JP2010223547A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2010223547A
JP2010223547A JP2009074050A JP2009074050A JP2010223547A JP 2010223547 A JP2010223547 A JP 2010223547A JP 2009074050 A JP2009074050 A JP 2009074050A JP 2009074050 A JP2009074050 A JP 2009074050A JP 2010223547 A JP2010223547 A JP 2010223547A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchange
heat
heat exchanger
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009074050A
Other languages
Japanese (ja)
Other versions
JP5229043B2 (en
Inventor
Hideji Furui
秀治 古井
Michio Moriwaki
道雄 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2009074050A priority Critical patent/JP5229043B2/en
Publication of JP2010223547A publication Critical patent/JP2010223547A/en
Application granted granted Critical
Publication of JP5229043B2 publication Critical patent/JP5229043B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce pressure loss of a refrigerant circulated in heat exchangers. <P>SOLUTION: The heat exchangers 23, 24 include a first heat exchanging section 42, a second heat exchanging section 43, a third heat exchanging section 44, a first auxiliary refrigerant pipe 46, a second auxiliary refrigerant pipe 47, a third auxiliary refrigerant pipe 48, a first three-way valve 51 for switching a first state in which the first heat exchanging section 42 and the second heat exchanging section 43 are connected and an outlet end of the first auxiliary refrigerant pipe 46 is closed, and a second state in which an outlet end of the first heat exchanging section 42 is closed and the first auxiliary refrigerant pipe 46 and the second heat exchanging section 43 are connected, and a second three-way valve 52 for switching a third state in which the second heat exchanging section 43 and the third heat exchanging section 44 are connected and an inlet end of the third auxiliary refrigerant pipe 48 is closed, and a forth state in which an inlet end of the third heat exchanging section 44 is closed and the third auxiliary refrigerant pipe 48 and the second heat exchanging section 43 are connected. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、冷媒を空気や水などの流体と熱交換させる熱交換器に関するものである。     The present invention relates to a heat exchanger that exchanges heat between a refrigerant and a fluid such as air or water.

従来、特許文献1や特許文献2には、冷媒と空気と熱交換させるためのフィン・アンド・チューブ型の熱交換器が開示されている。この熱交換器は、等間隔に配置された多数のフィンと、これらフィンを貫通する伝熱管とによって構成されている。この熱交換器では、伝熱管は、蛇行する形状に形成されて冷媒流通路を構成している。そして、この熱交換器では、冷媒流通路内を流れる冷媒がフィンの間を通過する空気と熱交換する。     Conventionally, Patent Literature 1 and Patent Literature 2 disclose fin-and-tube heat exchangers for exchanging heat between refrigerant and air. This heat exchanger is composed of a large number of fins arranged at equal intervals and a heat transfer tube passing through the fins. In this heat exchanger, the heat transfer tube is formed in a meandering shape to constitute a refrigerant flow passage. In this heat exchanger, the refrigerant flowing in the refrigerant flow passage exchanges heat with the air passing between the fins.

上記熱交換器は、蒸気圧縮式冷凍サイクルを行う冷凍装置の冷媒回路に設けられる。この冷媒回路において、熱交換器は、冷媒を空気と熱交換させて蒸発させる蒸発器や、冷媒を空気と熱交換させて凝縮させる凝縮器として動作する。     The heat exchanger is provided in a refrigerant circuit of a refrigeration apparatus that performs a vapor compression refrigeration cycle. In this refrigerant circuit, the heat exchanger operates as an evaporator that evaporates by exchanging heat between the refrigerant and air, and a condenser that condenses the refrigerant by exchanging heat with air.

蒸発器として動作する熱交換器では、通常、乾き度の低い気液二相冷媒が冷媒流通路へ流入する。冷媒流通路内では、流入した冷媒中の液冷媒が蒸発してゆくため、その下流側ほど冷媒の乾き度が高くなる。通常、蒸発器として動作する熱交換器の出口では、冷媒がガス単相状態(即ち、乾き度が「1」の状態)となる。     In a heat exchanger that operates as an evaporator, a gas-liquid two-phase refrigerant having a low dryness usually flows into the refrigerant flow passage. In the refrigerant flow passage, the liquid refrigerant in the refrigerant that has flowed in evaporates, so that the dryness of the refrigerant increases toward the downstream side. Normally, the refrigerant is in a gas single-phase state (that is, a dryness state of “1”) at the outlet of a heat exchanger that operates as an evaporator.

一方、凝縮器として動作する熱交換器では、通常、ガス単相冷媒が冷媒流通路へ流入する。冷媒流通路内では、流入した冷媒中のガス冷媒が凝縮してゆくため、その下流側ほど冷媒の乾き度が低くなる。通常、凝縮器として動作する熱交換器の出口では、冷媒が液単相状態(即ち、乾き度が「0」の状態)となる。     On the other hand, in a heat exchanger that operates as a condenser, a gas single-phase refrigerant usually flows into the refrigerant flow passage. In the refrigerant flow passage, the gas refrigerant in the refrigerant that has flowed in is condensed, so that the degree of dryness of the refrigerant becomes lower toward the downstream side. Usually, at the outlet of the heat exchanger that operates as a condenser, the refrigerant is in a liquid single-phase state (that is, a dryness of “0”).

ここで、冷媒流通路内では、その冷媒流通路が途中で分岐したりしない限り、その始端から終端に亘って冷媒の質量流量は一定となる。一方、冷媒流通路内で冷媒が相変化すると、それに伴って冷媒流通路内における冷媒の体積流量が変化する。ガス冷媒の比体積は、液冷媒の比体積に比べて非常に大きい。このため、蒸発器として動作する熱交換器では、冷媒流通路内において液冷媒が蒸発してゆくため、下流側ほど冷媒の体積流量が多くなり、その結果、下流側に向かうにつれて冷媒の流速が次第に速くなってゆく。また、凝縮器として動作する熱交換器では、冷媒流通路へガス単相冷媒が流入するため、上流側において冷媒の体積流量が多くなり、その結果、上流側ほど冷媒の流速が速い状態となる。     Here, in the refrigerant flow passage, the mass flow rate of the refrigerant is constant from the start end to the end unless the refrigerant flow passage branches off in the middle. On the other hand, when the phase of the refrigerant changes in the refrigerant flow passage, the volume flow rate of the refrigerant in the refrigerant flow passage changes accordingly. The specific volume of the gas refrigerant is very large compared to the specific volume of the liquid refrigerant. For this reason, in the heat exchanger operating as an evaporator, the liquid refrigerant evaporates in the refrigerant flow passage, so that the volume flow rate of the refrigerant increases toward the downstream side, and as a result, the flow rate of the refrigerant increases toward the downstream side. It gets faster and faster. Further, in the heat exchanger that operates as a condenser, the gas single-phase refrigerant flows into the refrigerant flow passage, so that the volume flow rate of the refrigerant increases on the upstream side, and as a result, the flow rate of the refrigerant becomes faster toward the upstream side. .

また、一般に管内を流体が流れる際の圧力損失は、管内における流体の流速が高いほど大きくなる。このため、蒸発器や凝縮器として動作する熱交換器において、冷媒流通路の入口から出口に至るまでの冷媒の圧力損失は、冷媒流通路内を冷媒が液単相状態のままで流れる場合に比べて大きくなる。
特開2001−336859号公報 特開2008−121932号公報
In general, the pressure loss when the fluid flows in the pipe increases as the flow velocity of the fluid in the pipe increases. For this reason, in a heat exchanger that operates as an evaporator or a condenser, the pressure loss of the refrigerant from the inlet to the outlet of the refrigerant flow passage occurs when the refrigerant flows in the liquid single-phase state in the refrigerant flow passage. Compared to larger.
JP 2001-336859 A JP 2008-121932 A

しかしながら、従来の熱交換器は、蒸発器又は凝縮器として使用される場合において、その上流側及び下流側の冷媒流通路の通路の断面積をガス冷媒量に応じて変えることができない。このため、熱交換器が蒸発器として使用される場合には、熱交換器の下流側でガス冷媒が多くなって冷媒の圧力損失が大きくなる一方、凝縮器として使用される場合には、熱交換器の上流側でガス冷媒が多くなって冷媒の圧力損失が大きくなるという問題があった。     However, when the conventional heat exchanger is used as an evaporator or a condenser, the cross-sectional area of the upstream and downstream refrigerant flow passages cannot be changed according to the amount of gas refrigerant. For this reason, when the heat exchanger is used as an evaporator, the gas refrigerant increases on the downstream side of the heat exchanger and the pressure loss of the refrigerant increases. On the other hand, when the heat exchanger is used as a condenser, There was a problem that the gas refrigerant increased on the upstream side of the exchanger and the pressure loss of the refrigerant increased.

本発明は、斯かる点に鑑みてなされたものであり、熱交換器の蒸発器と凝縮器を切り換えた場合に熱交換器を流れる冷媒の圧力損失を減少させることを目的とする。     This invention is made | formed in view of such a point, and it aims at reducing the pressure loss of the refrigerant | coolant which flows through a heat exchanger, when the evaporator and condenser of a heat exchanger are switched.

第1の発明は、冷媒の流入通路(18)に入口側が接続される一方、冷媒の流出通路(19)に出口側が接続されて冷媒が通過する熱交換器であって、入口端が流入通路(18)に接続された第1熱交換部(42)と、第2熱交換部(43)と、出口端が流出通路(19)に接続された第3熱交換部(44)と、入口端が流入通路(18)に接続された第1補助流路(46)と、入口端が第1熱交換部(42)の出口側に接続され且つ出口端が第3熱交換部(44)の入口側に接続された第2補助流路(47)と、出口端が流出通路(19)に接続された第3補助流路(48)と、上記第1熱交換部(42)の出口端と第2熱交換部(43)の入口端とを接続し且つ第1補助流路(46)の出口端を閉鎖した第1状態と、上記第1熱交換部(42)の出口端を閉鎖し且つ第1補助流路(46)の出口端と第2熱交換部(43)の入口端とを接続した第2状態とに切り換わる第1の切換弁(51)と、上記第2熱交換部(43)の出口端と第3熱交換部(44)の入口端とを接続し且つ第3補助流路(48)の入口端を閉鎖した第3状態と、上記第3熱交換部(44)の入口端を閉鎖し且つ第3補助流路(48)の入口端と第2熱交換部(43)の出口端とを接続した第4状態とに切り換わる第2の切換弁(52)とを備えている。     A first aspect of the present invention is a heat exchanger in which an inlet side is connected to a refrigerant inflow passage (18), while an outlet side is connected to a refrigerant outflow passage (19) so that the refrigerant passes through, and the inlet end is an inflow passage. A first heat exchange section (42) connected to (18), a second heat exchange section (43), a third heat exchange section (44) whose outlet end is connected to the outflow passage (19), and an inlet The first auxiliary flow path (46) whose end is connected to the inflow passage (18), the inlet end is connected to the outlet side of the first heat exchange section (42), and the outlet end is the third heat exchange section (44). The second auxiliary flow path (47) connected to the inlet side of the first auxiliary flow path, the third auxiliary flow path (48) whose outlet end is connected to the outflow passage (19), and the outlet of the first heat exchange section (42) A first state in which the end and the inlet end of the second heat exchange section (43) are connected and the outlet end of the first auxiliary flow path (46) is closed, and the outlet end of the first heat exchange section (42) Closed and the first auxiliary channel (46) exits A first switching valve (51) that switches to a second state in which the end and the inlet end of the second heat exchange section (43) are connected, an outlet end of the second heat exchange section (43), and a third heat A third state in which the inlet end of the exchange section (44) is connected and the inlet end of the third auxiliary flow path (48) is closed; and the inlet end of the third heat exchange section (44) is closed and third A second switching valve (52) that switches to a fourth state in which the inlet end of the auxiliary flow path (48) and the outlet end of the second heat exchange section (43) are connected is provided.

