JP6750240B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP6750240B2
JP6750240B2 JP2016023706A JP2016023706A JP6750240B2 JP 6750240 B2 JP6750240 B2 JP 6750240B2 JP 2016023706 A JP2016023706 A JP 2016023706A JP 2016023706 A JP2016023706 A JP 2016023706A JP 6750240 B2 JP6750240 B2 JP 6750240B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
vortex tube
temperature
discharge port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016023706A
Other languages
Japanese (ja)
Other versions
JP2017142027A (en
Inventor
亮 奥山
亮 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2016023706A priority Critical patent/JP6750240B2/en
Publication of JP2017142027A publication Critical patent/JP2017142027A/en
Application granted granted Critical
Publication of JP6750240B2 publication Critical patent/JP6750240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、ボルテックスチューブを用いた冷凍回路を有する空気調和装置に関する。 The present invention relates to an air conditioner having a refrigeration circuit using a vortex tube.

空気調和装置において、冷凍回路にはボルテックスチューブが用いられているものがある。例えば、特許文献1には、圧縮機、凝縮器、膨張機構、蒸発器を順次接続して冷媒を循環させる冷凍回路を構成し、圧縮機と凝縮器の間にボルテックスチューブを設けた空気調和装置が開示されている。ボルテックスチューブは冷媒供給口と高温冷媒吐出口と低温冷媒吐出口を有している。このボルテックスチューブの冷媒供給口は圧縮機の冷媒吐出側冷媒配管に接続され、またボルテックスチューブの高温冷媒吐出口は凝縮器に接続され、更にボルテックスチューブの低温冷媒吐出口は圧縮機の吸入口に接続されている。また、ボルテックスチューブの冷媒供給口と圧縮機の吐出口との間に、暖房起動時にのみ開弁制御される電磁開閉弁が設けられている。そして、暖房起動時の高温高圧状態に達していない圧縮機から吐出された高温高圧のガス冷媒は、先ずボルテックスチューブに供給されて高温ガス冷媒と低温ガス冷媒に分離される。そして、分離された冷媒のうち高温ガス冷媒のみが凝縮器に流入されるため、この暖房起動時に室内機側のファンを回しても、温風を送風できる。つまり、特許文献1に記載の冷凍回路では、ボルテックスチューブは暖房起動時に圧縮機から吐出された冷媒から高温ガス冷媒を抽出する目的で用いられている。 In some air conditioners, a vortex tube is used in the refrigeration circuit. For example, in Patent Document 1, an air conditioner in which a compressor, a condenser, an expansion mechanism, and an evaporator are sequentially connected to constitute a refrigeration circuit for circulating a refrigerant, and a vortex tube is provided between the compressor and the condenser. Is disclosed. The vortex tube has a refrigerant supply port, a high temperature refrigerant discharge port, and a low temperature refrigerant discharge port. The refrigerant supply port of this vortex tube is connected to the refrigerant discharge side refrigerant pipe of the compressor, the high temperature refrigerant discharge port of the vortex tube is connected to the condenser, and the low temperature refrigerant discharge port of the vortex tube is connected to the suction port of the compressor. It is connected. Further, an electromagnetic opening/closing valve whose opening is controlled only when heating is started is provided between the refrigerant supply port of the vortex tube and the discharge port of the compressor. The high-temperature and high-pressure gas refrigerant discharged from the compressor that has not reached the high-temperature and high-pressure state at the time of heating startup is first supplied to the vortex tube and separated into the high-temperature gas refrigerant and the low-temperature gas refrigerant. Since only the high temperature gas refrigerant of the separated refrigerant flows into the condenser, warm air can be blown even if the fan on the indoor unit side is rotated at the time of starting the heating. That is, in the refrigeration circuit described in Patent Document 1, the vortex tube is used for the purpose of extracting the high temperature gas refrigerant from the refrigerant discharged from the compressor at the time of starting heating.

特開平8−313096号公報JP-A-8-313096

しかしながら、特許文献1では、ボルテックスチューブの低温冷媒吐出口から吐出された低温ガス冷媒が圧縮機にそのまま循環するので、この低温ガス冷媒が冷凍回路で有効に活用されていなかった。そのため、冷凍回路を能力向上できる余地があった。 However, in Patent Document 1, since the low temperature gas refrigerant discharged from the low temperature refrigerant discharge port of the vortex tube circulates as it is to the compressor, this low temperature gas refrigerant has not been effectively utilized in the refrigeration circuit. Therefore, there was room for improving the capacity of the refrigeration circuit.

以上のような事情に鑑み、本発明の目的は、ボルテックスチューブを用いた冷凍回路においてボルテックスチューブと圧縮機の間を循環する冷媒を活用して冷凍回路の性能を向上させることができる空気調和装置を提供することにある。 In view of the above circumstances, an object of the present invention is to provide an air conditioner capable of improving the performance of a refrigeration circuit by utilizing a refrigerant circulating between the vortex tube and the compressor in the refrigeration circuit using the vortex tube. Is to provide.

上記目的を達成するため、本発明の空気調和装置は、冷房運転時に、冷媒が圧縮機、ボルテックスチューブの冷媒供給口から高温冷媒吐出口、第1熱交換器、第1過冷却用熱交換器、膨張弁、第2熱交換器を順次循環し、かつ、冷媒が前記圧縮機、ボルテックスチューブの冷媒供給口から低温冷媒吐出口、前記第1過冷却用熱交換器を順次循環する冷凍回路を備え、前記第1過冷却用熱交換器で、前記第1熱交換器から流出した高圧冷媒と、前記ボルテックスチューブの低温冷媒吐出口より流出した低温ガス冷媒を熱交換させる。 To achieve the above object, in the air conditioner of the present invention, during cooling operation, the refrigerant is a compressor, a refrigerant supply port of a vortex tube to a high temperature refrigerant discharge port, a first heat exchanger, and a first supercooling heat exchanger. A refrigerating circuit in which the expansion valve and the second heat exchanger are sequentially circulated, and the refrigerant is sequentially circulated from the refrigerant supply port of the compressor and the vortex tube to the low temperature refrigerant discharge port and the first subcooling heat exchanger. The first supercooling heat exchanger heat-exchanges the high-pressure refrigerant flowing out from the first heat exchanger with the low-temperature gas refrigerant flowing out from the low-temperature refrigerant discharge port of the vortex tube.

本発明の空気調和装置は、前記暖房運転時に、冷媒が前記圧縮機、前記ボルテックスチューブの冷媒供給口から高温冷媒吐出口、前記第2熱交換器、第2過冷却用熱交換器、前記膨張弁、前記第1熱交換器を順次循環し、前記冷媒が前記圧縮機、前記ボルテックスチューブの冷媒供給口から低温冷媒吐出口、前記第2過冷却用熱交換器を順次循環する冷凍回路を備え、前記第2過冷却用熱交換器で、前記第2熱交換器から流出した高圧冷媒と、前記ボルテックスチューブの低温冷媒吐出口より流出した低温ガス冷媒を熱交換させる。 In the air conditioner of the present invention, during the heating operation, the refrigerant flows from the compressor, the refrigerant supply port of the vortex tube to the high-temperature refrigerant discharge port, the second heat exchanger, the second supercooling heat exchanger, and the expansion. And a refrigeration circuit in which the refrigerant sequentially circulates through the valve, the first heat exchanger, and the refrigerant sequentially circulates through the compressor, the refrigerant supply port of the vortex tube, the low-temperature refrigerant discharge port, and the second supercooling heat exchanger. In the second subcooling heat exchanger, the high-pressure refrigerant flowing out from the second heat exchanger and the low-temperature gas refrigerant flowing out from the low-temperature refrigerant discharge port of the vortex tube are heat-exchanged.

