JP2010219441A - Package for housing electronic component - Google Patents

Package for housing electronic component Download PDF

Info

Publication number
JP2010219441A
JP2010219441A JP2009066984A JP2009066984A JP2010219441A JP 2010219441 A JP2010219441 A JP 2010219441A JP 2009066984 A JP2009066984 A JP 2009066984A JP 2009066984 A JP2009066984 A JP 2009066984A JP 2010219441 A JP2010219441 A JP 2010219441A
Authority
JP
Japan
Prior art keywords
electronic component
molybdenum
thickness
copper
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009066984A
Other languages
Japanese (ja)
Inventor
Akiyoshi Kosakata
明義 小阪田
Katsumori Tanabe
克守 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fj Composite Kk
Sumitomo Metal SMI Electronics Device Inc
Original Assignee
Fj Composite Kk
Sumitomo Metal SMI Electronics Device Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fj Composite Kk, Sumitomo Metal SMI Electronics Device Inc filed Critical Fj Composite Kk
Priority to JP2009066984A priority Critical patent/JP2010219441A/en
Publication of JP2010219441A publication Critical patent/JP2010219441A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic component housing package made of ceramics and equipped with a radiator plate having less thermal deformation and an excellent heat dissipation property. <P>SOLUTION: In the electronic component housing package, an electronic component 4 such as a semiconductor element and the like is housed in a cavity 3 formed with a frame body 2 joined to an upper face of the radiator plate 1 which is formed by alternately laminating five layers or more in total of a copper layer 1a and a molybdenum layer 1b, and has an uppermost layer formed with clad material of the copper layer 1a; a lid body 5 is jointed to an upper face of the frame body 2 to seal the cavity 3 hermetically; the ratio of total thickness of a plurality of molybdenum layers 1b having a thickness 0.2 mm or less to the radiator plate 1 is 10-14%; and a thickness of an uppermost layer of the radiator plate 1 on the side where the electronic component 4 is loaded is composed of a copper layer having a thickness 0.2 mm or more. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体素子等の電子部品を搭載する電子部品収納用パッケージに係り、特に、放熱性に優れるセラミック製の電子部品収納用パッケージに関する。   The present invention relates to an electronic component storage package on which an electronic component such as a semiconductor element is mounted, and more particularly to a ceramic electronic component storage package having excellent heat dissipation.

セラミックは耐熱性、耐食性、導電性及び機械的強度に優れるとともに、高周波領域での損失が少ないことから、携帯電話などの無線基地局用の半導体素子を収納するパッケージの枠体等に適している。このパッケージには同時に高い放熱性も要求されるが、セラミックは熱伝導率が小さいため、枠体単独では十分な放熱効果を期待することができない。そこで、通常、セラミック枠体に金属製の放熱板が取り付けられる。   Ceramics are excellent in heat resistance, corrosion resistance, electrical conductivity and mechanical strength, and have little loss in the high frequency range, so they are suitable for frame bodies for housing semiconductor elements for wireless base stations such as mobile phones. . This package is also required to have a high heat dissipation property, but ceramics have a low thermal conductivity, so that a sufficient heat dissipation effect cannot be expected with the frame alone. Therefore, usually, a metal heat sink is attached to the ceramic frame.

上記構造のパッケージとしては、セラミック製の枠体にタングステン(W)やモリブデン(Mo)等の高融点金属のメタライズ膜を介して金属製の放熱板が接合された構造のものが知られている。このようなパッケージは、放熱板に熱伝導率の大きな金属を使用しているため、放熱性に優れている。しかしながら、金属はセラミックに比べて熱伝導率が大きいだけでなく、熱膨張係数も大きい。従って、一般に金属製の放熱板をセラミック製の枠体にろう付けすると、温度変化に伴う放熱板と枠体との膨張差や収縮差によって枠体にクラックが生じる、あるいは放熱板と枠体との接合部で密着性が低下するという現象が発生する。この場合、枠体と放熱板との接合部における熱抵抗が大きくなるため、パッケージの放熱性が低下してしまう。
このような課題に対処するべく、従来、放熱性に優れるとともに、温度変化に伴う反り変形が生じ難い放熱板を備えたパッケージについて盛んに研究や開発がなされている。
As the package having the above structure, a package in which a metal heat sink is joined to a ceramic frame through a metallized film of a refractory metal such as tungsten (W) or molybdenum (Mo) is known. . Such a package is excellent in heat dissipation because a metal having a large thermal conductivity is used for the heat sink. However, metals not only have a higher thermal conductivity than ceramics, but also have a higher thermal expansion coefficient. Therefore, in general, when a metal heat sink is brazed to a ceramic frame, a crack is generated in the frame due to a difference in expansion or contraction between the heat sink and the frame due to a temperature change, or the heat sink and the frame. The phenomenon that the adhesiveness is reduced occurs at the joint portion. In this case, since the thermal resistance at the joint between the frame and the heat sink increases, the heat dissipation of the package decreases.
In order to cope with such a problem, conventionally, research and development have been actively conducted on a package provided with a heat radiating plate that has excellent heat dissipation and is less likely to be warped and deformed due to temperature change.