上記第1の発明では、まず、第1の切換弁(51)を第1状態に設定して第2の切換弁(52)を第4状態に設定する。第1の切換弁(51)は、第1補助流路(46)の出口端を閉鎖して第1熱交換部(42)と第2熱交換部(43)とを接続する。そして、第2の切換弁(52)は、第3熱交換部(44)の入口端を閉鎖して第3補助流路(48)と第2熱交換部(43)とを接続する。流入通路(18)を流れる冷媒は第1熱交換部(42)に流入し、該第1熱交換部(42)の外部を流れる熱交換流体と熱交換を行う。第1熱交換部(42)を流出した冷媒は、その一部が第2熱交換部(43)に流入する一方、残りの冷媒は、第2補助流路(47)を通過して第3熱交換部(44)に流入する。第2熱交換部(43)に流入した冷媒は、該第2熱交換部(43)の外部を流れる熱交換流体と熱交換を行う。第2熱交換部(43)を流出した冷媒は第3補助流路(48)を通過して流出通路(19)に流入する。第3熱交換部(44)に流入した冷媒は、該第3熱交換部(44)の外部を流れる熱交換流体と熱交換を行う。第3熱交換部(44)を流出した冷媒は流出通路(19)に流入する。流出通路(19)では、第3補助流路(48)を流出した冷媒と第3熱交換部(44)を流出した冷媒とが合流する。     In the first invention, first, the first switching valve (51) is set to the first state and the second switching valve (52) is set to the fourth state. The first switching valve (51) closes the outlet end of the first auxiliary flow path (46) and connects the first heat exchange part (42) and the second heat exchange part (43). And the 2nd switching valve (52) closes the entrance end of the 3rd heat exchange part (44), and connects the 3rd auxiliary channel (48) and the 2nd heat exchange part (43). The refrigerant flowing through the inflow passage (18) flows into the first heat exchange unit (42) and exchanges heat with the heat exchange fluid flowing outside the first heat exchange unit (42). A portion of the refrigerant that has flowed out of the first heat exchange section (42) flows into the second heat exchange section (43), while the remaining refrigerant passes through the second auxiliary flow path (47) and passes through the third heat exchange section (43). It flows into the heat exchange part (44). The refrigerant that has flowed into the second heat exchange section (43) exchanges heat with the heat exchange fluid that flows outside the second heat exchange section (43). The refrigerant that has flowed out of the second heat exchange section (43) passes through the third auxiliary flow path (48) and flows into the outflow passageway (19). The refrigerant flowing into the third heat exchange unit (44) exchanges heat with the heat exchange fluid flowing outside the third heat exchange unit (44). The refrigerant that has flowed out of the third heat exchange section (44) flows into the outflow passageway (19). In the outflow passage (19), the refrigerant that has flowed out of the third auxiliary channel (48) and the refrigerant that has flowed out of the third heat exchange section (44) merge.

次に、第1の切換弁(51)を第2状態に設定して第2の切換弁(52)を第3状態に設定する。第1の切換弁(51)は、第1熱交換部(42)の出口端を閉鎖して第1補助流路(46)と第2熱交換部(43)を接続する。そして、第2の切換弁(52)は、第3補助流路(48)の入口端を閉鎖して第2熱交換部(43)と第3熱交換部(44)とを接続する。流入通路(18)を流れる冷媒は、その一部が第1熱交換部(42)に流入する一方、残りが第1補助流路(46)を通過して第2熱交換部(43)に流入する。第1熱交換部(42)に流入した冷媒は、該第1熱交換部(42)の外部を流れる熱交換流体と熱交換を行う。第1熱交換部(42)を流出した冷媒は、第2補助流路(47)を通過して第3熱交換部(44)に流入する。第2熱交換部(43)に流入した冷媒は、該第2熱交換部(43)の外部を流れる熱交換流体と熱交換を行う。第2熱交換部(43)を流出した冷媒は、第3熱交換部(44)に流入する。第3熱交換部(44)では、第2補助流路(47)を流出した冷媒と第2熱交換部(43)を流出した冷媒とが合流する。第3熱交換部(44)に流入した冷媒は、該第3熱交換部(44)の外部を流れる冷媒と熱交換を行う。     Next, the first switching valve (51) is set to the second state, and the second switching valve (52) is set to the third state. The first switching valve (51) closes the outlet end of the first heat exchange section (42) and connects the first auxiliary flow path (46) and the second heat exchange section (43). And the 2nd switching valve (52) closes the entrance end of the 3rd auxiliary channel (48), and connects the 2nd heat exchange part (43) and the 3rd heat exchange part (44). A part of the refrigerant flowing through the inflow passage (18) flows into the first heat exchange section (42), while the rest passes through the first auxiliary flow path (46) and enters the second heat exchange section (43). Inflow. The refrigerant that has flowed into the first heat exchange section (42) exchanges heat with the heat exchange fluid that flows outside the first heat exchange section (42). The refrigerant that has flowed out of the first heat exchange section (42) passes through the second auxiliary flow path (47) and flows into the third heat exchange section (44). The refrigerant that has flowed into the second heat exchange section (43) exchanges heat with the heat exchange fluid that flows outside the second heat exchange section (43). The refrigerant that has flowed out of the second heat exchange section (43) flows into the third heat exchange section (44). In the third heat exchange section (44), the refrigerant that has flowed out of the second auxiliary flow path (47) and the refrigerant that has flowed out of the second heat exchange section (43) merge. The refrigerant that has flowed into the third heat exchange section (44) exchanges heat with the refrigerant that flows outside the third heat exchange section (44).

第2の発明は、上記第1の発明において、冷媒が吸熱する吸熱動作に、上記第1の切換弁(51)を第1状態に切り換えると共に、第2の切換弁(52)を第4状態に切り換える一方、冷媒が放熱する放熱動作に、上記第1の切換弁(51)を第2状態に切り換えると共に、第2の切換弁(52)を第3状態に切換制御器(53)とを備えている。     According to a second invention, in the first invention, the first switching valve (51) is switched to the first state and the second switching valve (52) is switched to the fourth state for the heat absorption operation in which the refrigerant absorbs heat. The first switching valve (51) is switched to the second state and the second switching valve (52) is switched to the third state for the heat dissipation operation in which the refrigerant dissipates heat. I have.

上記第2の発明では、吸熱動作時には、切換制御器(53)は、第1の切換弁(51)を第1状態に設定して第2の切換弁(52)を第4状態に設定する。第1の切換弁(51)は、第1補助流路(46)の出口端を閉鎖して第1熱交換部(42)と第2熱交換部(43)とを接続する。そして、第2の切換弁(52)は、第3熱交換部(44)の入口端を閉鎖して第3補助流路(48)と第2熱交換部(43)とを接続する。流入通路(18)から第1熱交換部(42)に冷媒が流入すると、第1熱交換部(42)に流入した冷媒は、該第1熱交換部(42)の外部を流れる熱交換流体から吸熱し、熱交換流体は冷却される。第1熱交換部(42)を流出した冷媒は、その一部が第2熱交換部(43)へ流入する一方、残りが第2補助流路(47)を通過して第3熱交換部(44)に流入する。第2及び第3熱交換部(43,44)へ流入した冷媒は、各熱交換部(43,44)の外部を流れる熱交換流体から吸熱し、熱交換流体は冷却される。そして、第2及び第3熱交換部(43,44)を流出した冷媒は、流出通路(19)で合流して流出される。     In the second aspect, during the heat absorption operation, the switching controller (53) sets the first switching valve (51) to the first state and sets the second switching valve (52) to the fourth state. . The first switching valve (51) closes the outlet end of the first auxiliary flow path (46) and connects the first heat exchange part (42) and the second heat exchange part (43). And the 2nd switching valve (52) closes the entrance end of the 3rd heat exchange part (44), and connects the 3rd auxiliary channel (48) and the 2nd heat exchange part (43). When the refrigerant flows into the first heat exchange section (42) from the inflow passage (18), the refrigerant that has flowed into the first heat exchange section (42) flows outside the first heat exchange section (42). The heat exchange fluid is cooled. A part of the refrigerant that has flowed out of the first heat exchange section (42) flows into the second heat exchange section (43), while the rest passes through the second auxiliary flow path (47) and passes through the third heat exchange section. Flows into (44). The refrigerant that has flowed into the second and third heat exchange units (43, 44) absorbs heat from the heat exchange fluid flowing outside the heat exchange units (43, 44), and the heat exchange fluid is cooled. And the refrigerant | coolant which flowed out through the 2nd and 3rd heat exchange part (43,44) joins and flows out in an outflow channel | path (19).

放熱動作時には、切換制御器(53)は、第1の切換弁(51)を第2状態に設定して第2の切換弁(52)を第3状態に設定する。第1の切換弁(51)は、第1熱交換部(42)の出口端を閉鎖して第1補助流路(46)と第2熱交換部(43)を接続する。そして、第2の切換弁(52)は、第3補助流路(48)の入口端を閉鎖して第2熱交換部(43)と第3熱交換部(44)とを接続する。流入通路(18)を通過する冷媒は、その一部が第1熱交換部(42)に流入する一方、残りが第1補助流路(46)を通過して第2熱交換部(43)に流入する。第1及び第2熱交換部(42,43)へ流入した冷媒は、各熱交換部(42,43)の外部を流れる熱交換流体へ放熱し、熱交換流体は加熱される。そして、第1及び第2熱交換部(42,43)を流出した冷媒は、第3熱交換部(44)の入口側で合流して第3熱交換部(44)に流入する。第3熱交換部(44)に流入した冷媒は、該第3熱交換部(44)の外部を流れる熱交換流体へ放熱し、熱交換流体は加熱される。第3熱交換部(44)を流出した冷媒は、流出通路(19)から流出される。     During the heat radiation operation, the switching controller (53) sets the first switching valve (51) to the second state and sets the second switching valve (52) to the third state. The first switching valve (51) closes the outlet end of the first heat exchange section (42) and connects the first auxiliary flow path (46) and the second heat exchange section (43). And the 2nd switching valve (52) closes the entrance end of the 3rd auxiliary channel (48), and connects the 2nd heat exchange part (43) and the 3rd heat exchange part (44). A part of the refrigerant passing through the inflow passage (18) flows into the first heat exchange part (42), while the other part passes through the first auxiliary flow path (46) and passes through the second heat exchange part (43). Flow into. The refrigerant that has flowed into the first and second heat exchange units (42, 43) dissipates heat to the heat exchange fluid that flows outside the heat exchange units (42, 43), and the heat exchange fluid is heated. And the refrigerant | coolant which flowed out the 1st and 2nd heat exchange part (42,43) merges in the inlet side of a 3rd heat exchange part (44), and flows in into a 3rd heat exchange part (44). The refrigerant that has flowed into the third heat exchange section (44) dissipates heat to the heat exchange fluid that flows outside the third heat exchange section (44), and the heat exchange fluid is heated. The refrigerant that has flowed out of the third heat exchange section (44) flows out of the outflow passageway (19).

