. That is, it should be positioned 30 O mm or more above the upper surface of the steel plate 10 By doing so, even if a steel plate with a warp at the tip or tail ends, it will not collide. However, if the height is higher than 50 O mm from the upper surface of the steel plate 10, the scattered cooling water 25 cannot be sufficiently shielded.
  • Shielding curtains 2 8 a and 2 8 b normally stand by in a suspended state, and when the injection of rod-shaped cooling water 2 3 a and 2 3 b is started, it follows the rod-shaped cooling water in the innermost row. Lift up. At that time, the rod-shaped cooling water 2 3 a and 2 3 b are jetted vigorously, so that the flow is not disturbed.
  • a shielding plate 29 that straddles the upper header 21a and the upper header 21b and is located above the stagnant cooling water 24 may be used. If that using such a shielding plate 2 9, it is possible to accurately shield the splashing cooling water and you'll fall jumping over the upper header 2 1 a, 2 1 b on the steel plate 1 0.
  • the scattered cooling water hitting the shielding plate 29 is effective because when it falls, it engulfes the scattered cooling water to be scattered in the horizontal direction and falls onto the stagnant cooling water 24 together.
  • Example 1 of the present invention will be described below.
  • FIG. 14 is a diagram showing a hot-rolling line for thick steel plates used in Example 1 of the present invention and a transport pattern there.
  • This thick steel plate hot rolling line is equipped with a heating unit 11.1, a reversible rolling mill 12, a first cooling unit 14, a hot leveler 15 and a second cooling unit 16.
  • Conveyance pattern A is for accelerated cooling after finish rolling.
  • the slab extracted from heating furnace 1 1 is roughly rolled and finish-rolled by reversible rolling mill 1 2 to a thickness of 25 mm.
  • the hot cooling leveler 15 is passed through and the second cooling device 16 performs accelerated cooling with a temperature drop of 150 ° C.
  • Conveyance pattern B is temperature-controlled cooling before controlled rolling.
  • the slab extracted from the heating furnace 1 1 is roughly rolled in a reversible rolling mill 1 2 to a thickness of 6 O mm.
  • the first cooling device 14 performs adjusted cooling with a temperature drop of 80 ° C., and then performs low-temperature finish rolling, that is, controlled rolling.
  • the cooling unit 20 shown in FIG. 2 is installed in the first cooling equipment 1 4 as a unit of the first cooling equipment 1 6 according to the first embodiment.
  • 6 patterns were installed to transfer transfer pattern A and transfer pattern B.
  • the upper nozzles 2 2 a and 2 2 b have a nozzle tip height of 1.2 m from the table roller, the arrangement shown in Fig. 4A, the nozzle inner diameter is 6 mm, and the water density is 6 m 3 / m 2 min, rod-shaped cooling water spray angle ⁇ 1 0 2 was set to 45 °, and spray speed was set to 8 m Z s.
  • Example 2 of the present invention the nozzle tip height position, nozzle inner diameter, water density, spray angle ⁇ 1, ⁇ 2, and spray speed are the same as Example 1 of the nozzle arrangement shown in FIG.
  • the cooling unit with a rod-shaped cooling water outward angle ⁇ of 20 ° is fixed to 1 unit in the 1st cooling facility 14 and 6 units in the 2nd cooling facility 16 and the transfer pattern ⁇ ⁇ and Transport pattern B was transported.
  • Comparative Example 1 the first cooling equipment 14 and the second cooling equipment 16 are used as conventional general cooling equipment, and the transportation pattern A and transportation pattern B are transported. Went.
  • the first cooling equipment 14 and the second cooling equipment 16 are used as the cooling device described in Patent Document 2 in which the film-like cooling water is jetted to oppose the transfer pattern A.
  • the conveyance pattern B was conveyed.
  • Comparative Example 1 is shower cooling. Due to the effect of the cooling water staying on the steel plate, temperature unevenness is 80 ° C in transport pattern A (accelerated cooling after finish rolling), and transport pattern B (before controlled rolling). Temperature control cooling) was 40 ° C, and the product strength variation was large.
  • Example 1 of the present invention the height of the nozzle tip was increased to 1.2 m, so that the equipment was not damaged even if the steel plate warped, and the yield was not reduced by trouble. Production efficiency has improved.
  • the rod-shaped cooling water was jetted at high speed, the cooling water could be completely blocked in the cooling region, and the temperature unevenness could be kept at a very low value of 8 to 15 ° C.
  • the cooling water jetted from the upper nozzles 2 2 a, 2 2 b onto the upper surface of the steel plate 10 merges and quickly moves as shown in the arrow A in FIG.
  • the accumulated cooling water 24 can be dammed up and drained with a small amount of water, and the temperature unevenness is kept at a very low value of 6 to 12 ° C. It was possible to cool uniformly.
  • the cooling water could be stopped even if the flow rate and pressure were slightly reduced, the equipment would not require so much pressure or a large amount of water, and an economical equipment design could be performed. It was.
  • Example 2 of the present invention will be described below.
  • the rolling time of the present invention example was compared with that of the conventional example when a steel plate having a thickness of 18.5 mm, a width of 256 Omm, and a length of 35 m was manufactured by controlled rolling.
  • the example of the present invention uses the hot rolling facility according to the above-described embodiment to replace the cooling unit 20 shown in FIG. 2 with 1 unit for the first cooling facility 14 and 6 units for the second cooling facility 16. Installed and went.
  • the upper nozzles 2 2 a and 2 2 b have a nozzle tip height of 1.2 m from the table roller, the arrangement shown in Fig.
  • the nozzle inner diameter is 6 mm
  • the water density is 6 m 3 / m 2 min
  • Bar coolant injection angle 0 1, ⁇ 2 4 The injection speed was 5 m / s at 5 °.
  • the steel sheet is rolled while being cooled by the cooling device 20 so that the predetermined controlled rolling start temperature (820 ° C) is obtained at a predetermined controlled rolling start plate thickness (34 mm), and then the cooling equipment 20 This is when cooling is stopped and the finished sheet is rolled to a thickness of 18.5 mm.
  • the cooling unit 20 shown in FIG. 2 is installed in the first cooling equipment 14 in a unit and the second cooling equipment 16 in a unit. went.
  • the upper nozzles 22a and 22b have a nozzle tip height of 1.2 m from the table roller, the arrangement shown in Fig. 4A, the nozzle inner diameter is 6 mm, and the water density is 6 m 3 / m 2 min
  • the steel sheet was cooled using the cooling equipment shown in Fig. 6 or Fig. 7.
  • the dip angle ⁇ with respect to the conveying direction of the rod-shaped cooling water was 45 °
  • the injection speed was 8 m / s.
  • the outward angle ⁇ of the rod-shaped cooling water at the center in the width direction of the steel sheet is 0 °
  • the outward angle a of the outermost rod-shaped cooling water is 25 °
  • the position where the rod-shaped cooling water collides with the steel sheet was set to 60 mm pitch in the steel sheet width direction.
  • Example 2 of the present invention the cooling equipment shown in FIG. 7 was used, and the outward angle ⁇ of the rod-shaped cooling water was set to 20 ° -constant, and the position where the rod-shaped cooling water collided with the steel plate was in the width direction of the steel plate. 6 O.mni pitch.
  • the cooling water injected from the upper nozzles 2 2 a and 2 2 b onto the steel plate 10 0.
  • the steel plate 10 was quickly dropped from the 10-width edge and drained by damming up the stagnant cooling water 24 with a smaller amount of water than when there was no outward angle ⁇ .
  • Example 4 the cooling equipment shown in FIG. 7 was used, and the outward angle ⁇ of the rod-shaped cooling water was set to 20 ° -constant, and the position where the rod-shaped cooling water collided with the steel plate was in the width direction of the steel plate. 6 O.mni pitch.
  • the cooling unit 40 shown in FIG. 9 or FIG. 11 is replaced with the first cooling equipment 14 based on the second embodiment described above.
  • 1 unit, 2nd cooling facility 16 6 units were installed in 16 to cool the steel plate.
  • the injection angle of the rod-shaped cooling water ⁇ 1, ⁇ 2 is 45.
  • the injection speed was set to 12 m / s.
  • the residence zone length L was O mm.
  • Example 2 is a case where the cooling unit 40 provided with the shielding plates 26 a and 26 b shown in FIG. 9 is used. At that time, the shielding plates 2'6a and 26b were set so as to be positioned 50 mm above the rod-shaped cooling water in the innermost row. Then, the distance in the transport direction ( ⁇ in FIG. 9) between the lowermost position of the shielding plates 2 6 a and 26 b and the point where the rod-shaped cooling water in the outermost row collides with the steel plate 10 is 30 O It was set to mm.
  • Example 3 shows the case where the cooling unit 40 provided with the shielding screens 28a and 28 shown in Fig. 11 is used.
  • the ⁇ ) in 1 was set to 300 mm.
  • the equipment length can be shortened and the nozzles can be arranged so that the cooling water faces the conveying direction on the steel sheet. Therefore, the supplied cooling water itself dams up the stagnant cooling water on the steel plate and drains it. Even if there is no place, draining is performed appropriately. As a result, the steel sheet can be appropriately cooled with a compact structure on the hot rolling line when the steel sheet is controlled and rolled.
  • a passing-type cooling facility having a large water density of 4 m 3 / m 2 min or more is disposed at a position close to the reversible rolling mill, the steel sheet is cooled while being rolled.
  • the nozzles are arranged on the steel plate so that the cooling waters face each other in the transport direction, and cooling water having a large water density of 4 m 3 Zm 2 min or more is supplied. Residual cooling water on the steel plate will be blocked and drained appropriately, resulting in a stable cooling area.
  • the steel sheet is uniformly cooled to obtain a good product quality, and it is possible to prevent a reduction in rolling efficiency due to waiting for cooling or the like.
  • the steel sheet can be uniformly cooled to the target temperature at a high cooling rate. As a result, high quality steel sheets can be manufactured.

Abstract

Cooling facility and method of a steel plate for cooling the steel plate properly on a hot rolling line by a compact structure when controlled rolling of the steel plate is performed. The cooling facility of a steel plate, which is a cooling facility for supplying cooling water to the upper and lower surfaces of the steel plate (10) while passing the steel plate (10) when it is hot rolled, has nozzles (22a, 22b) for supplying cooling water obliquely toward the upper surface of the steel plate (10) from above, wherein the nozzles (22a, 22b) are arranged such that ejections of cooling water on the steel plate (10) oppose each other in the carrying direction of the steel plate (10). More concretely, it is a passing type cooling facility (20) having a large water volume density of 4 m3/m2min or above.