例えば、特許文献1には、「放熱用金属部材およびそれを用いた電子部品用パッケージ」という名称で、パッケージ本体を接合したときの反り量が低減される放熱用金属部材と、動作中の電子部品から発生する熱を外部に良好に拡散できる電子部品用パッケージに関する発明が開示されている。
特許文献1に開示された発明は、銅(Cu)−タングステン(W)系の複合金属材料によって放熱用金属部材を形成し、特に、複合金属材料の熱膨張率を7.5×10−6以上、8.5×10−6以下とし、複合金属材料の銅の含有量を7%以上、13%以下とするものである。
このような放熱用金属部材においては、その上面にセラミックパッケージ本体を接合した場合、放熱用金属部材とセラミックパッケージ本体との間に発生する熱応力が低減され、両者の間の接合強度が向上するとともに、放熱用金属部材の反り量が低減される。
For example, Patent Document 1 discloses a heat radiating metal member having a name “heat radiating metal member and a package for an electronic component using the same” that reduces the amount of warping when the package body is joined, and an electronic device in operation. An invention relating to a package for an electronic component that can diffuse heat generated from the component well to the outside is disclosed.
In the invention disclosed in Patent Document 1, a heat radiating metal member is formed of a copper (Cu) -tungsten (W) -based composite metal material, and in particular, the thermal expansion coefficient of the composite metal material is 7.5 × 10 −6. As described above, the content is set to 8.5 × 10 −6 or less, and the copper content of the composite metal material is set to 7% or more and 13% or less.
In such a heat dissipating metal member, when the ceramic package body is joined to the upper surface, the thermal stress generated between the heat dissipating metal member and the ceramic package body is reduced, and the joining strength between the two is improved. At the same time, the amount of warpage of the metal member for heat dissipation is reduced.

次に、特許文献2には、「高放熱型電子部品収納用パッケージ」という名称で、ヒートシンク板の上面の平坦性を向上させて電子部品の接合信頼性を高めた安価なパッケージに関する発明が開示されている。
特許文献2に開示された発明は、銅(Cu)−モリブデン(Mo)合金板、又は銅(Cu)−モリブデン(Mo)複合板からなる金属板に、第1の銅板がクラッド接合、又はろう付接合で接合されたヒートシンク板において、金属板のセラミック枠体に接合される側に第1の銅板と略同じ厚さからなる第2の銅板が外形周縁を上記セラミック枠体の内周側壁面と近接するようにしてろう付接合されて設けられることを特徴とする。
このような構造のパッケージにおいては、金属板を中心にして両面に第1の銅板と、第2の銅板が略バランスよく接合されているので、金属板と銅板の熱膨張率の差から発生する反りを略全面にわたってバランスさせることができる。また、電子部品からの発熱をヒートシンク板に速やかに伝え、放熱させることが可能である。
Next, Patent Document 2 discloses an invention relating to an inexpensive package having the name “high heat radiation type electronic component storage package” and improving the flatness of the upper surface of the heat sink plate to increase the bonding reliability of the electronic component. Has been.
In the invention disclosed in Patent Document 2, the first copper plate is clad-bonded or brazed to a metal plate made of a copper (Cu) -molybdenum (Mo) alloy plate or a copper (Cu) -molybdenum (Mo) composite plate. In the heat sink plate joined by attaching, the second copper plate having the same thickness as that of the first copper plate is formed on the side to be joined to the ceramic frame of the metal plate, and the outer peripheral edge is the inner peripheral side wall surface of the ceramic frame. And brazed so as to be close to each other.
In the package having such a structure, the first copper plate and the second copper plate are bonded to each other with a substantially balance on both sides with the metal plate as the center. Therefore, the package is generated due to a difference in thermal expansion coefficient between the metal plate and the copper plate. Warpage can be balanced over almost the entire surface. In addition, heat generated from the electronic component can be quickly transmitted to the heat sink plate to dissipate heat.

特開2001−135759号公報JP 2001-135759 A 特開2007−115793号公報JP 2007-115793 A

しかしながら、上述の従来技術である特許文献1に開示された発明は、放熱用金属部材中の銅の含有量が少ないため、放熱用金属部材の熱伝導率が小さくなりすぎてしまい、十分な放熱効果が得られないおそれがある。   However, the invention disclosed in Patent Document 1 which is the above-described prior art has a small amount of copper in the heat radiating metal member, so that the heat conductivity of the heat radiating metal member becomes too small, and sufficient heat dissipation. The effect may not be obtained.

また、特許文献2に開示された発明では、ヒートシンク板となる金属板を構成する銅とモリブデンの比率について何ら記述がない。従って、これらの比率が適正な値でない場合には、ヒートシンク板の熱変形の抑止効果や放熱効果が十分に発揮されないおそれがある。   Moreover, in the invention disclosed in Patent Document 2, there is no description about the ratio of copper and molybdenum constituting the metal plate to be the heat sink plate. Therefore, when these ratios are not appropriate values, there is a possibility that the effect of suppressing heat distortion of the heat sink plate and the heat dissipation effect are not sufficiently exhibited.

本発明は、このような従来の事情に対処してなされたものであり、熱変形が少なく,放熱性に優れる放熱板を備えたセラミック製の電子部品収納用パッケージを提供することを目的とする。   The present invention has been made in response to such a conventional situation, and an object of the present invention is to provide a ceramic electronic component storage package including a heat radiating plate that has less heat deformation and excellent heat dissipation. .