本発明の空気調和装置は、前記空気調和装置は、更に前記ボルテックスチューブのノズルの出口の圧力を計測する第1圧力センサーと、前記ボルテックスチューブの高温冷媒吐出口側の圧力を計測する第2圧力センサーと、前記ボルテックスチューブの低温冷媒吐出口側の圧力を計測する第3圧力センサーと、前記ボルテックスチューブの高温冷媒吐出口側の温度を計測する第1温度センサーと、前記ボルテックスチューブの低温冷媒吐出口側の温度を計測する第2温度センサーと、前記第1ないし第3圧力センサー及び前記第1及び第2温度センサーによる計測結果に基づき、前記ボルテックスチューブから吐出される冷媒の温度、圧力及び流量比が所定値となるように前記ノズルの出口の圧力及び前記流量調整弁の開度を制御する制御部とを具備する。 In the air conditioner of the present invention, the air conditioner further includes a first pressure sensor that measures the pressure at the outlet of the nozzle of the vortex tube, and a second pressure that measures the pressure on the high temperature refrigerant outlet side of the vortex tube. A sensor, a third pressure sensor for measuring the pressure on the low temperature refrigerant outlet side of the vortex tube, a first temperature sensor for measuring the temperature on the high temperature refrigerant outlet side of the vortex tube, and a low temperature refrigerant outlet of the vortex tube. The temperature, pressure and flow rate of the refrigerant discharged from the vortex tube based on the second temperature sensor that measures the temperature on the outlet side, the measurement results of the first to third pressure sensors, and the first and second temperature sensors. The control unit controls the pressure at the outlet of the nozzle and the opening degree of the flow rate adjusting valve so that the ratio becomes a predetermined value.

本発明により、冷凍回路の性能を向上させることができる。 According to the present invention, the performance of the refrigeration circuit can be improved.

一実施形態の空気調和装置の冷房運転時の冷凍回路。The refrigeration circuit at the time of cooling operation of the air conditioner of one embodiment. 一実施形態の空気調和装置の暖房運転時の冷凍回路。The refrigeration circuit at the time of heating operation of the air conditioner of one embodiment. 一実施形態の空気調和装置の制御部のブロック図。The block diagram of the control part of the air conditioning apparatus of one embodiment. 一実施形態の空気調和装置の制御部の制御フロー。The control flow of the control part of the air conditioning apparatus of one embodiment.

以下、図面に基づき本発明の実施形態を説明する。 Embodiments of the present invention will be described below with reference to the drawings.

図1及び図2に示す空気調和装置100の冷凍回路1は、圧縮機2、油分離器3、ボルテックスチューブ4、四方弁5、第1熱交換器6、第1過冷却用熱交換器7、膨張弁8、第2過冷却用熱交換器9、第2熱交換器10、アキュムレータ11、第1逆止弁12、第2逆止弁13、三方弁14及びこれらを接続する配管Pから構成される。 The refrigeration circuit 1 of the air conditioner 100 shown in FIGS. 1 and 2 includes a compressor 2, an oil separator 3, a vortex tube 4, a four-way valve 5, a first heat exchanger 6, and a first supercooling heat exchanger 7. From the expansion valve 8, the second subcooling heat exchanger 9, the second heat exchanger 10, the accumulator 11, the first check valve 12, the second check valve 13, the three-way valve 14 and the pipe P connecting them. Composed.

この冷凍回路1は、冷房運転時では、図1に示すように、圧縮機2、油分離器3、ボルテックスチューブ4、四方弁5、第1熱交換器6、第1過冷却用熱交換器7、膨張弁8、第2過冷却用熱交換器9、第2熱交換器10、四方弁5、アキュムレータ11、圧縮機2と順次接続される主冷凍回路(冷房運転時主冷凍回路)と、圧縮機2、油分離器3、ボルテックスチューブ4、三方弁14、第1過冷却用熱交換器7、第1逆止弁12、アキュムレータ11、圧縮機2と順次接続される従冷凍回路(冷房運転時従冷凍回路)を形成する。 As shown in FIG. 1, the refrigeration circuit 1 includes a compressor 2, an oil separator 3, a vortex tube 4, a four-way valve 5, a first heat exchanger 6, and a first subcooling heat exchanger during a cooling operation. 7, an expansion valve 8, a second subcooling heat exchanger 9, a second heat exchanger 10, a four-way valve 5, an accumulator 11, and a main refrigeration circuit (main refrigeration circuit during cooling operation) sequentially connected to the compressor 2. , The compressor 2, the oil separator 3, the vortex tube 4, the three-way valve 14, the first subcooling heat exchanger 7, the first check valve 12, the accumulator 11, and the secondary refrigeration circuit sequentially connected to the compressor 2 ( A sub-refrigerating circuit is formed during cooling operation.

一方、暖房運転時では、冷凍回路1は、図2に示すように、圧縮機2、油分離器3、ボルテックスチューブ4、四方弁5、第2熱交換器10、第2過冷却用熱交換器9、膨張弁8、第1過冷却用熱交換器7、第1熱交換器6、四方弁5、アキュムレータ11、圧縮機2と順次接続される主冷凍回路(暖房運転時主冷凍回路)と、圧縮機2、油分離器3、ボルテックスチューブ4、三方弁14、第2過冷却用熱交換器9、第2逆止弁13、アキュムレータ11、圧縮機2と順次接続される従冷凍回路(暖房運転時従冷凍回路)を形成する。 On the other hand, during the heating operation, the refrigeration circuit 1 has a compressor 2, an oil separator 3, a vortex tube 4, a four-way valve 5, a second heat exchanger 10, and a second subcooling heat exchange, as shown in FIG. Main refrigerating circuit (main refrigerating circuit during heating operation) sequentially connected to the device 9, the expansion valve 8, the first subcooling heat exchanger 7, the first heat exchanger 6, the four-way valve 5, the accumulator 11, and the compressor 2. And a compressor 2, an oil separator 3, a vortex tube 4, a three-way valve 14, a second subcooling heat exchanger 9, a second check valve 13, an accumulator 11, and a secondary refrigeration circuit sequentially connected to the compressor 2. (Secondary refrigeration circuit during heating operation) is formed.