Description

明細書  Specification
鋼板の冷却設備および冷却方法 技術分野  Steel sheet cooling equipment and method
本発明は、 鋼板の冷却設備(cooling equipment)および冷却方法に関するもので ある。 背景技術  The present invention relates to a steel plate cooling equipment and a cooling method. Background art
近年、 鋼板の熱間圧延においては、 強度ゃ靭性の優れた鋼板の製造が求められ ており、 その一例として、 圧延材に制御圧延 (Controlled Rolling; C R) を施 すことにより、 優れた材質の厚鋼板(steel plate)を造り込んでいる。 すなわち、 1 0 0 0 °C以上に加熱したスラブ(slab)を一且所定の板厚まで圧延し、 その後、 比延材の 度力未冉結晶温度域、 non-recrystallization temperature range)やそ の温度域に近い温度域にある状態で仕上板厚まで圧延を行うものである。 たとえ ば、 厚さ 2 0 0〜3 0 0 mmのスラブを 1 1 0 0〜 1 2 0 0 °C程度まで加熱後、 仕上板厚の 1 . 5〜 2倍程度まで圧延し、 その後、 温度が未再結晶域である 8 5 0 °C以下になった時点で制御圧延を開始し、 仕上板厚 (たとえば 1 5 mm) ,まで 圧延するというものである。  In recent years, in the hot rolling of steel sheets, the production of steel sheets with excellent strength and toughness has been demanded. As an example, by applying controlled rolling (CR) to the rolled material, an excellent material can be obtained. A steel plate is built in. That is, a slab heated to 100 ° C or higher is rolled to a predetermined plate thickness, and then the non-recrystallization temperature range) and temperature The rolling is performed to the finished plate thickness in a temperature range close to the range. For example, a slab with a thickness of 200-300 mm is heated to about 1100-120 ° C, then rolled to about 1.5-2 times the finished plate thickness, and then the temperature When the temperature of the non-recrystallized zone falls below 8500 ° C, controlled rolling is started and rolled to a finished sheet thickness (for example, 15 mm).
その際に、 制御圧延を行う温度 (制御圧延開始温度(controlled rolling start temperature) ) が低くかつ制御圧延を行う板厚 (制御圧延開始板厚 (controlled rolling start thickness) ) が厚い場合には、 圧延材が制御圧延開始温度になる までにかなりの時間を要するため、 圧延機 (可逆式圧延機 (reversing rolling mill) ) 近傍の圧延ライン上で制御圧延開始温度になるまで圧延材を放冷状態で待 機させていた。 その結果、 その冷却待ちによって圧延機に空き時間 (waiting time)が発生し、 圧延能率 (rolling productivity)が低下するという問題が生じて いた。  At that time, if the controlled rolling temperature (controlled rolling start temperature) is low and the thickness of the controlled rolling (controlled rolling start thickness) is thick, rolling Since it takes a considerable time for the material to reach the controlled rolling start temperature, the rolled material is allowed to cool until it reaches the controlled rolling start temperature on the rolling line near the rolling mill (reversing rolling mill). I was waiting. As a result, the waiting time for cooling caused a waiting time in the rolling mill, resulting in a problem that rolling productivity was lowered.
このような冷却待ちによつて圧延機に空き時間が発生し圧延能率が低下するの を解消するために、 冷却待ちが必要となつた鋼板を圧延ライン外に設けた待機位 置(waiting position)に移動させて冷却し、 その冷却を行っている間は他の鋼板 の圧延を行い、 待機位置で冷却していた鋼板が所定の制御圧延開始温度になれ ば、 待機位置から圧延ラインに戻して制御圧延を行うという技術が提案されてい る (例えば、 特開昭 5 3— 1 4 6 2 0 8号公報、 特開昭 6 0— 1 8 0 6 0 4号公 報参照) 。 In order to eliminate the reduction of rolling efficiency due to idle time in the rolling mill due to such a waiting for cooling, a waiting position in which a steel plate that needs to wait for cooling is provided outside the rolling line. To the other steel plate while cooling A technique has been proposed in which when a steel sheet that has been cooled at the standby position reaches a predetermined controlled rolling start temperature, it is returned to the rolling line from the standby position and controlled rolling is performed (for example, JP-A-5). 3-1 4 6 20 8 publication, Japanese Patent Laid-Open No. 60 0-1860 0 4 publication).
しかし、 特開昭 5 3 - 1 4 6 2 0 8号公報、 特開昭 6 0 - 1 8 0 6 0 4号公報 に記載の技術においては、 圧延ライン外に待機位置を設けるためのスペースや、 鋼板を圧延ラインと待機位置の間で移動させるための手段が必要となり、 大掛か りな設備になってしまう。  However, in the techniques described in Japanese Patent Application Laid-Open Nos. 53-1440 6208 and Japanese Patent Application Laid-Open No. 6-0-18006, a space for providing a standby position outside the rolling line, Therefore, a means for moving the steel sheet between the rolling line and the standby position is required, which makes a large facility.
また、 このような冷却待ちによつて圧延機に空き時間が発生し圧延能率が低下 するのを解消するために、 例えば、 特開昭 5 5 - 1 0 6 6 1 5号公報には、 可逆 圧延機の前方と後方にシャヮ一式の冷却装置を設置し、 各圧延パスにおいて圧延 材を冷却装置で水冷しながら可逆圧延機で圧延を行うという制御圧延方法が示さ れている。  Further, in order to eliminate the reduction of rolling efficiency due to the idle time in the rolling mill due to such waiting for cooling, for example, Japanese Patent Application Laid-Open No. Sho 5 5-1 0 6 6 15 A controlled rolling method is shown in which a set of cooling devices is installed in front of and behind the rolling mill, and the rolling material is rolled in a reversible rolling mill while cooling with a cooling device in each rolling pass.
また、 特開 2 0 0 5 _ 0 0 0 9 7 9号公報には、 圧延材を所定の制御圧延開始 温度に冷却するための温度調整冷却設備(temperature adjustment cooling equipment)を設置し、 可逆圧延機で所定板厚まで圧延した圧延材を温度調整冷却 設備で所定の制御圧延開始温度に冷却 (温度調整冷却(temperature adjustment ' cooling) ) した後、 再び可逆圧延機で仕上板厚まで圧延を行う技術が記载されて いる。 この温度調整冷却設備は、 後行材との干渉を避けるために、 可逆圧延機か ら約 2 0 m程度離れた位置に設置されている。  In addition, in Japanese Patent Laid-Open No. 2 0 0 5 0 0 9 7 9, a temperature adjustment cooling equipment for cooling the rolled material to a predetermined controlled rolling start temperature is installed, and reversible rolling is performed. The rolled material rolled to the specified plate thickness with the mill is cooled to the specified controlled rolling start temperature with the temperature adjustment cooling equipment (temperature adjustment 'cooling), and then rolled again to the finished plate thickness with the reversible rolling mill. The technology is described. This temperature-controlled cooling facility is installed at a position about 20 m away from the reversible rolling mill in order to avoid interference with the following material.
しかし、 特開昭 5 5 - 1 0 6 6 1 5号公報に記載の技術においては、 シャワー 式の冷却装置で鋼板の冷却を行っているが、 冷却水の水切り (damming of remaining water) については考慮されていないので、 所定の温度降下量  However, in the technique described in Japanese Patent Application Laid-Open No. Sho 5 5-1 0 6 6 15, the steel plate is cooled by a shower-type cooling device, but the cooling water drainage (damming of remaining water) Because it is not taken into account, the predetermined temperature drop
(temperature drop) を得ようと大きな流量の冷却水を鋼板の上面に供給すると、 鋼板上面に滞留した冷却水が鋼板上面を自由に移動することとなり、 鋼板の冷却 領域が変動して冷却が不均一になってしまい、 製品の材質や形状に悪影響を与え るという問題がある。  When a large amount of cooling water is supplied to the upper surface of the steel sheet to obtain (temperature drop), the cooling water staying on the upper surface of the steel sheet moves freely on the upper surface of the steel sheet, and the cooling region of the steel sheet fluctuates and cooling is not possible. There is a problem that it becomes uniform and adversely affects the material and shape of the product.
なお、 鋼板上面に滞留した冷却水の水切りについては、 水切りロールを用いる 方法があるが、 搬送される鋼板が水切りロールに衝突する等の搬送トラブルの発 生が懸念される。 また、 エアーにより水切りを行う方法があるが、 大きな流量 の冷却水に対しては効力がない。 For draining the cooling water accumulated on the upper surface of the steel sheet, there is a method using a draining roll. However, it may cause a transport trouble such as the transported steel sheet colliding with the draining roll. There is concern about life. In addition, there is a method of draining with air, but it is not effective for a large amount of cooling water.
また、 特開 2005— 000979号公報に記載の技術においては、 圧延機か ら約 20 m程度離れた位置に設置されている温度調整冷却設備で所定の制御圧延 開始温度まで温度調整冷却をするので、 鋼板の搬送時間も含めて冷却に時間がか かり、 圧延能率の低下を充分には解消できないという問題がある。  In the technique described in Japanese Patent Application Laid-Open No. 2005-000979, temperature-controlled cooling is performed up to a predetermined controlled rolling start temperature with a temperature-controlled cooling facility installed at a position about 20 m away from the rolling mill. However, there is a problem that it takes time to cool down including the time for transporting the steel sheet, and the reduction in rolling efficiency cannot be solved sufficiently.
また、 熱閬圧延により鋼板を製造するプロセスでは、 圧延温度を制御するのに 冷却水を供給したり、 空冷を行ったりするのが一般的であるが、 近年、 高い冷却 速度を得て糸且織を微細化し、.鋼板の強度を,上げる技術の開発が盛んである。 例えば、 冷却水を供給して鋼板を冷却する技術として、 特開昭 62- 2600 22号公報に記载された技術がある。 これは、 冷却水を鋼板の搬送方向に対向し て噴射するスリットノズルュニットを昇降させるものであり、 別に設けたラミナ 一ノズルやスプレーノズルとともに使用することで、 広範囲の冷却速度を確保で きるとされている。  Also, in the process of manufacturing steel sheets by hot rolling, it is common to supply cooling water or air cooling to control the rolling temperature. Development of technology to refine the weaving and increase the strength of the steel plate is thriving. For example, as a technique for cooling a steel sheet by supplying cooling water, there is a technique described in JP-A-62-260022. This is to raise and lower a slit nozzle unit that injects cooling water in the direction of steel sheet conveyance, and can be used with a separate laminar nozzle or spray nozzle to ensure a wide range of cooling rates. Has been.
また、 冷却水を俟給して鋼板を冷却する^の技術として、 特開 ffgS 9- 14 513号公報に記載された技術がある。 これは、 スリ ッ ト状のノズルを有するへ ッダを傾斜対向させて膜状の冷却水を噴射させるとともに、 仕切板を設けて冷却 水を鋼板と仕切板の間に充満させて高い冷却速度を得られるとされている。 また、 冷却水を供給して鋼板を冷却する別の技術として、 特開 2001— 28 6925号公報に記载された技術がある。 これは、 スリ ッ ト状のノズルまたは、 フラットスプレーノズルを鋼板の搬送方向の上流側と下流側にそれぞれ鋼板の上 方に設置し、 これらのノズルの嘖射角 (鋼板法線を基準にした角度) 'を 20° 以 上、 60° 以下で互いに向き合うように冷却水を吐出することで、 鋼板上の冷却 水を均一な流れにすることができ、 冷却むらを防止できるとされている。  Further, as a technique for cooling the steel sheet by supplying cooling water, there is a technique described in Japanese Patent Application Laid-Open No. ffgS 9-14513. This is because a film-shaped cooling water is jetted by inclining a header having a slit-like nozzle and a partition plate is provided to fill the space between the steel plate and the partition plate to obtain a high cooling rate. It is supposed to be done. As another technique for cooling the steel sheet by supplying cooling water, there is a technique described in Japanese Patent Laid-Open No. 2001-286925. This is done by installing slit-like nozzles or flat spray nozzles on the upstream and downstream sides of the steel sheet conveying direction, respectively, on the upper side of the steel sheet, and the spray angle of these nozzles (based on the normal line of the steel sheet). It is said that the cooling water on the steel sheet can be made a uniform flow and cooling unevenness can be prevented by discharging the cooling water so that the angle) ′ is more than 20 ° and less than 60 °.
しかしながら、 前記特開昭 62-260022号公報、 特開昭 59-1445 13号公報に記載の技術は、 冷却均一性の確保や設備コストなどに大きな問題点 がある。  However, the techniques described in JP-A-62-260022 and JP-A-59-144513 have significant problems in ensuring cooling uniformity and equipment costs.
すなわち、 特開昭 62— 260022号公報に記載の技術では、 スリ ッ トノズ ルュ-ットを鋼板に近づけなければならず、 先端や尾端が反った鋼板を冷却する 場合は、 鋼板がスリットノズルュ-ットに衝突して、 スリ ッ トノズルュ二ット を破損したり、 鋼板が移動できなくなって製造ラインの停止や歩留の低下を招い たりすることがある。 そこで、 先端や尾端が通過する時に、 昇降機構を作動させ て、 スリ ッ トノズルユニッ トを上方に退避させることも考えられるが、 その場合 は先尾端の冷却が足りず、 目的とする材質が得られなくなる。 さらに、 昇降機構 を設けるための設備コストがかかるという問題もある。 That is, in the technique described in Japanese Patent Application Laid-Open No. Sho 62-260022, the slit nozzle must be brought close to the steel sheet, and the steel sheet with the warped tip and tail ends is cooled. In this case, the steel plate may collide with the slit nozzle unit, damaging the slit nozzle unit, or the steel plate may not move, resulting in production line stoppage and yield reduction. Therefore, it is conceivable that when the tip and tail ends pass, the lifting mechanism is operated to retract the slit nozzle unit upward, but in that case the leading and trailing ends are not sufficiently cooled, and the target material is It can no longer be obtained. In addition, there is a problem that the equipment cost for installing the lifting mechanism is high.
また、 特開昭 5 9- 1445 1 3号公報に記载の技術では、 ノズルを鋼板に近 接させないと鋼板と仕切板との間に冷却水が充満しない。 ノズルを鋼板に近接さ せると、 特開昭 6 2- 26 0022号公報に記載の技術と同様に、 先端や尾端が 反った鋼板を冷却する場合に不都合が生じる。  Further, in the technique described in Japanese Patent Application Laid-Open No. 59-144513, the cooling water is not filled between the steel plate and the partition plate unless the nozzle is brought close to the steel plate. When the nozzle is brought close to the steel plate, inconvenience occurs when the steel plate with the tip or tail end warped is cooled, as in the technique described in JP-A-6-260022.
さらに、 特開昭 6 2— 2600 2 2号公報、 特開昭 5 9— 1 445 1 3号公報、 特開 200 1— 28 6 9 2 5号公報に記載の技術では、 スリ ツ ト状のノズルを用 いることが前提とされているが、 噴出口が常に清浄な状態にメンテナンスされて いないと、 冷却水が膜状にならない。 例えば、 図 1 5に示すように、 スリ ッ トノ ズル 52の嘖出口に異物 60が付着し詰まりが生じた場合には、 冷却水膜 (water film or water curtain) 5 3が破れる。 また、 冷却水を嘖射領域内 (冷却領域 内) に堰き止めるためには高圧で噴射しなければならないが、 膜状の冷却水 5 3 を高圧で嘖射すると、 嘖射圧力(jet pressure)のバランスが悪くなつて冷却水膜 5 3が破れやすいという問題があった。 また、 膜状冷却水を斜めに嘖射する場合、 鋼板からノズルまでの距離が遠くなると鋼板近傍の水膜が薄くなつて、 ますます 壌れやすくなる。 さらに、 特開昭 6 2- 2 6 0022号公報、 特開昭 5 9— 1 4 45 1 3号公報および、 特開 200 1— 2 86 9 2 5号公報に開示されたスリ ッ. ト状のノズルは、 鋼板の搬送方向の上流、 下流にそれぞれ一列しか配列されてい ない。 このため、 冷却水膜 5 3がうまく形成されないと、 冷却水が嘖射領域の上 '流や下流方向に漏れ出てしまい、 それが鋼板 1 0上に滞留して鋼板 1 0を部分的 に冷やし、 温度むらが発生するという問題がある。 鋼板 1 0上面に滞留する冷却 水をサイドスプレーなどで排除する技術もあるが、 冷却水量が多い場合には完全 に排除しきれず、 やはり温度むらを生じるという問題がある。 本発明は、 上記のような事情に鑑みてなされたものであり、 鋼板の制御圧延 を行う場合等において、 熱間圧延ライン上で鋼板をコンパクトな構造(compact size)で適切に冷却することができる鋼板の冷却設備および?^却方法を提供するこ とを目的とするものである。 Furthermore, in the techniques described in Japanese Patent Application Laid-Open No. 62-260022, Japanese Patent Application Laid-Open No. 59-144513, and Japanese Patent Application Laid-Open No. 200-286 925, Although it is assumed that a nozzle is used, the cooling water does not form a film unless the spout is maintained in a clean state. For example, as shown in FIG. 15, when the foreign matter 60 adheres to the throat outlet of the slit nozzle 52 and clogging occurs, the water film or water curtain 53 is broken. In addition, in order to keep cooling water in the spray area (in the cooling area), it must be injected at a high pressure, but when film-like cooling water 5 3 is sprayed at a high pressure, the jet pressure There was a problem that the cooling water film 53 was easily broken when the balance was poor. In addition, when film-like cooling water is sprayed obliquely, the water film near the steel sheet becomes thinner and becomes more easily spilled as the distance from the steel sheet to the nozzle increases. Furthermore, the slit shape disclosed in JP-A-62-2260022, JP-A-59-144413 and JP-A-2001-2869225. These nozzles are arranged in only one row upstream and downstream in the steel sheet conveyance direction. For this reason, if the cooling water film 53 is not formed well, the cooling water leaks in the upstream or downstream direction of the spraying region, and it stays on the steel plate 10 and partially causes the steel plate 10 to partially move. There is a problem of cooling and uneven temperature. There is also a technology to remove the cooling water staying on the upper surface of the steel plate 10 by side spraying, but when the amount of cooling water is large, it cannot be completely eliminated, and there is still a problem of uneven temperature. The present invention has been made in view of the circumstances as described above, and in the case of performing controlled rolling of a steel sheet, the steel sheet can be appropriately cooled on a hot rolling line with a compact structure (compact size). Can steel plate cooling equipment and? The purpose is to provide a rejection method.
また、 本発明は、 鋼板の制御圧延を行うに際して、 鋼板が均一に冷却されて良 好な製品品質が得られるとともに、 冷却待ち等による圧延能率の低下も防止する ことができる鋼板の熟間圧延設備および熱間圧延方法を提供することを目的とす るものである。  Further, the present invention provides a steel sheet that can be cooled uniformly during the controlled rolling of the steel sheet to obtain a good product quality and also prevent a reduction in rolling efficiency due to waiting for cooling or the like. The purpose is to provide equipment and a hot rolling method.
また、 本 明は、 鋼板の上面に冷却水を供給する場合において、 鋼板を高冷却 速度 (high cooling rate)で均一にかつ安定して冷却することができる鋼板の冷却 設備および冷却方法を提供することを目的とするものである。 癸明の開示  In addition, the present invention provides a steel plate cooling facility and a cooling method capable of cooling a steel plate uniformly and stably at a high cooling rate when cooling water is supplied to the upper surface of the steel plate. It is for the purpose. Disclosure disclosure
上記の課題を解決するために、 本発明は以下の特徴を有する。  In order to solve the above problems, the present invention has the following features.
1 . 鋼板を熱間圧延する間に、 鋼板を通過させながら鋼板の上下面に冷却水を供 給する冷却設備であって、 鋼板の上方から鋼板の上面に向けて斜めに冷却水を供 給するノズルを有し、 鋼板上で冷却水が鋼板の搬送方向に互いに対向するように 前記ノズルをそれぞれ複数列有していることを特徴とする鋼板の冷却設備。  1. A cooling facility that supplies cooling water to the upper and lower surfaces of a steel sheet while passing the steel sheet while hot rolling the steel sheet, and supplies cooling water obliquely from above the steel sheet toward the upper surface of the steel sheet. A steel sheet cooling facility comprising: a plurality of nozzles each arranged so that cooling water is opposed to each other in a conveying direction of the steel sheet on the steel sheet.
なお、 ここで、 鋼板を熱間圧延する間に冷却水を供給するとは、 冷却後に 1回 以上圧延し、 あるいは、 さらにその後 1回以上冷却水を供給して冷却することを ¾う。  Here, supplying the cooling water during hot rolling of the steel sheet refers to rolling at least once after cooling, or further supplying cooling water at least once thereafter for cooling.