上記目的を達成するため、請求項1記載の発明である電子部品収納用パッケージは、銅層と厚さ0.2mm以下のモリブデン層が交互に合計で5層以上積層され,銅層が最表層を構成するクラッド材からなる放熱板と、この放熱板の片面に接合されるセラミック製の枠体とを備え、放熱板に対するモリブデン層の厚さの比率は合計で10〜14%であることを特徴とするものである。
このような構造の電子部品収納用パッケージにおいては、放熱板の熱伝導率は大きく低下せず、熱膨張係数のみが小さくなるという作用を有する。
In order to achieve the above object, the electronic component storage package according to the first aspect of the present invention includes a copper layer and a molybdenum layer having a thickness of 0.2 mm or less alternately stacked in total, and the copper layer is the outermost layer. And a ceramic frame bonded to one side of the heat sink, and the ratio of the thickness of the molybdenum layer to the heat sink is 10 to 14% in total. It is a feature.
The electronic component storage package having such a structure has an effect that the thermal conductivity of the heat radiating plate is not greatly reduced and only the thermal expansion coefficient is reduced.

また、請求項2記載の発明は、請求項1記載の電子部品収納用パッケージにおいて、放熱板の枠体が接合される側の最表層は、厚さ0.2mm以上の銅層からなることを特徴とするものである。
このような構造の電子部品収納用パッケージにおいては、電子部品が搭載される面の銅層が厚いため、厚さ方向に垂直な方向へ熱を拡散させる作用が高められる。
According to a second aspect of the present invention, in the electronic component storage package according to the first aspect, the outermost layer on the side where the frame of the heat sink is joined is made of a copper layer having a thickness of 0.2 mm or more. It is a feature.
In the electronic component storage package having such a structure, since the copper layer on the surface on which the electronic component is mounted is thick, the effect of diffusing heat in the direction perpendicular to the thickness direction is enhanced.

以上説明したように、本発明の請求項1記載の電子部品収納用パッケージにおいては、放熱板の熱変形に起因する枠体のクラックの発生を防止するとともに、パッケージの放熱性を高めることができる。   As described above, in the electronic component storage package according to claim 1 of the present invention, it is possible to prevent the occurrence of cracks in the frame body due to the thermal deformation of the heat radiating plate and improve the heat dissipation of the package. .

本発明の請求項2記載の電子部品収納用パッケージにおいては、請求項1記載の発明よりもさらにパッケージの放熱性を高めることが可能である。   In the electronic component storage package according to the second aspect of the present invention, the heat dissipation of the package can be further improved as compared with the invention according to the first aspect.

(a)は本発明の実施の形態に係る電子部品収納用パッケージの実施例の平面図であり、(b)は同図(a)のX−X線矢視断面の拡大図であり、(c)は同図(b)の放熱板の層構造を説明するための図である。(A) is a top view of the Example of the electronic component storage package which concerns on embodiment of this invention, (b) is an enlarged view of the XX arrow cross section of the figure (a), ( (c) is a figure for demonstrating the layer structure of the heat sink of the figure (b). 銅とモリブデンのクラッド材について熱膨張係数とモリブデンの比率との関係を調べた実験結果である。It is the experimental result which investigated the relationship between the coefficient of thermal expansion and the ratio of molybdenum about the clad material of copper and molybdenum. 銅とモリブデンのクラッド材について熱伝導率とモリブデンの比率との関係を調べた実験結果である。It is the experimental result which investigated the relationship between the thermal conductivity and the ratio of molybdenum about the clad material of copper and molybdenum. 銅とモリブデンからなり、モリブデンの比率が異なる複数のクラッド材(5層)を本実施例の電子部品収納用パッケージの放熱板に用いて信頼性試験を行った結果である。It is the result of performing a reliability test using a plurality of clad materials (5 layers) made of copper and molybdenum and having different molybdenum ratios for the heat sink of the electronic component storage package of this example. 銅とモリブデンのクラッド材(5層)について熱膨張係数と最表層の銅厚さとの関係を調べた実験結果である。It is the experimental result which investigated the relationship between the thermal expansion coefficient and the copper thickness of the outermost layer about the clad material (5 layers) of copper and molybdenum. 銅とモリブデンのクラッド材(5層)について熱伝導率と最表層の銅厚さとの関係を調べた実験結果である。It is the experimental result which investigated the relationship between the thermal conductivity and the copper thickness of the outermost layer about the clad material (5 layers) of copper and molybdenum. 銅とモリブデンからなり、最表層の銅厚さが異なる複数のクラッド材(5層)を本実施例の電子部品収納用パッケージの放熱板に用いて放熱板の熱抵抗を測定した結果である。It is the result of having measured the thermal resistance of the heat sink using the clad material (5 layers) which consists of copper and molybdenum and from which the copper thickness of the outermost layer differs in the heat sink of the electronic component storage package of a present Example.

本発明の実施の形態に係る電子部品収納用パッケージについて図1乃至図7を用いて説明する。   An electronic component storage package according to an embodiment of the present invention will be described with reference to FIGS.

図1(a)は本発明の実施の形態に係る電子部品収納用パッケージの実施例の平面図であり、(b)は同図(a)のX−X線矢視断面の拡大図であり、(c)は同図(b)の放熱板の層構造を説明するための図である。なお、図1(a)では蓋体の図示を省略しており、図1(c)では図1(b)における放熱板を厚さ方向に拡大して示している。   Fig.1 (a) is a top view of the Example of the electronic component storage package based on embodiment of this invention, (b) is an enlarged view of the XX arrow cross section of the figure (a). (C) is a figure for demonstrating the layer structure of the heat sink of the figure (b). In addition, illustration of the cover body is abbreviate | omitted in Fig.1 (a), and the heat sink in FIG.1 (b) is expanded and shown in the thickness direction in FIG.1 (c).