ボルテックスチューブ4は、冷媒供給口4aと高温冷媒吐出口4bと低温冷媒吐出口4cを備えている。ボルテックスチューブ4の冷媒供給口4aは油分離器3を介して圧縮機2の吐出口2aと接続されている。ボルテックスチューブ4の高温冷媒吐出口4bは四方弁5と接続される。ボルテックスチューブ4の低温冷媒吐出口4cは三方弁14の入口に接続される。このボルテックスチューブ4は、圧縮機2の吐出口2aから吐出された高温高圧のガス冷媒を冷媒供給口4aから供給され、Ranque-Hilsch効果によりエネルギー分離して高温ガス冷媒と低温ガス冷媒とに分離する。その際、ボルテックスチューブ4の冷媒供給口4a側にあるノズル4dを冷媒が通過するときに等エントロピー膨張(断熱膨張)に近い減圧膨張を行いながらそのノズル4dの冷媒吐出口4eに到達してエネルギー分離が起こる。ボルテックスチューブ4は、冷媒供給口4aと高温冷媒吐出口4bとの間で高温冷媒吐出経路を構成し、冷媒供給口4aと低温冷媒吐出口4cとの間で低温冷媒吐出経路を構成する。また、ボルテックスチューブ4は、その冷媒供給口4a側にあるボルテックスチューブのノズル4dにニードル弁(図示を省略)を有し、ボルテックスチューブ4の高温冷媒吐出口4b側に流量調整弁(図示を省略)を有する。 The vortex tube 4 includes a coolant supply port 4a, a high temperature coolant discharge port 4b, and a low temperature coolant discharge port 4c. The refrigerant supply port 4 a of the vortex tube 4 is connected to the discharge port 2 a of the compressor 2 via the oil separator 3. The high temperature refrigerant discharge port 4b of the vortex tube 4 is connected to the four-way valve 5. The low temperature refrigerant discharge port 4c of the vortex tube 4 is connected to the inlet of the three-way valve 14. The vortex tube 4 is supplied with a high-temperature and high-pressure gas refrigerant discharged from the discharge port 2a of the compressor 2 from the refrigerant supply port 4a, and energy is separated by the Ranque-Hilsch effect to separate the high-temperature gas refrigerant and the low-temperature gas refrigerant. To do. At that time, when the refrigerant passes through the nozzle 4d on the refrigerant supply port 4a side of the vortex tube 4, the refrigerant reaches the refrigerant discharge port 4e of the nozzle 4d while performing decompression expansion close to isentropic expansion (adiabatic expansion). Separation occurs. The vortex tube 4 forms a high temperature refrigerant discharge path between the refrigerant supply port 4a and the high temperature refrigerant discharge port 4b, and a low temperature refrigerant discharge path between the refrigerant supply port 4a and the low temperature refrigerant discharge port 4c. The vortex tube 4 has a needle valve (not shown) in the nozzle 4d of the vortex tube on the refrigerant supply port 4a side, and a flow rate adjusting valve (not shown) in the high temperature refrigerant discharge port 4b side of the vortex tube 4. ) Has.

四方弁5は、4つのポートを備え、第1ポート5aは前述のようにボルテックスチューブ4の高温冷媒吐出口4bと接続され、第2ポート5bは第1熱交換器6に接続され、第3ポート5cは第2熱交換器10に接続され、第4ポート5dは前述のようにアキュムレータ11に接続される。 The four-way valve 5 has four ports, the first port 5a is connected to the high temperature refrigerant discharge port 4b of the vortex tube 4 as described above, the second port 5b is connected to the first heat exchanger 6, and the third port The port 5c is connected to the second heat exchanger 10, and the fourth port 5d is connected to the accumulator 11 as described above.

第1過冷却用熱交換器7は、主冷凍回路の一部である主流路7aと、従冷凍回路の一部である従流路7bが形成される。主流路7aの一方の冷媒出入口7cは第1熱交換器6に接続され、他方の冷媒出入口7dは膨張弁8に接続される。従流路7bの一方の冷媒出入口7eは三方弁14に接続され、他方の冷媒出入口7fは第1逆止弁12に接続される。この第1過冷却用熱交換器7は、冷房運転時の過冷却用に用いられるもので、第1熱交換器6から流入した高圧冷媒とボルテックスチューブ4から流入した低温ガス冷媒と熱交換させている。なお、暖房運転時は、後述する三方弁14によりボルテックスチューブ4を流出した低温ガス冷媒が後述する第2過冷却用熱交換器9に流入し、第1過冷却用熱交換器7の従流路7bに流入しないため、第1過冷却用熱交換器7は熱交換器として機能しない。 The first subcooling heat exchanger 7 has a main flow path 7a that is a part of the main refrigeration circuit and a sub flow path 7b that is a part of the sub refrigeration circuit. One refrigerant inlet/outlet 7c of the main flow path 7a is connected to the first heat exchanger 6, and the other refrigerant inlet/outlet 7d is connected to the expansion valve 8. One refrigerant inlet/outlet 7e of the sub flow passage 7b is connected to the three-way valve 14, and the other refrigerant inlet/outlet 7f is connected to the first check valve 12. The first subcooling heat exchanger 7 is used for subcooling during cooling operation, and heat is exchanged between the high-pressure refrigerant flowing from the first heat exchanger 6 and the low-temperature gas refrigerant flowing from the vortex tube 4. ing. During the heating operation, the low-temperature gas refrigerant that has flowed out of the vortex tube 4 by the three-way valve 14 described later flows into the second subcooling heat exchanger 9 described below, and the subflow of the first subcooling heat exchanger 7 is performed. Since it does not flow into the passage 7b, the first subcooling heat exchanger 7 does not function as a heat exchanger.

第2過冷却用熱交換器9は、第1過冷却用熱交換器7と同様に主冷凍回路の一部である主流路9aと、従冷凍回路の一部である従流路9bが形成される。主流路9aの一方の冷媒出入口9cは膨張弁8に接続され、他方の冷媒出入口9dは第2熱交換器10に接続される。従流路9bの一方の冷媒出入口9fは三方弁14に接続され、他方の冷媒出入口9eは第2逆止弁13に接続される。この第2過冷却用熱交換器9は、暖房運転時の過冷却用に用いられるもので、第2熱交換器10から流入した高圧冷媒とボルテックスチューブ4から流入した低温ガス冷媒と熱交換させている。なお、冷房運転時は、後述する三方弁14によりボルテックスチューブ4を流出した低温ガス冷媒が第1過冷却用熱交換器7に流入し、第2過冷却用熱交換器9の従流路9bに流入しないため、第2過冷却用熱交換器9は熱交換器として機能しない。 The second subcooling heat exchanger 9 has a main flow path 9a that is a part of the main refrigeration circuit and a sub flow path 9b that is a part of the sub refrigeration circuit, like the first subcooling heat exchanger 7. To be done. One refrigerant inlet/outlet port 9c of the main flow path 9a is connected to the expansion valve 8, and the other refrigerant inlet/outlet port 9d is connected to the second heat exchanger 10. One refrigerant inlet/outlet 9f of the sub-flow passage 9b is connected to the three-way valve 14, and the other refrigerant inlet/outlet 9e is connected to the second check valve 13. The second supercooling heat exchanger 9 is used for supercooling during heating operation, and heat-exchanges with the high-pressure refrigerant flowing from the second heat exchanger 10 and the low-temperature gas refrigerant flowing from the vortex tube 4. ing. During the cooling operation, the low-temperature gas refrigerant flowing out of the vortex tube 4 by the three-way valve 14 described later flows into the first subcooling heat exchanger 7, and the subflow passage 9b of the second subcooling heat exchanger 9 is flowed. Second subcooling heat exchanger 9 does not function as a heat exchanger.