2 . 上記 1において、 鋼板を熱閬圧延する可逆式圧延機の入側および/または出側 の前記可逆式圧延機に近接する位置に、 圧延前および/または圧延後の鋼板を通 過させながら.鋼板の上下面にそれぞれ 4 m 3/m 2 m i n以上の水量密度の冷却水 を供給する冷却設備を配置した鋼板の冷却設備。 2. In 1 above, while passing the steel plate before and / or after rolling at a position close to the reversible rolling mill on the entry side and / or exit side of the reversible rolling mill for hot rolling the steel plate. Steel sheet cooling equipment with cooling equipment that supplies cooling water with a water density of 4 m 3 / m 2 min or more on the upper and lower surfaces of each steel sheet.
3 . 上記 1または、 2においで、 前記ノズルは棒状冷却水を嘖射する鋼板の冷却 4 . 上記 3において、 前記鋼板の上方に前記棒状冷却水を嘖射するノズルを接 続したヘッダを設け、 前記棒状冷却水と前記鋼板とのなす伏角が 3 0。 〜 6 0 ° になるように、 前記ノズルを配置してなる鋼板の冷却設備。 3. In the above 1 or 2, the nozzle cools the steel plate spraying rod-shaped cooling water. 4. In 3 above, a header connected to the nozzle for spraying the rod-shaped cooling water is provided above the steel plate, and a tilt angle between the rod-shaped cooling water and the steel plate is 30. A steel plate cooling facility in which the nozzles are arranged so as to be up to 60 °.
5 . 上記 4において、 前記ノズルを前記鋼板の搬送方向および搬送方向と逆方向 にそれぞれ 3列以上、 より好ましくは、 5列以上配列し、 8 mZ s以上の速度で 棒状冷却水を噴射する鋼板の冷却設備。  5. The steel plate according to 4 above, wherein the nozzles are arranged in 3 rows or more, more preferably 5 rows or more in the conveying direction of the steel plate and in the direction opposite to the conveying direction, respectively, and the rod-shaped cooling water is injected at a speed of 8 mZ s or more. Cooling equipment.
6 . 上記 3〜 5の任意の上記において、 前記棒状冷却水の噴射速度の成分の 0〜 3 5 %が搬送方向に直角な鋼板幅方向の外側に向かうように、 前記棒状冷却水の 噴射方向が設定されている鋼板の冷却設備。 · ·  6. In any of the above 3 to 5, in the jet direction of the rod-shaped cooling water, 0 to 35% of the component of the jet speed of the rod-shaped cooling water is directed outward in the width direction of the steel sheet perpendicular to the conveying direction. Is a steel plate cooling facility. · ·
7 . 上記 6において、 前記棒状冷却水を噴射する全ノズル数の 4 0〜 6 0 %の数 の棒状冷却水の噴射速度の成分が、 搬送方向に直角な鋼板幅方向の外側に向かう 2方向の内、 一方向に向かう成分を持つように、 前記棒状冷却水の嘖射方向を設 定する鋼板の冷却設備。  7. In 6 above, the components of the injection speed of 40 to 60% of the total number of nozzles for injecting the rod-shaped cooling water are in two directions toward the outside in the width direction of the steel sheet perpendicular to the conveying direction. Among them, a steel sheet cooling facility for setting the spraying direction of the rod-shaped cooling water so as to have a component directed in one direction.
8 . 上記 6において、 搬送方向に直角な鋼板幅方向の外側に向かう 2方向の内、 一方向に向かう成分を持つ棒状冷却水の数と他方に向かう成分を持つ棒状冷却水 の数が、 等しくなるように、 前記棒状冷却水の噴射方向を設定する鋼板の冷却設 備。  8. In 6 above, the number of rod-shaped cooling water having a component toward one direction and the number of rod-shaped cooling water having a component toward the other of the two directions toward the outside in the width direction of the steel sheet perpendicular to the conveying direction is equal. A steel sheet cooling facility for setting the injection direction of the rod-shaped cooling water.
9 . 上記 6において、 ノズルの設置位置が鋼板幅方向の中央から外側に向かうに つれて、 棒状冷却水の噴射速度の鋼板幅方向の外側に向かう成分が順次大きくな るように、 各ノズルが設置されている鋼板の冷却設備。  9. In 6 above, each nozzle is placed in such a way that the component of the jet speed of the rod-shaped cooling water increases toward the outside in the steel plate width direction as the nozzle installation position goes from the center in the steel plate width direction to the outside. Installed steel sheet cooling equipment.
1 0 . 上記 6において、 棒状冷却水の噴射速度の鋼板幅方向の外側に向かう成分 が一定で、 棒状冷却水が鋼板に衝突する位置が鋼板幅方向に等間隔となるように、 各ノズルが設置されている鋼板の冷却設備。  1 0. In 6 above, each nozzle is set so that the component of the jetting speed of the rod-shaped cooling water toward the outside in the steel plate width direction is constant, and the positions where the rod-shaped cooling water collides with the steel plate are equally spaced in the steel plate width direction. Installed steel sheet cooling equipment.
1 1 . 上記 3〜 8の任意において、 板状または幕状の遮蔽物を、 対向噴射する最 も內側の列の棒状冷却水および/または滞留冷却水の上方に備えている鋼板の冷却 設備。  1 1. The steel sheet cooling equipment according to any one of the above 3 to 8, wherein a plate-like or curtain-like shield is provided above the rod-like cooling water and / or the stagnant cooling water in the most side row to be opposedly jetted.
1 2 . 上記 1 1において、 前記対向噴射する最も内側の列の棒状冷却水の上方 に備えている遮蔽物の最下端は、 熱鋼板の上面から 3 0 0〜5 0 0 mm上方の位 置である鋼板の冷却設備。 13. 上記 2において、 前記冷却設備の冷却領域は前記可逆式圧延機からその 入側および/または出側に配置されたサイドガイド部の位置を除く可逆式圧延機に 近接する位置である鋼板の冷却設備。 1 2. In the above 1 1, the lowermost end of the shielding object provided above the innermost row of rod-shaped cooling water jetting oppositely is positioned 30 to 500 mm above the upper surface of the hot steel plate. Is steel sheet cooling equipment. 13. In 2 above, the cooling area of the cooling facility is a position of the steel sheet that is close to the reversible rolling mill except the position of the side guide portion arranged on the entry side and / or the exit side from the reversible rolling mill. Cooling equipment.
14. 上記 1 3において、 前記冷却設備の冷却領域は前記可逆式圧延機の入側に 配置されたサイドガイドの上流側で可逆式圧延機に近接する位置および/または前 記可逆式圧延機の出側に配置されたサイドガイドの下流側で可逆式圧延機に近接 する位置である鋼板の冷却設備。  14. In the above item 13, the cooling area of the cooling facility is located on the upstream side of the side guide disposed on the entry side of the reversible rolling mill and in the vicinity of the reversible rolling mill and / or the reversible rolling mill. A steel plate cooling facility located in the vicinity of the reversible rolling mill on the downstream side of the side guide placed on the exit side.
15. 鋼板を熱間圧延する間に、 鋼板を通過させながら鋼板の上下面に冷却水を 供給する冷却方法であって、 鋼板上で冷却水が鋼板の搬送方向に互レ、に対向する ように配列されたノズルによって、 鋼板の上方から鋼板の上面に向けて斜めに冷 却水を供給する鋼板の冷却方法。  15. A cooling method in which cooling water is supplied to the upper and lower surfaces of the steel sheet while passing the steel plate while hot rolling the steel plate so that the cooling water faces each other in the direction of conveyance of the steel plate on the steel plate. A method for cooling a steel sheet, in which cooling water is supplied obliquely from above the steel sheet toward the upper surface of the steel sheet by means of nozzles arranged in the above.
16. 上記 15において、 前記鋼板を熱間圧延する可逆式圧延機の入側および/ま たは出側の前記可逆式圧延機に近接する位置に冷却設備を配置し、 該冷却設備か ら圧延前および/または圧延後の鋼板を通過させながら鋼板の上下面にそれぞれ 4 ia.3 m2m i n以上の水量密度の冷却水を洪耠する鋼板の冷却方法。 16. In the above 15, a cooling facility is disposed at a position close to the reversible rolling mill on the entry side and / or the exit side of the reversible rolling mill that hot-rolls the steel sheet, and rolling is performed from the cooling facility. A method of cooling a steel sheet, in which cooling water having a water density of 4 ia. 3 m 2 min or more is applied to the upper and lower surfaces of the steel sheet while passing the steel sheet before and / or after rolling.
1 7. 上記 1 5または、 1 6において、 前記ノズルは棒状冷却水を嘖射する鋼 板の冷却方法。  1 7. In the above 1 5 or 16, the nozzle is a method of cooling a steel plate that sprays rod-shaped cooling water.
18. 上記 1 7において、 前記鋼板の上方に前記棒状冷却水を嘖射するノズルを 接続したヘッダを設け、 前記棒状冷却水と前記熱鋼板とのなす伏角が 30° 〜6 0° になるように、 前記ノズルを配置して冷却を行う鋼板の冷却方法。  18. In 17 above, a header connected to the nozzle for spraying the rod-shaped cooling water is provided above the steel plate, so that an inclination angle between the rod-shaped cooling water and the hot steel plate is 30 ° to 60 °. The cooling method of the steel plate which cools by arrange | positioning the said nozzle.
19. 上記 18において、 前記ノズルを熱鋼板の搬送方向おょぴ搬送方向と逆方 向にそれぞれ 3列以上より好ましくは、 5列以上配列し、 8mZs以上の速度で 棒状冷却水を噴射する鋼板の冷却方法。  19. In 18 above, the nozzles are arranged in 3 or more rows, preferably 5 or more rows in the direction opposite to the conveying direction and the conveying direction of the hot steel plate, and more preferably 5 or more rows, and the steel plate injecting the rod-shaped cooling water at a speed of 8 mZs or more. Cooling method.
20. 上記 15〜 19の任意において、 前記棒状冷却水の噴射速度の成分の 0〜 20. In any of 15 to 19 above, 0 to 0 of the injection speed component of the rod-shaped cooling water
35%が搬送方向に直角な鋼板幅方向の外側に向かうように、 前記棒状冷却水の 噴射方向を設定する鋼板の冷却方法。 A steel plate cooling method in which the injection direction of the bar-shaped cooling water is set so that 35% is directed outward in the steel plate width direction perpendicular to the conveying direction.
21. 上記 20において、 前記棒状冷却水を嘖射する全ノズル数の 40〜 60 % の数の棒状冷却水の噴射速度の成分が、 搬送方向に直角な鋼板幅方向の外側に向 かう 2方向の内、 一方向に向かう成分を持つように、 前記棒状冷却水の噴射方 向を設定する鋼板の冷却方法。 21. In the above 20, the injection speed component of 40-60% of the total number of nozzles spraying the rod-shaped cooling water is directed outward in the steel plate width direction perpendicular to the conveying direction. The steel plate cooling method in which the injection direction of the rod-shaped cooling water is set so as to have a component that goes in one direction out of the two directions.
2 2 . 上記 2 0において、 搬送方向に直角な鋼板幅方向の外側に向かう 2方向の 内、 一方向に向かう成分を持つ棒状冷却水の数と他方に向かう成分を持つ棒状冷 却水の数が、 等しくなるように、 前記棒状冷却水の噴射方向を設定する鋼板の冷 却方法。 '  2 2. In 20 above, the number of rod-shaped cooling water having a component directed in one direction and the number of rod-shaped cooling water having a component directed in the other of the two directions toward the outside in the width direction of the steel sheet perpendicular to the conveying direction. However, the steel sheet cooling method is to set the injection direction of the rod-shaped cooling water so as to be equal. '
2 3 . 上記 2 0において、 ノズルの設置位置が鋼板幅方向の中央から外側に向か うにつれて、 棒状冷却水の噴射速度の鋼板幅方向の外側に向かう成分が順次大き くなるように、 各ノズルを設置する鋼板の冷却方法。 2 3. In 20 above, each component is set so that the component toward the outside in the steel plate width direction of the jet speed of the rod-shaped cooling water gradually increases as the nozzle installation position goes from the center in the steel plate width direction to the outside. A method of cooling the steel plate where the nozzle is installed.
2 4 . 上記 2 0において、 棒状冷却水の噴射速度の鋼板幅方向の外側に向かう成 分を一定とし、 棒状冷却水が鋼板に衝突する位置が鋼板幅方向に等間隔となるよ うに、 各ノズルを設置するの冷却方法。  2 4. In 20 above, each component is set so that the component of the jetting speed of the rod-shaped cooling water toward the outside in the steel plate width direction is constant, and the positions where the rod-shaped cooling water collides with the steel plate are equally spaced in the steel plate width direction. Cooling method of installing the nozzle.
2 5 . 上記 1 5〜1 9の任意において、 板状または幕状の遮蔽物を、 対向噴射す る最も内側の列の棒状冷却水および/または、 滞留冷却水の上方に設ける鋼板の冷 却方法。  2 5. In any one of 15 to 19 above, the cooling of the steel plate provided above the rod-shaped cooling water and / or the stagnant cooling water in the innermost row in which the plate-like or curtain-like shields are opposedly jetted Method.
2 6 . 上記 2 5において、 前記対向嘖射する最も内側の列の棒状冷却水の上方に 備えている遮蔽物の最下端を、 鋼板の上面から 3 0 0〜5 0 O mm上方に位置さ せる鋼板の冷却方法。  2 6. In the above 25, the lowermost end of the shield provided above the rod-shaped cooling water in the innermost row that projects oppositely is positioned 30 to 50 O mm above the upper surface of the steel plate. Steel plate cooling method.
2 7 . 上記 1 6において、 前記冷却設備の冷却領域は前記可逆式圧延機からその 入側および/または出側に配置されたサイドガイド部の長さを除く可逆式圧延機に 近接する位置である鋼板の熱間圧延方法。  2 7. In the above 16, the cooling area of the cooling facility is a position close to the reversible rolling mill excluding the length of the side guide portion arranged on the entry side and / or the exit side from the reversible rolling mill. A method of hot rolling a steel sheet.
2 8 . 上記 2 7において、 前記冷却設備の冷却領域は前記可逆式圧延機の入側に 配置されたサイドガイドの上流側で可逆式圧延機に近接する位置および/または前 記可逆式圧延機の出側に配置されたサイドガイドの下流側で可逆式圧延機に近接 する位置である鋼板の熱間圧延方法。  28. In the above 27, the cooling area of the cooling facility is located on the upstream side of the side guide disposed on the entry side of the reversible rolling mill and in the vicinity of the reversible rolling mill, and / or the reversible rolling mill. A hot-rolling method for a steel sheet, which is a position close to a reversible rolling mill on the downstream side of a side guide disposed on the exit side of the steel sheet.
2 9 . 鋼板を熱間圧延する可逆式圧延機の入側および/または出側の前記可逆式圧 延機に近接する位置に、 圧延前および/または圧延後の鋼板を通過させながら鋼板 の上下面にそれぞれ 4 m 3/m 2 m i n以上の水量密度の冷却水を供給する冷却設 備を配置し、 上面の冷却設備は、 鋼板の上方から鋼板に向けて斜めに冷却水を供 給するノズルを有し、 鋼板上で冷却水が鋼板の搬送方向に互いに対向するよう に前記ノズルを配列していることを特徴とする鋼板の熱間圧延設備。 29. On the steel plate while passing the unrolled and / or rolled steel plate at a position close to the reversible rolling machine on the entry side and / or exit side of the reversible rolling mill for hot rolling the steel plate. Cooling equipment that supplies cooling water with a water density of 4 m 3 / m 2 min or more is arranged on the bottom surface. The cooling equipment on the top surface supplies cooling water obliquely from above the steel plate toward the steel plate. A steel sheet hot rolling facility, comprising: a nozzle for feeding, wherein the nozzles are arranged so that cooling water faces each other in a conveying direction of the steel plate on the steel plate.
3 0 . 前記ノズルは棒状冷却水を嘖射することを特徴とする上記 2 9に記载の鋼 板の熱閬圧延設備。  30. The hot rolling mill for steel sheets according to 29 above, wherein the nozzle sprays rod-shaped cooling water.
3 1 . 前記冷却設備の冷却領域は可逆圧延機からその入側および/または出側に配 置されたサイドガイドまでの間に位置することを特徴とする上記 2 9または 3 0 に記載の鋼板の熱間圧延設備。  31. The steel sheet according to 29 or 30 above, wherein the cooling area of the cooling facility is located between the reversible rolling mill and the side guides arranged on the entry side and / or exit side thereof. Hot rolling equipment.
3 2 . 鋼板を熱間圧延する可逆式圧延機の入側および/または出側の前記可逆式圧 延機に近接する位置に冷却設備を配置し、 該冷却設備から圧延前および/または圧 延後の鋼板を通過させながら鋼板の上下面にそれぞれ 4 m 3Zin2 m i n以上の水 量密度の冷却水を供給するとともに、 その際に鋼板の上面に対しては、 鋼板上で 冷却水が鋼板の搬送方向に互いに対向するように配列されたノズルによって、 鋼 板の上方から鋼板に向けて斜めに冷却水を供給することを特徴とする鋼板の熱間 圧延方法。 3 2. A cooling facility is arranged at a position close to the reversible rolling machine on the inlet side and / or the outlet side of the reversible rolling mill for hot rolling the steel sheet, and before the rolling and / or rolling from the cooling facility. Cooling water with a water density of 4 m 3 Zin 2 min or more is supplied to the upper and lower surfaces of the steel plate while passing the later steel plate. At that time, the cooling water is applied to the upper surface of the steel plate on the steel plate. A method of hot rolling a steel sheet, characterized in that cooling water is supplied obliquely from above the steel sheet toward the steel sheet by nozzles arranged so as to face each other in the conveying direction.
3 3 . 前記ノズルは棒状冷却水を噴射することを特徴とする上記 3 2に己载の鋼 板の熱間圧延方法。  3 3. The hot rolling method for steel plates according to 3 2 above, wherein the nozzle sprays bar-shaped cooling water.
3 4 . 前記冷却設備の冷却領域は可逆圧延機からその入側および/または出側に配 置されたサイドガイドまでの間に位置することを特徴とする上記 3 2または 3 -3 に記載の鋼板の熱間圧延方法。  34. The cooling area of the cooling facility is located between the reversible rolling mill and the side guides arranged on the entry side and / or exit side thereof, according to the above 3 2 or 3 -3. Hot rolling method for steel sheet.
3 5 . 熱鋼板の上方に 4 m 3/m 2m i n以上の水量密度の棒状冷却水を嘖射する ノズルを接続したヘッダを設け、 棒状冷却水と前記熱鋼板とのなす伏角が 3 0 ° 〜6 0 ° で、 前記熱鋼板の搬送方向に互いに対向するように前記ノズルを配置し てなることを特徴とする鋼板の冷却設備。 3 5. A bar-shaped cooling water with a water density of 4 m 3 / m 2 min or more is sprayed above the hot steel plate. The steel plate cooling equipment is characterized in that the nozzles are arranged so as to face each other in the conveying direction of the hot steel plate at ˜60 °.
3 6 . 前記ノズルを熱鋼板の搬送方向に 5列以上配列し、 8 mZ s以上の速度で 棒状冷却水を噴射することを特徴とする上記 3 5に記載の鋼板の冷却設備。  36. The steel sheet cooling equipment according to 35, wherein five or more rows of the nozzles are arranged in the conveying direction of the hot steel sheet, and the rod-shaped cooling water is injected at a speed of 8 mZ s or more.
3 7 . 板状または幕状の遮蔽物を、 対向噴射する最も内側の列の棒状冷却水の上- 方に備えていることを特徴とする上記 3 5または 3 6に記載の鋼板の冷却設備。 3 8 . 前記遮蔽物の最下端は、 熱鋼板の上面から 3 0 0〜 5 0 0 mm上方の位置 であることを特徵とする上記 3 7に記載の鋼板の冷却設備。 3 9 . 熱鋼板の上方に 4 m 3 /m 2 m i n以上の水量密度の棒状冷却水を嘖射す るノズルを接鐃したへッダを設け、 棒状冷却水と前記熱鋼板とのなす伏角が 3 - 0 ° 〜6 0 ° で、 前記熱鋼板の搬送方向に互いに対向するように前記ノズルを配 置して冷却を行うことを特徴とする鋼板の冷却方法。 3 7. The steel sheet cooling equipment according to 3 5 or 3 6 above, wherein a plate-like or curtain-like shield is provided on the upper side of the rod-like cooling water in the innermost row that is jetted oppositely. . 38. The steel sheet cooling equipment according to 37, wherein the lowermost end of the shield is at a position 30 to 500 mm above the upper surface of the hot steel sheet. 3 9. Above the hot steel plate, provide a header with a nozzle that sprays rod-shaped cooling water with a water density of 4 m 3 / m 2 min or more, and the tilt angle between the rod-shaped cooling water and the hot steel plate is A cooling method for a steel sheet, wherein the nozzle is arranged to cool at 3 ° to 60 ° so as to face each other in the conveying direction of the hot steel sheet.