図1(a)乃至(c)に示すように、本実施例の電子部品収納用パッケージは、放熱板1と,この放熱板1の上面に接合される枠体2によって形成されるキャビティ3に半導体素子等の電子部品4を収納し、枠体2の上面に蓋体5を接合してキャビティ3を気密封止する構造となっている。
放熱板1は、銅層1aとモリブデン層1bが交互に積層され,最表層が銅層1aによって構成される5層のクラッド材からなる。そして、放熱板1に対するモリブデン層1bの厚さの比率は合計で10〜14%であり、各モリブデン層1bの厚さはすべて0.2mm以下となっている。また、放熱板1の電子部品4が搭載される側の最表層は厚さ0.2mm以上の銅層によって構成されている。
枠体2は、アルミナ(Al)や窒化アルミニウム(AlN)等のセラミックからなり、その両面にはタングステンやモリブデン等の導体配線パターンからなるメタライズ膜6が形成されている。そして、Ag−Cuろう等のろう材を用いて放熱板1と外部接続端子7が枠体2の両面にメタライズ膜6を介してそれぞれ接合されている。なお、外部接続端子7は図示しない外部基板上に形成された配線回路パターンに半田等を用いて接合される。
キャビティ3に収納される電子部品4は、Auメッキが被着された放熱板1の上面にAuSi等からなるろう材を用いて接合されるとともに、ボンディングワイヤ8によって外部接続端子7と接続されている。そして、外部接続端子7の上面には、樹脂やガラス等の絶縁性接着材9を用いて樹脂又はセラミックあるいは金属等からなる蓋体5が接合されている。また、放熱板1の長手方向の両端部に設けられた取付部10は、電子部品収納用パッケージを外部基板に取り付けることを目的として、外部基板上に設けられた基台等にネジ止めする際に使用するものである。
As shown in FIGS. 1A to 1C, the electronic component storage package of the present embodiment includes a heat sink 1 and a cavity 3 formed by a frame 2 joined to the upper surface of the heat sink 1. An electronic component 4 such as a semiconductor element is accommodated, and a lid 5 is joined to the upper surface of the frame 2 to hermetically seal the cavity 3.
The heat sink 1 is made of five layers of clad materials in which copper layers 1a and molybdenum layers 1b are alternately laminated and the outermost layer is constituted by the copper layer 1a. And the ratio of the thickness of the molybdenum layer 1b with respect to the heat sink 1 is 10 to 14% in total, and the thickness of each molybdenum layer 1b is all 0.2 mm or less. Further, the outermost layer on the side where the electronic component 4 of the heat sink 1 is mounted is constituted by a copper layer having a thickness of 0.2 mm or more.
The frame 2 is made of a ceramic such as alumina (Al 2 O 3 ) or aluminum nitride (AlN), and a metallized film 6 made of a conductor wiring pattern such as tungsten or molybdenum is formed on both surfaces thereof. And the heat sink 1 and the external connection terminal 7 are joined to both surfaces of the frame body 2 via the metallized film 6 using a brazing material such as Ag—Cu brazing. The external connection terminals 7 are joined to a wiring circuit pattern formed on an external substrate (not shown) using solder or the like.
The electronic component 4 housed in the cavity 3 is joined to the upper surface of the heat sink 1 coated with Au plating using a brazing material made of AuSi or the like, and connected to the external connection terminal 7 by a bonding wire 8. Yes. A lid 5 made of resin, ceramic, metal, or the like is bonded to the upper surface of the external connection terminal 7 using an insulating adhesive 9 such as resin or glass. The mounting portions 10 provided at both ends in the longitudinal direction of the heat sink 1 are screwed to a base or the like provided on the external substrate for the purpose of attaching the electronic component storage package to the external substrate. It is used for