三方弁14は、3つのポートを備え、第1ポート14aは前述のようにボルテックスチューブ4の低温冷媒吐出口4cに接続され、第2ポート14bは前述のように第1過冷却用熱交換器7の従流路7bに接続され、第3ポート14cは前述のように第2過冷却用熱交換器9の従流路9bに接続される。三方弁14は、冷房運転時は第1過冷却用熱交換器7の従流路7bに接続先を切り替え、暖房運転時には第2過冷却用熱交換器9の従流路9bに接続先を切り替える。 The three-way valve 14 has three ports, the first port 14a is connected to the low temperature refrigerant discharge port 4c of the vortex tube 4 as described above, and the second port 14b is the first subcooling heat exchanger as described above. 7, and the third port 14c is connected to the sub-flow passage 9b of the second supercooling heat exchanger 9 as described above. The three-way valve 14 switches the connection destination to the sub flow passage 7b of the first subcooling heat exchanger 7 during the cooling operation, and connects the connection destination to the sub passage 9b of the second subcooling heat exchanger 9 during the heating operation. Switch.

なお、第1逆止弁12と第2逆止弁13のそれぞれは、四方弁5の第4ポート5dとアキュムレータ11を繋ぐ配管Pに接続される。 Each of the first check valve 12 and the second check valve 13 is connected to a pipe P that connects the fourth port 5d of the four-way valve 5 and the accumulator 11.

油分離器3は、圧縮機2より吐出された高圧ガス冷媒に溶け込んだ冷凍機油を分離して回収し圧縮機2の吸入側に戻している。これにより、圧縮機2の焼き付けを防止するとともに、ボルテックスチューブ4の性能劣化や、各種熱交換器の伝熱性能の劣化も防いでいる。 The oil separator 3 separates and collects the refrigerating machine oil dissolved in the high pressure gas refrigerant discharged from the compressor 2 and returns it to the suction side of the compressor 2. This prevents the compressor 2 from being burned, and also prevents the performance deterioration of the vortex tube 4 and the heat transfer performance of various heat exchangers.

第1熱交換器6は、室外用熱交換器であり、冷房運転時には凝縮器または放熱器として機能し、暖房運転時には蒸発器として機能する。 The first heat exchanger 6 is an outdoor heat exchanger, and functions as a condenser or a radiator during cooling operation, and functions as an evaporator during heating operation.

第2熱交換器10は、室内用熱交換器であり、冷房運転時には蒸発器として機能し、暖房運転時には凝縮器または放熱器として機能する。 The second heat exchanger 10 is an indoor heat exchanger, and functions as an evaporator during cooling operation and as a condenser or radiator during heating operation.

第1逆止弁12は、第1過冷却用熱交換器7の従流路7bと接続されている。第1逆止弁12は、暖房運転時に冷媒が逆流して、第1過冷却用熱交換器7の従流路7b及び三方弁14に流れ込まないようにするためのものである。 The first check valve 12 is connected to the sub passage 7b of the first supercooling heat exchanger 7. The first check valve 12 is for preventing the refrigerant from flowing backward during the heating operation and flowing into the sub flow path 7b of the first subcooling heat exchanger 7 and the three-way valve 14.

第2逆止弁13は、第2過冷却用熱交換器9の従流路9bと接続されている。第2逆止弁13は、冷房運転時に冷媒が逆流して、第2過冷却用熱交換器9の従流路9b及び三方弁14に流れ込まないようにするためのものである。 The second check valve 13 is connected to the sub passage 9b of the second supercooling heat exchanger 9. The second check valve 13 is for preventing the refrigerant from flowing backward during the cooling operation and flowing into the sub flow passage 9b of the second subcooling heat exchanger 9 and the three-way valve 14.

この構成の冷凍回路1では、冷房運転時には、図1に示したように、冷媒は、圧縮機2及び油分離器3を介してボルテックスチューブ4に供給され、高温ガス冷媒と低温ガス冷媒とに分離される。ボルテックスチューブ4で分離された低温ガス冷媒は、三方弁14、第1過冷却用熱交換器7の従流路7b、第1逆止弁12を介して四方弁5の第4ポート5dからの低温冷媒と合流した後、アキュムレータ11を介して圧縮機2に戻る。一方、ボルテックスチューブ4で分離された高温ガス冷媒は、四方弁5の第1ポート5aから第22ポート5b、第1熱交換器6、第1過冷却用熱交換器7の主流路7a、膨張弁8、第2過冷却用熱交換器9の主流路9a、第2熱交換器10、四方弁5の第3ポート5cから第4ポート5dを介して従冷凍回路の低温冷媒と合流した後、アキュムレータ11を介して圧縮機2に戻る。 In the refrigeration circuit 1 having this configuration, during the cooling operation, as shown in FIG. 1, the refrigerant is supplied to the vortex tube 4 via the compressor 2 and the oil separator 3 to generate a high temperature gas refrigerant and a low temperature gas refrigerant. To be separated. The low-temperature gas refrigerant separated by the vortex tube 4 is discharged from the fourth port 5d of the four-way valve 5 via the three-way valve 14, the sub-flow passage 7b of the first subcooling heat exchanger 7, and the first check valve 12. After merging with the low temperature refrigerant, it returns to the compressor 2 via the accumulator 11. On the other hand, the high temperature gas refrigerant separated by the vortex tube 4 expands from the first port 5a to the 22nd port 5b of the four-way valve 5, the first heat exchanger 6, the main flow passage 7a of the first supercooling heat exchanger 7, and the expansion. After merging with the low temperature refrigerant of the sub refrigeration circuit through the valve 8, the main flow passage 9a of the second supercooling heat exchanger 9, the second heat exchanger 10, and the third port 5c to the fourth port 5d of the four-way valve 5. , And returns to the compressor 2 via the accumulator 11.

従って、冷房運転時の冷凍回路1では、ボルテックスチューブ4で分離された低温ガス冷媒がそのまま圧縮機2に戻るのではなく、第1過冷却用熱交換器7で第1熱交換器6から吐出された高圧冷媒を過冷却するため、冷凍回路の熱交換能力を向上させることができる。 Therefore, in the refrigeration circuit 1 during the cooling operation, the low-temperature gas refrigerant separated by the vortex tube 4 does not return to the compressor 2 as it is, but is discharged from the first heat exchanger 6 by the first subcooling heat exchanger 7. Since the generated high-pressure refrigerant is supercooled, the heat exchange capacity of the refrigeration circuit can be improved.