4 0 . 前記ノズルを熱鋼板の搬送方向に 5列以上配列し、 8 m/ s以上の速度で 棒状冷却水を噴射することを特徴とする上記 3 9に記載の鋼板の冷却方法。 4 1 . 板状または幕状の遮蔽物を、 対向噴射する最も內側の列の棒状冷却水の上 方に設けることを特徴とする上記 3 9または 4 0に記载の鋼板の冷却方法。 4 2 . 前記遮蔽物の最下端を、 熱鋼板の上面から 3 0 0〜 5 0 0 mm上方に位置 させることを特徴とする上記 4 1に記載の鋼板の冷却方法。  40. The steel sheet cooling method according to 39, wherein the nozzles are arranged in five or more rows in the conveying direction of the hot steel sheet, and the rod-shaped cooling water is injected at a speed of 8 m / s or more. 4 1. The method for cooling a steel plate according to 39 or 40, wherein a plate-like or curtain-like shield is provided on the uppermost row of rod-like cooling water that jets oppositely. 42. The method for cooling a steel sheet according to 41, wherein the lowermost end of the shield is positioned 30 to 500 mm above the upper surface of the hot steel sheet.
本努明においては、 鋼板を通過させながら鋼板の上下面に冷却水を供給するよ うにしているので、 設備長が短くてすむとともに、 鋼板上で冷却水が搬送方向に 互いに対向するようにノズルを配列しているので、 供給された冷却水自身が鋼板 上の滞留冷却水を堰き止めて水切りを行うことになり、 水切りロール等の付帯装 置がなくとも適切に水切りが行われる。 その結果、 鋼板の制御圧延を行う場合等 において、 熱間圧延ライン上で鋼板をコンパクトな構造で適切に冷却することが できる。  In this effort, the cooling water is supplied to the upper and lower surfaces of the steel sheet while passing through the steel sheet, so that the equipment length can be shortened and the cooling water can be opposed to each other in the conveying direction on the steel sheet. Since the nozzles are arranged, the supplied cooling water itself dams up the stagnant cooling water on the steel plate and drains the water, so that the drainage can be performed appropriately even without an auxiliary device such as a draining roll. As a result, the steel sheet can be appropriately cooled with a compact structure on the hot rolling line when the steel sheet is subjected to controlled rolling.
また、 本発明においては、 可逆式圧延機に近接する位置に 4 m3Zm 2m i n以 上の大きな水量密度を有する通過式の冷却設備を配置しているので、 鋼板を圧延 しながら冷却することにより、 .効率的に所定の制御圧延開始温度を得ることがで き、 冷却待ち等による圧延能率の低下が回避される。 そして、 鋼板上で冷却水が 搬送方向に互いに対向するようにノズルを配列し、 4 m 3/m 2 m i n以上の大き な水量密度の冷却水を供給しているので、 供給された冷却水自身が鋼板上の滞留 冷却水を堰き止めて適切に水切りを行うことになり、 安定した冷却領域が得られ る。 Further, in the present invention, since a passing type cooling facility having a large water density of 4 m 3 Zm 2 min or more is disposed at a position close to the reversible rolling mill, the steel sheet is cooled while being rolled. Thus, a predetermined controlled rolling start temperature can be obtained efficiently, and a reduction in rolling efficiency due to waiting for cooling or the like can be avoided. The nozzles are arranged on the steel plate so that the cooling waters face each other in the transport direction, and cooling water having a large water density of 4 m 3 / m 2 min or more is supplied, so the supplied cooling water itself However, the stagnation cooling water on the steel plate is blocked and drained appropriately, and a stable cooling region can be obtained.
この結果、 鋼板の制御圧延を行うに際して、'鋼板が均一に冷却されて良好な製 品品質が得られるとともに、 冷却待ち等による圧延能率の低下も防止することが できる。 また、 本発明を用いることにより、 鋼板を目標温度まで高冷却速度で均一に 冷やすことができる。 その結果、 品質の高い鋼板を製造することができる。 図面の簡単な説明 As a result, when performing the controlled rolling of the steel sheet, the steel sheet is uniformly cooled to obtain a good product quality, and it is also possible to prevent a reduction in rolling efficiency due to waiting for cooling. Further, by using the present invention, the steel sheet can be uniformly cooled to the target temperature at a high cooling rate. As a result, high quality steel sheets can be manufactured. Brief Description of Drawings
図 1 :本発明の一実施形態における鋼板の熱間圧延設備の配置図である。 図 2 :本発明の第 1の実施形態に係る冷却設備の説明図である。  FIG. 1 is a layout diagram of hot-rolling equipment for steel sheets in one embodiment of the present invention. FIG. 2 is an explanatory diagram of the cooling facility according to the first embodiment of the present invention.
図 3 :本発明の一実施形態における冷却設備の詳細図である。  FIG. 3 is a detailed view of a cooling facility in one embodiment of the present invention.
図 4 :本努明の一実施形態における上ヘッダのノズル配置例を示した図であ る。  Fig. 4 is a diagram showing an example of the nozzle arrangement of the upper header in one embodiment of the present efforts.
図 5 :本努明の第 1の実施形態に係る他の冷却設備の説明図である。  Fig. 5 is an explanatory diagram of another cooling facility according to the first embodiment of the present efforts.
図 6 :本発明の第 2の実施形態に係る鋼板の冷却設備の説明図である。 図 7 :本発明の第 2の実施形態に係る他の鋼板の冷却設備の説明図である。 図 8 :本努明の第 2の実施形態における嘖射方向の説明図である。  FIG. 6 is an explanatory diagram of a steel sheet cooling facility according to the second embodiment of the present invention. FIG. 7 is an explanatory diagram of another steel plate cooling facility according to the second embodiment of the present invention. FIG. 8 is an explanatory diagram of the shooting direction in the second embodiment of this effort.
図 9 :本発明の第 3の実施形態に係る冷却設備の説明図である。  FIG. 9 is an explanatory diagram of the cooling facility according to the third embodiment of the present invention.
図 1 0 図 4の A— A矢視図である。  FIG. 10 is a view taken along arrows A—A in FIG.
図 1 1 :本発明の第 3の実施形態に係る他の冷却設備の説明図である。 図 1 2 :飛散冷却水を説明するための図である。  FIG. 11: is an explanatory diagram of another cooling facility according to the third embodiment of the present invention. Fig. 12: A diagram for explaining scattered cooling water.
図 1 3 :本発明の実施例における圧延時間の比較図である。  Fig. 13: Comparison of rolling time in examples of the present invention.
図 14 :本努明の実施例における厚鋼鈑の熱間圧延ラインと搬送パターンの 説明図である。  Figure 14: Explanatory drawing of the hot rolling line and transport pattern for thick steel plates in the example of this effort.
囡 1 5 :従来技術の問題点を示した図である。  囡 15: A diagram showing the problems of the prior art.
図 1 6 :本発明の別の一実施形態における冷却設備の詳細図である。  FIG. 16 is a detailed view of a cooling facility in another embodiment of the present invention.
図 1 7 :本癸明の第 3の実施形態に係る他の冷却設備の説明図である。  Fig. 17: An explanatory diagram of another cooling facility according to the third embodiment of the present invention.
(符号の説明)  (Explanation of symbols)
1 0 :鋼板、 1 3 :テーブルローラ、 2 1 :上ヘッダユニット、 2 1 a : 第 1上ヘッダ、 2 1 b :第 2上ヘッダ、 2 2 a :第 1上ノズル、 2 2 b : 第 2上ノズル、 23 a :棒状冷却水、 23 b :棒状冷却水、 24 :滞留冷 却水、 3 1 :下ヘッダ、 3 2 :下ノズル、 3 3 :棒状冷却水、 2 5 :飛 散冷却水、 26 a :遮蔽板、 26 b :遮蔽板、 27 a : シリンダ、 2 7 b :シリンダ、 2 8 a :遮蔽幕、 2 8 b :遮蔽幕、 2 9 :遮蔽板、 4 0 :冷却ュニット、 5 1 :冷却ヘッダ、 5 2 :スリットノズル、 5 3 :冷 却水膜、 6 0 :付着物、 6 1 :サイドガイド、 2 0 :冷却設備 (冷却ュニ ッ卜) 発明を実施するための最良の形態 1 0: Steel plate, 1 3: Table roller, 2 1: Upper header unit, 2 1 a: First upper header, 2 1 b: Second upper header, 2 2 a: First upper nozzle, 2 2 b: First 2 Upper nozzle, 23 a: Rod cooling water, 23 b: Rod cooling water, 24: Stagnant cooling water, 31: Lower header, 3 2: Lower nozzle, 33: Rod cooling water, 25: Spatter cooling Water, 26a: Shield plate, 26b: Shield plate, 27a: Cylinder, 2 7 b: Cylinder, 2 8 a: Shielding curtain, 2 8 b: Shielding curtain, 2 9: Shielding plate, 40: Cooling unit, 51: Cooling header, 52: Slit nozzle, 53: Cooling water film, 60: Adhering material 61: Side guide 20: Cooling equipment (Cooling unit) BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施形態を図面に基づ.いて説明する。  An embodiment of the present invention will be described with reference to the drawings.
(第 1の実施形態)  (First embodiment)
図 1は、 本発明の一実施形態における鋼板の熱間圧延設備の配置図である。 図 1に示すように、 この実施形態においては、 加熱炉 1 1と、 可逆式圧延機 1 2と、 可逆式圧延機 1 2の入側 (上流側) および出側 (下流側) の近接する位置に冷却 設備 2 0が配置されている。 そして、 冷却設備 (冷却ユニットとも言う) 2 0は、 通過式の冷却設備であり、 図 2に示すように、 鋼板 1 0の上面に向けて冷却水を 供給するための上ヘッダュニット 2 1と、 鋼板 1 0の下面に向けて冷却水を供給 するための下ヘッダ 3 1を備えている。 なお、 図:!およぴ図 2中、 1 3はテープ ルローラである。  FIG. 1 is a layout diagram of a steel sheet hot rolling facility according to an embodiment of the present invention. As shown in FIG. 1, in this embodiment, the heating furnace 1 1, the reversible rolling mill 1 2, and the entry side (upstream side) and the exit side (downstream side) of the reversible rolling mill 1 2 are close to each other. Cooling equipment 20 is placed at the position. Cooling equipment (also referred to as a cooling unit) 20 is a passage-type cooling equipment, and as shown in FIG. 2, an upper header unit 2 1 for supplying cooling water toward the upper surface of the steel plate 10, A lower header 31 for supplying cooling water toward the lower surface of the steel plate 10 is provided. Figure:! In Fig. 2, 1 3 is a table roller.
図 3、 図 1 6は、 冷却設備 2 0の詳細図である。 なお、 図 3では、 冷却設備 2 0は可逆式圧延機 1 2とサイドガイド 1 4との間に配置されており、 図 1 6では、 冷却設備 2 0はサイドガイド 1 4の上流側 (加熱^側〉 で可逆式圧延機 1 2に近 接する位置に配置されている。 いずれにおいても、 前述したように、 冷却設備 2 0は上ヘッダュニット 2 1と下ヘッダ 3 1を備えている。  3 and 16 are detailed views of the cooling facility 20. In FIG. 3, the cooling facility 20 is disposed between the reversible rolling mill 12 and the side guide 14, and in FIG. 16, the cooling facility 20 is located upstream of the side guide 14 (heating ^ Side> at a position close to the reversible rolling mill 12 2. In any case, the cooling facility 20 includes the upper header unit 21 and the lower header 31 as described above.
上ヘッダユニット 2 1は、 一対の上ヘッダ 2 1 a、 2 1 bによって構成されて おり、 ここでは、 可逆式圧延機 1 2に近い側の上へッダを第 1上ヘッダ 2 1 aと 呼び、 可逆式圧延機 1 2から遠い側の上ヘッダを第 2上ヘッダ 2 1 と呼ぶこと にする。  The upper header unit 2 1 is composed of a pair of upper headers 2 1 a and 2 1 b. Here, the upper header on the side close to the reversible rolling mill 1 2 is referred to as the first upper header 2 1 a. The upper header far from the reversible rolling mill 1 2 will be called the second upper header 2 1.
そして、 第 1上ヘッダ 2 1 aと第 2上ヘッダ 2 1 bのそれぞれに鋼板の幅方 向に配列するとともに搬送方向に複数列設けたの円管ノズル 2 2 a、 2 2 b (こ こでは、 鋼板 1 0の搬送方向に 6列) が取り付けられており、 第 1上ヘッダ 2 1 aの円管ノズル (第 1上ノズル) 2 2 aと第 2上ヘッダ 2 1 bの円管ノズル (第 2上ノズル) 2 2 bとは、 それぞれから供給する棒状の冷却水が鋼板 1 0の搬 送方向に互いに対向するように配列されている。 すなわち、 第 1上ノズル 2 2 a は、 可逆式圧延機 1 2側から 0 1の伏角 (噴射角度) で棒状冷却水 2 3 aを噴射 し、 第 2上ノズ 2 2 bは、 可逆式圧延機 1 2側に向かって Θ 2の伏角 (噴射角 度) で棒状冷却水 2 3 bを嘖射するようになっている。 The circular tube nozzles 2 2 a, 2 2 b (this is arranged in the width direction of the steel plate in each of the first upper header 2 1 a and the second upper header 2 1 b and provided in a plurality of rows in the conveying direction) In Fig. 6, 6 rows in the conveying direction of the steel plate 10 are installed, and the circular nozzles of the first upper header 2 1 a (first upper nozzle) 2 2 a and the second upper header 2 1 b (No. 2 upper nozzles) 2 2 b are arranged so that the rod-shaped cooling water supplied from each of them faces each other in the carrying direction of the steel plate 10. That is, the first upper nozzle 2 2 a injects the rod-like cooling water 2 3 a from the reversible rolling mill 1 2 side at a tilt angle (injection angle) of 01, and the second upper nozzle 2 2 b is reversible rolling. The rod-shaped cooling water 2 3 b is sprayed toward the machine 1 2 side with an inclination angle (injection angle) of Θ2.
ちなみに、 本発明の棒状冷却水 (柱状嘖流冷却水とも言う。 ) とは、 円形状 (楕円や多角の形状も含む) のノズル嘖出口から嘖射される冷却水のことを指し ている。 また、 本発明の棒状冷却水は、 スプレー状の噴流でなく、 ノズル嘖出口 から鋼板に衝突するまで、 その水流の断面がほぼ円形に保たれ、 連続性のある直 進性のある水流の冷却水を言う。  Incidentally, the rod-shaped cooling water (also referred to as columnar side cooling water) of the present invention refers to cooling water sprayed from a circular (including elliptical or polygonal) nozzle soot outlet. In addition, the rod-shaped cooling water of the present invention is not a spray-like jet, but the cross-section of the water flow is maintained in a substantially circular shape until it collides with the steel plate from the outlet of the nozzle soot, thereby cooling the continuous and straight water flow. Say water.
したがって、 互いの上ヘッダから最も遠い側の列 (最外側の列) の円管ノズル からの棒状冷却水が鋼板 1 0に衝突する位置同士に挟まれた領域が冷却領域とい うことになる。  Therefore, the region sandwiched between the positions where the rod-shaped cooling water from the circular tube nozzles in the row farthest from each other's upper header (outermost row) collides with the steel plate 10 is called the cooling region.
その際に、 第 1上ノズル 2 2 aからの棒状冷却水 2 3 aの噴射線と第 2上ノズ ル 2 2 bからの棒状冷却水 2 3 bの噴射線が交差しないようにすれば、 図 3、 図 1 6に示すような滞留冷却水 2 4の水膜が安定して形成される。 これによつて、 互いの上ヘッダに最も近い側の列 (最内側の列) の円管ノズルからの棒状冷却水 は滞留冷却水 2 4の水膜に向かって嘖射されることになり、 お互いに他方の棒状 冷却水を壌すことがないので好ましい。 そして、 最内側の列の円管ノズルからの 棒状冷却水が鋼板 1 0に衝突する位置同士の間隔を滞留域長さと呼ぶこととする と、 滞留域長さを 1 . 5 m以内とすれば、 滞留する冷却水 2 4が鋼板 1 0を冷や す割合は比較的少ないので、 鋼板 1 0の最先端ゃ最尾端が非定常な状態で通過す る場合に冷え方が大きく変化することを防ぐことができる。  At that time, if the injection line of the rod-like cooling water 2 3 a from the first upper nozzle 2 2 a and the injection line of the rod-like cooling water 2 3 b from the second upper nozzle 2 2 b do not intersect, As shown in Fig. 3 and Fig. 16, the water film of stagnant cooling water 24 is stably formed. As a result, the rod-shaped cooling water from the circular tube nozzles in the row closest to the upper header of each other (innermost row) is sprayed toward the water film of the accumulated cooling water 24. It is preferable because the other rod-shaped cooling water does not spill on each other. And if the interval between the positions where the rod-shaped cooling water from the circular tube nozzles in the innermost row collides with the steel plate 10 is called the staying zone length, the staying zone length should be 1.5 m or less. The ratio of cooling water 2 4 that cools the steel sheet 10 is relatively small, so that the cooling method changes greatly when the leading edge of the steel sheet 10 passes in an unsteady state. Can be prevented.
図 4 A, 4 Bは、 上ヘッダ 2 1 aおよび、 2 1 bに取り付けられている円管 ノズル 2 2 aおよび、 2 2 bの配置例を示したものである。 前述したように、 円 管ノズル 2 2 aおよび、 2 2 bが鋼板 1 0の搬送方向にそれぞれ 6列配置されて いる。 搬送方向に複数列配置するのは、 1列のノズルでは鋼板に衝突する冷却水 と冷却水の間で滞留冷却水を堰き止める力が弱くなるからである。 よって、 搬送 方向には 3列以上配置するのが好ましい。 より好ましくは 5列以上配置する。 ま た、 扳幅方向には、 通過する鋼板 1 0の全幅に冷却水を供給できるように取り 付けら ている。 また、 ここでは上ヘッダを 2つ設けたが、 これらが一体となつ たようなヘッダを 1つ設けて、 それに円管ノズル 2 2 aおよび、 2 2 bを配列し ても構わない。 . 4A and 4B show examples of the arrangement of the circular tube nozzles 2 2 a and 2 2 b attached to the upper headers 2 1 a and 2 1 b. As described above, the circular tube nozzles 2 2 a and 2 2 b are arranged in six rows in the conveying direction of the steel plate 10. The reason for arranging a plurality of rows in the transport direction is that a single row of nozzles weakens the ability to dam the stagnant cooling water between the cooling water and the cooling water that collide with the steel sheet. Therefore, it is preferable to arrange three or more rows in the transport direction. More preferably, 5 or more rows are arranged. Ma In addition, in the width direction, it is installed so that cooling water can be supplied to the entire width of the passing steel sheet 10. In addition, although two upper headers are provided here, it is also possible to provide one header in which these are integrated, and to arrange the circular tube nozzles 22a and 22b. .
—方、 下ヘッダ 3 1については、 ここでは、 2個の下ヘッダ 3 1が配置されて おり、 それぞれに円管ノズル 3 2が取り付けられ、 テーブルローラ 1 3の隙間か ら棒状の冷却水 3 3を嘖射して、 通過する鋼板 1 0の全幅に冷却水を供給するよ うになっている。  On the other hand, for the lower header 3 1, here, two lower headers 3 1 are arranged, each having a circular nozzle 3 2 attached, and a rod-shaped cooling water 3 from the gap between the table rollers 1 3. 3 is sprayed to supply cooling water to the entire width of the passing steel plate 10.
そして、 冷却設備 2 0は、 鋼板 1 0の上面に向けて鋼板面の水量密度が 4 m3 / m2 m i n以上になるように上ヘッダ 2 1 a、 2 1 bから冷却水を供給し、 鋼板 1 0の下面に向けて下ヘッダ 3 1から同じく鋼板面の水量密度が 4 m3Zm2m i n 以上になるように冷却水を供給している。 The cooling facility 20 supplies cooling water from the upper headers 2 1 a and 2 1 b so that the water density of the steel plate surface is 4 m 3 / m 2 min or more toward the upper surface of the steel plate 10, The cooling water is supplied from the lower header 3 1 toward the lower surface of the steel plate 10 so that the water density on the steel plate surface is 4 m 3 Zm 2 min or more.
ここで、 水量密度を 4 m3Zm2m i n以上としている理由について説明する。 図 3、 図 1 6に示す滞留冷却水 2 4は供給する棒状冷却水 2 3 a、 2 3 bによつ て堰き止められて形成される。 このとき水量密度が小さいと堰き止めること自体 ができず、 水量密度がある量よりも大きくなると堰き止めることができる滞留冷 却水 2 4の量は増加し、 板幅端部から排出される冷却水と供給される冷却水の量 が釣り合って滞留冷却水 2 4は一定に維持される。 厚鋼板の場合、 一般的な板幅 は 2〜5 mであり、 4 m 3 2 in i ti以上の水量密度で冷却すれば、 これらの板 幅において滞留冷却水を一定に維持できて、 圧延中の鋼板 1 0を通過させながら 所望の温度降下量を得ることができる。 Here, the reason why the water density is set to 4 m 3 Zm 2 min or more will be described. The staying cooling water 24 shown in FIG. 3 and FIG. 16 is formed by damming with the rod-like cooling water 2 3 a and 2 3 b to be supplied. At this time, if the water density is small, the dam can not be dammed, and if the water density is larger than a certain amount, the amount of stagnant cooling water 24 that can be dammed increases, and the cooling discharged from the edge of the plate Stagnant cooling water 24 is kept constant by balancing the amount of water and the amount of cooling water supplied. In the case of thick steel plates, the typical plate width is 2 to 5 m. If cooling is performed with a water density of 4 m 3 2 in i ti or more, the stagnant cooling water can be kept constant at these plate widths and rolled. A desired temperature drop can be obtained while passing the steel plate 10 inside.