次に、本実施例の電子部品収納用パッケージを構成する放熱板1においてモリブデン層1bが果たす役割について説明する。
図2は銅とモリブデンのクラッド材について熱膨張係数とモリブデンの比率との関係を調べた実験結果である。横軸はクラッド材全体に対するモリブデンの比率(すなわち、クラッド材全体の厚さに対するモリブデン層の厚さの比率)を表し、縦軸はクラッド材全体の熱膨張係数を表している。記号「▲」及び記号「●」は、クラッド材を400℃及び800℃からそれぞれ室温まで自然冷却させた場合の測定データを示している。なお、熱膨張係数の測定は、JISH7404に記載された方法に従ってブルカー社製の熱膨張測定装置を用いて窒素雰囲気中で行った。試料の大きさは20mm(長さ)×4mm(幅)×1.5mm(厚さ)である。また、銅及びモリブデンの熱膨張係数は、それぞれ20×10−6(/℃)及び5×10−6(/℃)である。
図2では、クラッド材全体に対するモリブデンの比率が大きくなるに従ってクラッド材の熱膨張係数が小さくなっている。すなわち、クラッド材の熱変形を抑えるには、クラッド材全体に対してモリブデン層を相対的に厚くすることが必要である。そして、クラッド材の熱変形をさらに小さくするには、熱膨張係数の大きい銅層を熱膨張係数の小さいモリブデン層で上下からはさむようにしてクラッド材を形成すると良い。なお、半導体素子を収納するパッケージに使用される放熱板の両面は、ろう付けやメッキ処理が施されるのが一般的である。そのため、上記構造のクラッド材を放熱板として用いる場合には、ろう付けやメッキ処理が容易な銅層を最表層とする少なくとも5層以上の構造とすることが望ましい。
Next, the role played by the molybdenum layer 1b in the heat sink 1 constituting the electronic component storage package of this embodiment will be described.
FIG. 2 shows the experimental results of investigating the relationship between the coefficient of thermal expansion and the molybdenum ratio for copper and molybdenum clad materials. The horizontal axis represents the ratio of molybdenum to the entire cladding material (that is, the ratio of the thickness of the molybdenum layer to the thickness of the entire cladding material), and the vertical axis represents the thermal expansion coefficient of the entire cladding material. Symbol “▲” and symbol “●” indicate measurement data when the clad material is naturally cooled from 400 ° C. and 800 ° C. to room temperature, respectively. The thermal expansion coefficient was measured in a nitrogen atmosphere using a Bruker thermal expansion measuring apparatus according to the method described in JISH7404. The size of the sample is 20 mm (length) × 4 mm (width) × 1.5 mm (thickness). Moreover, the thermal expansion coefficients of copper and molybdenum are 20 × 10 −6 (/ ° C.) and 5 × 10 −6 (/ ° C.), respectively.
In FIG. 2, the coefficient of thermal expansion of the cladding material decreases as the ratio of molybdenum to the entire cladding material increases. That is, in order to suppress thermal deformation of the cladding material, it is necessary to make the molybdenum layer relatively thick with respect to the entire cladding material. In order to further reduce the thermal deformation of the cladding material, the cladding material may be formed by sandwiching a copper layer having a large thermal expansion coefficient from above and below with a molybdenum layer having a small thermal expansion coefficient. In general, both surfaces of a heat dissipation plate used in a package for housing a semiconductor element are subjected to brazing or plating. Therefore, when the clad material having the above structure is used as a heat sink, it is desirable to have a structure of at least five layers with a copper layer that can be easily brazed or plated as the outermost layer.

図3は銅とモリブデンのクラッド材について熱伝導率とモリブデンの比率との関係を調べた実験結果である。横軸はクラッド材全体に対するモリブデンの比率(すなわち、クラッド材全体の厚さに対するモリブデン層の厚さの比率)を表し、縦軸はクラッド材全体の熱伝導率(W/m℃)を表している。なお、真空理工社製のレーザーフラッシュ法熱定数測定装置を用いてJISH7801に規定される熱拡散率を求めた後、銅とモリブデンの体積割合から比熱と密度の平均値を計算する方法により行った。試料の大きさは10mm(直径)×1.5(厚さ)である。また、銅及びモリブデンの熱伝導率は、それぞれ390(W/m℃)及び142(W/m℃)である。
図3に示すように、クラッド材全体に対するモリブデンの比率を大きくすると、クラッド材の熱伝導率は小さくなる。しかし、クラッド材全体に対するモリブデンの比率が14%を超えると、クラッド材の熱伝導率が360W/m℃を下回ってしまい、放熱板に用いた場合に十分な放熱効果が得られないおそれがある。従って、放熱板に用いるクラッド材では、モリブデン層の厚さを放熱板全体の厚さの14%以下とすることが望ましい。
FIG. 3 shows the experimental results of investigating the relationship between the thermal conductivity and the molybdenum ratio for the copper and molybdenum clad material. The horizontal axis represents the ratio of molybdenum to the entire cladding material (that is, the ratio of the thickness of the molybdenum layer to the thickness of the entire cladding material), and the vertical axis represents the thermal conductivity (W / m ° C.) of the entire cladding material. Yes. In addition, after calculating | requiring the thermal diffusivity prescribed | regulated to JISH7801 using the laser flash method thermal constant measuring apparatus by a vacuum Riko company, it carried out by the method of calculating the average value of a specific heat and a density from the volume ratio of copper and molybdenum. . The size of the sample is 10 mm (diameter) × 1.5 (thickness). The thermal conductivities of copper and molybdenum are 390 (W / m ° C.) and 142 (W / m ° C.), respectively.
As shown in FIG. 3, when the ratio of molybdenum to the entire cladding material is increased, the thermal conductivity of the cladding material is decreased. However, when the ratio of molybdenum to the entire cladding material exceeds 14%, the thermal conductivity of the cladding material is lower than 360 W / m ° C., and there is a possibility that a sufficient heat dissipation effect cannot be obtained when used for a heat sink. . Therefore, in the clad material used for the heat sink, it is desirable that the thickness of the molybdenum layer be 14% or less of the total thickness of the heat sink.