一方、暖房運転時には、図2に示したように、冷媒は、圧縮機2及び油分離器3を介してボルテックスチューブ4に供給され、高温ガス冷媒と低温ガス冷媒とに分離される。分離された低温ガス冷媒は、三方弁14、第2過冷却用熱交換器9の従流路9b、第2逆止弁13を介して四方弁5の第4ポート5dからの低温ガス冷媒と合流した後、アキュムレータ11を介して圧縮機2に戻る。一方、分離された高温ガス冷媒は、四方弁5の第1ポート5aから第3ポート5c、第2熱交換器10、第2過冷却用熱交換器9の主流路9a、膨張弁8、第1過冷却用熱交換器7の主流路7a、第1熱交換器6、四方弁5の第2ポート5bから第4ポート5dを介して従冷凍回路の低温冷媒と合流した後、アキュムレータ11を介して圧縮機2に戻る。 On the other hand, during the heating operation, as shown in FIG. 2, the refrigerant is supplied to the vortex tube 4 via the compressor 2 and the oil separator 3 and separated into a high temperature gas refrigerant and a low temperature gas refrigerant. The separated low-temperature gas refrigerant is passed through the three-way valve 14, the sub-flow passage 9b of the second subcooling heat exchanger 9, and the second check valve 13 to the low-temperature gas refrigerant from the fourth port 5d of the four-way valve 5. After joining, it returns to the compressor 2 via the accumulator 11. On the other hand, the separated high-temperature gas refrigerant is supplied from the first port 5a to the third port 5c of the four-way valve 5, the second heat exchanger 10, the main flow passage 9a of the second supercooling heat exchanger 9, the expansion valve 8, and the 1 After merging with the low temperature refrigerant of the sub refrigerating circuit through the main flow path 7a of the subcooling heat exchanger 7, the first heat exchanger 6, and the second port 5b to the fourth port 5d of the four-way valve 5, the accumulator 11 is connected. Return to compressor 2 via.

従って、暖房運転時の冷凍回路1でも、ボルテックスチューブ4で分離された低温ガス冷媒がそのまま圧縮機2に戻るのではなく、第2過冷却用熱交換器9で第2熱交換器10から吐出された高圧冷媒を過冷却するため、冷凍回路の熱交換能力を向上させることができる。 Therefore, even in the refrigeration circuit 1 during the heating operation, the low-temperature gas refrigerant separated by the vortex tube 4 does not return to the compressor 2 as it is, but is discharged from the second heat exchanger 10 by the second supercooling heat exchanger 9. Since the generated high-pressure refrigerant is supercooled, the heat exchange capacity of the refrigeration circuit can be improved.

この実施形態の空気調和装置100は、図1〜3に示すように、ボルテックスチューブ4の冷媒供給口4a側にあるノズル4dの吐出口4eに第1圧力センサー16、ボルテックスチューブ4の高温冷媒吐出口4bに第2圧力センサー17、ボルテックスチューブ4の高温冷媒吐出口4bに第1温度センサー18、ボルテックスチューブ4の低温冷媒吐出口4cに第3圧力センサー19、ボルテックスチューブ4の低温冷媒吐出口4cに第2温度センサー20、アキュムレータ11の吸入口11aに圧力センサー21、圧縮機2の吐出口2aに圧力センサー22、第1熱交換器6の近傍に室内用温度センサー24、第2熱交換器10の近傍に室外用温度センサー23を有する。 As shown in FIGS. 1 to 3, in the air conditioner 100 of this embodiment, the first pressure sensor 16 and the high-temperature refrigerant discharge of the vortex tube 4 are connected to the discharge port 4e of the nozzle 4d on the refrigerant supply port 4a side of the vortex tube 4. The second pressure sensor 17 at the outlet 4b, the first temperature sensor 18 at the high temperature refrigerant discharge port 4b of the vortex tube 4, the third pressure sensor 19 at the low temperature refrigerant discharge port 4c of the vortex tube 4, and the low temperature refrigerant discharge port 4c of the vortex tube 4. A second temperature sensor 20, a pressure sensor 21 at the intake port 11a of the accumulator 11, a pressure sensor 22 at the discharge port 2a of the compressor 2, an indoor temperature sensor 24 near the first heat exchanger 6, and a second heat exchanger. An outdoor temperature sensor 23 is provided in the vicinity of 10.

ボルテックスチューブ4の高温冷媒吐出口4bに第2圧力センサー17と第1温度センサー18、ボルテックスチューブ4の低温冷媒吐出口4cに第3圧力センサー19と第2温度センサー20が、例えば配管Pの近傍に配置される。アキュムレータ11の吸入口11aに圧力センサー21と、圧縮機2の吐出口2aに圧力センサー22が、例えば配管Pの近傍に配置される。室内用温度センサー24は、例えば第2熱交換器10の風上側に配置され、吸い込まれた室内空気と接する位置に配置される。室外用温度センサー24も同様に、例えば第1熱交換器6の風上側に配置され、吸い込まれた室外空気と接する位置に配置される。 The second pressure sensor 17 and the first temperature sensor 18 are provided at the high temperature refrigerant discharge port 4b of the vortex tube 4, and the third pressure sensor 19 and the second temperature sensor 20 are provided at the low temperature refrigerant discharge port 4c of the vortex tube 4, for example, in the vicinity of the pipe P. Is located in. A pressure sensor 21 is arranged at the suction port 11a of the accumulator 11 and a pressure sensor 22 at the discharge port 2a of the compressor 2, for example, near the pipe P. The indoor temperature sensor 24 is arranged, for example, on the windward side of the second heat exchanger 10, and is arranged at a position in contact with the sucked indoor air. Similarly, the outdoor temperature sensor 24 is also arranged, for example, on the windward side of the first heat exchanger 6, and is arranged at a position in contact with the sucked outdoor air.

図3に示すように、この空気調和装置100の制御部25は、これらの各種センサー16〜24から計測値を入力し、圧縮機2の回転数、膨張弁8の開度、四方弁5の切り替え、三方弁14の切り替え、ボルテックスチューブ4のノズル4dのニードル弁の開度の調整機構部4a、室内用送風ファン26の回転数、室外用送風ファン27の回転数、ボルテックスチューブ4の高温冷媒吐出口4b側の流量調整弁の開度などを制御する。 As shown in FIG. 3, the control unit 25 of the air conditioner 100 inputs measured values from these various sensors 16 to 24, and rotates the compressor 2, the opening degree of the expansion valve 8, and the four-way valve 5. Switching, switching of the three-way valve 14, adjustment mechanism portion 4a of the opening degree of the needle valve of the nozzle 4d of the vortex tube 4, rotation speed of the indoor blower fan 26, rotation speed of the outdoor blower fan 27, high temperature refrigerant of the vortex tube 4. The opening degree of the flow rate adjusting valve on the discharge port 4b side is controlled.