第3の発明は、上記第1〜3の発明の何れか1つにおいて、上記第1及び第2の切換弁(51,52)は、三方弁で構成されている。     According to a third invention, in any one of the first to third inventions, the first and second switching valves (51, 52) are constituted by three-way valves.

上記第3の発明では、第1の切換弁(51)は、三方弁に構成され、第1熱交換部(42)の出口端と第2熱交換部(43)の入口端とを接続し且つ第1補助流路(46)の出口端を閉鎖した第1状態と、上記第1熱交換部(42)の出口端を閉鎖し且つ第1補助流路(46)の出口端と第2熱交換部(43)の入口端とを接続した第2状態とに切り換わる。     In the third aspect, the first switching valve (51) is a three-way valve, and connects the outlet end of the first heat exchange section (42) and the inlet end of the second heat exchange section (43). And the 1st state which closed the exit end of the 1st auxiliary channel (46), the exit end of the above-mentioned 1st heat exchange part (42), and the exit end of the 1st auxiliary channel (46) and the 2nd It switches to the 2nd state which connected the entrance end of the heat exchange part (43).

また、第2の切換弁(52)は、第2熱交換部(43)の出口端と第3熱交換部(44)の入口端とを接続し且つ第3補助流路(48)の入口端を閉鎖した第3状態と、上記第3熱交換部(44)の入口端を閉鎖し且つ第3補助流路(48)の入口端と第2熱交換部(43)の出口端とを接続した第4状態とに切り換わる。     The second switching valve (52) connects the outlet end of the second heat exchanging part (43) and the inlet end of the third heat exchanging part (44) and is an inlet of the third auxiliary flow path (48). A third state in which the end is closed; an inlet end of the third heat exchange section (44) is closed; and an inlet end of the third auxiliary flow path (48) and an outlet end of the second heat exchange section (43). Switch to the connected fourth state.

上記第1の発明では、第1〜3補助流路(46,47,48)と第1及び第2の切換弁(51,52)とを設けた。このため、熱交換器の下流側を流れる冷媒を第2及び第3熱交換部(43,44)の2つの冷媒流路に流入させる状態と、熱交換器の上流側を流れる冷媒を第1及び第2熱交換部(42,43)の2つの冷媒流路に流入させる状態とに切り換えることができる。つまり、熱交換器内でガス状態で存在する冷媒を2つの冷媒流路に流入させることができる。これにより、ガス冷媒が流通する冷媒流路の断面積が大きくなるため、冷媒流路でガス冷媒の流速を低下させることができる。この結果、熱交換器を流れる冷媒の圧力損失を減少させることができる。     In the first invention, the first to third auxiliary flow paths (46, 47, 48) and the first and second switching valves (51, 52) are provided. For this reason, the state in which the refrigerant flowing downstream of the heat exchanger flows into the two refrigerant channels of the second and third heat exchange sections (43, 44) and the refrigerant flowing upstream of the heat exchanger are the first. And it can switch to the state made to flow in into two refrigerant | coolant flow paths of a 2nd heat exchange part (42,43). That is, the refrigerant existing in a gas state in the heat exchanger can be caused to flow into the two refrigerant flow paths. Thereby, since the cross-sectional area of the refrigerant flow path through which the gas refrigerant flows increases, the flow rate of the gas refrigerant can be reduced in the refrigerant flow path. As a result, the pressure loss of the refrigerant flowing through the heat exchanger can be reduced.

上記第2の発明では、吸熱動作及び放熱動作に応じて第1の切換弁(51)及び第2の切換弁(52)を切り換える切換制御器(53)を設けた。このため、吸熱動作時において流出通路(19)から流出する前のガス冷媒を、第2及び第3熱交換部(43,44)の2つの冷媒流路に通過させる一方、放熱動作時において流入通路(18)から流入した冷媒を、第1及び第2熱交換部(42,43)の2つの冷媒流路に通過させることができる。つまり、吸熱動作時では、熱交換器の下流側に存在するガス冷媒を2つの冷媒流路に通過させることができると共に、放熱動作時では、熱交換器の上流側に存在するガス冷媒を2つの冷媒流路に通過させることができる。これにより、ガス冷媒が通過する冷媒流路の断面積が大きくなるため、冷媒流路でガス冷媒の流速を低下させることができる。この結果、熱交換器を流れる冷媒の圧力損失を減少させることができる。     In the said 2nd invention, the switching controller (53) which switches a 1st switching valve (51) and a 2nd switching valve (52) according to heat absorption operation | movement and heat radiation operation | movement was provided. For this reason, the gas refrigerant before flowing out from the outflow passage (19) during the heat absorption operation is passed through the two refrigerant flow paths of the second and third heat exchange parts (43, 44), while flowing in during the heat dissipation operation. The refrigerant flowing in from the passage (18) can be passed through the two refrigerant flow paths of the first and second heat exchange sections (42, 43). That is, at the time of heat absorption operation, the gas refrigerant existing on the downstream side of the heat exchanger can be passed through the two refrigerant flow paths, and at the time of heat dissipation operation, the gas refrigerant existing on the upstream side of the heat exchanger is 2 It can be passed through one refrigerant flow path. Thereby, since the cross-sectional area of the refrigerant flow path through which the gas refrigerant passes increases, the flow rate of the gas refrigerant can be reduced in the refrigerant flow path. As a result, the pressure loss of the refrigerant flowing through the heat exchanger can be reduced.

上記第3の発明によれば、第1の切換弁(51)に三方弁を用いたため、第1補助流路(46)、第1熱交換部(42)及び第2熱交換部(43)の3つの冷媒流路を簡易的な構成でもって切り換えることができる。また、第2の切換弁(52)に三方弁を用いたため、第3補助流路(48)、第2熱交換部(43)及び第3熱交換部(44)の3つの冷媒流路を簡易的な構成でもって切り換えることができる。     According to the third aspect, since the three-way valve is used for the first switching valve (51), the first auxiliary flow path (46), the first heat exchange part (42), and the second heat exchange part (43). These three refrigerant flow paths can be switched with a simple configuration. In addition, since a three-way valve is used for the second switching valve (52), the three refrigerant flow paths, that is, the third auxiliary flow path (48), the second heat exchange section (43), and the third heat exchange section (44) are provided. Switching is possible with a simple configuration.

以下、本発明の実施形態を図面に基づいて詳細に説明する。     Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施形態では、図1に示すように、居室等の空気調和を行う空気調和装置(10)について説明する。     In the present embodiment, as shown in FIG. 1, an air conditioner (10) that performs air conditioning in a living room or the like will be described.

〈空気調和装置の構成〉
本実施形態に係る空気調和装置(10)は、室外機(12)と室内機(11)とを備えたセパレート型の空気調和装置である。この空気調和装置(10)には、閉回路である冷媒回路(15)が設けられている。
<Configuration of air conditioner>
The air conditioner (10) according to the present embodiment is a separate type air conditioner including an outdoor unit (12) and an indoor unit (11). The air conditioner (10) is provided with a refrigerant circuit (15) which is a closed circuit.

冷媒回路(15)には、高沸点成分である2,3,3,3−テトラフルオロ−1−プロペン(以下、「HFO−1234yf」という。)と、低沸点成分であるHFC−32(ジフルオロメタン)とによって構成された非共沸混合冷媒が充填されている。この冷媒回路(15)は、冷房サイクルと暖房サイクルとを選択的に実行できるように構成されている。冷媒回路(15)は、室内機(11)に設けられた利用側回路(17)と、室外機(12)に設けられた熱源側回路(16)と、コントローラ(53)とを備えている。上記利用側回路(17)には、室内熱交換器(24)が接続されている。上記熱源側回路(16)は、圧縮機(20)と、室外熱交換器(23)と、第1四路切換弁(21)と、第2四路切換弁(22)と、エジェクタ(30)と、エジェクタ用気液分離器(25)と、補助膨張弁(26)とが接続されている。     The refrigerant circuit (15) includes 2,3,3,3-tetrafluoro-1-propene (hereinafter referred to as “HFO-1234yf”), which is a high boiling point component, and HFC-32 (difluoro, which is a low boiling point component). A non-azeotropic refrigerant mixture composed of methane). The refrigerant circuit (15) is configured to selectively execute a cooling cycle and a heating cycle. The refrigerant circuit (15) includes a use side circuit (17) provided in the indoor unit (11), a heat source side circuit (16) provided in the outdoor unit (12), and a controller (53). . An indoor heat exchanger (24) is connected to the use side circuit (17). The heat source side circuit (16) includes a compressor (20), an outdoor heat exchanger (23), a first four-way switching valve (21), a second four-way switching valve (22), and an ejector (30 ), An ejector gas-liquid separator (25), and an auxiliary expansion valve (26).

冷媒回路(15)において、圧縮機(20)の吐出側は、第1四路切換弁(21)の第1ポートに接続されている。第1四路切換弁(21)の第3ポートは、室外熱交換器(23)の一端に接続されている。室外熱交換器(23)の他端は、第2四路切換弁(22)の第1のポートに接続されている。第1四路切換弁(21)の第4のポートは、室内熱交換器(24)の一端に接続されている。室内熱交換器(24)の他端は、第2四路切換弁(22)の第2ポートに接続されている。     In the refrigerant circuit (15), the discharge side of the compressor (20) is connected to the first port of the first four-way switching valve (21). The third port of the first four-way selector valve (21) is connected to one end of the outdoor heat exchanger (23). The other end of the outdoor heat exchanger (23) is connected to the first port of the second four-way switching valve (22). The fourth port of the first four-way selector valve (21) is connected to one end of the indoor heat exchanger (24). The other end of the indoor heat exchanger (24) is connected to the second port of the second four-way selector valve (22).