水量密度を 4 m 3Zm2m i n以上大きくすればするほど冷却待ちを解消する制 御圧延材が多くなる。 例えば、 水量密度が小さいと板厚が薄い圧延材でしか冷却 待ちを解消できないが、 水量密度を増やしていけば、 ある程度板厚が厚い圧延材 でも冷却待ちを解消できるようになる。 し力 し、 水量を増やしたことに対する冷 却待ち時間短縮の効果は、 水量密度を増やしていくほど徐々に小さくなつていく ので、 水量密度は、 冷却待ち時間などの短縮効果と設備コストを勘案して、 決定 することが好ましい。 さらに好ましい水量密度は、 4〜1 0 m 3/ni2 m i riであ る。 また、 冷却設備 2 0をコンパクトな大きさにするとともに可逆式圧延機 1 2 に近接した位置で鋼板を冷却できるようにするために、 滞留域長さを 1 . 5 m以 內、 冷却領域を 3 m以内とし、 可逆式圧延機 1 2の入側および/または出側に配置 されたサイドガイド部の位置を除く可逆式圧延機 1 2に近接する位置になるよう に冷却設備 2 0を配置する。 一般的に、 この位置は可逆式圧延機 1 2のワーク口 ール中心 1 2 aから 2 0 m以内の範囲となる。 冷却領域をサイドガイドにかから ないようにサイドガイド部を除く位置に設ければ、 鋼板 1 0上面に滞留した冷却 水がサイドガイド 1 4に邪摩されることなく鋼板 1 0幅端部からスムースに排出 される。 '· ' The higher the water density is 4 m 3 Zm 2 min or more, the more control rolled material that eliminates the waiting time for cooling. For example, if the water density is small, the waiting time for cooling can be solved only with a rolled material with a thin plate thickness, but if the water content density is increased, the waiting time for cooling can be eliminated even with a rolled material with a somewhat thick plate thickness. However, the effect of shortening the cooling waiting time for increasing the water volume gradually decreases as the water density increases, so the water density takes into account the effect of shortening the cooling waiting time and the equipment cost. Therefore, it is preferable to determine. A more preferable water density is 4 to 10 m 3 / ni 2 mi ri. In addition, in order to make the cooling equipment 20 compact and to cool the steel plate at a position close to the reversible rolling mill 12, the residence area length is 1.5 m or less and the cooling area is reduced. Cooling equipment 20 is placed so that it is located within 3 m and is located close to the reversible rolling mill 1 2 excluding the position of the side guides placed on the entry side and / or exit side of the reversible rolling mill 1 2 To do. In general, this position is within a range of 20 m from the center of the workpiece hole 1 2 a of the reversible rolling mill 12. If the cooling area is provided at a position excluding the side guide so as not to cover the side guide, the cooling water staying on the upper surface of the steel plate 10 is not disturbed by the side guide 14 and from the width of the steel plate 10 It is discharged smoothly. '·'
その際に、 図 3のように、 冷却領域が可逆式圧延機 1 2のワークロール中心 1 At that time, as shown in Fig. 3, the cooling zone is a reversible rolling mill 1 2 Work roll center 1 2
2 aからサイドガイドまでの間 (ワークロール中心 1 2から 2〜4 m程度) に位 置するように冷却設備 2 0を配置するのが、 圧延能率を効率的に向上できるので 好ましい。 2 It is preferable to arrange the cooling equipment 20 so as to be positioned between the a and the side guide (about 2 to 4 m from the work roll center 12 to 2 m) because the rolling efficiency can be improved efficiently.
一方、 冷却設備 2 0の冷却領域を、 図 1 6のように、 可逆式圧延機 1 2の入側 に配置されたサイドガイド 1 4の上流倒で可逆式圧延機 1 2に近接した位置に設 ける力 \ あるいは、 可逆式圧延機 1 3の出側に配置されたサイドガイド 1 4の下 流側で可逆式圧延機 1 2に近接した位 ftに設けるのも、 設備を大きくして長い冷 却領域を確保できるのでよい。  On the other hand, the cooling area of the cooling facility 20 is moved to the position close to the reversible rolling mill 1 2 by the upstream inversion of the side guide 14 arranged on the entry side of the reversible rolling mill 12 as shown in FIG. Installed force \ Or, the side guide 14 located on the exit side of the reversible rolling mill 1 3 is installed on the downstream side of the side guide 14 near the reversible rolling mill 1 2 It is good because a cooling area can be secured.
さらに、 可逆 ¾£延機 1 2のワーク G—ル中心 1 2 aからサイドガイド 1 4ま での間と、 図 1 6に示すサイドガイド 1 4の上流側の両方に冷却領域を設けても よいことはいうまでもない。  In addition, a cooling region may be provided both between the work center G 1 of the reversible roll extender 12 and the side guide 14 and upstream of the side guide 14 shown in FIG. Needless to say, it is good.
そして、 この冷却設備 2 0では、 第 1上ノズル 2 2 aから嘖射される棒状冷却 水 2 3 aと第 2上ノズル 2 2 bから噴射される棒状冷却水 2 3 bが鋼板 1 0の搬 送方向に互いに対向するようにしているので、 鋼板 1 0上面の滞留冷却水 2 4が 鋼板 1 0の搬送方向に移動しょうとするのを、 嘖射された棒状冷却水 2 3 a、 2 In this cooling equipment 20, the rod-like cooling water 2 3 a sprayed from the first upper nozzle 2 2 a and the rod-like cooling water 23 b injected from the second upper nozzle 2 2 b Since they are opposed to each other in the carrying direction, the stagnant cooling water 2 4 on the upper surface of the steel plate 10 is about to move in the conveying direction of the steel plate 10.
3 b自身が堰き止める。 これによつて、 4 m 3Zm 2m i n以上の大きな水量密度 で冷却水を供給しても、 安定した冷却領域が得られ、 均一な冷却を行うことがで きる。 なお、 上ノズル 2 2 a、 2 2 bから噴射する冷却水を例えばスリットノズル を使った膜状冷却水ではなく棒状冷却水としているのは、 棒状冷却水の方が安定 的に水流が形成され、 滞留冷却水を堰き止める力が大きいからである。 3 b stops itself. As a result, even if cooling water is supplied with a large water density of 4 m 3 Zm 2 min or more, a stable cooling region can be obtained and uniform cooling can be performed. Note that the cooling water sprayed from the upper nozzles 2 2 a and 2 2 b is, for example, a rod-shaped cooling water rather than a film-shaped cooling water using a slit nozzle, so that the rod-shaped cooling water forms a more stable water flow. This is because the power to block the accumulated cooling water is great.
また、 膜状冷却水を斜めに噴射する場合、 鋼板からノズルまでの距離が遠くな ると鋼板近傍の水膜が薄くなって、 ますます壌れやすくなるからでもある。  In addition, when the film-like cooling water is sprayed obliquely, the water film near the steel sheet becomes thinner and more prone to spilling as the distance from the steel sheet to the nozzle increases.
その際に、 第 1上ノズル 2 2 aの噴射角度 θ 1と、 第 2上ノズル 2 2 bの噴射 角度 0 2は、 3 0 ° 〜6 0 ° とするのが好ましい。 噴射角度 Θ 1、 Θ 2が 3 0 ° より小さいと、 第 1上ノズル 2 2 aと第 2上ノズル 2 2 bを遠く離さなくてはな らず、 設備長が長くなつてしまうとともに、 棒状冷却水 2 3 a、 2 3 bの鉛直方. 向 ¾度成分が小さくなつて、 鋼板 1 0への衝突が弱くなり、 冷却能力が低下する からであり、 嘖射角度 Θ 1、 Θ 2が 6 0 ° より大きいと、 棒状冷却水 2 3 a、 2 3 bの搬送方向速度成分が小さくなつて、 滞留冷却水 2 4を堰き止める力が弱く なるからである。 なお、 嘖射角度 0 1と噴射角度 Θ 2は必ずしも等しくする必要 はない。 さらに好ましい噴射角度 0 1、 Θ 2は、 4 0 ° 〜5 0 ° である。  At this time, the injection angle θ 1 of the first upper nozzle 22 2 a and the injection angle 0 2 of the second upper nozzle 22 b are preferably 30 ° to 60 °. If the injection angles Θ1 and Θ2 are smaller than 30 °, the first upper nozzle 2 2a and the second upper nozzle 2 2b must be separated from each other. Cooling water 2 3 a, 2 3 b in the vertical direction. Because the direction component becomes smaller, the collision with the steel plate 10 becomes weaker and the cooling capacity is reduced. The incident angles Θ 1 and Θ 2 are This is because if it is larger than 60 °, the speed component in the conveying direction of the rod-shaped cooling water 2 3 a and 2 3 b becomes small, and the force to dam the stagnant cooling water 24 becomes weak. Note that the spray angle 0 1 and the injection angle Θ 2 are not necessarily equal. More preferable injection angles 0 1 and Θ 2 are 40 ° to 50 °.
また、 所望の冷却能力と水切り能力を得るために、 上ノズ /レ 2 2 a、 2 2 bの 配置は鋼板の搬送方向および搬送方向と逆方向にそれぞれ 5列以上とし、 上ノズ ル 2 2 a、 2 2 bからの棒状冷却水 2 3 a、 2 3 bの噴射速度は 8 mZ s以上と するのが好ましい。  In addition, in order to obtain the desired cooling capacity and drainage capacity, the upper nozzle / le 22a and 2 2b should be arranged in 5 rows or more in the direction of conveyance of the steel sheet and in the direction opposite to the conveyance direction. It is preferable that the injection speed of the rod-shaped cooling waters 2 3 a and 2 3 b from a and 2 2 b is 8 mZ s or more.
搬送方向おょぴ搬送方向と逆方向に冷却水を噴射するノズルの列数は、 完全な水 切りを達成するためには、 それぞれ複数列、 少なくとも 3列以上が好ましい。 よ り好ましくは、 少なくとも 5列以上である。 列数の上限は、 冷却する鋼板のサイ ズ、 搬送速度、 目標とする温度降下量などによって、 適宜決定すればよい。 In order to achieve complete draining, the number of nozzles that spray cooling water in the direction opposite to the direction of conveyance and the direction of conveyance is preferably multiple, at least 3 or more, respectively. More preferably, there are at least 5 rows. The upper limit of the number of rows may be appropriately determined depending on the size of the steel sheet to be cooled, the conveyance speed, the target temperature drop amount, and the like.
また、 噴射速度は 3 O m/ sを超えると、 圧損が大きくなり、 また、 ノズル内面 の磨耗が増加する問題が生じる。 また、 ポンプの容量や配管の外径も大きくなり 設備コストが過大になる。 このため、 噴射速度は 3 O mZ s以下が好ましい。 そして、 ノズルが詰まりにくく、 かつ冷却水の嘖射速度を確保するためには、 ノズル内径は 3〜8 mmの範囲内であればよい。 また、 棒状冷却水の隙間から冷 却水が流れ出ないようにするためには、 板幅方向に引いた仮想線上で隣り合うノ ズルの間隔をノズル内径の 1 0倍以内とすればよい。 図 4 Aは、 隣り合うノズルの間隔を 4 0 mmとして搬送方向に 6列設けた配 列を示し、 図 4 Bは、 隣り合うノズルの間隔を 4 O ramとした列を搬送方向に 4 列設け、 隣り合うノズルの間隔を 2 0 mmとした列を搬送方向に 2列設けた配列 の例を示す。 Also, if the injection speed exceeds 3 O m / s, the pressure loss increases, and the problem of increased wear on the nozzle inner surface arises. In addition, the capacity of the pump and the outer diameter of the piping also increase, resulting in excessive equipment costs. For this reason, the injection speed is preferably 3 O mZ s or less. In order to prevent the nozzle from clogging and to ensure the spraying speed of the cooling water, the inner diameter of the nozzle only needs to be in the range of 3 to 8 mm. Further, in order to prevent the cooling water from flowing out from the gap between the rod-shaped cooling waters, the interval between adjacent nozzles on the imaginary line drawn in the plate width direction should be within 10 times the nozzle inner diameter. Figure 4A shows an array with six rows in the transport direction with an adjacent nozzle spacing of 40 mm, and Figure 4B shows four rows in the transport direction with an adjacent nozzle spacing of 4 Oram. An example of an arrangement is shown in which two rows are provided in the transport direction in which the interval between adjacent nozzles is 20 mm.
さらに、 鋼板 1 0の反り等によって上ノズル 2 2 a、 2 2 bが損傷するのを防 止するために、 上ノズル 2 2 a、 2 2 bの先端の位置をパスラインから離すよう にするのがよいが、 あまり離すと冷却水が分散するので、 上ノズル 2 2 a、 2 2 bの先端とパスラインの距離を 5 0 0 mm〜1.8 0 0 mmとするのが好ましい。 そして、 上記のように構成された鋼板の熱間圧延設備を用いて制御圧延を行う 場合には、 所定の制御圧延開始板厚 (例えば、 仕上板厚の 1 . 5 ~ 2倍) におい て所定の制御圧延開始温度 (例えば、 8 5 0 °C以下) となるように、 圧延前およ び/または圧延中および/または圧延後に冷却設備 2 0の冷却領域を通過する鋼板 を冷却設備 2 0で冷却しながら可逆式圧延機 1 2で圧延する。 そして、 所定の制 御圧延開始板厚で所定の制御圧延開始温度になれば、 それ以降は冷却設備 2 0で の冷却は行わずに、 仕上板厚 (例えば、 1 5 mm) まで圧延する。  Furthermore, in order to prevent the upper nozzles 2 2 a and 2 2 b from being damaged by warpage of the steel plate 10, the positions of the tips of the upper nozzles 2 2 a and 2 2 b should be separated from the pass line. However, since the cooling water is dispersed when separated too much, it is preferable that the distance between the tip of the upper nozzles 2 2 a and 2 2 b and the pass line is set to 500 mm to 1.800 mm. In the case where controlled rolling is performed using the steel sheet hot rolling equipment configured as described above, a predetermined control rolling start plate thickness (for example, 1.5 to 2 times the finished plate thickness) is used. The steel sheet that passes through the cooling zone of the cooling equipment 20 before and / or during and / or after the rolling is controlled so that the controlled rolling start temperature (for example, 85 ° C. or lower) is reached. Roll with a reversible rolling mill 1 2 while cooling. Then, when the predetermined control rolling start plate thickness reaches the predetermined control rolling start temperature, after that, the cooling equipment 20 is not cooled and the rolling is performed to the finished plate thickness (for example, 15 mm).
なお、 制御圧延開始温度になるまですベての圧延パスで入側と出側の冷却設備 2 0によつて冷却を行う必要はなく、 所定の制御圧延開始板厚で所定の制御圧延 開始温度になるように、 冷却設備 (冷却ュニットとも言う) 2 0を適宜オン ·ォ フすればよレ、。  Note that it is not necessary to cool by the inlet and outlet side cooling facilities 20 in all rolling passes until the controlled rolling start temperature is reached, and the predetermined controlled rolling start temperature is set at the predetermined controlled rolling start plate thickness. Cooling equipment (also called cooling unit) 20
なお、 上記の実施形態においては、 図 2に示したような、 一対の上ヘッダ 2 1 a、 2 1 bを有する冷却設備 (冷却ユニット) 2 0を 1個以上備えるようにして いるが、 冷却ュニットをある程度まとめてより大きな冷却能力を得ようとするな らば、 図 5に示すように、 一対の上ヘッダ 2 1 a、 2 1 bの間に中間ヘッダ 2 1 cを設けることも可能であり、 その数はいくつであってもよい。  In the above embodiment, one or more cooling facilities (cooling units) 20 having a pair of upper headers 2 1 a and 2 1 b as shown in FIG. 2 are provided. If you want to obtain a larger cooling capacity by combining the units to some extent, you can install an intermediate header 2 1 c between the pair of upper headers 2 1 a and 2 1 b as shown in Figure 5. There can be any number.
また、 ここでは、 可逆式圧延機 1 2の入側と出側に冷却設備 2 0を配置してい るが、 いずれか一方に冷却設備 2 0を配置することでもよい。  Here, the cooling equipment 20 is arranged on the entry side and the exit side of the reversible rolling mill 12, but the cooling equipment 20 may be arranged on either one of them.
このようにして、 この実施形態においては、 鋼板 1 0を通過させながら鋼板 1 0の上下面に冷却水を供給するようにしているので設備長が短くてすむ。 そして、 鋼板 1 0上で冷却水が搬送方向に互いに対向するように上ノズル 2 2 a、 2 2 b 'を配列しているので、 供給された棒状冷却水 2 3 aN 23 b自身が鋼板 1 0上 の滞留冷却水 24を堰き止めて水切りを行うことになり、 水切りロール等の付帯 装置'がなくとも適切に水切りが行われる。 その結果、 鋼板の制御圧延を行う場合 等において、 熱間圧延ライン上で鋼板をコンパクトな構造で適切に冷却すること ができる。 Thus, in this embodiment, since the cooling water is supplied to the upper and lower surfaces of the steel plate 10 while passing the steel plate 10, the equipment length can be shortened. And the upper nozzles 2 2 a, 2 2 b so that the cooling water faces each other in the transport direction on the steel plate 10 Since the supplied rod-like cooling water 2 3 a N 23 b itself dams up the stagnant cooling water 24 on the steel plate 10 and drains it, an auxiliary device such as a draining roll is installed. Even if it does not drain properly. As a result, the steel sheet can be appropriately cooled with a compact structure on the hot rolling line when the steel sheet is controlled and rolled.
また、 この実施形態においては、 可逆式圧延機 1 2に近接する位置に 4 m 3/m 2m i n以上の大きな水量密度を有する通過式の冷却設備 20を配置しているので、 鋼板 1 0を圧延しながら冷却することにより、 効率的に所定の制御温度を得るこ とができ、 冷却待ち等による圧延能率の低下が回避される。 そして、 鋼板 1 0上 で冷却水が搬送方向に互いに対向するように円管ノズル 2 2 a、 22 bを配列し、 4m3/m2m i n以上の大きな水量密度の冷却水を供給しているので、 噴射され ' た棒状冷却水 23 a、 23 b自身が鋼板 1 0上の滞留冷却水 24を堰き止めて適 切に水切りを行うことになり、 安定した冷却領域が得られる。 Further, in this embodiment, since the passing type cooling equipment 20 having a large water density of 4 m 3 / m 2 min or more is arranged at a position close to the reversible rolling mill 12, the steel plate 10 is By cooling while rolling, a predetermined control temperature can be efficiently obtained, and a reduction in rolling efficiency due to waiting for cooling is avoided. Then, the circular nozzles 2 2 a and 22 b are arranged on the steel plate 10 so that the cooling water faces each other in the transport direction, and cooling water having a large water density of 4 m 3 / m 2 min or more is supplied. Therefore, the injected rod-shaped cooling waters 23a and 23b themselves dam the staying cooling water 24 on the steel plate 10 and appropriately drain the water, and a stable cooling region is obtained.
この結果、 鋼板の制御圧延を行うに際して、 鋼板が均一に冷却されて良好な製 品品質が得られるとともに、 冷却待ち等による圧延能率の低下も防止することが できる。  As a result, when performing the controlled rolling of the steel sheet, the steel sheet is uniformly cooled to obtain a good product quality, and it is also possible to prevent a reduction in rolling efficiency due to waiting for cooling or the like.
なお、 上記の実施形態においては、 鋼板の下面に対して、 鋼板面の水量密度が 4m3/m2m i n以上になる棒状冷却水を供給しているが、 本発明はそれに限定 されるものではなく、 鋼板面の水量密度が 4m3Zm2m i n以上になる冷却水を 供給できるものであれば、 それ以外のスリットノズルから出る膜状冷却水ゃスプ レーノズルから出る噴霧状冷却水等、 どのような形態の冷却水であっても構わな い。 In the above embodiment, the rod-shaped cooling water is supplied to the lower surface of the steel sheet so that the water density on the steel sheet surface is 4 m 3 / m 2 min or more. However, the present invention is not limited thereto. If it is possible to supply cooling water with a water density of 4m 3 Zm 2 min or more on the steel plate surface, the film cooling water from other slit nozzles can be sprayed cooling water from the spray nozzle, etc. Any form of cooling water may be used.
また、 この実施形態においては、 鋼板 10の上方に 4m3Zm2m i n以上の水 量密度の棒状冷却水を嘖射する上ノズル 22 a、 22 bを接続した上ヘッダ 2 1 a、 2 1 bを設け、 棒状冷却水 23 a、 23 bと鋼板 1 0とのなす伏角 0 1、 0 2が 3 0° ~6 0° で、 鋼板 1 0の搬送方向に互いに対向するように上ノズル 2 2 a、 22 bを配置して、 鋼板 1 0を通過させながら鋼板 1 0の上面に冷却水を 供給するようにしているので、 厚鋼板や薄鋼板の熱間圧延ラインに設置すること によって、 鋼板を目標温度まで高冷却速度で均一にかつ安定に冷やすことがで きる。 その結果、 品質の高い鋼板を製造することができる。 In this embodiment, upper headers 2 1 a, 2 1 b connected to upper nozzles 22 a, 22 b for spraying rod-shaped cooling water having a water density of 4 m 3 Zm 2 min or more above steel plate 10 The upper nozzle 2 2 so that the slant angles 0 1 and 0 2 formed by the rod-shaped cooling water 23 a and 23 b and the steel plate 10 are 30 ° to 60 ° and face each other in the conveying direction of the steel plate 10. Since a and 22b are arranged so that cooling water is supplied to the upper surface of the steel plate 10 while passing the steel plate 10, it must be installed in the hot rolling line for thick steel plates and thin steel plates. Thus, the steel sheet can be cooled uniformly and stably at a high cooling rate to the target temperature. As a result, high quality steel sheets can be manufactured.
(第 2の実施形態) (Second embodiment)
本努明の第 2の実施形態における鋼板の冷却設備は、 図 2に示した第 1の実施 形態において、 棒状冷却水 2 3 a、 2 3 bの噴射方向の速度成分の 0〜 3 5 %が 鋼板幅方向の外側に向かう成分となるように、 棒状冷却水 2 3 a、 2 3 の噴射 方向を設定したものである。  In the second embodiment of the present work, the steel sheet cooling equipment in the first embodiment shown in FIG. 2 is 0 to 35% of the velocity component in the injection direction of the rod-like cooling water 2 3 a and 2 3 b. The injection direction of the rod-shaped cooling waters 2 3 a and 2 3 is set so that becomes a component toward the outside in the steel plate width direction.