図4は銅とモリブデンからなり、モリブデンの比率が異なる複数のクラッド材を本実施例の電子部品収納用パッケージの放熱板に用いて信頼性試験を行った結果である。具体的には、各クラッド材を放熱板として取り付けた電子部品収納用パッケージ(試料数100個)の温度を−65℃から150℃まで変化させ、枠体2に発生するクラックの有無を目視で確認した。なお、図4において、横軸はクラッド材全体に対するモリブデンの比率(すなわち、クラッド材全体の厚さに対するモリブデン層の厚さの比率)を表し、縦軸は枠体2にクラックが発生したパッケージの割合(%)を表している。
図4に示すように、クラッド材全体に対するモリブデンの比率が10%より小さい場合には、枠体2にクラックが発生している。これは、枠体2が構造上、板状のセラミックに比べて曲げ等の応力に弱いことが原因と考えられる。
このように、放熱板1の熱変形に伴って枠体2にクラックが発生するおそれがあるため、放熱板1に用いるクラッド材では、本実施例のようにモリブデン層1bの厚さを放熱板1の厚さの10%以上とすることが望ましい。なお、クラッド材を構成するモリブデン層1bのそれぞれの厚さが0.2mmを超えると、プレス打ち抜き等によるクラッド材の加工が困難となるため、モリブデン層1bの厚さはすべて0.2mm以下とすることが望ましい。
FIG. 4 shows the result of a reliability test using a plurality of clad materials made of copper and molybdenum and having different molybdenum ratios for the heat sink of the electronic component storage package of this example. Specifically, the temperature of the electronic component storage package (100 samples) attached with each clad material as a heat sink is changed from −65 ° C. to 150 ° C., and the presence or absence of cracks generated in the frame 2 is visually observed. confirmed. In FIG. 4, the horizontal axis represents the ratio of molybdenum to the entire cladding material (that is, the ratio of the thickness of the molybdenum layer to the total thickness of the cladding material), and the vertical axis represents the package in which cracks occurred in the frame 2. It represents a percentage (%).
As shown in FIG. 4, when the ratio of molybdenum to the entire cladding material is smaller than 10%, cracks are generated in the frame 2. This is probably because the frame 2 is structurally weaker to stresses such as bending than a plate-like ceramic.
In this way, cracks may occur in the frame body 2 due to thermal deformation of the heat radiating plate 1. Therefore, in the clad material used for the heat radiating plate 1, the thickness of the molybdenum layer 1 b is set to the heat radiating plate as in this embodiment. It is desirable to be 10% or more of the thickness of 1. If the thickness of each molybdenum layer 1b constituting the clad material exceeds 0.2 mm, it becomes difficult to process the clad material by press punching or the like, so that the thickness of the molybdenum layer 1b is 0.2 mm or less. It is desirable to do.

図5は銅とモリブデンのクラッド材(5層)について熱膨張係数と最表層の銅厚さとの関係を調べた実験結果である。横軸は最表層の銅厚さ(mm)を表し、縦軸はクラッド材全体の熱膨張係数を表している。記号「▲」及び記号「●」は、クラッド材を400℃及び800℃からそれぞれ室温まで自然冷却させた場合の測定データを示している。なお、熱膨張係数の測定方法及び試料の大きさは図2の場合と同一である。また、クラッド材全体に対するモリブデンの比率は12%である。
図5より、クラッド材の熱膨張係数は、この測定条件の範囲内では最表層の銅厚さの影響をほとんど受けないことが分かる。
FIG. 5 shows the experimental results of investigating the relationship between the thermal expansion coefficient and the copper thickness of the outermost layer for the copper and molybdenum clad material (5 layers). The horizontal axis represents the copper thickness (mm) of the outermost layer, and the vertical axis represents the thermal expansion coefficient of the entire cladding material. Symbol “▲” and symbol “●” indicate measurement data when the clad material is naturally cooled from 400 ° C. and 800 ° C. to room temperature, respectively. Note that the measurement method of the thermal expansion coefficient and the size of the sample are the same as those in FIG. Further, the ratio of molybdenum to the entire cladding material is 12%.
FIG. 5 shows that the thermal expansion coefficient of the clad material is hardly influenced by the copper thickness of the outermost layer within the range of this measurement condition.

図6は銅とモリブデンのクラッド材(5層)について熱伝導率と最表層の銅厚さとの関係を調べた実験結果である。横軸は最表層の銅厚さ(mm)を表し、縦軸はクラッド材全体の熱伝導率(W/m℃)を表している。なお、熱伝導率の測定方法は図3の場合と同じであり、試料は図5の試験と同一のものを使用した。
図6より、クラッド材の熱伝導率は、この測定条件の範囲内では最表層の銅厚さの影響をほとんど受けないことが分かる。
FIG. 6 shows the experimental results of investigating the relationship between the thermal conductivity and the copper thickness of the outermost layer for the copper and molybdenum clad material (5 layers). The horizontal axis represents the copper thickness (mm) of the outermost layer, and the vertical axis represents the thermal conductivity (W / m ° C.) of the entire cladding material. In addition, the measuring method of thermal conductivity is the same as the case of FIG. 3, and the same sample as the test of FIG. 5 was used.
FIG. 6 shows that the thermal conductivity of the clad material is hardly influenced by the copper thickness of the outermost layer within the range of this measurement condition.