エジェクタ(30)には、駆動流体が流れる駆動流路(31)と、駆動流路(31)から噴射する冷媒により吸引された吸引流体が流れる吸引流路(32)と、吸引流路(32)を流れる冷媒と該駆動流路(31)を流れる冷媒とを合流させて噴出する噴出流路(33)とが設けられている。エジェクタ(30)は、駆動流路(31)へ流入した駆動流体をエジェクタ(30)内に設けられたノズルで減圧させると共に加速させ、その加速により生じる負圧によって、吸引流体を吸引流路(32)内に吸引するように構成されている。また、エジェクタ(30)は、噴出流路(33)において吸引流体と駆動流体とを混合させて混合流体とし、この混合流体を該エジェクタ(30)内に設けられたディフューザで減速させると共に、昇圧させてから噴出させるように構成されている。     The ejector (30) includes a drive flow path (31) through which the drive fluid flows, a suction flow path (32) through which the suction fluid sucked by the refrigerant injected from the drive flow path (31) flows, and a suction flow path (32 ) And a jet channel (33) for jetting the refrigerant flowing through the drive channel (31) together. The ejector (30) depressurizes and accelerates the driving fluid flowing into the driving channel (31) with a nozzle provided in the ejector (30), and sucks the suction fluid by the negative pressure generated by the acceleration. 32) It is configured to suck in. Further, the ejector (30) mixes the suction fluid and the drive fluid in the ejection flow path (33) to form a mixed fluid, decelerates the mixed fluid with a diffuser provided in the ejector (30), and increases the pressure. It is comprised so that it may be made to erupt.

冷媒回路(15)において、第2四路切換弁(22)は、第3のポートがエジェクタ(30)の駆動流路(31)の入口に接続され、その第4のポートがエジェクタ(30)の吸引流路(32)の入口に接続されている。エジェクタ(30)の噴出流路(33)の出口は、エジェクタ用気液分離器(25)の側部に開口する冷媒流入口に接続されている。エジェクタ用気液分離器(25)の頂部にはガス流出口が開口しており、このガス流出口が圧縮機(20)の吸入側に接続される。また、エジェクタ用気液分離器(25)の底部には液流出口が開口しており、この液流出口が補助膨張弁(26)を介して第1四路切換弁(21)の第2ポートに接続される。     In the refrigerant circuit (15), the second four-way switching valve (22) has a third port connected to the inlet of the drive flow path (31) of the ejector (30), and the fourth port connected to the ejector (30). Connected to the inlet of the suction channel (32). The outlet of the ejection channel (33) of the ejector (30) is connected to a refrigerant inlet opening at the side of the ejector gas-liquid separator (25). A gas outlet is opened at the top of the ejector gas-liquid separator (25), and this gas outlet is connected to the suction side of the compressor (20). Further, a liquid outlet is opened at the bottom of the ejector gas-liquid separator (25), and this liquid outlet passes through the auxiliary expansion valve (26) to the second of the first four-way selector valve (21). Connected to the port.

圧縮機(20)は、可変容量型のいわゆる全密閉型に構成されている。圧縮機(20)は、吸入側から吸入した冷媒を圧縮して吐出側へ吐出する。第1四路切換弁(21)及び第2四路切換弁(22)のそれぞれは、第1ポートと第3ポートが連通し且つ第2ポートと第4ポートが連通する冷媒回路(15)の第1状態(図1に実線で示す状態)と、第1ポートと第4ポートが連通し且つ第2ポートと第3ポートが連通する冷媒回路(15)の第2状態(図1に破線で示す状態)とに切り換え可能となっている。     The compressor (20) is configured as a so-called fully enclosed type of variable capacity type. The compressor (20) compresses the refrigerant sucked from the suction side and discharges it to the discharge side. Each of the first four-way switching valve (21) and the second four-way switching valve (22) includes a refrigerant circuit (15) in which the first port and the third port communicate with each other and the second port and the fourth port communicate with each other. The first state (the state indicated by the solid line in FIG. 1), and the second state of the refrigerant circuit (15) in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other (shown by a broken line in FIG. 1). To the state shown).

上記室外熱交換器(23)は、図外の室外ファンによって吸い込まれた室外空気を冷媒と熱交換させる。室外熱交換器(23)は、冷媒回路(15)における第1四路切換弁(21)の第3ポートと第2四路切換弁(22)の第1ポートの間に設けられている。室外熱交換器(23)は、第1四路切換弁(21)の第3ポートと流入部(18)を介して接続されている。流入部(18)は、冷媒回路(15)を構成する冷媒管の一端部分であって、室外熱交換器(23)の冷媒の入口に接続される。流入部(18)は、本発明に係る流入通路を構成している。また、室外熱交換器(23)は、第2四路切換弁(22)の第1ポートと流出部(19)を介して接続されている。流出部(19)は、冷媒回路(15)を構成する冷媒管の一端部分であって、室外熱交換器(23)の冷媒の出口に接続される。この流出部(19)は、本発明に係る流出通路(19)を構成している。     The outdoor heat exchanger (23) exchanges heat between outdoor air sucked by an outdoor fan (not shown) and refrigerant. The outdoor heat exchanger (23) is provided between the third port of the first four-way switching valve (21) and the first port of the second four-way switching valve (22) in the refrigerant circuit (15). The outdoor heat exchanger (23) is connected to the third port of the first four-way switching valve (21) via the inflow portion (18). The inflow part (18) is one end part of the refrigerant pipe constituting the refrigerant circuit (15), and is connected to the refrigerant inlet of the outdoor heat exchanger (23). The inflow portion (18) constitutes an inflow passage according to the present invention. The outdoor heat exchanger (23) is connected to the first port of the second four-way switching valve (22) via the outflow part (19). The outflow portion (19) is one end portion of the refrigerant pipe constituting the refrigerant circuit (15), and is connected to the refrigerant outlet of the outdoor heat exchanger (23). The outflow portion (19) constitutes an outflow passage (19) according to the present invention.

上記室内熱交換器(24)は、図外の室内ファンによって吸い込まれた室内空気を冷媒と熱交換させる。室内熱交換器(24)は、冷媒回路(15)における第1四路切換弁(21)の第4ポートと第2四路切換弁(22)の第2ポートとの間に設けられている。室内熱交換器(24)は、第1四路切換弁(21)の第4ポートと流入部(18)を介して接続されている。流入部(18)は、冷媒回路(15)を構成する冷媒管の一端部分であって、室内熱交換器(24)の冷媒の入口に接続される。この流入部(18)は、本発明に係る流入通路を構成している。また、室内熱交換器(24)は第2四路切換弁(22)の第2ポートと流出部(19)を介して接続されている。流出部(19)は、冷媒回路(15)を構成する冷媒管の一端部分であって、室内熱交換器(24)の冷媒の出口に接続される。この流出部(19)は、本発明に係る流出通路(19)を構成している。     The indoor heat exchanger (24) exchanges heat between indoor air sucked by an indoor fan (not shown) and refrigerant. The indoor heat exchanger (24) is provided between the fourth port of the first four-way selector valve (21) and the second port of the second four-way selector valve (22) in the refrigerant circuit (15). . The indoor heat exchanger (24) is connected to the fourth port of the first four-way switching valve (21) via the inflow portion (18). The inflow part (18) is one end part of the refrigerant pipe constituting the refrigerant circuit (15), and is connected to the refrigerant inlet of the indoor heat exchanger (24). The inflow portion (18) constitutes an inflow passage according to the present invention. The indoor heat exchanger (24) is connected to the second port of the second four-way selector valve (22) via the outflow part (19). The outflow portion (19) is one end portion of the refrigerant pipe constituting the refrigerant circuit (15), and is connected to the refrigerant outlet of the indoor heat exchanger (24). The outflow portion (19) constitutes an outflow passage (19) according to the present invention.

〈熱交換器の構成〉
図2に示すように、室内熱交換器(24)及び室外熱交換器(23)は、本発明に係る熱交換器を構成している。室外及び室内熱交換器(23,24)は、熱交換器本体(40)と、第1及び第2三方弁(51,52)とを備えている。
<Configuration of heat exchanger>
As shown in FIG. 2, the indoor heat exchanger (24) and the outdoor heat exchanger (23) constitute a heat exchanger according to the present invention. The outdoor and indoor heat exchangers (23, 24) include a heat exchanger body (40) and first and second three-way valves (51, 52).

上記熱交換器本体(40)は、クロスフィン型のフィン・アンド・チューブ熱交換器であって、冷媒を熱交換用流体である空気と熱交換させるように構成されている。この熱交換器本体(40)は、第1〜3熱交換部(42,43,44)と、第1〜3補助冷媒管(46,47,48)とで構成されている。     The heat exchanger body (40) is a cross-fin type fin-and-tube heat exchanger, and is configured to exchange heat between the refrigerant and air that is a heat exchange fluid. This heat exchanger main body (40) is comprised by the 1st-3rd heat exchange part (42,43,44) and the 1st-3rd auxiliary | assistant refrigerant | coolant pipe | tube (46,47,48).

上記各熱交換部(42,43,44)は、多数のアルミニウム製のフィン(図示なし)と、該フィンを貫通する銅製の伝熱管(41)とによって構成されている。このフィンは、略長方形の板状に形成され、互いに対面する姿勢で一定の間隔を置いて配置されている。伝熱管(41)は、内部を冷媒が流通する冷媒流路を有する管状に形成され、その形状は、略U字状に形成されている。伝熱管(41)の直管部分には、フィンを貫通した状態でフィンに接合されている。尚、本実施形態では、伝熱管(41)の管の内側の断面積を冷媒流路の断面積とする。     Each of the heat exchange sections (42, 43, 44) includes a large number of aluminum fins (not shown) and a copper heat transfer tube (41) penetrating the fins. The fins are formed in a substantially rectangular plate shape, and are arranged at regular intervals in a posture facing each other. The heat transfer tube (41) is formed in a tubular shape having a refrigerant flow path through which the refrigerant flows, and the shape thereof is substantially U-shaped. The straight pipe portion of the heat transfer tube (41) is joined to the fin in a state of penetrating the fin. In the present embodiment, the cross-sectional area inside the pipe of the heat transfer pipe (41) is the cross-sectional area of the refrigerant flow path.

上記第1〜3熱交換部(42,43,44)は、熱交換器本体(40)の冷媒流れの上流側から下流側に向かって第1熱交換部(42)、第2熱交換部(43)及び第3熱交換部(44)の順に配置されている。各熱交換部(42,43,44)では、上側が入口端となり、下側が出口端となっている。具体的に、第1熱交換部(42)は、入口端が流入部(18)に接続され、出口端が後述する第1三方弁(51)の第1ポートに接続されている。第2熱交換部(43)は、入口端が第1三方弁(51)の第2ポートに接続され、出口端が第2三方弁(52)の第2ポートに接続されている。第3熱交換部(44)は、入口端が第2三方弁(52)の第3ポートに接続され、出口端が流出部(19)に接続されている。     The first to third heat exchange sections (42, 43, 44) are a first heat exchange section (42) and a second heat exchange section from the upstream side to the downstream side of the refrigerant flow of the heat exchanger body (40). (43) and the third heat exchange section (44) are arranged in this order. In each heat exchange section (42, 43, 44), the upper side is an inlet end and the lower side is an outlet end. Specifically, the first heat exchange part (42) has an inlet end connected to the inflow part (18) and an outlet end connected to a first port of a first three-way valve (51) described later. The second heat exchange section (43) has an inlet end connected to the second port of the first three-way valve (51) and an outlet end connected to the second port of the second three-way valve (52). The third heat exchange section (44) has an inlet end connected to the third port of the second three-way valve (52) and an outlet end connected to the outflow section (19).