図 6および、 図 7に.示ずように、 棒状冷却水 2 3 aおよび、 .2 '3 bの嘖射方向 の速度成分の 0〜 3 5 %が鋼板幅方向の外側に向かう速度成分となるように、 棒 状冷却水 2 3 aおよび、 2 3 bの噴射方向を設定すると、 上ノズル 2 2 aおよび 2 2 bから鋼板 1 0上面に噴射された冷却水は、 図 6、 図 7中の矢印 Aに示すよ うに、 合流して速やかに鋼板 1 0幅端から落下するようになる。 したがって、 鋼 板幅方向の外側に向かう速度成分がない場合に比べて少ない水量で滞留冷却水 2 4を堰き止めて水切りができるようにな.るのでエネルギーコス卜削減の面で好ま しい。 より好ましい範囲は 1 0〜 3 5 %である。 ちなみに、 3 5 %を超えると冷 却水の飛散防止に設備コストがかかる上に、 棒状冷却水の鉛直方向成分が小さく なって、 冷却能力が低下する。  As shown in Fig. 6 and Fig. 7, as shown in Fig. 6 and Fig. 7, 0 to 35% of the velocity component in the spray direction of rod-shaped cooling water 2 3 a and .2 '3 b As shown, when the injection direction of the rod-shaped cooling water 2 3 a and 2 3 b is set, the cooling water injected from the upper nozzles 2 2 a and 2 2 b onto the steel plate 10 is As shown by the arrow A in the middle, it joins and falls quickly from the 10-width end of the steel plate. Therefore, it is preferable in terms of energy cost reduction because it is possible to drain the retained cooling water 24 with a small amount of water compared to the case where there is no velocity component toward the outside in the width direction of the steel plate. A more preferable range is 10 to 35%. By the way, if it exceeds 35%, it costs equipment costs to prevent the scattering of cooling water, and the vertical component of the rod-shaped cooling water becomes smaller, resulting in lower cooling capacity.
また、 前記棒状冷却水を噴射する全ノズル数の 4 0〜 6 0 %の数の棒状冷却水 の噴射速度の成分が、 搬送方向に直角な鋼板幅方向の外側に向かう 2方向の内、 一方向に向かう成分を持つように、 前記棒状冷却水の噴射方向が設定されている ことが好ましい。 具体的には、 一方の外側に向いているノズル数が全体の 6 0 % 以上であり、 板端からの冷却水排出に偏りが生じれば、 滞留冷却水の厚みが厚く なったところで棒状冷却水が滞留冷却水を堰き止められなくなり、 幅方向の温度 むらが発生する可能性があるからである。 また、 片方の外側で飛散水が極端に多 くなると、 これを防止するための設備コストが高くなるからでもある。  In addition, the component of the injection speed of 40 to 60% of the total number of nozzles for injecting the rod-shaped cooling water has a ratio of one of the two directions toward the outside in the steel plate width direction perpendicular to the transport direction. It is preferable that the injection direction of the rod-shaped cooling water is set so as to have a component toward the direction. Specifically, if the number of nozzles facing one side is 60% or more of the total, and if the cooling water discharge from the end of the plate is biased, the rod-like cooling will occur when the thickness of the stagnant cooling water increases. This is because the water can no longer block the accumulated cooling water and temperature unevenness in the width direction may occur. Moreover, if the amount of splashed water on one side becomes extremely large, the equipment cost for preventing this will increase.
ところで、 図 6に示すように幅方向外側を向かずに嘖射するノズルを板幅中央 部に設置したとしても、 その数を全体の 2 0 %以内とし、 残りのうち両外側に向 けるノズル数をほぼ等しくすれば、 滞留冷却水の排出は円滑に行われる。 滞留 冷却水を堰き止めて水切りを行うのには、 最も好適である。 By the way, as shown in Fig. 6, even if nozzles that radiate without facing outward in the width direction are installed in the central part of the plate width, the number of nozzles should be within 20% of the whole, and the remaining nozzles should face both outer sides. If the number of nozzles is almost equal, the accumulated cooling water can be discharged smoothly. It is most suitable to drain water by blocking the stagnant cooling water.
ここで、 上記の棒状冷却水の噴射方向の設定について、 図 8を用いて具体的に 説明する。  Here, the setting of the injection direction of the rod-shaped cooling water will be specifically described with reference to FIG.
すなわち、 図 8は、 棒状冷却水の噴射方向を示したものであり、 棒状冷却水の 噴射線と鋼板とがなす角度 (実質の伏角) を. β、 搬送方向に対する伏角を θ、 鋼 板幅方向の外側に向かう角度 (外向き角) をひ として示している。 そして、 棒状 冷却水の嘖射速度 0〜 3 5 %が鋼板幅方向の外側に向かう成分となるようにする ■ ということは、 冷却水の噴射長さ Lに対する鋼板幅方向成分 L wの比 L wZ L In other words, Fig. 8 shows the injection direction of the rod-shaped cooling water. The angle between the jet line of the rod-shaped cooling water and the steel plate (actual dip angle) is .β, the dip angle with respect to the transport direction is θ, and the steel plate width. The angle toward the outside of the direction (outward angle) is shown as ひ. And, the spraying speed of rod-shaped cooling water is set to 0 to 35% as a component toward the outside in the steel plate width direction. That is, the ratio L of the steel plate width direction component L w to the cooling water injection length L wZ L
(幅方向速度成分比率) が 0〜3 5 %となるようにすることを意味する。 表 1に、 ノズルの噴射口高さ hを 9 0 O mm、 搬送方向に対する伏角 Θ を 4 5 ° 、 5 0 ° とした場合の計算結果を示す。 幅方向速度成分比率が 0〜 3 5 %となるのは、 搬 送方向に対する伏角 Θ が 4 5 ° では外向き角 aが 0 ~ 2 5 ° 、 搬送方向に対す る伏角 Θ 力;5 0 ° では外向き角 αが 0〜3 0。 の場合である。 なお、 好ましい 鋼板幅方向の嘖射速度成分は、 1 0〜 2 5 %である。 This means that the (width direction velocity component ratio) is 0 to 35%. Table 1 shows the calculation results when the nozzle height h is 90 mm and the dip angle Θ with respect to the transport direction is 45 ° and 50 °. The ratio of velocity component in the width direction is 0 to 35%. When the tilt angle Θ is 45 ° with respect to the transport direction, the outward angle a is 0 to 25 °, and the tilt angle Θ force with respect to the transport direction is 50 °. Then the outward angle α is 0 ~ 30. This is the case. Note that a preferable spray rate component in the width direction of the steel sheet is 10 to 25%.
Figure imgf000023_0001
Figure imgf000023_0001
そして、 前述した図 6は、 上記に基づいて上ノズル 2 2 a、 2 2 bを設置し た場合の一例を示す平面図である。 ここでは、 鋼板幅方向の中央のノズルからの 棒状冷却水は外向き角 αが 0 ° とし、. ノズルの設置位置が鋼板幅方向の外側に向 かうにつれて外向き角 αが順次大きくなるようにしている。 また、 棒状冷却水が 鋼板に衝突する位置が鋼板幅方向に等間隔 (例えば、 6 0 mmピッチ) となるよ うに各ノズルを設置している。 FIG. 6 described above is a plan view showing an example when the upper nozzles 2 2 a and 2 2 b are installed based on the above. Here, the rod-shaped cooling water from the central nozzle in the steel sheet width direction has an outward angle α of 0 °, and the outward angle α gradually increases as the nozzle installation position goes outward in the steel sheet width direction. ing. In addition, each nozzle is installed so that the positions where the rod-shaped cooling water collides with the steel plate are equally spaced in the steel plate width direction (for example, 60 mm pitch).
また、 前述した図 7は、 上記に基づいて上ノズル 2 2 a、 2 2 bを設置した場 合の他の例を示す平面図である。 ここでは、 冷却水嘖射の外向き角 ct を一定 (例 えば、 2 0 ° ) とし、 棒状冷却水が鋼板に衝突する位置が鋼板幅方向に等間隔 Further, FIG. 7 described above is a plan view showing another example when the upper nozzles 2 2 a and 2 2 b are installed based on the above. Here, the outward angle ct of the cooling water spray is constant (for example, 20 °), and the positions where the rod-shaped cooling water collides with the steel plate are equally spaced in the steel plate width direction.
(例えば、 6 0 mmピッチ) となるように各ノズルを設置した。 その際、 鋼板幅 方向の中央付近では、 左右の両外側に向けて噴射するノズルを設置しなくてはな らないので、 ノズルを取り付ける穴の加工が可能となるように、 一方の鋼板幅方 向の外側に向けて噴射するノズル列 (例えば、 図 7中の上方向に噴射成分をもつ ノズル列) と他方の鋼板幅方向の外側に向けて噴射するノズル列 (例えば、 図 7 中の"" F方向に嘖射成分をもつノズル列) を、 搬送方向に交互に所定間隔 (例えば、 2 0 mm) ずらして設置し、 搬送方向に直角な鋼板幅方向の外側に向かう 2方向 の内、 一方向に向かう成分を持つ棒状冷却水の数と他方に向かう成分を持つ棒状 冷却水の数が、 等しくなるようにする。 具体的には、 鋼板の搬送方向成分に直角 な鋼板幅方向の片方の外側に向う成分を持つ棒状冷却水を喷射するノズル数と、 他の片方の外側に向う成分を持つ棒状冷却水を嘖射するノズル数が等しくなるよ うにしている。 Each nozzle was installed so as to be (for example, 60 mm pitch). At that time, in the vicinity of the center in the width direction of the steel sheet, nozzles that spray toward both the left and right sides must be installed. Nozzle row that injects toward the outside in the direction (for example, a nozzle row that has an injection component in the upward direction in Fig. 7) and nozzle row that injects toward the outside in the other steel plate width direction (for example, " "Nozzle rows with a spray component in the F direction) are alternately shifted in the transport direction by a predetermined distance (for example, 20 mm), and within the two directions toward the outside of the steel sheet width direction perpendicular to the transport direction, Make sure that the number of rod-shaped cooling water with a component toward one direction is equal to the number of rod-shaped cooling water with a component toward the other. Specifically, the number of nozzles that spray rod-shaped cooling water having a component facing outward in one of the steel sheet width directions perpendicular to the conveying direction component of the steel plate and the rod-shaped cooling water having a component facing outward in the other side The number of nozzles to be shot is made equal.
なお、 外向き角 α を大きくすれば、 より少ない水量での水切りが可能となるが、 図 6、 図 7に示すように、 鋼板幅方向の中央付近でノズル密度が大きくなる範囲 が広がる。 鋼板幅方向で均一な流量分布を得るように、 そしてヘッダに送水する ポンプの能力や配管の太さなどを考慮して、 外向き角 α を決定すればよい。  If the outward angle α is increased, draining with a smaller amount of water becomes possible, but as shown in Figs. 6 and 7, the range in which the nozzle density increases near the center in the width direction of the steel sheet increases. The outward angle α should be determined so as to obtain a uniform flow distribution in the width direction of the steel sheet, and considering the capacity of the pump that supplies water to the header and the thickness of the piping.
そして、 上記のような冷却設備の両外側には、 壁や排水口などを設けることが 好ましい。 冷却水が設備外に漏れたり、 設備内で飛散して新たな滞留水となった りすることを防ぐために有効であるからである。 ただし、 外向き角 αが 3 0 ° を超える場合、 冷却水の飛散防止に設備コスト がかかる上に、 棒状冷却水の垂直方向成分が小さくなつて、 冷却能力が低下する ので好ましくない。 And it is preferable to provide a wall, a drain outlet, etc. in the both outer sides of the above cooling facilities. This is because it is effective to prevent the cooling water from leaking outside the facility or being scattered inside the facility to become new accumulated water. However, when the outward angle α exceeds 30 °, it is not preferable because it increases the equipment cost for preventing the cooling water from scattering and the vertical component of the rod-shaped cooling water becomes small, resulting in a decrease in cooling capacity.
(第 3の実施形態) (Third embodiment)
上記の第 1の実施形態において、 対向する上ノズル 2 2 a '、 2 2 bからから噴 射される棒状冷却水 2 3 a、 2 3 bの速度力速い場合、 例えば 1 0 m/ s以上で ある場合は、 棒状冷却水 2 3 a、 2 3 bは鋼板 1 0に衝突後、 お互いにぶつかり あって上方に飛散する。 この飛散冷却水が滞留冷却水 2 4上に落下すれば問題な いが、 図 7に示すように、 飛散冷却水 2 5が斜め上方に飛散して棒状冷却水 2 3 a、 2 3 b上に落下すると、 飛散冷却水 2 5が棒状冷却水 2 3 a、 2 3 b間の隙 間から漏れて、 完全な水切りができなくなる場合がある。 特に、 滞留域長さ が 2 0 0 mm以内である場合に、 その問題が発生しやすい。 さらに、 冷却水の嘖射 速度が速い場合には、 飛散冷却水 2 4が上ヘッダ 2 1 a、 2 1 bの上を飛び越え て鋼板 1 0上に落下することもある。  In the first embodiment, when the velocity power of the rod-like cooling water 2 3 a and 2 3 b sprayed from the opposing upper nozzles 2 2 a ′ and 2 2 b is high, for example, 10 m / s or more In this case, the rod-shaped cooling water 2 3 a and 2 3 b collide with the steel plate 10, collide with each other, and scatter upward. There is no problem if the scattered cooling water falls onto the stagnant cooling water 24. However, as shown in Fig. 7, the scattered cooling water 25 is scattered obliquely upward, and the rod-shaped cooling water 2 3a, 2 3b If it falls to the surface, the scattered cooling water 25 may leak from the gap between the rod-shaped cooling waters 2 3 a and 2 3 b, preventing complete draining. In particular, this problem is likely to occur when the length of the retention zone is within 200 mm. Furthermore, when the spraying speed of the cooling water is high, the scattered cooling water 24 may jump over the upper headers 21a and 21b and fall on the steel plate 10.
それに対して、 この第 3の実施形態に係る冷却設備は、 第 1の実施形態におい て用いた図 1の冷却ユニット 2 0に替えて、 図 9に側面図、 図 1 0に図 9の A— A矢視図を示すように、 最內側の列の棒状冷却水の上方に遮蔽板 2 6 a、 2 6 b が追加された冷却ュニット 4 0を用いるようにしている。  On the other hand, the cooling facility according to the third embodiment replaces the cooling unit 20 in FIG. 1 used in the first embodiment with a side view in FIG. 9 and an A in FIG. — As shown in the arrow A view, a cooling unit 40 is used in which shielding plates 2 6 a and 2 6 b are added above the rod-shaped cooling water in the outermost row.
これによつて、 飛散冷却水 2 5が斜め上方に飛散した場合でも、 落下する飛散 冷却水 2 5は遮蔽板 2 6 a、 2 6 bに遮られ、 棒状冷却水 2 3 a、 2 3 上に落 下することなく、 滞留冷却水 2 4上に落下するようになる。 したがって、 的確に 水切りを行うことができるようになる。  As a result, even if the scattered cooling water 25 is scattered obliquely upward, the falling scattered cooling water 25 is blocked by the shielding plates 2 6 a and 2 6 b, and the rod-shaped cooling water 2 3 a and 2 3 Without falling down, it will drop onto the stagnant cooling water 24. Therefore, it becomes possible to drain water accurately.
なお、 遮蔽板 2 6 a、 2 6 bは、 シリンダ 2 7 a、 2 7 bによって昇降できる ようになつており、 遮蔽板 2 6 a、 2 6 bを必要とする製品製造時にのみ使用し、 それ以外の時には、 上方の退避位置に引き上げておけばよい。  The shielding plates 2 6 a and 2 6 b can be moved up and down by the cylinders 2 7 a and 2 7 b, and are used only when manufacturing products that require the shielding plates 2 6 a and 2 6 b. At other times, it can be pulled up to the retracted position.
ちなみに、 遮蔽板 2 6 a、 2 6 bを使用する際には、 遮蔽板 2 6 a、 2 6 bの 最下端が鋼板 1 0の上面から 3 0 0〜 5 0 0 mm上方に位置するようにするのが 好ましい。 すなわち、 鋼板 1 0の上面から 3 0 O mm以上上方に位置するように しておけば、 先端または尾端に上反りが発生した鋼板が進入してきても、 衝突 することがなレ、。 しかし、 鋼板 1 0の上面から 5 0 O mmを超えて高くすると、 飛散冷却水 2 5を充分に遮蔽することができなくなる。 By the way, when using the shielding plates 2 6 a and 2 6 b, the bottom end of the shielding plates 2 6 a and 2 6 b should be positioned 30 to 500 mm above the upper surface of the steel plate 10. Is preferable. That is, it should be positioned 30 O mm or more above the upper surface of the steel plate 10 By doing so, even if a steel plate with a warp at the tip or tail ends, it will not collide. However, if the height is higher than 50 O mm from the upper surface of the steel plate 10, the scattered cooling water 25 cannot be sufficiently shielded.
また、 図 9における遮蔽板 2 6 a、 2 6 bに替えて、 図 1 1に示すように、 軽 くて表面が滑らかな遮蔽幕 2 8 a、 2 8 bを用いるようにしてもよレ、。 遮蔽幕2 8 a、 2 8 bは、 通常は垂れ下がった状態で待機しており、 棒状冷却水 2 3 a、 2 3 bの噴射が開始されると、 最内側の列の棒状冷却水に沿って持ち上がる。 そ の際、 棒状冷却水 2 3 a、 2 3 bは勢いよく噴射されるので、 その流れが乱れる ということはなレヽ。 Also, instead of the shielding plates 26a and 26b in Fig. 9, it is also possible to use lighter and smoother shielding screens 28a and 28b as shown in Fig. 11. ,. Shielding curtains 2 8 a and 2 8 b normally stand by in a suspended state, and when the injection of rod-shaped cooling water 2 3 a and 2 3 b is started, it follows the rod-shaped cooling water in the innermost row. Lift up. At that time, the rod-shaped cooling water 2 3 a and 2 3 b are jetted vigorously, so that the flow is not disturbed.
さらに、 前述したように、 冷却水の噴射速度が速く、 飛散冷却水が上ヘッダ 2 l a、 2 1 bの上を飛び越えて鋼板 1 0上に落下しょうとする場合には、 図 1 7 に示すような、 上ヘッダ 2 1 aと上ヘッダ 2 1 bに跨がり、 滞留冷却水 2 4の上 方に位置するような遮蔽板 2 9を用いてもよい。 このような遮蔽板2 9を用いれ ば、 上ヘッダ 2 1 a、 2 1 bの上を飛び越えて鋼板 1 0上に落下しょうとする飛 散冷却水を的確に遮蔽することができる。 しかも、 遮蔽板 2 9に当たった飛散冷 却水は、 落下する際に、 横方向に飛散しょうとする飛散冷却水を巻き込んで一緒 に滞留冷却水 2 4上に落下するので効果的である。 実施例 1 Furthermore, as described above, when the cooling water injection speed is high and the scattered cooling water is about to jump over the upper headers 2 la and 2 1 b and drop onto the steel plate 10, it is shown in Fig. 17 Such a shielding plate 29 that straddles the upper header 21a and the upper header 21b and is located above the stagnant cooling water 24 may be used. If that using such a shielding plate 2 9, it is possible to accurately shield the splashing cooling water and you'll fall jumping over the upper header 2 1 a, 2 1 b on the steel plate 1 0. In addition, the scattered cooling water hitting the shielding plate 29 is effective because when it falls, it engulfes the scattered cooling water to be scattered in the horizontal direction and falls onto the stagnant cooling water 24 together. Example 1
本発明の実施例 1を以下に述べる。  Example 1 of the present invention will be described below.
図 1 4は、 本発明の実施例 1に用いた厚鋼板の熱閬圧延ラインと、 そこでの搬 送パターンを示す図である。  FIG. 14 is a diagram showing a hot-rolling line for thick steel plates used in Example 1 of the present invention and a transport pattern there.
この厚鋼板の熱間圧延ラインは、 加熱^.1 1、 可逆式圧延機 1 2、 第 1冷却装 置 1 4、 ホットレベラ 1 5、 第 2冷却装置 1 6を備えている。  This thick steel plate hot rolling line is equipped with a heating unit 11.1, a reversible rolling mill 12, a first cooling unit 14, a hot leveler 15 and a second cooling unit 16.
そして、 搬送パターン Aは、 仕上圧延後に加速冷却を行うものであり、 加熱炉 1 1から抽出されたスラブを可逆式圧延機 1 2によって、 粗圧延、 仕上圧延を行 つて板厚を 2 5 mmとした後に、'ホットレベラ 1 5を通し、 第 2冷却装置 1 6に おいて温度降下量 1 5 0 °Cの加速冷却を行う。 また、 搬送パターン Bは、 制御圧延前に温度調整冷却を行うものであり、 加 熱炉 1 1から抽出されたスラブを可逆式圧延機 1 2での粗圧延で板厚を 6 O mm とした後に、 第 1冷却装置 1 4において温度降下量 8 0 °Cの調整冷却を行い、 次 いで低温仕上圧延、 すなわち制御圧延を行う。 Conveyance pattern A is for accelerated cooling after finish rolling. The slab extracted from heating furnace 1 1 is roughly rolled and finish-rolled by reversible rolling mill 1 2 to a thickness of 25 mm. After that, the hot cooling leveler 15 is passed through and the second cooling device 16 performs accelerated cooling with a temperature drop of 150 ° C. Conveyance pattern B is temperature-controlled cooling before controlled rolling. The slab extracted from the heating furnace 1 1 is roughly rolled in a reversible rolling mill 1 2 to a thickness of 6 O mm. Thereafter, the first cooling device 14 performs adjusted cooling with a temperature drop of 80 ° C., and then performs low-temperature finish rolling, that is, controlled rolling.
上記のもとで、 本発明例 1として、 前述の第 1の実施形態に基づいて、 図 2に 示した冷却ュニット 2 0を、 第 1冷却設備 1 4に 1ユニット、 第 2冷却設備 1 6 に 6ュ-ット設置して、 搬送パターン Aおよび搬送パターン Bの搬送を行った。 その際、 上ノズル 2 2 a、 2 2 bは、 ノズル先端の高さ位置をテーブルローラか ら 1 . 2 mとし、 図 4 Aに示した配列で、 ノズル内径を 6 mmとし、 水量密度を 6 m 3/m 2 m i n、 棒状冷却水の嘖射角度 θ 1 0 2を 4 5 ° 、 嘖射速度を 8 m Z sとした。 Based on the above, as the first example of the present invention, the cooling unit 20 shown in FIG. 2 is installed in the first cooling equipment 1 4 as a unit of the first cooling equipment 1 6 according to the first embodiment. In addition, 6 patterns were installed to transfer transfer pattern A and transfer pattern B. At that time, the upper nozzles 2 2 a and 2 2 b have a nozzle tip height of 1.2 m from the table roller, the arrangement shown in Fig. 4A, the nozzle inner diameter is 6 mm, and the water density is 6 m 3 / m 2 min, rod-shaped cooling water spray angle θ 1 0 2 was set to 45 °, and spray speed was set to 8 m Z s.