図7は銅とモリブデンからなり、最表層の銅厚さが異なる複数のクラッド材(5層)を本実施例の電子部品収納用パッケージの放熱板に用いて放熱板の熱抵抗を測定した結果である。横軸は最表層の銅厚さ(mm)を表し、縦軸はクラッド材全体の熱抵抗(℃/W)を表している。なお、熱抵抗の測定は、SEMI−STD G38−87とG30−87に記載された方法に準じて自家製の測定装置を用いて行った。また、クラッド材全体に対するモリブデンの比率は12%である。
図7に示すように、最表層の銅厚さが0.2mm以上であれば、クラッド材の熱抵抗が0.55℃/Wより小さくなり、放熱板として十分な放熱効果が期待できる。なお、最表層の銅厚さを0.2mm以上にすると、図6で説明したようにクラッド材の熱伝導率はほとんど変化しないにもかかわらず、放熱板に使用した場合には上述のように、その熱抵抗が改善される。これは、電子部品4が搭載される面の銅層1aを厚くすることで、厚さ方向に垂直な方向へ熱を拡散させる作用が高められ、放熱性が向上したことによるものと考えられる。
FIG. 7 shows the result of measuring the thermal resistance of a heat sink using a plurality of clad materials (5 layers) made of copper and molybdenum and having different outermost copper thicknesses as the heat sink of the electronic component storage package of this example. It is. The horizontal axis represents the copper thickness (mm) of the outermost layer, and the vertical axis represents the thermal resistance (° C./W) of the entire cladding material. In addition, the measurement of thermal resistance was performed using the homemade measuring apparatus according to the method described in SEMI-STD G38-87 and G30-87. Further, the ratio of molybdenum to the entire cladding material is 12%.
As shown in FIG. 7, when the copper thickness of the outermost layer is 0.2 mm or more, the thermal resistance of the clad material becomes smaller than 0.55 ° C./W, and a sufficient heat dissipation effect as a heat sink can be expected. In addition, when the copper thickness of the outermost layer is 0.2 mm or more, the thermal conductivity of the clad material hardly changes as described in FIG. , Its thermal resistance is improved. This is considered to be due to the fact that by increasing the thickness of the copper layer 1a on the surface on which the electronic component 4 is mounted, the action of diffusing heat in the direction perpendicular to the thickness direction is enhanced, and the heat dissipation is improved.

以上説明したように、本実施例の電子部品収納用パッケージによれば、銅とモリブデンのクラッド材からなる放熱板1において、熱伝導率の低下を抑えつつ、熱膨張係数を小さくすることにより、放熱板1の熱変形に起因する枠体2のクラックの発生を防止するとともに、十分な放熱効果を得ることが可能である。   As described above, according to the electronic component storage package of the present embodiment, in the heat sink 1 made of the clad material of copper and molybdenum, by reducing the thermal expansion coefficient while suppressing the decrease in thermal conductivity, While preventing the generation of cracks in the frame 2 due to thermal deformation of the heat radiating plate 1, it is possible to obtain a sufficient heat radiating effect.

本実施例では、放熱板1を構成するクラッド材を5層としているが、これに限定されるものではない。すなわち、放熱板1を構成するクラッド材は銅層1aとモリブデン層1bが交互に少なくとも少なくとも5層、積層されていれば良い。   In this embodiment, the clad material constituting the heat radiating plate 1 has five layers, but the present invention is not limited to this. That is, the clad material constituting the heat radiating plate 1 may be formed by laminating at least five copper layers 1a and molybdenum layers 1b alternately.

請求項1及び請求項2に記載された発明は、放熱板を備えたセラミック製の電子部品収納用パッケージに対して適用可能である。   The invention described in claim 1 and claim 2 can be applied to a ceramic electronic component storage package including a heat sink.

1…放熱板 1a…銅層 1b…モリブデン層 2…枠体 3…キャビティ 4…電子部品 5…蓋体 6…メタライズ膜 7…外部接続端子 8…ボンディングワイヤ 9…絶縁性接着材 10…取付部   DESCRIPTION OF SYMBOLS 1 ... Heat sink 1a ... Copper layer 1b ... Molybdenum layer 2 ... Frame 3 ... Cavity 4 ... Electronic component 5 ... Lid body 6 ... Metallized film 7 ... External connection terminal 8 ... Bonding wire 9 ... Insulating adhesive 10 ... Mounting part

Claims (2)

銅層と厚さ0.2mm以下のモリブデン層が交互に合計で5層以上積層され,前記銅層が最表層を構成するクラッド材からなる放熱板と、
この放熱板の片面に接合されるセラミック製の枠体とを備え、
前記放熱板に対する前記モリブデン層の厚さの比率は合計で10〜14%であることを特徴とする電子部品収納用パッケージ。
A copper plate and a molybdenum layer having a thickness of 0.2 mm or less are alternately laminated in a total of five or more layers, and the heat sink made of a clad material in which the copper layer constitutes the outermost layer;
A ceramic frame joined to one side of the heat sink,
The ratio of the thickness of the molybdenum layer to the heat sink is 10 to 14% in total.
前記放熱板の前記枠体が接合される側の最表層は、厚さ0.2mm以上の銅層からなることを特徴とする請求項1に記載の電子部品収納用パッケージ。
2. The electronic component storage package according to claim 1, wherein an outermost layer on a side of the heat sink to which the frame body is joined is made of a copper layer having a thickness of 0.2 mm or more.
JP2009066984A 2009-03-18 2009-03-18 Package for housing electronic component Pending JP2010219441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009066984A JP2010219441A (en) 2009-03-18 2009-03-18 Package for housing electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009066984A JP2010219441A (en) 2009-03-18 2009-03-18 Package for housing electronic component

Publications (1)