典型的には、制御部25は、四方弁5の方向切り替え及び三方弁14の方向切り替えを制御することで、冷房運転時に図1に示す冷凍回路1を構成し、暖房運転時に図2に示す冷凍回路1を構成する。
また、制御部25は、ボルテックスチューブ4のノズル4dのニードル弁の開度及びボルテックスチューブ4の高温冷媒吐出口4b側の流量調整弁の開度を制御する。
Typically, the control unit 25 controls the direction switching of the four-way valve 5 and the direction switching of the three-way valve 14 to configure the refrigeration circuit 1 shown in FIG. 1 during the cooling operation, and to show the heating circuit in FIG. 2 during the heating operation. The refrigeration circuit 1 is configured.
Further, the control unit 25 controls the opening degree of the needle valve of the nozzle 4d of the vortex tube 4 and the opening degree of the flow rate adjusting valve of the vortex tube 4 on the high temperature refrigerant discharge port 4b side.

従来、ボルテックスチューブ4では、減圧膨張を行う機構がノズル4dと渦室内にあり、減圧量を自由に調整できなかった。従って、ノズル構造の仕様でその減圧量の大方が決まってしまうため、これを主要な減圧膨張機構として採用するのは難しい。更には、ボルテックスチューブ4の冷媒供給口4aに液または気液二相の冷媒が投入されるとエネルギー分離は発現しない。そこで、本発明では、圧縮機2の吐出口2a側に油分離器3を介してボルテックスチューブ4の冷媒供給口4aを接続して高温の過熱ガス冷媒を投入する。その際、油分離器3では冷凍機油を高温ガス冷媒から分離させ、オイルミストのない高温ガス冷媒としてボルテックスチューブ4の冷媒供給口4aに投入する。また、ボルテックスチューブ4のノズル4dを図示しない可変ノズルとし、その構造は、例えば、ノズル内部にニードル弁を設置し、その可変(例えば、上下移動量など)により絞り量を調節することによって、ノズル4dの吐出口4eでの圧力の調整と確実なエネルギー分離がなされる。そのとき、ボルテックスチューブ4の高温冷媒吐出口4b側の流量調整弁の開度を連携させる。より具体的には、ボルテックスチューブ4の冷媒供給口4a側にあるノズル4dの出口の第1圧力センサー16によりその圧力を計測し、制御部25はその計測値により高温冷媒吐出口4b側の流量調整弁の開度を制御する。ここで、流量調整弁の開度をニードル弁の開度調整と連携させるのは、高温ガス冷媒温度及び圧力と流量比(流量比:低温ガス冷媒吐出量÷全質量流量)とを所定値近傍あるいは所定範囲へ収束させることが主目的である。基本的には、上記流量調整弁では、上記流量比の調整と各分離冷媒温度に作用し、上記ノズル4dのニードル弁はノズル4dの吐出口4eの圧力を調整する。これら2つの弁が連携することで高温ガス冷媒及び低温ガス冷媒の吐出温度及び圧力が所定(目標)範囲に収束させて良好なシステム効率を実現することが可能となる。 Conventionally, in the vortex tube 4, the mechanism for performing decompression expansion is in the nozzle 4d and the vortex chamber, and the decompression amount cannot be freely adjusted. Therefore, the pressure reduction amount is largely determined by the specifications of the nozzle structure, and it is difficult to employ this as the main pressure reduction and expansion mechanism. Furthermore, when liquid or gas-liquid two-phase refrigerant is introduced into the refrigerant supply port 4a of the vortex tube 4, energy separation does not occur. Therefore, in the present invention, the refrigerant supply port 4a of the vortex tube 4 is connected to the discharge port 2a side of the compressor 2 via the oil separator 3 and the high temperature superheated gas refrigerant is injected. At that time, in the oil separator 3, the refrigerating machine oil is separated from the high temperature gas refrigerant, and is injected into the refrigerant supply port 4a of the vortex tube 4 as a high temperature gas refrigerant without oil mist. In addition, the nozzle 4d of the vortex tube 4 is a variable nozzle (not shown), and its structure is, for example, by installing a needle valve inside the nozzle and adjusting the amount of throttling by varying the needle valve (for example, vertical movement amount). Pressure adjustment at the discharge port 4e of 4d and reliable energy separation are performed. At that time, the opening degree of the flow rate adjusting valve on the high temperature refrigerant discharge port 4b side of the vortex tube 4 is made to cooperate. More specifically, the pressure is measured by the first pressure sensor 16 at the outlet of the nozzle 4d on the refrigerant supply port 4a side of the vortex tube 4, and the control unit 25 uses the measured value to measure the flow rate on the high temperature refrigerant discharge port 4b side. Controls the opening of the adjusting valve. Here, the opening degree of the flow rate adjusting valve is linked with the opening degree adjustment of the needle valve by setting the temperature and pressure of the high temperature gas refrigerant to the flow rate ratio (flow rate ratio: low temperature gas refrigerant discharge amount/total mass flow rate) near a predetermined value. Alternatively, the main purpose is to converge to a predetermined range. Basically, the flow rate adjusting valve acts on the adjustment of the flow rate ratio and the temperature of each separated refrigerant, and the needle valve of the nozzle 4d adjusts the pressure of the discharge port 4e of the nozzle 4d. The cooperation of these two valves allows the discharge temperature and pressure of the high-temperature gas refrigerant and the low-temperature gas refrigerant to converge within a predetermined (target) range, thereby achieving good system efficiency.

例えば、冷媒の動作圧力の目標値に対してノズル4dの吐出口4eの圧力を下げるためには、ボルテックスチューブ4のノズル内部のニードル弁を閉じる方向に作動させ、ノズル4dの吐出口4eの圧力を調整する。冷媒の動作温度及び圧力の目標値に対してボルテックスチューブ4の高温冷媒吐出温度を上昇させる必要がある場合には流量比が大きくなるようにボルテックスチューブ4の高温冷媒吐出口4b側の流量調整弁を閉じる方向に作動させる。上記ノズル4dの吐出口4eの圧力を下げていくことでボルテックスチューブ4の高温冷媒吐出温度は上昇傾向となり、かつ、ボルテックスチューブ4の低温冷媒吐出温度も下降傾向となる。また、冷媒の動作温度及び圧力の目標値に対してボルテックスチューブ4の低温冷媒吐出温度を下げたい場合には、流量比を下げる方向、すなわち、ボルテックスチューブ4の高温冷媒吐出口4b側の流量調整弁を開く方向に作動させる。
このような作動制御は制御部25により行われる。図4はその制御フローの一例である。
For example, in order to lower the pressure of the discharge port 4e of the nozzle 4d with respect to the target value of the operating pressure of the refrigerant, the needle valve inside the nozzle of the vortex tube 4 is operated in the closing direction to reduce the pressure of the discharge port 4e of the nozzle 4d. Adjust. When it is necessary to raise the high temperature refrigerant discharge temperature of the vortex tube 4 with respect to the target values of the operating temperature and pressure of the refrigerant, the flow rate adjusting valve on the high temperature refrigerant discharge port 4b side of the vortex tube 4 is set so that the flow rate ratio becomes large. Operate in the closing direction. By lowering the pressure of the discharge port 4e of the nozzle 4d, the high temperature refrigerant discharge temperature of the vortex tube 4 tends to increase, and the low temperature refrigerant discharge temperature of the vortex tube 4 also tends to decrease. When it is desired to lower the low temperature refrigerant discharge temperature of the vortex tube 4 with respect to the target values of the operating temperature and pressure of the refrigerant, the flow rate is decreased, that is, the flow rate adjustment of the vortex tube 4 on the high temperature refrigerant discharge port 4b side. Operate the valve in the opening direction.
Such operation control is performed by the control unit 25. FIG. 4 is an example of the control flow.