また、 本発明例 2として、 図 7に示したノズル配列で、 ノズル先端の高さ位置 やノズル内径、 水量密度、 嘖射角度 Θ 1、 Θ 2、 嘖射速度は本発明例 1と同じに し、 棒状冷却水の外向き角 αを 2 0 ° —定とする冷却ユニットを、 第 1冷却設備 1 4に 1ユニット、 第 2冷却設備 1 6に 6ュニット設置して、 搬送パターン Αお よび搬送パターン Bの搬送を行った。  Also, as Example 2 of the present invention, the nozzle tip height position, nozzle inner diameter, water density, spray angle Θ1, Θ2, and spray speed are the same as Example 1 of the nozzle arrangement shown in FIG. The cooling unit with a rod-shaped cooling water outward angle α of 20 ° is fixed to 1 unit in the 1st cooling facility 14 and 6 units in the 2nd cooling facility 16 and the transfer pattern よ び and Transport pattern B was transported.
なお、 本発明例 1と 2において、 棒状冷却水が鋼板に衝突する位置は鋼板幅方 向に 6 0 mmピッチとなるようにした。  In Examples 1 and 2, the position where the rod-shaped cooling water collides with the steel sheet was set at a pitch of 60 mm in the width direction of the steel sheet.
これに対して、 比較例 1として、 第 1冷却設備 1 4および第 2冷却設備 1 6を 従来のごく一般的なシャヮ一冷却装置にして、 搬送パターン Aおよぴ搬送パタ一 ン Bの搬送を行った。  On the other hand, as Comparative Example 1, the first cooling equipment 14 and the second cooling equipment 16 are used as conventional general cooling equipment, and the transportation pattern A and transportation pattern B are transported. Went.
また、 比較例 2として、 第 1冷却設備 1 4および第 2冷却設備 1 6を、 膜状冷 却水を対向させて噴射する前記特許文献 2に記载の冷却装置にして、 搬送パター ン Aおよび搬送パターン Bの搬送を行った。  Further, as Comparative Example 2, the first cooling equipment 14 and the second cooling equipment 16 are used as the cooling device described in Patent Document 2 in which the film-like cooling water is jetted to oppose the transfer pattern A. In addition, the conveyance pattern B was conveyed.
そして、 それぞれの場合において、 冷却後 (十分に復熱した後) に、 放射温度 計を用いて鋼板幅方向の温度を連続的に測定して、 鋼板上面の温度分布を調べた。 最先端、 最尾端、 幅方向板端部を除く定常部での温度'のばらつき (最高温度と最 低温度の差) を温度むらとして定義し、 これを比較した。 温度むらの大小は、 弓 I 張強度など製品の機械的性質のばらつきとほぼ 応した。 生産能率と歩留は、 比較例 1を基準として比較した。 In each case, after cooling (after sufficient recuperation), the temperature in the width direction of the steel sheet was continuously measured using a radiation thermometer to examine the temperature distribution on the upper surface of the steel sheet. The variation in temperature '(difference between the highest temperature and the lowest temperature) in the stationary part excluding the leading edge, tail edge, and width direction plate edge was defined as temperature unevenness and compared. The temperature unevenness is bow I It almost responded to variations in the mechanical properties of products such as tensile strength. Production efficiency and yield were compared based on Comparative Example 1.
その結果を、 表 2に示す。 表 2  The results are shown in Table 2. Table 2
Figure imgf000028_0001
まず、 比較例 1はシャワー冷却であり、 鋼板上に滞留する冷却水の影響により、 温度むらは搬送パターン A (仕上圧延後の加速冷却) では 8 0 °C、 搬送パターン B (制御圧延前の温度調整冷却) では 4 0 °Cとなり、 製品の強度ばらつきも大き かった。
Figure imgf000028_0001
First, Comparative Example 1 is shower cooling. Due to the effect of the cooling water staying on the steel plate, temperature unevenness is 80 ° C in transport pattern A (accelerated cooling after finish rolling), and transport pattern B (before controlled rolling). Temperature control cooling) was 40 ° C, and the product strength variation was large.
次に、 比較例 2では、 ノズルを鋼板に近接させなければならなかったので、 鋼 板の反りが発生した時に設備が破損することがあった。 設備に衝突した鋼板は、 製品にならないので、 比較例 1と比べて製品の歩留が低下した。 また、 設備破損 の修理にかなりの時間を要したので、 生産能率も低下した。 また、 膜状冷却水を 供給したのでノズル噴出口に異物が付着して膜状冷却水が形成されず、 冷却水 を噴射領域内 (冷却領域内) に堰き止められない場合があった。 そのため、 鋼板 上に滞留する冷却水の影響により、 '温度むらは搬送パターン A (仕上圧延後の加 速冷却) では 8 0 °C、 搬送パターン; B (制御圧延前の温度調整冷却) では 4 0 °C となり、 製品の強度ばらつきも大きかった。 Next, in Comparative Example 2, since the nozzle had to be brought close to the steel plate, the equipment was sometimes damaged when the steel plate warped. Since the steel plate that collided with the equipment did not become a product, the product yield decreased compared to Comparative Example 1. Also, since it took a considerable amount of time to repair the damaged equipment, the production efficiency also declined. Also, the membranous cooling water Since it was supplied, foreign matter adhered to the nozzle outlet and film-like cooling water was not formed, and cooling water could not be blocked in the injection area (cooling area). Therefore, due to the influence of the cooling water staying on the steel plate, the temperature unevenness is 80 ° C for transport pattern A (accelerated cooling after finish rolling), and 4 for transport pattern; B (temperature-controlled cooling before controlled rolling). It was 0 ° C, and the strength variation of the product was large.
これに対して、 本発明例 1では、 ノズル先端の高さ位置を 1 . 2 mと高くした ので、 鋼板の反りが発生しても設備が破損することはなく、 トラブルによる歩留 低下はなく生産能率は向上した。 さらに、 棒状冷却水を対向させて高速で噴射し たので、 冷却水を完全に冷却領域内に堰き止めることができ、 温度むらも 8 ~ 1 5 °Cと極めて低い値に抑えることが  In contrast, in Example 1 of the present invention, the height of the nozzle tip was increased to 1.2 m, so that the equipment was not damaged even if the steel plate warped, and the yield was not reduced by trouble. Production efficiency has improved. In addition, since the rod-shaped cooling water was jetted at high speed, the cooling water could be completely blocked in the cooling region, and the temperature unevenness could be kept at a very low value of 8 to 15 ° C.
できた。 did it.
また、 本発明例 2では、 上ノズル 2 2 a、 2 2 bから鋼板 1 0上面に噴射され た冷却水は、 図 7中の矢印 Aに示すように、 合流して速やかに鋼板 1 0幅端から 落下し、 外向き角 αがない場合に比べて少ない水量で滞留冷却水 2 4を堰き止め て水切りを行うことができ、 温度むらも 6〜1 2 °Cと極めて低い値に抑えて均一 に冷却することができた。 さらに、 流量や圧力を多少低くしても冷却水を堰き止 めることができたので、 設備にはそれほど高い圧力や多くの水量を要することが なくなり、 経済的な設備設計を行うことができた。  Further, in Invention Example 2, the cooling water jetted from the upper nozzles 2 2 a, 2 2 b onto the upper surface of the steel plate 10 merges and quickly moves as shown in the arrow A in FIG. Compared to the case where it falls from the end and does not have an outward angle α, the accumulated cooling water 24 can be dammed up and drained with a small amount of water, and the temperature unevenness is kept at a very low value of 6 to 12 ° C. It was possible to cool uniformly. In addition, because the cooling water could be stopped even if the flow rate and pressure were slightly reduced, the equipment would not require so much pressure or a large amount of water, and an economical equipment design could be performed. It was.
上記の結果により、 本発明の有効性が確認された。 実施例 2  From the above results, the effectiveness of the present invention was confirmed. Example 2
本発明の実施例 2を以下に述べる。  Example 2 of the present invention will be described below.
ここでは、 制御圧延を施して、 板厚 1 8 . 5 mm, 板幅 2 5 6 O mm, 板長 3 5 mの厚鋼板を製造するに際し、 本発明例と従来例の圧延時間を比較した。 本発明例は、 上記の実施形態に係る熱間圧延設備を用いて、 図 2に示した冷却 ュニット 2 0を、 第 1冷却設備 1 4に 1ュニット、 第 2冷却設備 1 6に 6ュニッ ト設置して行った。 その際、 上ノズル 2 2 a、 2 2 bは、 ノズル先端の高さ位置 をテーブルローラから 1 . 2 mとし、 図 4 Aに示した配列で、 ノズル内径を 6 m mとし、 水量密度を 6 m 3/m2m i n、 棒状冷却水の噴射角度 0 1、 Θ 2を 4 5° 、 噴射速度を 8m/sとした。 さらに、 所定の制御圧延開始板厚 (34m m) において所定の制御圧延開始温度 ( 820 °C) となるように、 鋼板を冷却設 備 20で冷却しながら圧延し、 その後、 冷却設備 20での冷却を停止して仕上板 厚 18. 5 mmまで圧延した場合である。 Here, the rolling time of the present invention example was compared with that of the conventional example when a steel plate having a thickness of 18.5 mm, a width of 256 Omm, and a length of 35 m was manufactured by controlled rolling. . The example of the present invention uses the hot rolling facility according to the above-described embodiment to replace the cooling unit 20 shown in FIG. 2 with 1 unit for the first cooling facility 14 and 6 units for the second cooling facility 16. Installed and went. At that time, the upper nozzles 2 2 a and 2 2 b have a nozzle tip height of 1.2 m from the table roller, the arrangement shown in Fig. 4A, the nozzle inner diameter is 6 mm, and the water density is 6 m 3 / m 2 min, Bar coolant injection angle 0 1, Θ 2 4 The injection speed was 5 m / s at 5 °. Further, the steel sheet is rolled while being cooled by the cooling device 20 so that the predetermined controlled rolling start temperature (820 ° C) is obtained at a predetermined controlled rolling start plate thickness (34 mm), and then the cooling equipment 20 This is when cooling is stopped and the finished sheet is rolled to a thickness of 18.5 mm.
従来例は、 特開 2005— 000979号公報に記載の技術のように、 所定の 制御圧延開始板厚 (34mm) まで圧延後、 ー且圧延を停止して温度調整冷却設 備によつて所定の制御圧延開始温度 (820°C) まで温度調整冷却を行い、 その 後、 仕上板厚 18. 5 mmまで圧延した場合である。  In the conventional example, as in the technique described in Japanese Patent Laid-Open No. 2005-000979, after rolling to a predetermined controlled rolling start plate thickness (34 mm), the rolling is stopped and a predetermined temperature is controlled by a temperature adjusting cooling device. This is the case where temperature-controlled cooling is performed to the controlled rolling start temperature (820 ° C), and then the finished sheet thickness is rolled to 18.5 mm.
その結果を図 1 3に示す。 図中の〇印と 印はそれぞれの圧延パスを表してい る。 このように、 加熱炉抽出から圧延終了までの時間が、 従来例では 205秒で あつたのに対して、 本発明例では 165秒と 40秒も短縮されていた。 そして、 本努明例の製品品質は従来例と遜色なかった。  The results are shown in Figure 13. The circles and marks in the figure represent the respective rolling passes. In this way, the time from extraction of the heating furnace to the end of rolling was 205 seconds in the conventional example, while it was shortened to 165 seconds and 40 seconds in the present invention example. The product quality of this example is not inferior to that of the conventional example.
これによつて、 本 明の有効性を確認することができた。 実施例 3  This confirmed the effectiveness of the present invention. Example 3
本発明の実施例として、 前述の第 2の実施形態に基づいて、 図 2に示した冷却 ュニット' 20を、 第 1冷却設備 14に 1ュニット、 第 2冷却設備 16に 6ュニッ ト設置して行った。 その際、 上ノズル 22 a、 22 bは、 ノズル先端の高さ位置 をテーブルローラから 1. 2 mとし、 図 4 Aに示した配列で、 ノズル内径を 6 m mとし、 水量密度を 6m3/m2m i n、 さらに、 図 6または図 7に示し 冷却設 備を用いて、 鋼板の冷却を行った。 その際、 棒状冷却水の搬送方向に対する伏角 Θ を 45° 、 噴射速度を 8 m/ sとした。 As an example of the present invention, based on the second embodiment described above, the cooling unit 20 shown in FIG. 2 is installed in the first cooling equipment 14 in a unit and the second cooling equipment 16 in a unit. went. At that time, the upper nozzles 22a and 22b have a nozzle tip height of 1.2 m from the table roller, the arrangement shown in Fig. 4A, the nozzle inner diameter is 6 mm, and the water density is 6 m 3 / m 2 min In addition, the steel sheet was cooled using the cooling equipment shown in Fig. 6 or Fig. 7. At that time, the dip angle Θ with respect to the conveying direction of the rod-shaped cooling water was 45 °, and the injection speed was 8 m / s.
そして、 本発明例 1として、 図 6に示した冷却設備を用い、 鋼板幅方向の中央 の棒状冷却水の外向き角 αを 0° 、 最外側の棒状冷却水の外向き角 a を 25° とするとともに、 棒状冷却水が鋼板に衝突する位置が鋼板幅方向に 60 mmピッ チとなるようにした。 Then, as the present invention example 1, using the cooling equipment shown in FIG. 6, the outward angle α of the rod-shaped cooling water at the center in the width direction of the steel sheet is 0 °, and the outward angle a of the outermost rod-shaped cooling water is 25 °. In addition, the position where the rod-shaped cooling water collides with the steel sheet was set to 60 mm pitch in the steel sheet width direction.
また、 本発明例 2として、 図 7に示した冷却設備を用い、 棒状冷却水の外向き 角 α を 20° —定とするとともに、 棒状冷却水が鋼板に衝突する位置が鋼板幅方 向に 6 O.mniピッチとなるようにした。 その結果、 本発明例 1、 2とも、 上ノズル 2 2 a、 2 2 bから鋼板 1 0.上面 に噴射された冷却水は、 図 6、 7中の矢印 Aに示すように、 合流して速やかに鋼 板 1 0幅端から落下し、 外向き角 αがない場合に比べて少ない水量で滞留冷却水 2 4を堰き止めて水切りを行うことができた。 実施例 4 In addition, as Example 2 of the present invention, the cooling equipment shown in FIG. 7 was used, and the outward angle α of the rod-shaped cooling water was set to 20 ° -constant, and the position where the rod-shaped cooling water collided with the steel plate was in the width direction of the steel plate. 6 O.mni pitch. As a result, in both inventive examples 1 and 2, the cooling water injected from the upper nozzles 2 2 a and 2 2 b onto the steel plate 10 0. As shown by the arrow A in FIGS. The steel plate 10 was quickly dropped from the 10-width edge and drained by damming up the stagnant cooling water 24 with a smaller amount of water than when there was no outward angle α. Example 4
図 1 4に示す厚鋼板の熱間圧延ライ,ンにおいて、 前述の第 2の実施形態に基づ いて、 図 9または図 1 1に示した冷却ユニット 4 0を、 第 1冷却設備 1 4に 1ュ ニット、 第 2冷却設備 1 6に 6ュニット設置して、 鋼板の冷却を行った。 その際、 棒状冷却水の噴射角度 Θ 1、 Θ 2を 4 5。 、 噴射速度を 1 2 m/ sとした。 また、 滞留域長さ Lを O mmとした。  In the hot rolling line of thick steel plate shown in FIG. 14, the cooling unit 40 shown in FIG. 9 or FIG. 11 is replaced with the first cooling equipment 14 based on the second embodiment described above. 1 unit, 2nd cooling facility 16 6 units were installed in 16 to cool the steel plate. At that time, the injection angle of the rod-shaped cooling water Θ1, Θ2 is 45. The injection speed was set to 12 m / s. The residence zone length L was O mm.
そして、 本発明例 2は、 図 9に示した遮蔽板 2 6 a、 2 6 bを備えた冷却ュニ ット 4 0を用いた場合である。 その際、 遮蔽板 2 '6 a、 2 6 bが最内側の列の棒 状冷却水の上方 5 0 mmの位置となるように設定した。 そして、 遮蔽板 2 6 a、 2 6 bの最下端の位置と最外側の列の棒状冷却水が鋼板 1 0と衝突する地点との 搬送方向の距離 (図 9中の δ ) が 3 0 O mmとなるようにした。 ' また、 本努明例 3は、 図 1 1に示した遮蔽幕 2 8 a、 2 8 を備えた冷却ュニ ット 4 0を用いた場合である。 その際、 棒状冷却水の嘖射によって持ち上がる遮 蔽幕 2 8 a、 2 8 の最下端の位置と最外側の列の棒状冷却水が鋼板 1 0と衝突 する地点との搬送方向距離 (図 1 1中の δ ) が 3 0 0 mmとなるようにした。  Inventive Example 2 is a case where the cooling unit 40 provided with the shielding plates 26 a and 26 b shown in FIG. 9 is used. At that time, the shielding plates 2'6a and 26b were set so as to be positioned 50 mm above the rod-shaped cooling water in the innermost row. Then, the distance in the transport direction (δ in FIG. 9) between the lowermost position of the shielding plates 2 6 a and 26 b and the point where the rod-shaped cooling water in the outermost row collides with the steel plate 10 is 30 O It was set to mm. 'In addition, Example 3 shows the case where the cooling unit 40 provided with the shielding screens 28a and 28 shown in Fig. 11 is used. At that time, the distance in the transport direction between the lowermost position of the shielding screens 2 8 a and 2 8 that are lifted by the spray of the rod-shaped coolant and the point where the rod-shaped coolant in the outermost row collides with the steel plate 10 (Fig. 1). The δ) in 1 was set to 300 mm.
その結果、 本発明例 2、 3ともに、.鋼板 1 0に衝突して上方に飛散した飛散冷 却水 2 5が棒状冷却水 2 3 a、 2 3 b上に落下することを的確に防止することが できた。 これにより、 冷却の均一性を保持することができた。 産業上の利用可能性  As a result, in both of the present invention examples 2 and 3, the splashed cooling water 25 that collided with the steel plate 10 and splashed upward was prevented accurately from falling onto the rod-shaped cooling water 2 3 a and 2 3 b. I was able to. As a result, the uniformity of cooling could be maintained. Industrial applicability
本発明においては、 鋼板を通過させながら鋼板の上下面に冷却水を供給するよ うにしているので、 設備長が短くてすむとともに、 鋼板上で冷却水が搬送方向に 互いに対向するようにノズルを配列しているので、 供給された冷却水自身が鋼板 上の滞留冷却水を堰き止めて水切りを行うことになり、 水切りロール等の付帯装 置がなくとも適切に水切りが行われる。 その結果、 鋼板の制御圧延を行う場合 等において、 熱間圧延ライン上で鋼板をコンパクトな構造で適切に冷却すること ができる。 In the present invention, since the cooling water is supplied to the upper and lower surfaces of the steel sheet while passing the steel sheet, the equipment length can be shortened and the nozzles can be arranged so that the cooling water faces the conveying direction on the steel sheet. Therefore, the supplied cooling water itself dams up the stagnant cooling water on the steel plate and drains it. Even if there is no place, draining is performed appropriately. As a result, the steel sheet can be appropriately cooled with a compact structure on the hot rolling line when the steel sheet is controlled and rolled.
また、 本発明においては、 可逆式圧延機に近接する位置に 4 m 3/m2m i n以 上の大きな水量密度を有する通過式の冷却設備を配置しているので、 鋼板を圧延 しながら冷却することにより、 効率的に所定の制御圧延開始温度を得ることがで き、 冷却待ち等による圧延能率の低下が回避される。 そして、 鋼板上で冷却水が 搬送方向に互いに対向するようにノズルを配列し、 4 m 3Zm 2 m i n以上の大き な水量密度の冷却水を供給しているので、 供給された冷却水自身が鋼板上の滞留 冷却水を堰き止めて適切に水切りを行うことになり、 安定した冷却領域が得られ る。 Further, in the present invention, since a passing-type cooling facility having a large water density of 4 m 3 / m 2 min or more is disposed at a position close to the reversible rolling mill, the steel sheet is cooled while being rolled. As a result, a predetermined controlled rolling start temperature can be efficiently obtained, and a reduction in rolling efficiency due to waiting for cooling or the like is avoided. The nozzles are arranged on the steel plate so that the cooling waters face each other in the transport direction, and cooling water having a large water density of 4 m 3 Zm 2 min or more is supplied. Residual cooling water on the steel plate will be blocked and drained appropriately, resulting in a stable cooling area.
この結果、 鋼板の制御圧延を行'うに際して、 鋼板が均一に冷却されて良好な製 品品質が得られるとともに、 冷却待ち等による圧延能率の低下も防止することが できる。  As a result, when performing the controlled rolling of the steel sheet, the steel sheet is uniformly cooled to obtain a good product quality, and it is possible to prevent a reduction in rolling efficiency due to waiting for cooling or the like.
また、 本発明を用いることにより、 鋼板を目標温度まで高冷却速度で均一に冷 やすことができる。 その結果、 品質の高い鋼板を製造することができる。  Further, by using the present invention, the steel sheet can be uniformly cooled to the target temperature at a high cooling rate. As a result, high quality steel sheets can be manufactured.