Publication Number Publication Date
JP2010219441A true JP2010219441A (en) 2010-09-30

Family

ID=42977926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009066984A Pending JP2010219441A (en) 2009-03-18 2009-03-18 Package for housing electronic component

Country Status (1)

Country Link
JP (1) JP2010219441A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231101A (en) * 2011-04-25 2012-11-22 Kostek Sys Co Ltd Metal base, method of manufacturing the same, and device package using the same
JP2013243323A (en) * 2012-05-23 2013-12-05 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same
CN105514095A (en) * 2015-12-18 2016-04-20 华北电力大学 Crimped IGBT module with variable boss height
CN111357100A (en) * 2017-11-18 2020-06-30 Jfe精密株式会社 Heat sink and method for manufacturing the same
JPWO2020261731A1 (en) * 2019-06-25 2020-12-30
JP2022169059A (en) * 2021-04-27 2022-11-09 Ngkエレクトロデバイス株式会社 package
US11929301B2 (en) 2021-04-27 2024-03-12 NGK Electronics Devices, Inc. Package and electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115731A (en) * 2005-10-18 2007-05-10 Eiki Tsushima Manufacturing method and forming method of cladding material and radiation substrate using the same
WO2008013279A1 (en) * 2006-07-28 2008-01-31 Kyocera Corporation Electronic component storing package and electronic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115731A (en) * 2005-10-18 2007-05-10 Eiki Tsushima Manufacturing method and forming method of cladding material and radiation substrate using the same
WO2008013279A1 (en) * 2006-07-28 2008-01-31 Kyocera Corporation Electronic component storing package and electronic device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231101A (en) * 2011-04-25 2012-11-22 Kostek Sys Co Ltd Metal base, method of manufacturing the same, and device package using the same
JP2013243323A (en) * 2012-05-23 2013-12-05 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same
CN105514095A (en) * 2015-12-18 2016-04-20 华北电力大学 Crimped IGBT module with variable boss height
CN111357100B (en) * 2017-11-18 2023-09-01 Jfe精密株式会社 Radiating plate and manufacturing method thereof
US11646243B2 (en) 2017-11-18 2023-05-09 Jfe Precision Corporation Heat sink and method for manufacturing same
CN111357100A (en) * 2017-11-18 2020-06-30 Jfe精密株式会社 Heat sink and method for manufacturing the same
JPWO2020261731A1 (en) * 2019-06-25 2020-12-30
WO2020261731A1 (en) * 2019-06-25 2020-12-30 Ngkエレクトロデバイス株式会社 Package, and method for manufacturing power semiconductor module
JP7127217B2 (en) 2019-06-25 2022-08-29 Ngkエレクトロデバイス株式会社 Package and method for manufacturing power semiconductor module
US11978682B2 (en) 2019-06-25 2024-05-07 NGK Electronics Devices, Inc. Package, and method for manufacturing power semiconductor module
JP2022169059A (en) * 2021-04-27 2022-11-09 Ngkエレクトロデバイス株式会社 package
JP7444814B2 (en) 2021-04-27 2024-03-06 Ngkエレクトロデバイス株式会社 package
US11929301B2 (en) 2021-04-27 2024-03-12 NGK Electronics Devices, Inc. Package and electronic device

Similar Documents

Publication Publication Date Title
JP4610414B2 (en) Electronic component storage package, electronic device, and electronic device mounting structure
EP2980844B1 (en) Substrate for power modules, substrate with heat sink for power modules, and power module
JP2010219441A (en) Package for housing electronic component
KR20170044105A (en) Joined body, substrate for power module provided with heat sink, heat sink, method for manufacturing joined body, method for manufacturing substrate for power module provided with heat sink, and method for manufacturing heat sink
JP2011253950A (en) Power semiconductor device
JP4989552B2 (en) Electronic components
KR20180066134A (en) Board and power module for power module with heat sink
JP6417834B2 (en) Power module substrate with cooler and method for manufacturing power module substrate with cooler
JP7151583B2 (en) Insulated circuit board with heat sink
KR20170046649A (en) Assembly, power-module substrate provided with heat sink, heat sink, method for manufacturing assembly, method for manufacturing power-module substrate provided with heat sink, and method for manufacturing heat sink
JP2007243145A (en) High heat dissipation electronic component housing package and method of manufacturing same
JP2006269966A (en) Wiring substrate and its manufacturing method
WO2018180159A1 (en) Method for producing insulated circuit board with heat sink
JP2008091959A (en) Method of manufacturing semiconductor device
JP7211949B2 (en) ceramic circuit board
JP4360847B2 (en) Ceramic circuit board, heat dissipation module, and semiconductor device
JP2021185639A (en) Power module
JP2019149460A (en) Insulation circuit board and manufacturing method thereof
JP6638284B2 (en) Substrate for power module with heat sink and power module
JP4227610B2 (en) Manufacturing method of heat dissipation base
JP7299672B2 (en) Ceramic circuit board and its manufacturing method
JP2017212362A (en) Circuit board assembly, electronic device assembly, manufacturing method of circuit board assembly and manufacturing method of electronic device
JP6565735B2 (en) Power module substrate, power module, and method of manufacturing power module substrate
JP6983119B2 (en) Heat dissipation plate, semiconductor package and semiconductor device
JP4377769B2 (en) Electronic component storage package and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120314

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130719