上記第1〜3補助冷媒管(46,47,48)は、流入部(18)、第1〜3熱交換部(42,43,44)及び流出部(19)に接続されるものであって、本発明に係る第1〜3補助流路を構成している。各補助冷媒管(46,47,48)は、内部を冷媒が流通する管状の配管に形成されている。具体的に、第1補助冷媒管(46)は、入口端が流入部(18)に接続され、出口端が第1三方弁(51)の第3ポートに接続されている。第2補助冷媒管(47)は、入口端が第1熱交換部(42)の出口側に接続され、出口端が第3熱交換部(44)の入口端に接続されている。第3補助冷媒管(48)は、入口端が第2三方弁(52)の第1ポートに接続され、出口端が流出部(19)に接続されている。     The first to third auxiliary refrigerant pipes (46, 47, 48) are connected to the inflow part (18), the first to third heat exchange parts (42, 43, 44) and the outflow part (19). Thus, the first to third auxiliary flow paths according to the present invention are configured. Each auxiliary refrigerant pipe (46, 47, 48) is formed in a tubular pipe through which the refrigerant flows. Specifically, the first auxiliary refrigerant pipe (46) has an inlet end connected to the inflow portion (18) and an outlet end connected to the third port of the first three-way valve (51). The second auxiliary refrigerant pipe (47) has an inlet end connected to the outlet side of the first heat exchange section (42) and an outlet end connected to the inlet end of the third heat exchange section (44). The third auxiliary refrigerant pipe (48) has an inlet end connected to the first port of the second three-way valve (52) and an outlet end connected to the outflow portion (19).

上記第1三方弁(51)は、第1熱交換部(42)、第2熱交換部(43)及び第1補助冷媒管(46)の接続状態を切り換えるためのものであって、本発明に係る第1の切換弁を構成するものである。第1三方弁(51)は、切り換え可能な三方弁に構成されている。第1三方弁(51)は、第1〜3ポートを有し、第1ポートが第1熱交換部(42)の出口端に接続され、第2ポートが第2熱交換部(43)の入口端に接続され、第3ポートが第1補助冷媒管(46)の出口端に接続されている。つまり、第1三方弁(51)は、第1熱交換部(42)の出口端と第2熱交換部(43)の入口端とを接続し且つ第1補助冷媒管(46)の出口端を閉鎖した第1状態と、第1熱交換部(42)の出口端を閉鎖し且つ第1補助冷媒管(46)の出口端と第2熱交換部(43)の入口端とを接続した第2状態とに切り換わるよう構成されている。     The first three-way valve (51) is for switching the connection state of the first heat exchange part (42), the second heat exchange part (43) and the first auxiliary refrigerant pipe (46), and is provided in the present invention. The 1st switching valve which concerns on this is comprised. The first three-way valve (51) is configured as a switchable three-way valve. The first three-way valve (51) has first to third ports, the first port is connected to the outlet end of the first heat exchange part (42), and the second port is the second heat exchange part (43). Connected to the inlet end, the third port is connected to the outlet end of the first auxiliary refrigerant pipe (46). That is, the first three-way valve (51) connects the outlet end of the first heat exchange part (42) and the inlet end of the second heat exchange part (43) and the outlet end of the first auxiliary refrigerant pipe (46). The first state in which is closed, the outlet end of the first heat exchange section (42) is closed, and the outlet end of the first auxiliary refrigerant pipe (46) and the inlet end of the second heat exchange section (43) are connected. It is configured to switch to the second state.

上記第2三方弁(52)は、第2熱交換部(43)、第3熱交換部(44)及び第3補助冷媒管(48)の接続状態を切り換えるためのものであって、本発明に係る第2の切換弁を構成するものである。第2三方弁(52)は、第1〜3ポートを有し、第1ポートが第3補助冷媒管(48)の入口端に接続され、第2ポートが第2熱交換部(43)の出口端に接続され、第3ポートが第3熱交換部(44)の入口端に接続されている。つまり、第2三方弁(52)は、第2熱交換部(43)の出口端と第3熱交換部(44)の入口端とを接続し且つ第3補助冷媒管(48)の入口端を閉鎖した第3状態と、第3熱交換部(44)の入口端を閉鎖し且つ第3補助冷媒管(48)の入口端と第2熱交換部(43)の出口端とを接続した第4状態とに切り換わるよう構成されている。     The second three-way valve (52) is for switching the connection state of the second heat exchange section (43), the third heat exchange section (44) and the third auxiliary refrigerant pipe (48), and is provided in the present invention. The 2nd switching valve which concerns on this is comprised. The second three-way valve (52) has first to third ports, the first port is connected to the inlet end of the third auxiliary refrigerant pipe (48), and the second port of the second heat exchange section (43). Connected to the outlet end, the third port is connected to the inlet end of the third heat exchange section (44). That is, the second three-way valve (52) connects the outlet end of the second heat exchange part (43) and the inlet end of the third heat exchange part (44) and the inlet end of the third auxiliary refrigerant pipe (48). Is closed, the inlet end of the third heat exchange section (44) is closed, and the inlet end of the third auxiliary refrigerant pipe (48) is connected to the outlet end of the second heat exchange section (43). It is configured to switch to the fourth state.

上記コントローラ(53)は、第1及び第2三方弁(51,52)の開閉を制御するものであって、本発明に係る切換制御器を構成している。具体的に、このコントローラ(53)は、冷媒回路(15)に接続されている。コントローラ(53)は、空気調和装置(10)が冷房運転を行う際には、まず、室内熱交換器(24)の第1三方弁(51)を第1状態に設定する一方、第2三方弁(52)を第4状態に設定する。次に、室外熱交換器(23)の第1三方弁(51)を第2状態に設定する一方、第2三方弁(52)を第3状態に設定する。また、コントローラ(53)は、空気調和装置(10)が暖房運転を行う際には、まず、室内熱交換器(24)の第1三方弁(51)を第2状態に設定する一方、第2三方弁(52)を第3状態に設定する。次に、室外熱交換器(23)の第1三方弁(51)を第1状態に設定する一方、第2三方弁(52)を第4状態に設定する。     The controller (53) controls the opening and closing of the first and second three-way valves (51, 52), and constitutes a switching controller according to the present invention. Specifically, the controller (53) is connected to the refrigerant circuit (15). When the air conditioner (10) performs the cooling operation, the controller (53) first sets the first three-way valve (51) of the indoor heat exchanger (24) to the first state, while the second three-way The valve (52) is set to the fourth state. Next, the first three-way valve (51) of the outdoor heat exchanger (23) is set to the second state, while the second three-way valve (52) is set to the third state. In addition, when the air conditioner (10) performs the heating operation, the controller (53) first sets the first three-way valve (51) of the indoor heat exchanger (24) to the second state, 2. Set the three-way valve (52) to the third state. Next, the first three-way valve (51) of the outdoor heat exchanger (23) is set to the first state, while the second three-way valve (52) is set to the fourth state.

−運転動作−
空気調和装置(10)の運転動作について説明する。この空気調和装置(10)は、冷房運転と暖房運転とを切り換えて行う。冷房運転中において、冷媒回路(15)では、室外熱交換器(23)が凝縮動作を行い、室内熱交換器(24)が蒸発動作を行う。また、暖房運転中において、冷媒回路(15)では、室内熱交換器(24)が凝縮動作を行い、室外熱交換器(23)が蒸発動作を行う。
-Driving action-
The operation of the air conditioner (10) will be described. This air conditioner (10) switches between a cooling operation and a heating operation. During the cooling operation, in the refrigerant circuit (15), the outdoor heat exchanger (23) performs a condensation operation, and the indoor heat exchanger (24) performs an evaporation operation. Further, during the heating operation, in the refrigerant circuit (15), the indoor heat exchanger (24) performs a condensation operation, and the outdoor heat exchanger (23) performs an evaporation operation.

〈空気調和装置の冷房運転〉
冷房運転時における空気調和装置(10)の動作について、図1を参照しながら説明する。冷房運転時には、第1四路切換弁(21)と第2四路切換弁(22)の両方が冷媒回路(15)の第1状態(図1に実線で示す状態)に設定される。この状態で圧縮機(20)を運転すると、冷媒回路(15)では、図1に実線の矢印で示すように冷媒が循環し、冷凍サイクルが行われる。その際、冷媒回路(15)では、室外熱交換器(23)が凝縮器となり、室内熱交換器(24)が蒸発器となる。
<Cooling operation of air conditioner>
The operation of the air conditioner (10) during the cooling operation will be described with reference to FIG. During the cooling operation, both the first four-way switching valve (21) and the second four-way switching valve (22) are set to the first state (state indicated by a solid line in FIG. 1) of the refrigerant circuit (15). When the compressor (20) is operated in this state, in the refrigerant circuit (15), the refrigerant circulates and the refrigeration cycle is performed as shown by the solid line arrow in FIG. At that time, in the refrigerant circuit (15), the outdoor heat exchanger (23) serves as a condenser, and the indoor heat exchanger (24) serves as an evaporator.

圧縮機(20)から吐出された高圧冷媒は、第1四路切換弁(21)を経て室外熱交換器(23)に流入し、室外空気へ放熱して凝縮する。室外熱交換器(23)から流出した高圧冷媒(駆動流体)は、第2四路切換弁(22)を経てエジェクタ(30)の駆動流路(31)に流入する。駆動流路(31)に流入した高圧冷媒は、ノズルによって減圧されると共に加速される。この高圧冷媒の加速により生じる負圧によって、室内熱交換器(24)から流出した低圧冷媒(吸引流体)がエジェクタ(30)内の吸引流路(32)に吸い込まれる。エジェクタ(30)において、加速された高圧冷媒と吸引された低圧冷媒とは、噴出流路(33)の上流側で合流する。合流した冷媒は、ディフューザにおいて減速されると共に昇圧され、その後に噴出流路(33)から噴出する。     The high-pressure refrigerant discharged from the compressor (20) flows into the outdoor heat exchanger (23) through the first four-way switching valve (21), dissipates heat to the outdoor air, and condenses. The high-pressure refrigerant (driving fluid) that has flowed out of the outdoor heat exchanger (23) flows into the driving flow path (31) of the ejector (30) through the second four-way switching valve (22). The high-pressure refrigerant flowing into the drive channel (31) is depressurized and accelerated by the nozzle. Due to the negative pressure generated by the acceleration of the high-pressure refrigerant, the low-pressure refrigerant (suction fluid) flowing out from the indoor heat exchanger (24) is sucked into the suction flow path (32) in the ejector (30). In the ejector (30), the accelerated high-pressure refrigerant and the sucked low-pressure refrigerant merge on the upstream side of the ejection flow path (33). The merged refrigerant is decelerated and pressurized in the diffuser, and then ejected from the ejection channel (33).