Claims

請求の範囲 The scope of the claims
1 . 鋼板を熱間圧延する間に、 鋼板を通過させながら鋼板の上下面に冷却水を供 給する冷却設備であつて、 鋼板の上方から鋼板の上面に向けて斜めに冷却水を供 給するノズルを有し、 鋼板上で冷却水が鋼板の搬送方向に互いに対向するように 前記ノズルをそれぞれ複数列有していることを特徴とする鋼板の冷却設備。 1. Cooling equipment that supplies cooling water to the upper and lower surfaces of the steel sheet while passing the steel plate while hot rolling the steel sheet, and supplies the cooling water obliquely from above the steel plate to the upper surface of the steel plate. A steel sheet cooling facility comprising: a plurality of nozzles each arranged so that cooling water is opposed to each other in a conveying direction of the steel sheet on the steel sheet.
2 . .請求項 1において、 鋼板を熱間圧延する可逆式圧延機の入側および/または 出側の前記可逆式圧延機に近接する位置に、 圧延前および/または圧延後の鋼板を 通過させながら鋼板の上下面にそれぞれ 4 m 3 /m 2m i n以上の水量密度の冷却 水を供給する冷却設備を配置した鋼板の冷却設備。 2. In claim 1, the steel sheet before and / or after rolling is passed through a position adjacent to the reversible rolling mill on the entry side and / or the exit side of the reversible rolling mill for hot rolling the steel sheet. However, the steel sheet cooling equipment is equipped with cooling equipment that supplies water with a water density density of 4 m 3 / m 2 min or more on the upper and lower surfaces of the steel sheet.
3 . 請求項 1または、 2において、 前記ノズルは棒状冷却水を嘖射する鋼板の冷 却設備。 3. The cooling equipment for steel sheets according to claim 1 or 2, wherein the nozzle sprays rod-shaped cooling water.
4 . 請求項 3において、 前記鋼板の上方に前記棒状冷却水を噴射するノズルを接 続したヘッダを設け、 前記棒状冷却水と前記鋼板とのなす伏角が 3 0 ° 〜6 0。 になるように、 前記ノズルを配置してなる鋼板の冷却設備。 4. The header according to claim 3, wherein a header connected to the nozzle for injecting the rod-shaped cooling water is provided above the steel plate, and a tilt angle between the rod-shaped cooling water and the steel plate is 30 ° to 60 °. A steel sheet cooling facility in which the nozzles are arranged.
5 . 請求項 4において、 前記ノズルを前記鋼板の搬送方向および搬送方向と逆方.. 向にそれぞれ 3列以上配列し、' 8 m/ s以上の速度で棒状冷却水を嘖射する鋼板 の冷却設備。 5. The steel plate according to claim 4, wherein the nozzles are arranged in three or more rows in the conveying direction and in the direction opposite to the conveying direction of the steel plate, and spray the rod-shaped cooling water at a speed of '8 m / s or more. Cooling equipment.
6 . 請求項 3〜 5の任意の請求項において、 前記棒状冷却水の噴射速度の成分の 0〜 3 5 %が搬送方向に直角な鋼板幅方向の外側に向かうように、 前記棒状冷却 水の嘖射方向が設定されている鋼板の冷却設備。. 6. In any one of claims 3 to 5, the rod-shaped cooling water of the rod-shaped cooling water is arranged so that 0 to 35% of the component of the jet speed of the rod-shaped cooling water is directed outward in the width direction of the steel sheet perpendicular to the conveying direction. Steel sheet cooling equipment for which the spray direction is set. .
7 . 請求項 6において、 前記棒状冷却水を噴射する全ノズル数の 4 0〜 6 0 %の 数の棒状冷却水の噴射速度の成分が、 搬送方向に直角な鋼板幅方向の外側に向か う 2方向の内、 一方向に向かう成分を持つように、 前記棒状冷却水の嘖射方向 を設定する鋼板の冷却設備。 7. In claim 6, the component of the injection speed of the rod-shaped cooling water of 40 to 60% of the total number of nozzles that injects the rod-shaped cooling water is directed outward in the steel plate width direction perpendicular to the conveying direction. The steel sheet cooling equipment that sets the spraying direction of the rod-shaped cooling water so as to have a component that goes in one direction out of the two directions.
8 . 請求項 6において、 搬送方向に直角な鋼板幅方向の外側に向かう 2方向の内、 —方向に向かう成分を持つ棒状冷却水の数と他方に向かう成分を持つ棒状冷却水 の数が、 等しくなるように、 前記棒状冷却水の噴射方向を設定する鋼板の冷却設 備。 . 8. In claim 6, the number of rod-shaped cooling water having a component toward the direction and the number of rod-shaped cooling water having a component toward the other of the two directions toward the outside in the width direction of the steel sheet perpendicular to the conveying direction is: A steel plate cooling facility for setting the injection direction of the rod-shaped cooling water to be equal. .
9 . 請求項 6において、 ノズルの設置位置が鋼板幅方向の中央から外側に向かう につれて、 棒状冷却水の嘖射速度の鋼板幅方向の外側に向かう成分が順次大きく なるように、 各ノズルが設置されている鋼板の冷却設備。' 9. In claim 6, each nozzle is installed so that the component toward the outside in the steel plate width direction of the spray speed of the rod-shaped cooling water gradually increases as the nozzle installation position goes from the center in the steel plate width direction to the outside. Steel plate cooling equipment. '
1 0 . 請求項 6において、 棒状冷却水の噴射速度の鋼板幅方向の外側に向かう成 分が一定で、 棒状冷却水が鋼板に衝突する位置が鋼板幅方向に等間隔となるよう に、 各ノズルが設蘆されている鋼板の冷却設備。 1 0. In claim 6, each of the components of the jetting speed of the rod-shaped cooling water toward the outside in the steel plate width direction is constant, and the positions where the rod-shaped cooling water collides with the steel plate are equally spaced in the steel plate width direction. Steel sheet cooling equipment with a nozzle.
1 1 . 請求項 3〜8の任意の請求項において、 板状または幕状の遮蔽物を、 対向 噴射する最も内側の列の棒状冷却水および/または滞留冷却水の上方に備えている 鋼板の冷却設備。 1 1. In any one of claims 3 to 8, a plate-like or curtain-like shield is provided above the innermost row of rod-like cooling water and / or stagnant cooling water that jets oppositely. Cooling equipment.
1 2 . 請求項 1 1において、 前記対向噴射する最も内側の列の棒状冷却水の上方 に備えている遮蔽物の最下端は、 鋼板の上面から 3 0 0〜5 0 0 mm上方の位置 ,である鋼板の冷却設備。 1 2. In Claim 11, the lowermost end of the shield provided above the innermost row of rod-shaped cooling water that jets oppositely is positioned 30 to 500 mm above the upper surface of the steel plate, Is steel sheet cooling equipment.
1 3 . 請求項 2において、 前記冷却設備の冷却領域は前記可逆式圧延機からその 入側および/または出側に配置されたサイドガイド部の位置を除く可逆式圧延機に 近接する位置である鋼板の冷却設備。 1 3. The cooling area of the cooling facility according to claim 2, wherein the cooling area of the cooling facility is a position close to the reversible rolling mill excluding the position of the side guide portion arranged on the entry side and / or the exit side from the reversible rolling mill. Steel sheet cooling equipment.
1 4 . 請求項 1 3において、 前記冷却設備の冷却領域は前記可逆式圧延機の入 側に配置されたサイドガイドの上流側で可逆式圧延機に近接する位置および/また は前記可逆式圧延機の出側に配置されたサイドガイドの下流側で可逆式圧延機に 近接する位置である鋼板の冷却設備。 14. The cooling area of the cooling facility according to claim 13, wherein the cooling area is located on the upstream side of a side guide disposed on the inlet side of the reversible rolling mill and / or close to the reversible rolling mill. A steel plate cooling facility located in the vicinity of the reversible rolling mill on the downstream side of the side guide placed on the exit side of the mill.
1 5 . 鋼板を熱間圧延する間に、 鋼板を通過させながら鋼板の上下面に冷却水を 供給する冷却方法であって、 鋼板上で冷却水が鋼板の搬送方向に互いに対向する ように配列されたノズルによって、 鋼板の上方から鋼板の上面に向けて斜めに冷 却水を供給する鋼板の冷却方法。 1 5. A cooling method in which cooling water is supplied to the upper and lower surfaces of a steel sheet while passing the steel plate while hot rolling the steel plate, and arranged so that the cooling water faces each other in the conveying direction of the steel plate on the steel plate. A method for cooling a steel sheet, in which cooling water is supplied obliquely from above the steel sheet toward the upper surface of the steel sheet by the nozzle formed.
1 6 . 請求項 1 5において、 前記鋼板を熱間圧延する可逆式圧延機の入側および/ または出側の前記可逆式圧延機に近接する位置に冷却設備を配置し、 該冷却設備 から圧延前および/または圧延後の鋼板を通過させながら鋼板の上下面にそれぞれ 4 m3/m 2 m i n以上の水量密度の冷却水を供給する鋼板の冷却方法。 16. The cooling device according to claim 15, wherein a cooling facility is disposed at a position adjacent to the reversible rolling mill on the entry side and / or the exit side of the reversible rolling mill for hot rolling the steel sheet, and rolling from the cooling facility. A method of cooling a steel sheet in which cooling water having a water density of 4 m 3 / m 2 min or more is supplied to the upper and lower surfaces of the steel sheet while passing the steel sheet before and / or after rolling.
1 7 . 請求項 1 5または、 1 6において、 前記ノズルは棒状冷却永を嘖射する鋼 板の冷却方法。 17. The method for cooling a steel plate according to claim 15 or 16, wherein the nozzle sprays a rod-like cooling permanent.
1 8 . 請求項 1 7において、 前記鋼板の上方に前記棒状冷却水を嘖射するノズル を接続したヘッダを設け、 前記棒状冷却水と前記鋼板とのなす伏角が 3 0 ° 〜6 0 ° になるように、 前記ノズルを配置して冷却を行う鋼板の冷却方法。 18. The header according to claim 17, wherein a header connected to the nozzle for spraying the rod-shaped cooling water is provided above the steel plate, and an inclination angle between the rod-shaped cooling water and the steel plate is 30 ° to 60 °. The cooling method of the steel plate which cools by arrange | positioning the said nozzle so that it may become.
1 9 . 請求項 1 8において、 前記ノズルを鋼板の搬送方向および搬送方向と逆方 向にそれぞれ 3列以上配列し、 8 mZ s以上の速度で棒状冷却水を噴射する鋼板 の冷却方法。 19. The method for cooling a steel sheet according to claim 18, wherein the nozzles are arranged in three or more rows in the conveying direction of the steel sheet and in a direction opposite to the conveying direction, and the bar-shaped cooling water is injected at a speed of 8 mZ s or more.
2 0 . 請求項 1 5〜1 9の任意の請求項において、 前記棒状冷却水の噴射速度の 成分の 0〜 3 5 %が搬送方向に直角な鋼板幅方向の外側に向かうように、 前記棒 状冷却水の噴射方向を設定する鋼板の冷却方法。 2... In any one of claims 15 to 19, the rod is arranged such that 0 to 35% of the component of the jet speed of the rod-shaped cooling water is directed to the outside in the steel plate width direction perpendicular to the conveying direction. Steel plate cooling method for setting the direction of injection of water-like cooling water.
2 1 . 請求項 2 0において、 前記棒状冷却水を嘖射する全ノズル数の 4 0〜 6 0 %の数の棒状冷却水の噴射速度の成分が、 搬送方向に直角な鋼板幅方向の外側 に向かう 2方向の内、 一方向に向かう成分を持つように、 前記棒状冷却水の P貴射 方向を設定する鋼板の冷却方法。 21. In claim 20, the component of the jet speed of the rod-shaped cooling water of 40 to 60% of the total number of nozzles spraying the rod-shaped cooling water is an outer side in the steel plate width direction perpendicular to the conveying direction. A steel plate cooling method in which the P noble direction of the rod-shaped cooling water is set so as to have a component that goes in one direction out of two directions.
2 2 . 請求項 2 0において、 搬送方向に直角な鋼板幅方向の外側に向かう 2方向 の内、 一方向に向かう成分を持つ棒状冷却水の数と他方に向かう成分を持つ棒状 冷却水の数が、 等しくなるように、 前記棒状冷却水の噴射方向を設定する鋼板の 冷却方法。 2 2. The number of rod-shaped cooling water having a component directed in one direction and the number of rod-shaped cooling water having a component directed in the other of the two directions toward the outside in the width direction of the steel sheet perpendicular to the conveying direction. The method for cooling a steel sheet, in which the injection direction of the rod-shaped cooling water is set so that they are equal.
2 3 . 請求項 2 0において、 ノズルの設置位置が鋼板幅方向の中央から外側に向 かうにつれて、 棒状冷卸水の噴射速度の鋼板幅方向の外側に向かう成分が順次大 きくなるように、 各ノズルを設置する鋼板の冷却方法。 2 3. In claim 20, as the nozzle installation position moves from the center in the steel plate width direction to the outside, the component of the bar-shaped cold water injection speed toward the outside in the steel plate width direction increases in order. The cooling method of the steel plate which installs each nozzle.
2 4 . 請求項 2 0において、 棒状冷却水の嘖射速度の鋼板幅方向の外側に向かう 成分を一/ とし、 棒状冷却水が鋼板に衝突する位置が鋼板幅方向に等間隔となる ように、 各ノズルを設置する鋼板の冷却方法。 2 4. In claim 20, the component of the spraying speed of the rod-shaped cooling water toward the outside in the steel plate width direction is set to 1 /, and the positions where the rod-shaped cooling water collides with the steel plate are equally spaced in the steel plate width direction. The cooling method of the steel plate which installs each nozzle.
2 5 . 請求項 1 5〜1 9の任意の請求項において、 板状または幕状の遮蔽物を、 対向噴射する最も内側の列の棒状冷却水および/または、 滞留冷却水の上方に設け る鋼板の冷却方法。 25. Claim 15. In any one of claims 15 to 19, a plate-like or curtain-like shield is provided above the innermost row of rod-like cooling water and / or stagnant cooling water that is jetted oppositely. A method for cooling steel sheets.
2 6 . 請求項 2 5において、 前記対向嘖射する最も内側の列の棒状冷却水の上方 に備えている遮蔽物の最下端を、 鋼板の上面から 3 0 0〜5 0 O mm上方に位置 させる鋼板の冷却方法。 26. In Claim 25, the lowermost end of the shield provided above the innermost row of rod-shaped cooling water facing the opposite side is positioned 30 to 50 O mm above the upper surface of the steel plate. The cooling method of the steel sheet.
2 7 . 請求項 1 6において、 前記冷却設備の冷却領域は前記可逆式圧延機から その入側および/または出側に配置されたサイドガイド部の長さを除く可逆式圧延 機に近接する位置である鋼板の熱間圧延方法。 27. The cooling area of the cooling facility according to claim 16, wherein the cooling area of the cooling facility is located close to the reversible rolling mill excluding the length of the side guide portion arranged on the entry side and / or the exit side from the reversible rolling mill. A method for hot rolling steel sheets.
2 8 . 請求項 2 7において、 前記冷却設備の冷却領域は前記可逆式圧延機の入側 に配置されたサイドガイドの上流側で可逆式圧延機に近接する位置および/または 前記可逆式圧延機の出側に配置されたサイドガイドの下流側で可逆式圧延機に近 接する位置である鋼板の熱間圧延方法。 28. The cooling area according to claim 27, wherein the cooling area of the cooling facility is located near the reversible rolling mill on the upstream side of the side guide disposed on the entry side of the reversible rolling mill and / or the reversible rolling mill. A hot rolling method for a steel sheet, which is a position close to the reversible rolling mill on the downstream side of the side guide disposed on the outlet side of the steel sheet.
2 9 . 鋼板を熱間圧延する可逆式圧延機の入側および/または出側の前記可逆式圧 延機に近接する位置に、 圧延前および/または圧延後の鋼板を通過させながら鋼板 の上下面にそれぞれ 4 m 3/m 2ni i n以上の水量密度の冷却水を供給する冷却設 備を配置し、 上面の冷却設備は、 鋼板の上方から鋼板に向けて斜めに冷却水を供 給するノズノレを有し、 鋼板上で冷却水が鋼板の搬送方向に互いに対向するように 前記ノズルを配列していることを特徴とする鋼板の熱間圧延設備。 29. On the steel plate while passing the unrolled and / or rolled steel plate at a position close to the reversible rolling machine on the entry side and / or exit side of the reversible rolling mill for hot rolling the steel plate. Cooling equipment that supplies cooling water with a water density of 4 m 3 / m 2 ni in or more is arranged on the bottom surface, and the cooling equipment on the top surface supplies cooling water obliquely from above the steel plate toward the steel plate. A hot rolling facility for a steel sheet, comprising a nozzle, wherein the nozzles are arranged so that cooling water faces each other in a conveying direction of the steel sheet on the steel sheet.
3 0 . 前記ノズルは棒状冷却水を嘖射することを特徴とする請求項 2 9載の鋼板 の熱間圧延設備。 30. The hot-rolling equipment for steel sheets according to claim 29, wherein the nozzle sprays rod-shaped cooling water.
3 1 . 前記冷却設備の冷却領域は可逆圧延機からその入側および/または出側に配 置されたサイドガイドまでの間に位置することを特徴とする請求項 2 9または 3 0に記載の鋼板の熱間圧延設備。 31. The cooling area of the cooling equipment according to claim 29 or 30, characterized in that the cooling region of the cooling equipment is located between the reversible rolling mill and the side guides arranged on the entry side and / or exit side thereof. Steel sheet hot rolling equipment.
3 2 . 鋼板を熱間圧延する可逆式圧延機の入側および/または出側の前記可逆式圧 延機に近接する位置に冷却設備を配置し、 該冷却設備から圧延前および/または圧 延後の鋼板を通過させながら鋼板の上下面にそれぞれ 4 Hi 3Zm2 m i n以上の水 量密度の冷却水を供給するとともに、 その際に鋼板の上面に対しては、 鋼板上で 冷却水が鋼板の搬送方向に互いに対向するように配列されたノズルによって、 鋼 板の上方から鋼板に向けて斜めに冷却水を供給することを特徴とする鋼板の熱 間圧延方法。 3 2. A cooling facility is arranged at a position close to the reversible rolling machine on the inlet side and / or the outlet side of the reversible rolling mill for hot rolling the steel sheet, and before the rolling and / or rolling from the cooling facility. Cooling water with a water density of 4 Hi 3 Zm 2 min or more is supplied to the upper and lower surfaces of the steel plate while passing the subsequent steel plate. At that time, the cooling water is applied to the upper surface of the steel plate on the steel plate. By nozzles arranged to face each other in the conveying direction of the steel A method of hot rolling a steel sheet, wherein cooling water is supplied obliquely from above the plate toward the steel sheet.
3 3. 前記ノズルは棒状冷却水を噴射することを特徴とする請求項 3 2に記載の 鋼板の熱間圧延方法。 3. The method of hot rolling a steel sheet according to claim 32, wherein the nozzle sprays rod-shaped cooling water.
34. 前記冷却設備の冷却領域は可逆圧延機からその入側および/または出側に配 置されたサイドガイドまでの間に位置することを特徵とする請求項 3 2または 3 3に記載の鋼板の熱間圧延方法。 34. The steel sheet according to claim 32, characterized in that the cooling area of the cooling facility is located between the reversible rolling mill and the side guides arranged on the entry side and / or exit side thereof. Hot rolling method.
3 5. 熱鋼板の上方に 41113 012111 i ϋ以上の水量密度の棒状冷却水を噴射する ノズルを接続したへッダを設け、 棒状冷却水と前記熱鋼板とのなす伏角力 S 3 0。 〜6 0° で、 前記熱鋼板の搬送方向に互いに対向するように前記ノズルを配置し てなることを特徴とする鋼板の冷却設備。 3 5. Above the hot steel plate, 4111 3 01 2 111 i A rod-shaped cooling water with a water density of more than i ϋ is injected. A heading connected to the nozzle is installed, and the yield force between the rod-like cooling water and the hot steel plate 0. The steel plate cooling equipment is characterized in that the nozzles are arranged so as to face each other in the conveying direction of the hot steel plate at ˜60 °.
3 6. 前記ノズルを熱鋼板の搬送方向に 5列以上配列し、 8 m/ s以上の速度で 棒状冷却水を噴射することを特徴とする請求項 3 5に記載の鋼板の冷却設備。 36. The steel sheet cooling equipment according to claim 35, wherein five or more rows of the nozzles are arranged in the conveying direction of the hot steel sheet, and the rod-shaped cooling water is injected at a speed of 8 m / s or more.
3 7. 板状または幕状の遮蔽物を、 対向嘖射する最も内側の列の棒状冷却水の上 方に備えていることを特徴とする請求項 3 5または 3 6に記載の鋼板の冷却.設備。 3 7. The steel sheet cooling according to claim 35 or 36, characterized in that a plate-like or curtain-like shield is provided above the rod-like cooling water in the innermost row facing oppositely. .Facility.
38. 前記遮蔽物の最下端は、 熱鋼板の上面から 3 0 0〜 5 00 mm上方の位置 であることを特徴とする請求項 3 7に記載の鋼板の冷却設備。 38. The steel sheet cooling equipment according to claim 37, wherein the lowermost end of the shield is a position 300 to 500 mm above the upper surface of the hot steel sheet.
3 9. 熱鋼板の上方に 4m3/m2ni i n以上の水量密度の棒状冷却水を噴射する ノズルを接続したヘッダを設け、 棒状冷却水と前記熱鋼板とのなす伏角が 3 0° 〜6 0° で、 前記熱鋼板の搬送方向に互いに対向するように前記ノズルを配置し て冷却を行うことを特徴とする鋼板の冷却方法。 3 9. A bar-shaped cooling water with a water density of 4m 3 / m 2 ni in or more is sprayed above the hot steel plate, and a header connected to the nozzle is installed, and the angle between the bar-shaped cooling water and the hot steel plate is 30 ° A cooling method for a steel sheet, comprising cooling at 60 ° by arranging the nozzles so as to face each other in the conveying direction of the hot steel sheet.
4 0 . 前記ノズルを熱鋼板の搬送方向に 5列以上配列し、 8 mZ s以上の速度 で棒状冷却水を嘖射することを特徵とする請求項 3 9に記載の鋼板の冷却方法。 40. The method for cooling a steel sheet according to claim 39, wherein five or more rows of the nozzles are arranged in the conveying direction of the hot steel sheet, and the rod-shaped cooling water is sprayed at a speed of 8 mZ s or more.
4 1 . 板状または幕状の遮蔽物を、 対向噴射する最も内側の列の棒状冷却水の上 方に設けることを特徴とする請求項 3 9または 4 0に記載の鋼板の冷却方法。 41. The method for cooling a steel sheet according to claim 39 or 40, wherein a plate-like or curtain-like shield is provided above the rod-like cooling water in the innermost row that is jetted oppositely.
4 2 . 前記遮蔽物の最下端を、 熱鋼板の上面から 3 0 0〜 5 0 0 mm上方に位置 させることを特徵とする請求項 4 1に記載の鋼板の冷却方法。 4 2. The method for cooling a steel sheet according to claim 41, wherein the lowermost end of the shield is positioned 30 to 500 mm above the upper surface of the hot steel sheet.
PCT/JP2006/317395 2005-08-30 2006-08-29 Cooling facility and cooling method of steel plate WO2007026906A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06783167.7A EP1935522B1 (en) 2005-08-30 2006-08-29 Reversing rolling mill with cooling facility and corresponding method of cooling a steel plate or sheet
CN2006800318003A CN101253009B (en) 2005-08-30 2006-08-29 Cooling facility and cooling method of steel plate

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005-249055 2005-08-30
JP2005-249060 2005-08-30
JP2005249060 2005-08-30
JP2005-249061 2005-08-30
JP2005249061 2005-08-30
JP2005249055 2005-08-30
JP2006-001568 2006-01-06
JP2006001568 2006-01-06

Publications (1)

Publication Number Publication Date
WO2007026906A1 true WO2007026906A1 (en) 2007-03-08

Family

ID=37808990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317395 WO2007026906A1 (en) 2005-08-30 2006-08-29 Cooling facility and cooling method of steel plate

Country Status (4)

Country Link
EP (1) EP1935522B1 (en)
KR (1) KR100973691B1 (en)
CN (1) CN101253009B (en)
WO (1) WO2007026906A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221298A (en) * 2007-03-14 2008-09-25 Jfe Steel Kk Cooling facility for hot-rolled steel strip
WO2008117552A1 (en) * 2007-02-26 2008-10-02 Jfe Steel Corporation Device and method for cooling hot-rolled steel strip
EP2100673A1 (en) * 2008-03-14 2009-09-16 ArcelorMittal France Method and device for blowing a gas onto a moving strip
JP2011143460A (en) * 2010-01-15 2011-07-28 Jfe Steel Corp Method for manufacturing thick steel plate
JP2011143461A (en) * 2010-01-15 2011-07-28 Jfe Steel Corp Method for manufacturing thick steel plate
JP2011143462A (en) * 2010-01-15 2011-07-28 Jfe Steel Corp Method for manufacturing thick steel plate
JP2011143459A (en) * 2010-01-15 2011-07-28 Jfe Steel Corp Method for manufacturing thick steel plate
CN103498023A (en) * 2013-09-03 2014-01-08 上海交通大学 Method for preventing cracking of water-quenched edges and angles of rectangular alloy steel member

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101811144B (en) * 2009-02-24 2012-05-30 宝山钢铁股份有限公司 Laminar flow water cooling device and control method
BRPI1013732B1 (en) * 2009-05-13 2021-07-27 Nippon Steel Corporation COOLING METHOD AND HOT ROLLED STEEL STRIP COOLING DEVICE
JP6233613B2 (en) * 2016-01-26 2017-11-22 Jfeスチール株式会社 Production line for hot-rolled steel strip and method for producing hot-rolled steel strip
JP6233614B2 (en) * 2016-01-27 2017-11-22 Jfeスチール株式会社 Production line for hot-rolled steel strip and method for producing hot-rolled steel strip
DE102016223721A1 (en) * 2016-03-18 2017-09-21 Sms Group Gmbh Apparatus and method for producing a workpiece of a predetermined type
CN109311068B (en) * 2016-08-09 2022-11-04 东芝三菱电机产业系统株式会社 Outlet side temperature control system of rolling mill
EP3363552B1 (en) 2016-10-19 2022-07-13 Nippon Steel Corporation Method and apparatus for cooling hot-rolled steel sheet
EP3434383A1 (en) * 2017-07-24 2019-01-30 Primetals Technologies Austria GmbH Scaffold cooler for cooling a steel strip in a rolling stand
CN114450424B (en) * 2019-09-30 2023-10-31 杰富意钢铁株式会社 Metal strip quenching apparatus, metal strip quenching method, and method for producing metal strip product
KR102215510B1 (en) * 2020-05-29 2021-02-15 주식회사 디케이씨 Cooling Device for Thick Plate
CN111744959B (en) * 2020-07-08 2022-06-21 马鞍山钢铁股份有限公司 Automatic control device and method for cold-rolled strip steel curled overflowing edges
CN113000608B (en) * 2021-02-05 2023-04-11 首钢集团有限公司 Method and device for acquiring transverse flow distribution of cooling water of working roll of rolling mill
CN114289531A (en) * 2021-12-31 2022-04-08 浙江精瑞工模具有限公司 One-way double-sided water descaling system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286925A (en) * 2000-04-10 2001-10-16 Sumitomo Metal Ind Ltd Device and method for water-cooling steel sheet
JP2003320402A (en) * 2002-04-30 2003-11-11 Jfe Steel Kk Method and apparatus for manufacturing hot rolled steel strip

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86200393U (en) * 1986-02-05 1987-05-13 冶金工业部钢铁研究总院 Water jetting device
CN1049303A (en) * 1989-09-15 1991-02-20 沃洛格达综合技术学院 The method of cooling hot-rolling sheets
JPH08150410A (en) * 1994-11-28 1996-06-11 Hitachi Ltd Equipment for cooling hot rolled steel sheet
JP3189732B2 (en) * 1997-04-17 2001-07-16 日本鋼管株式会社 Cooling method for hot steel sheet and cooling device for hot steel sheet
JP2002066605A (en) * 2000-08-30 2002-03-05 Hitachi Ltd Hot rolling method and apparatus
JP4678112B2 (en) * 2001-09-21 2011-04-27 Jfeスチール株式会社 Steel plate cooling method and apparatus
DE60229562D1 (en) * 2002-08-08 2008-12-04 Jfe Steel Corp COOLING DEVICE, MANUFACTURING METHOD AND MANUFACTURING STRIP FOR HOT-ROLLED STEEL STRIP
CN1304133C (en) * 2002-08-08 2007-03-14 杰富意钢铁株式会社 Cooling device, manufacturing method, and manufacturing line for hot rolled steel band
JP4254364B2 (en) * 2003-06-13 2009-04-15 Jfeスチール株式会社 Thick steel plate controlled rolling apparatus and controlled rolling method using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286925A (en) * 2000-04-10 2001-10-16 Sumitomo Metal Ind Ltd Device and method for water-cooling steel sheet
JP2003320402A (en) * 2002-04-30 2003-11-11 Jfe Steel Kk Method and apparatus for manufacturing hot rolled steel strip

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8404062B2 (en) 2007-02-26 2013-03-26 Jfe Steel Corporation Device and method for cooling hot strip
WO2008117552A1 (en) * 2007-02-26 2008-10-02 Jfe Steel Corporation Device and method for cooling hot-rolled steel strip
JP2008221298A (en) * 2007-03-14 2008-09-25 Jfe Steel Kk Cooling facility for hot-rolled steel strip
US8591675B2 (en) 2008-03-14 2013-11-26 Arcelormittal France Method and device for blowing gas on a running strip
WO2009112654A1 (en) * 2008-03-14 2009-09-17 Arcelormittal France Method and device for blowing gas on a running strip
EP2100673A1 (en) * 2008-03-14 2009-09-16 ArcelorMittal France Method and device for blowing a gas onto a moving strip
KR101374459B1 (en) * 2008-03-14 2014-03-17 아르셀러미탈 프랑스 Method and device for blowing gas on a running strip
AU2008352731B2 (en) * 2008-03-14 2014-06-19 Arcelormittal France Method and device for blowing gas on a running strip
US9222700B2 (en) 2008-03-14 2015-12-29 Arcelormittal France Method and device for blowing gas on a running strip
JP2011143460A (en) * 2010-01-15 2011-07-28 Jfe Steel Corp Method for manufacturing thick steel plate
JP2011143461A (en) * 2010-01-15 2011-07-28 Jfe Steel Corp Method for manufacturing thick steel plate
JP2011143462A (en) * 2010-01-15 2011-07-28 Jfe Steel Corp Method for manufacturing thick steel plate
JP2011143459A (en) * 2010-01-15 2011-07-28 Jfe Steel Corp Method for manufacturing thick steel plate
CN103498023A (en) * 2013-09-03 2014-01-08 上海交通大学 Method for preventing cracking of water-quenched edges and angles of rectangular alloy steel member
CN103498023B (en) * 2013-09-03 2015-12-23 上海交通大学 Prevent the method for rectangle alloy steel piece shrend limit, the aperature of angle

Also Published As

Publication number Publication date
EP1935522A4 (en) 2011-05-11
KR100973691B1 (en) 2010-08-03
CN101253009A (en) 2008-08-27
KR20080034965A (en) 2008-04-22
EP1935522B1 (en) 2015-11-18
CN101253009B (en) 2010-12-22
EP1935522A1 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
WO2007026906A1 (en) Cooling facility and cooling method of steel plate
JP4449991B2 (en) Apparatus and method for cooling hot-rolled steel strip
JP4586682B2 (en) Steel sheet hot rolling equipment and hot rolling method
JP4779749B2 (en) Steel plate cooling method and cooling equipment
JP4678069B1 (en) Hot rolled steel sheet cooling device
JP4876782B2 (en) Steel sheet hot rolling equipment and hot rolling method
JP2006035233A (en) Cooling device for steel plate, and manufacturing method and manufacturing device for hot-rolled steel plate
JP4774887B2 (en) Steel sheet cooling equipment and manufacturing method
KR101219195B1 (en) Thick steel plate manufacturing device
JP4853224B2 (en) Steel sheet cooling equipment and cooling method
JP4905051B2 (en) Steel sheet cooling equipment and cooling method
JP5515483B2 (en) Thick steel plate cooling equipment and cooling method
JP4876781B2 (en) Steel sheet cooling equipment and cooling method
TWI569898B (en) Manufacture method and manufacturing equipment of thick steel plate
JP5685861B2 (en) Draining device, draining method and cooling equipment for hot steel plate
TWI565541B (en) Manufacturing equipment and manufacturing method of thick steel plate
JP4876783B2 (en) Steel sheet cooling equipment and cooling method
JP5387093B2 (en) Thermal steel sheet cooling equipment
JP5597916B2 (en) Steel cooling equipment
JP5347781B2 (en) Thermal steel sheet cooling equipment and cooling method
JP2010284680A (en) Cooling facility for thick steel plate and cooling method thereof
JPH1058026A (en) Method and device for cooling high temperature steel plate
JP4858139B2 (en) Steel sheet cooling equipment and cooling method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680031800.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087004608

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006783167

Country of ref document: EP