制御部25は、冷媒の圧力が目標値に対応した所定値となるようにボルテックスチューブ4のノズル内部のニードル弁の開度を調節し(ステップ401)、ノズル4dの吐出口4eの圧力を第1圧力センサー16により計測する(ステップ402)。次に、制御部25は、高温冷媒吐出口4b側の冷媒の目標温度及び圧力に対応した所定値となるようにボルテックスチューブ4の高温冷媒吐出口4b側の流量調整弁の開度を調節し(ステップ403)、ボルテックスチューブ4の高温冷媒吐出口4bから吐出される高温ガス冷媒の温度及び圧力を第1温度センサー18及び第2圧力センサー17により計測する(ステップ404)。制御部25は、高温冷媒吐出口4b側の冷媒の目標温度及び圧力になるまでステップ403及び404を繰り返し、目標温度及び圧力になったとき(ステップ405)、上記した流量比を計測する(ステップ406)。そして、制御部25は、目標の流量比になるまでステップ401〜406をN回繰り返す(ステップ407、408)。 The control unit 25 adjusts the opening degree of the needle valve inside the nozzle of the vortex tube 4 so that the pressure of the refrigerant becomes a predetermined value corresponding to the target value (step 401), and adjusts the pressure of the discharge port 4e of the nozzle 4d to the first value. 1 The pressure sensor 16 measures (step 402). Next, the control unit 25 adjusts the opening degree of the flow rate adjusting valve of the vortex tube 4 on the high temperature refrigerant discharge port 4b side so as to be a predetermined value corresponding to the target temperature and pressure of the refrigerant on the high temperature refrigerant discharge port 4b side. (Step 403), the temperature and pressure of the high temperature gas refrigerant discharged from the high temperature refrigerant discharge port 4b of the vortex tube 4 are measured by the first temperature sensor 18 and the second pressure sensor 17 (step 404). The control unit 25 repeats steps 403 and 404 until the target temperature and pressure of the refrigerant on the high temperature refrigerant outlet 4b side are reached, and when the target temperature and pressure are reached (step 405), the above flow rate ratio is measured (step). 406). Then, the control unit 25 repeats steps 401 to 406 N times until the target flow rate ratio is reached (steps 407 and 408).

なお、ボルテックスチューブ4の高温冷媒吐出口4b側から吐出された高温ガス冷媒は四方弁5の第1ポート5aに、ボルテックスチューブ4の低温冷媒吐出口4c側から吐出された低温ガス冷媒は三方弁14を介して第1または第2過冷却用熱交換器7、9のいずれかの従流路に冷房運転または暖房運転に応じて投入されるが、その調節割合は良好なシステム効率を実現するために前述の目標値が定められており、冷房運転時と暖房運転時ではそれぞれ異なる。
本発明は上記の実施形態に限定されない。
The high-temperature gas refrigerant discharged from the high-temperature refrigerant discharge port 4b side of the vortex tube 4 is discharged into the first port 5a of the four-way valve 5, and the low-temperature gas refrigerant discharged from the low-temperature refrigerant discharge port 4c side of the vortex tube 4 is a three-way valve. It is introduced into the secondary flow path of either the first or the second subcooling heat exchanger 7 or 9 via 14 according to the cooling operation or the heating operation, and the adjustment ratio thereof realizes good system efficiency. Therefore, the above-mentioned target value is set, and is different between the cooling operation and the heating operation.
The present invention is not limited to the above embodiment.

例えば、上記の実施形態の如くボルテックスチューブ4のノズル4dが可変ノズルではなく、ノズルを複数設置し、使用ノズルの個数を制御することで、上記の可変ノズルと実質的に同等な働きをさせることができる。 For example, the nozzle 4d of the vortex tube 4 is not a variable nozzle as in the above-described embodiment, but a plurality of nozzles are installed and the number of used nozzles is controlled so that the variable nozzle has substantially the same function. You can

1 冷凍回路
2 圧縮機
3 油分離器
4 ボルテックスチューブ
5 四方弁
6 第1熱交換器
7 第1過冷却用熱交換器
8 膨張弁
9 第2過冷却用熱交換器
10 第2熱交換器
11 アキュムレータ
12 第1逆止弁
13 第2逆止弁
14 三方弁
16 第1圧力センサー
17 第2圧力センサー
18 第1温度センサー
19 第3圧力センサー
20 第2温度センサー
21、22 圧力センサー
23、24 温度センサー
25 制御部
1 Refrigeration circuit 2 Compressor 3 Oil separator 4 Vortex tube 5 Four-way valve 6 First heat exchanger 7 First supercooling heat exchanger 8 Expansion valve 9 Second supercooling heat exchanger 10 Second heat exchanger 11 Accumulator 12 First check valve 13 Second check valve 14 Three-way valve 16 First pressure sensor 17 Second pressure sensor 18 First temperature sensor 19 Third pressure sensor 20 Second temperature sensor 21, 22 Pressure sensor 23, 24 Temperature Sensor 25 controller

Claims (2)