エジェクタ(30)から噴出した冷媒は、エジェクタ用気液分離器(25)に流入する。エジェクタ用気液分離器(25)内では、流入した気液二相状態の冷媒が、液冷媒とガス冷媒とに分離される。エジェクタ用気液分離器(25)内の液冷媒は、補助膨張弁(26)を通過する際に減圧され、その後に第1四路切換弁(21)を経て室内熱交換器(24)に流入する。室内熱交換器(24)では、流入した冷媒が室内空気から吸熱して蒸発する。室内熱交換器(24)から流出した冷媒は、第2四路切換弁(22)を通過後にエジェクタ(30)内の吸引流路(32)に吸い込まれる。一方、エジェクタ用気液分離器(25)のガス冷媒は、圧縮機(20)に吸入される。圧縮機(20)に吸入されたガス冷媒は、所定の圧力まで圧縮されて高圧冷媒となり、その後に圧縮機(20)から吐出される。     The refrigerant ejected from the ejector (30) flows into the ejector gas-liquid separator (25). In the gas-liquid separator for ejector (25), the gas-liquid two-phase refrigerant that has flowed in is separated into liquid refrigerant and gas refrigerant. The liquid refrigerant in the gas-liquid separator for ejector (25) is depressurized when passing through the auxiliary expansion valve (26), and then passes through the first four-way switching valve (21) to the indoor heat exchanger (24). Inflow. In the indoor heat exchanger (24), the flowing refrigerant absorbs heat from the indoor air and evaporates. The refrigerant that has flowed out of the indoor heat exchanger (24) passes through the second four-way switching valve (22) and is then sucked into the suction flow path (32) in the ejector (30). On the other hand, the gas refrigerant in the ejector gas-liquid separator (25) is sucked into the compressor (20). The gas refrigerant sucked into the compressor (20) is compressed to a predetermined pressure to become a high-pressure refrigerant, and then discharged from the compressor (20).

−熱交換器の動作−
まず、上述した空気調和装置(10)の冷房運転時での室外及び室内熱交換器(23,24)の動作について説明する。
-Heat exchanger operation-
First, the operation of the outdoor and indoor heat exchangers (23, 24) during the cooling operation of the air conditioner (10) will be described.

冷房運転時には、図1及び図2に示すように、室外熱交換器(23)は凝縮器として動作する一方、室内熱交換器(24)は蒸発器として動作する。コントローラ(53)は、室外熱交換器(23)の第1三方弁(51)を第2状態に設定する一方、第2三方弁(52)を第3状態に設定すると共に、室内熱交換器(24)の第1三方弁(51)を第1状態に設定する一方、第2三方弁(52)を第4状態に設定する。     During the cooling operation, as shown in FIGS. 1 and 2, the outdoor heat exchanger (23) operates as a condenser, while the indoor heat exchanger (24) operates as an evaporator. The controller (53) sets the first three-way valve (51) of the outdoor heat exchanger (23) to the second state, while setting the second three-way valve (52) to the third state, and the indoor heat exchanger The first three-way valve (51) (24) is set to the first state, while the second three-way valve (52) is set to the fourth state.

具体的には、図2(B)に示すように、圧縮機(20)から吐出された高圧冷媒は、第1四路切換弁(21)を通過して流入部(18)を介して室外熱交換器(23)に流入する。尚、このとき室外熱交換器(23)に流入する高圧冷媒はガス状態となっている。室外熱交換器(23)では、流入部(18)から流入したガス冷媒の一部が、第1熱交換部(42)に流入する一方、残りが第1補助冷媒管(46)を通過して第2熱交換部(43)に流入する。このとき、流入部(18)から室外熱交換器(23)に流入したガス冷媒は、第1熱交換部(42)及び第2熱交換部(43)の2つの冷媒流路(2パス)に分配されるため、冷媒流路の断面積が大きくなり、その流速が低下する。第1熱交換部(42)及び第2熱交換部(43)では、ガス冷媒が室外熱交換器(23)の外部の空気へ放熱して凝縮する。第1熱交換部(42)を流出した冷媒は第2補助冷媒管(47)を介して第3熱交換部(44)に流入する。また、第2熱交換部(43)を流出した冷媒は、第3熱交換部(44)に流入する。そして、第3熱交換部(44)に流入した冷媒は、室外熱交換器(23)の外部の空気へ放熱して凝縮する。第3熱交換部(44)の冷媒は、流出部(19)から流出して第2四路切換弁(22)、エジェクタ(30)、補助膨張弁(26)及び第1四路切換弁(21)を経て流入部(18)を介して室内熱交換器(24)に流入する。尚、このとき室内熱交換器(24)に流入する低圧冷媒は液状態となっている。室内熱交換器(24)では、図2(A)に示すように、流入部(18)から流入した液冷媒が、全て第1熱交換部(42)に流入する。第1熱交換部(42)では、液冷媒が室内熱交換器(24)の外部の空気から吸熱して蒸発する。第1熱交換部(42)を流出した冷媒は、その一部が第2熱交換部(43)に流入する一方、残りが第2補助冷媒管(47)を通過して第3熱交換部(44)に流入する。このとき、第1熱交換部(42)から流出した冷媒は、第2熱交換部(43)及び第3熱交換部(44)の2つの冷媒流路(2パス)に分配されるため、冷媒流路の断面積が大きくなり、その流速が低下する。第2熱交換部(43)及び第3熱交換部(44)では、冷媒が室内熱交換器(24)の外部の空気から吸熱して蒸発する。第2熱交換部(43)を流出した冷媒は、第3補助冷媒管(48)を通過して流出部(19)から流出する。また、第3熱交換部(44)の冷媒は、流出部(19)から流出する。     Specifically, as shown in FIG. 2 (B), the high-pressure refrigerant discharged from the compressor (20) passes through the first four-way switching valve (21) and passes through the inflow portion (18). It flows into the heat exchanger (23). At this time, the high-pressure refrigerant flowing into the outdoor heat exchanger (23) is in a gas state. In the outdoor heat exchanger (23), a part of the gas refrigerant flowing from the inflow part (18) flows into the first heat exchange part (42), while the rest passes through the first auxiliary refrigerant pipe (46). Flow into the second heat exchange section (43). At this time, the gas refrigerant that has flowed into the outdoor heat exchanger (23) from the inflow part (18) flows into the two refrigerant channels (two paths) of the first heat exchange part (42) and the second heat exchange part (43). Therefore, the cross-sectional area of the refrigerant flow path is increased, and the flow velocity is reduced. In the first heat exchange unit (42) and the second heat exchange unit (43), the gas refrigerant dissipates heat to the air outside the outdoor heat exchanger (23) and condenses. The refrigerant that has flowed out of the first heat exchange section (42) flows into the third heat exchange section (44) through the second auxiliary refrigerant pipe (47). Moreover, the refrigerant | coolant which flowed out the 2nd heat exchange part (43) flows in into a 3rd heat exchange part (44). And the refrigerant | coolant which flowed into the 3rd heat exchange part (44) is thermally radiated and condensed to the air of the exterior of an outdoor heat exchanger (23). The refrigerant in the third heat exchanging section (44) flows out from the outflow section (19) and flows into the second four-way switching valve (22), the ejector (30), the auxiliary expansion valve (26), and the first four-way switching valve ( It flows into the indoor heat exchanger (24) via the inflow part (18) via 21). At this time, the low-pressure refrigerant flowing into the indoor heat exchanger (24) is in a liquid state. In the indoor heat exchanger (24), as shown in FIG. 2 (A), all the liquid refrigerant that has flowed in from the inflow portion (18) flows into the first heat exchange portion (42). In the first heat exchange section (42), the liquid refrigerant absorbs heat from the air outside the indoor heat exchanger (24) and evaporates. A part of the refrigerant that has flowed out of the first heat exchange section (42) flows into the second heat exchange section (43), while the rest passes through the second auxiliary refrigerant pipe (47) and passes through the third heat exchange section. Flows into (44). At this time, the refrigerant flowing out from the first heat exchange section (42) is distributed to the two refrigerant flow paths (two paths) of the second heat exchange section (43) and the third heat exchange section (44). The cross-sectional area of the refrigerant flow path is increased, and the flow velocity is reduced. In the second heat exchange section (43) and the third heat exchange section (44), the refrigerant absorbs heat from the air outside the indoor heat exchanger (24) and evaporates. The refrigerant that has flowed out of the second heat exchange section (43) passes through the third auxiliary refrigerant pipe (48) and flows out of the outflow section (19). Moreover, the refrigerant | coolant of a 3rd heat exchange part (44) flows out from an outflow part (19).

〈空気調和装置の暖房運転〉
暖房運転時における空気調和装置(10)の動作について、図1を参照しながら説明する。暖房運転時には、第1四路切換弁(21)と第2四路切換弁(22)の両方が冷媒回路(15)の第2状態(図1に破線で示す状態)に設定される。この状態で圧縮機(20)を運転すると、冷媒回路(15)では、図1に破線の矢印で示すように冷媒が循環し、冷凍サイクルが行われる。その際、冷媒回路(15)では、室内熱交換器(24)が凝縮器となり、室外熱交換器(23)が蒸発器となる。
<Heating operation of air conditioner>
The operation of the air conditioner (10) during the heating operation will be described with reference to FIG. During the heating operation, both the first four-way switching valve (21) and the second four-way switching valve (22) are set to the second state of the refrigerant circuit (15) (the state indicated by the broken line in FIG. 1). When the compressor (20) is operated in this state, in the refrigerant circuit (15), the refrigerant circulates and the refrigeration cycle is performed as shown by the dashed arrows in FIG. At that time, in the refrigerant circuit (15), the indoor heat exchanger (24) serves as a condenser, and the outdoor heat exchanger (23) serves as an evaporator.

圧縮機(20)から吐出された高圧冷媒は、第1四路切換弁(21)を経て室内熱交換器(24)に流入し、室内空気へ放熱して凝縮する。室内熱交換器(24)から流出した高圧冷媒(駆動流体)は、第2四路切換弁(22)を経てエジェクタ(30)の駆動流路(31)に流入する。駆動流路(31)に流入した高圧冷媒は、ノズルにより減圧されると共に加速される。この高圧冷媒の加速により生じる負圧によって、室外熱交換器(23)から流出した低圧冷媒(吸引流体)がエジェクタ(30)内の吸引流路(32)に吸い込まれる。エジェクタ(30)において、加速された高圧冷媒と吸引された低圧冷媒とは、噴出流路(33)の上流側で合流する。合流した冷媒は、ディフューザで減速されると共に昇圧され、その後に噴出流路(33)から噴出する。     The high-pressure refrigerant discharged from the compressor (20) flows into the indoor heat exchanger (24) through the first four-way switching valve (21), dissipates heat to the indoor air, and is condensed. The high-pressure refrigerant (driving fluid) flowing out from the indoor heat exchanger (24) flows into the driving flow path (31) of the ejector (30) through the second four-way switching valve (22). The high-pressure refrigerant that has flowed into the drive channel (31) is depressurized and accelerated by the nozzle. Due to the negative pressure generated by the acceleration of the high-pressure refrigerant, the low-pressure refrigerant (suction fluid) flowing out from the outdoor heat exchanger (23) is sucked into the suction flow path (32) in the ejector (30). In the ejector (30), the accelerated high-pressure refrigerant and the sucked low-pressure refrigerant merge on the upstream side of the ejection flow path (33). The merged refrigerant is decelerated and pressurized by the diffuser, and then ejected from the ejection channel (33).

エジェクタ(30)から噴出した冷媒は、エジェクタ用気液分離器(25)に流入する。エジェクタ用気液分離器(25)内では、流入した気液二相状態の冷媒が、液冷媒とガス冷媒に分離される。エジェクタ用気液分離器(25)内の液冷媒は、補助膨張弁(26)を通過する際に減圧され、その後に第1四路切換弁(21)を経て室外熱交換器(23)に流入する。室外熱交換器(23)では、流入した冷媒が室外空気から吸熱して蒸発する。室外熱交換器(23)から流出した冷媒は、第2四路切換弁(22)を通過後にエジェクタ(30)内の吸引流路(32)に吸い込まれる。一方、エジェクタ用気液分離器(25)のガス冷媒は、圧縮機(20)に吸入される。圧縮機(20)に吸入されたガス冷媒は、所定の圧力まで圧縮されて高圧冷媒となり、その後に圧縮機(20)から吐出される。     The refrigerant ejected from the ejector (30) flows into the ejector gas-liquid separator (25). In the gas-liquid separator for ejector (25), the refrigerant in the two-phase state that has flowed in is separated into liquid refrigerant and gas refrigerant. The liquid refrigerant in the gas-liquid separator for ejector (25) is depressurized when passing through the auxiliary expansion valve (26), and then passes through the first four-way switching valve (21) to the outdoor heat exchanger (23). Inflow. In the outdoor heat exchanger (23), the refrigerant that has flowed in absorbs heat from the outdoor air and evaporates. The refrigerant that has flowed out of the outdoor heat exchanger (23) passes through the second four-way switching valve (22) and is then sucked into the suction flow path (32) in the ejector (30). On the other hand, the gas refrigerant in the ejector gas-liquid separator (25) is sucked into the compressor (20). The gas refrigerant sucked into the compressor (20) is compressed to a predetermined pressure to become a high-pressure refrigerant, and then discharged from the compressor (20).

−熱交換器の動作−
次に、上述した空気調和装置(10)の暖房運転時での室外及び室内熱交換器(23,24)の動作について説明する。
-Heat exchanger operation-
Next, the operation of the outdoor and indoor heat exchangers (23, 24) during the heating operation of the air conditioner (10) will be described.

暖房運転時には、図1及び図2に示すように、室内熱交換器(24)は凝縮器として動作する一方、室外熱交換器(23)は蒸発器として動作する。コントローラ(53)は、室内熱交換器(24)の第1三方弁(51)を第2状態に設定する一方、第2三方弁(52)を第3状態に設定すると共に、室外熱交換器(23)の第1三方弁(51)を第1状態に設定する一方、第2三方弁(52)を第4状態に設定する。     During heating operation, as shown in FIGS. 1 and 2, the indoor heat exchanger (24) operates as a condenser, while the outdoor heat exchanger (23) operates as an evaporator. The controller (53) sets the first three-way valve (51) of the indoor heat exchanger (24) to the second state, while setting the second three-way valve (52) to the third state, and the outdoor heat exchanger The first three-way valve (51) of (23) is set to the first state, while the second three-way valve (52) is set to the fourth state.

具体的には、図2(B)に示すように、圧縮機(20)から吐出された高圧冷媒は、第1四路切換弁(21)を通過して流入部(18)を介して室内熱交換器(24)に流入する。尚、このとき室内熱交換器(24)に流入する高圧冷媒はガス状態となっている。室内熱交換器(24)では、流入部(18)から流入したガス冷媒の一部が、第1熱交換部(42)に流入する一方、残りが第1補助冷媒管(46)を通過して第2熱交換部(43)に流入する。このとき、流入部(18)から室内熱交換器(24)に流入したガス冷媒は、第1熱交換部(42)及び第2熱交換部(43)の2つの冷媒流路(2パス)に分配されるため、冷媒流路の断面積が大きくなり、その流速が低下する。第1熱交換部(42)及び第2熱交換部(43)では、ガス冷媒が室内熱交換器(24)の外部の空気へ放熱して凝縮する。第1熱交換部(42)を流出した冷媒は第2補助冷媒管(47)を介して第3熱交換部(44)に流入する。また、第2熱交換部(43)を流出した冷媒は、第3熱交換部(44)に流入する。そして、第3熱交換部(44)に流入した冷媒は、室内熱交換器(24)の外部の空気へ放熱して凝縮する。第3熱交換部(44)の冷媒は、流出部(19)から流出して第2四路切換弁(22)、エジェクタ(30)、補助膨張弁(26)及び第1四路切換弁(21)を経て流入部(18)を介して室外熱交換器(23)に流入する。尚、このとき室外熱交換器(23)に流入する低圧冷媒は液状態となっている。室外熱交換器(23)では、図2(A)に示すように、流入部(18)から流入した液冷媒が、全て第1熱交換部(42)に流入する。第1熱交換部(42)では、液冷媒が室外熱交換器(23)の外部の空気から吸熱して蒸発する。第1熱交換部(42)を流出した冷媒は、その一部が第2熱交換部(43)に流入する一方、残りが第2補助冷媒管(47)を通過して第3熱交換部(44)に流入する。このとき、第1熱交換部(42)から流出した冷媒は、第2熱交換部(43)及び第3熱交換部(44)の2つの冷媒流路(2パス)に分配されるため、冷媒流路の断面積が大きくなり、その流速が低下する。第2熱交換部(43)及び第3熱交換部(44)では、冷媒が室外熱交換器(23)の外部の空気から吸熱して蒸発する。第2熱交換部(43)を流出した冷媒は、第3補助冷媒管(48)を通過して流出部(19)から流出する。また、第3熱交換部(44)の冷媒は、流出部(19)から流出する。     Specifically, as shown in FIG. 2B, the high-pressure refrigerant discharged from the compressor (20) passes through the first four-way switching valve (21) and passes through the inflow portion (18) to the room. It flows into the heat exchanger (24). At this time, the high-pressure refrigerant flowing into the indoor heat exchanger (24) is in a gas state. In the indoor heat exchanger (24), a part of the gas refrigerant flowing from the inflow part (18) flows into the first heat exchange part (42), while the rest passes through the first auxiliary refrigerant pipe (46). Flow into the second heat exchange section (43). At this time, the gas refrigerant that has flowed into the indoor heat exchanger (24) from the inflow part (18) flows into the two refrigerant channels (two paths) of the first heat exchange part (42) and the second heat exchange part (43). Therefore, the cross-sectional area of the refrigerant flow path is increased, and the flow velocity is reduced. In the first heat exchange section (42) and the second heat exchange section (43), the gas refrigerant dissipates heat to the air outside the indoor heat exchanger (24) and condenses. The refrigerant that has flowed out of the first heat exchange section (42) flows into the third heat exchange section (44) through the second auxiliary refrigerant pipe (47). Moreover, the refrigerant | coolant which flowed out the 2nd heat exchange part (43) flows in into a 3rd heat exchange part (44). And the refrigerant | coolant which flowed into the 3rd heat exchange part (44) thermally radiates and condenses to the air of the exterior of an indoor heat exchanger (24). The refrigerant in the third heat exchanging section (44) flows out from the outflow section (19), and the second four-way switching valve (22), ejector (30), auxiliary expansion valve (26), and first four-way switching valve ( It flows into the outdoor heat exchanger (23) through the inflow part (18) via 21). At this time, the low-pressure refrigerant flowing into the outdoor heat exchanger (23) is in a liquid state. In the outdoor heat exchanger (23), as shown in FIG. 2 (A), all the liquid refrigerant flowing in from the inflow portion (18) flows into the first heat exchange portion (42). In the first heat exchange section (42), the liquid refrigerant absorbs heat from the air outside the outdoor heat exchanger (23) and evaporates. A part of the refrigerant that has flowed out of the first heat exchange section (42) flows into the second heat exchange section (43), while the rest passes through the second auxiliary refrigerant pipe (47) and passes through the third heat exchange section. Flows into (44). At this time, the refrigerant flowing out from the first heat exchange section (42) is distributed to the two refrigerant flow paths (two paths) of the second heat exchange section (43) and the third heat exchange section (44). The cross-sectional area of the refrigerant flow path is increased, and the flow velocity is reduced. In the second heat exchange section (43) and the third heat exchange section (44), the refrigerant absorbs heat from the air outside the outdoor heat exchanger (23) and evaporates. The refrigerant that has flowed out of the second heat exchange section (43) passes through the third auxiliary refrigerant pipe (48) and flows out of the outflow section (19). Moreover, the refrigerant | coolant of a 3rd heat exchange part (44) flows out from an outflow part (19).