冷房運転時に、冷媒が圧縮機、ボルテックスチューブの冷媒供給口から高温冷媒吐出口、第1熱交換器、第1過冷却用熱交換器、膨張弁、第2熱交換器を順次循環し、かつ、冷媒が前記圧縮機、ボルテックスチューブの冷媒供給口から低温冷媒吐出口、前記第1過冷却用熱交換器を順次循環する冷凍回路を備え、前記第1過冷却用熱交換器で、前記第1熱交換器から流出した高圧冷媒と、前記ボルテックスチューブの低温冷媒吐出口より流出した低温ガス冷媒を熱交換させ
暖房運転時に、冷媒が前記圧縮機、前記ボルテックスチューブの冷媒供給口から高温冷媒吐出口、前記第2熱交換器、第2過冷却用熱交換器、前記膨張弁、前記第1熱交換器を順次循環し、冷媒が前記圧縮機、前記ボルテックスチューブの冷媒供給口から低温冷媒吐出口、前記第2過冷却用熱交換器を順次循環する冷凍回路を備え、前記第2過冷却用熱交換器で、前記第2熱交換器から流出した高圧冷媒と、前記ボルテックスチューブの低温冷媒吐出口より流出した低温ガス冷媒を熱交換させることを特徴とする空気調和装置。
During the cooling operation, the refrigerant circulates sequentially from the compressor, the refrigerant supply port of the vortex tube to the high temperature refrigerant discharge port, the first heat exchanger, the first subcooling heat exchanger, the expansion valve, and the second heat exchanger, and A refrigeration circuit in which a refrigerant sequentially circulates through the compressor, a refrigerant supply port of a vortex tube, a low-temperature refrigerant discharge port, and the first subcooling heat exchanger, and the first subcooling heat exchanger includes: 1. Heat exchange between the high-pressure refrigerant flowing out of the heat exchanger and the low-temperature gas refrigerant flowing out from the low-temperature refrigerant discharge port of the vortex tube ,
During heating operation, the refrigerant flows from the compressor, the refrigerant supply port of the vortex tube to the high-temperature refrigerant discharge port, the second heat exchanger, the second subcooling heat exchanger, the expansion valve, and the first heat exchanger. A second refrigeration heat exchanger, wherein the refrigeration circuit sequentially circulates and the refrigerant circulates sequentially through the compressor, the vortex tube refrigerant supply port, the low temperature refrigerant discharge port, and the second subcooling heat exchanger; In the air conditioner , the high-pressure refrigerant flowing out from the second heat exchanger and the low-temperature gas refrigerant flowing out from the low-temperature refrigerant discharge port of the vortex tube are heat-exchanged .
請求項に記載の空気調和装置であって、
前記空気調和装置は、更に
前記ボルテックスチューブのノズルの出口を通過する冷媒の圧力を計測する第1圧力センサーと、
前記ボルテックスチューブの高温冷媒吐出口側を通過する冷媒の圧力を計測する第2圧力センサーと、
前記ボルテックスチューブの低温冷媒吐出口側の圧力を計測する第3圧力センサーと、
前記ボルテックスチューブの高温冷媒吐出口側を通過する冷媒の温度を計測する第1温度センサーと、
前記ボルテックスチューブの低温冷媒吐出口側の温度を計測する第2温度センサーと、
前記ボルテックスチューブの高温冷媒吐出口側の冷媒の温度及び圧力を調節する流量調整弁と、
前記第1ないし第3圧力センサー及び前記第1及び第2温度センサーによる計測結果に基づき、前記ボルテックスチューブの高温冷媒吐出口側から吐出される冷媒の温度、圧力及び、全質量流量に対する前記低温ガス冷媒の吐出量の流量比が所定値となるように前記ノズルの出口の圧力及び前記流量調整弁の開度を制御する制御部と
を具備する空気調和装置。
The air conditioner according to claim 1 , wherein
The air conditioner further comprises a first pressure sensor for measuring the pressure of the refrigerant passing through the outlet of the nozzle of the vortex tube,
A second pressure sensor for measuring the pressure of the refrigerant passing through the high temperature refrigerant discharge port side of the vortex tube;
A third pressure sensor for measuring the pressure of the low temperature refrigerant discharge port side of the vortex tube,
A first temperature sensor for measuring the temperature of the refrigerant passing through the high temperature refrigerant outlet side of the vortex tube;
A second temperature sensor for measuring the temperature of the low temperature refrigerant discharge port side of the vortex tube;
A flow rate adjusting valve for adjusting the temperature and pressure of the refrigerant on the high temperature refrigerant outlet side of the vortex tube,
Based on the measurement results of the first to third pressure sensors and the first and second temperature sensors, the temperature, pressure, and the low temperature gas of the refrigerant discharged from the high temperature refrigerant discharge port side of the vortex tube , with respect to the total mass flow rate. An air conditioner comprising: a control unit that controls the pressure at the outlet of the nozzle and the opening of the flow rate adjustment valve so that the flow rate ratio of the discharge amount of the refrigerant becomes a predetermined value.
JP2016023706A 2016-02-10 2016-02-10 Air conditioner Active JP6750240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016023706A JP6750240B2 (en) 2016-02-10 2016-02-10 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016023706A JP6750240B2 (en) 2016-02-10 2016-02-10 Air conditioner

Publications (2)

Publication Number Publication Date
JP2017142027A JP2017142027A (en) 2017-08-17
JP6750240B2 true JP6750240B2 (en) 2020-09-02

Family

ID=59629064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016023706A Active JP6750240B2 (en) 2016-02-10 2016-02-10 Air conditioner

Country Status (1)

Country Link
JP (1) JP6750240B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220065463A1 (en) * 2020-08-25 2022-03-03 Evo America, Llc Air flow management for cooking system
CN117387239B (en) * 2023-12-12 2024-05-03 珠海格力电器股份有限公司 Air conditioning system and related control method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173868U (en) * 1984-04-23 1985-11-18 日産自動車株式会社 cooling device
JP2006023010A (en) * 2004-07-08 2006-01-26 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP4786339B2 (en) * 2005-12-28 2011-10-05 東京エレクトロン株式会社 Dry air generating apparatus, substrate processing system, and dry air generating method
JP4769117B2 (en) * 2006-04-20 2011-09-07 虹技株式会社 Temperature and air volume control device for vortex tube.
KR100896488B1 (en) * 2008-02-18 2009-05-08 공주대학교 산학협력단 Variable flux type vortex tube engine system
JP2011242048A (en) * 2010-05-18 2011-12-01 Mitsubishi Electric Corp Refrigerating cycle device
KR101388881B1 (en) * 2012-05-21 2014-04-23 에스티엑스조선해양 주식회사 EGW Cooling apparatus control system and method thereof
KR101631185B1 (en) * 2013-12-13 2016-06-16 한온시스템 주식회사 Air conditioner system for vehicle
CN105115184B (en) * 2015-07-31 2017-08-25 内蒙古科技大学 A kind of absorbent refrigeration system with cryogenic refrigeration function

Also Published As

Publication number Publication date
JP2017142027A (en) 2017-08-17

Similar Documents

Publication Publication Date Title
JP6685409B2 (en) Air conditioner
AU2014219807B2 (en) Air-conditioning apparatus
JP6479162B2 (en) Air conditioner
US9581365B2 (en) Refrigerating apparatus
JP4999529B2 (en) Heat source machine and refrigeration air conditioner
EP3312528B1 (en) Air conditioner
JP4375171B2 (en) Refrigeration equipment
AU2014219806B2 (en) Air-conditioning apparatus
JP5979112B2 (en) Refrigeration equipment
US10480837B2 (en) Refrigeration apparatus
CN109312961B (en) Heat source unit of refrigerating device
JP6733424B2 (en) Air conditioner
JP6576603B1 (en) Air conditioner
JP6750240B2 (en) Air conditioner
JP6758506B2 (en) Air conditioner
JP4012892B2 (en) Air conditioner
KR101203580B1 (en) Heat pump type air conditioner
JP5578914B2 (en) Multi-type air conditioner
KR102261131B1 (en) Heat pump air-conditioner having defrosting
KR100717463B1 (en) Air conditioner and controlling method of air conditioner
EP3196569A1 (en) Sensor arramgement in a heat pump system
KR101513305B1 (en) Injection type heat pump air-conditioner and the converting method for injection mode thereof
KR20180055362A (en) Air conditioning system
WO2021053740A1 (en) Refrigeration cycle device
KR102466760B1 (en) Multi air-conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200727

R151 Written notification of patent or utility model registration

Ref document number: 6750240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151