−実施形態の効果−
本実施形態では、室外及び室内熱交換器(23,24)が第1〜3補助冷媒管(46,47,48)と第1及び第2三方弁(51,52)とを設けた。また、空気調和装置(10)の蒸発動作及び凝縮動作に応じて室外及び室内熱交換器(23,24)の第1三方弁(51)及び第2三方弁(52)を切り換えるコントローラ(53)を設けた。これらのため、蒸発動作時において流出部(19)から流出する前のガス冷媒を、第2熱交換部(43)及び第3熱交換部(44)の2つの冷媒流路に通過させる一方、凝縮動作時において流入部(18)から流入した冷媒を、第1熱交換部(42)及び第2熱交換部(43)の2つの冷媒流路に通過させることができる。つまり、蒸発動作時では、室外及び室内熱交換器(23,24)の下流側に存在するガス冷媒を2つの冷媒流路に通過させることができると共に、凝縮動作時では、室外及び室内熱交換器(23,24)の上流側に存在するガス冷媒を2つの冷媒流路に通過させることができる。これにより、ガス冷媒が通過する冷媒流路の断面積が大きくなるため、第1〜3熱交換部(42,43,44)においてガス冷媒の流速を低下させることができる。この結果、室外及び室内熱交換器(23,24)を流れる冷媒の圧力損失を減少させることができる。
-Effect of the embodiment-
In this embodiment, the outdoor and indoor heat exchangers (23, 24) are provided with first to third auxiliary refrigerant pipes (46, 47, 48) and first and second three-way valves (51, 52). Further, a controller (53) for switching the first three-way valve (51) and the second three-way valve (52) of the outdoor and indoor heat exchangers (23, 24) according to the evaporation operation and the condensation operation of the air conditioner (10). Was provided. For these reasons, the gas refrigerant before flowing out from the outflow part (19) during the evaporation operation is passed through the two refrigerant flow paths of the second heat exchange part (43) and the third heat exchange part (44), During the condensing operation, the refrigerant flowing from the inflow portion (18) can be passed through the two refrigerant flow paths of the first heat exchange portion (42) and the second heat exchange portion (43). That is, during the evaporation operation, the gas refrigerant existing on the downstream side of the outdoor and indoor heat exchangers (23, 24) can be passed through the two refrigerant flow paths, and during the condensation operation, the outdoor and indoor heat exchange is performed. The gas refrigerant existing on the upstream side of the vessel (23, 24) can be passed through the two refrigerant flow paths. Thereby, since the cross-sectional area of the refrigerant flow path through which the gas refrigerant passes increases, the flow rate of the gas refrigerant can be reduced in the first to third heat exchange sections (42, 43, 44). As a result, the pressure loss of the refrigerant flowing through the outdoor and indoor heat exchangers (23, 24) can be reduced.

〈その他の実施形態〉
本発明は、上記実施形態について、以下のような構成としてもよい。
<Other embodiments>
The present invention may be configured as follows with respect to the above embodiment.

上記実施形態では、室内熱交換器(24)及び室内熱交換器(24)に対して熱交換器本体(40)を一つずつ設けるようにしたが、本発明は、例えば室内熱交換器(24)に対して2以上の複数個の熱交換器本体(40)を直列に接続するようにしてもよい。     In the above embodiment, the heat exchanger main body (40) is provided one by one for the indoor heat exchanger (24) and the indoor heat exchanger (24). Two or more heat exchanger bodies (40) may be connected in series to 24).

尚、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。     In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、冷媒を空気や水などの流体と熱交換させる熱交換器について有用である。     As described above, the present invention is useful for a heat exchanger that exchanges heat between a refrigerant and a fluid such as air or water.

実施形態に係る冷媒回路を示す配管系統図である。It is a piping system diagram showing a refrigerant circuit concerning an embodiment. (A)は実施形態に係る蒸発動作時の熱交換器を示す配管図であり、(B)実施形態に係る凝縮動作時の熱交換器を示す配管図である。(A) is a piping diagram which shows the heat exchanger at the time of evaporation operation which concerns on embodiment, (B) It is a piping diagram which shows the heat exchanger at the time of condensation operation which concerns on embodiment.

18 流入部
19 流出部
42 第1熱交換部
43 第2熱交換部
44 第3熱交換部
46 第1補助冷媒管
47 第2補助冷媒管
48 第3補助冷媒管
51 第1三方弁
52 第2三方弁
53 コントローラ
18 inflow part 19 outflow part 42 first heat exchange part 43 second heat exchange part 44 third heat exchange part 46 first auxiliary refrigerant pipe 47 second auxiliary refrigerant pipe 48 third auxiliary refrigerant pipe 51 first three-way valve 52 second 3-way valve 53 controller

Claims (3)

冷媒の流入通路(18)に入口側が接続される一方、冷媒の流出通路(19)に出口側が接続されて冷媒が通過する熱交換器であって、
入口端が流入通路(18)に接続された第1熱交換部(42)と、
第2熱交換部(43)と、
出口端が流出通路(19)に接続された第3熱交換部(44)と、
入口端が流入通路(18)に接続された第1補助流路(46)と、
入口端が第1熱交換部(42)の出口側に接続され且つ出口端が第3熱交換部(44)の入口側に接続された第2補助流路(47)と、
出口端が流出通路(19)に接続された第3補助流路(48)と、
上記第1熱交換部(42)の出口端と第2熱交換部(43)の入口端とを接続し且つ第1補助流路(46)の出口端を閉鎖した第1状態と、上記第1熱交換部(42)の出口端を閉鎖し且つ第1補助流路(46)の出口端と第2熱交換部(43)の入口端とを接続した第2状態とに切り換わる第1の切換弁(51)と、
上記第2熱交換部(43)の出口端と第3熱交換部(44)の入口端とを接続し且つ第3補助流路(48)の入口端を閉鎖した第3状態と、上記第3熱交換部(44)の入口端を閉鎖し且つ第3補助流路(48)の入口端と第2熱交換部(43)の出口端とを接続した第4状態とに切り換わる第2の切換弁(52)とを備えている
ことを特徴とする熱交換器。
A heat exchanger in which the inlet side is connected to the refrigerant inflow passage (18), while the outlet side is connected to the refrigerant outflow passage (19) and the refrigerant passes through the heat exchanger,
A first heat exchange section (42) having an inlet end connected to the inflow passage (18);
A second heat exchange section (43);
A third heat exchange section (44) whose outlet end is connected to the outflow passage (19);
A first auxiliary flow path (46) having an inlet end connected to the inflow passage (18);
A second auxiliary flow path (47) having an inlet end connected to the outlet side of the first heat exchange section (42) and an outlet end connected to the inlet side of the third heat exchange section (44);
A third auxiliary channel (48) whose outlet end is connected to the outflow passage (19);
A first state in which the outlet end of the first heat exchange section (42) and the inlet end of the second heat exchange section (43) are connected and the outlet end of the first auxiliary flow path (46) is closed; 1st which switches to the 2nd state which closed the exit end of 1 heat exchange part (42), and connected the exit end of the 1st auxiliary channel (46), and the entrance end of the 2nd heat exchange part (43). Switching valve (51) of
A third state in which the outlet end of the second heat exchange section (43) and the inlet end of the third heat exchange section (44) are connected and the inlet end of the third auxiliary flow path (48) is closed; A second state in which the inlet end of the third heat exchanging section (44) is closed and the fourth end state is connected to the inlet end of the third auxiliary flow path (48) and the outlet end of the second heat exchanging section (43). And a switching valve (52).
請求項1において、
冷媒が吸熱する吸熱動作に、上記第1の切換弁(51)を第1状態に切り換えると共に、第2の切換弁(52)を第4状態に切り換える一方、冷媒が放熱する放熱動作に、上記第1の切換弁(51)を第2状態に切り換えると共に、第2の切換弁(52)を第3状態に切り換える切換制御器(53)とを備えている
ことを特徴とする熱交換器。
In claim 1,
For the heat absorption operation in which the refrigerant absorbs heat, the first switching valve (51) is switched to the first state and the second switching valve (52) is switched to the fourth state, while the heat dissipation operation in which the refrigerant dissipates heat is described above. A heat exchanger comprising: a switching controller (53) for switching the first switching valve (51) to the second state and switching the second switching valve (52) to the third state.
請求項1又は2において、
上記第1及び第2の切換弁(51,52)は、三方弁に構成されている
ことを特徴とする熱交換器。
In claim 1 or 2,
The heat exchanger according to claim 1, wherein the first and second switching valves (51, 52) are three-way valves.
JP2009074050A 2009-03-25 2009-03-25 Heat exchanger Active JP5229043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009074050A JP5229043B2 (en) 2009-03-25 2009-03-25 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009074050A JP5229043B2 (en) 2009-03-25 2009-03-25 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2010223547A true JP2010223547A (en) 2010-10-07
JP5229043B2 JP5229043B2 (en) 2013-07-03

Family

ID=43040917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009074050A Active JP5229043B2 (en) 2009-03-25 2009-03-25 Heat exchanger

Country Status (1)

Country Link
JP (1) JP5229043B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018078809A1 (en) * 2016-10-28 2018-05-03 三菱電機株式会社 Refrigeration cycle device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136283U (en) * 1980-03-14 1981-10-15
JPH11316067A (en) * 1997-12-16 1999-11-16 Matsushita Electric Ind Co Ltd Air conditioner using combustible refrigerant
JP2000055494A (en) * 1998-08-05 2000-02-25 Matsushita Electric Ind Co Ltd Air conditioner
JP2000205684A (en) * 1999-01-20 2000-07-28 Fujitsu General Ltd Air conditioning equipment
JP2006317063A (en) * 2005-05-12 2006-11-24 Sharp Corp Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136283U (en) * 1980-03-14 1981-10-15
JPH11316067A (en) * 1997-12-16 1999-11-16 Matsushita Electric Ind Co Ltd Air conditioner using combustible refrigerant
JP2000055494A (en) * 1998-08-05 2000-02-25 Matsushita Electric Ind Co Ltd Air conditioner
JP2000205684A (en) * 1999-01-20 2000-07-28 Fujitsu General Ltd Air conditioning equipment
JP2006317063A (en) * 2005-05-12 2006-11-24 Sharp Corp Air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018078809A1 (en) * 2016-10-28 2018-05-03 三菱電機株式会社 Refrigeration cycle device
CN109844422A (en) * 2016-10-28 2019-06-04 三菱电机株式会社 Refrigerating circulatory device
JPWO2018078809A1 (en) * 2016-10-28 2019-07-11 三菱電機株式会社 Refrigeration cycle device
CN109844422B (en) * 2016-10-28 2021-03-12 三菱电机株式会社 Refrigeration cycle device
US11175080B2 (en) 2016-10-28 2021-11-16 Mitsubishi Electric Corporation Refrigeration cycle apparatus having heat exchanger switchable between parallel and series connection

Also Published As

Publication number Publication date
JP5229043B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP6685409B2 (en) Air conditioner
JP6034418B2 (en) Air conditioner
JP6644154B2 (en) Air conditioner
JP5137494B2 (en) Equipment and air conditioner using refrigeration cycle
JP5625691B2 (en) Refrigeration equipment
JP4118254B2 (en) Refrigeration equipment
JP2006071174A (en) Refrigerating device
CN109564070A (en) Heat exchanger and the refrigeration system for using it
JP5293054B2 (en) Refrigeration equipment
JP5277854B2 (en) Air conditioner
JP2011133133A (en) Refrigerating device
KR101996057B1 (en) Air conditioner
JP5262916B2 (en) Heat exchanger
JP5646257B2 (en) Refrigeration cycle equipment
KR20060065871A (en) Air conditioner
JP5229043B2 (en) Heat exchanger
JP2002286326A (en) Hot water supply air conditioning apparatus
JP6750240B2 (en) Air conditioner
JP2010084990A (en) Heat exchanger
JP6102811B2 (en) Refrigeration cycle equipment
JP2010127504A (en) Air conditioning device
JP5310243B2 (en) Shunt
KR100619775B1 (en) Multi-air conditioner capable of cooling and heating simultaneously
JP2020003158A (en) Outdoor air conditioner
JP7378685B1 (en) Refrigeration cycle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5229043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151