JP2010219392A - Electrochemical capacitor - Google Patents

Electrochemical capacitor Download PDF

Info

Publication number
JP2010219392A
JP2010219392A JP2009065970A JP2009065970A JP2010219392A JP 2010219392 A JP2010219392 A JP 2010219392A JP 2009065970 A JP2009065970 A JP 2009065970A JP 2009065970 A JP2009065970 A JP 2009065970A JP 2010219392 A JP2010219392 A JP 2010219392A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
active material
insulator
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009065970A
Other languages
Japanese (ja)
Other versions
JP2010219392A5 (en
JP5337546B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Konami Izumi
小波 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2009065970A priority Critical patent/JP5337546B2/en
Publication of JP2010219392A publication Critical patent/JP2010219392A/en
Publication of JP2010219392A5 publication Critical patent/JP2010219392A5/ja
Application granted granted Critical
Publication of JP5337546B2 publication Critical patent/JP5337546B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a thin electrochemical capacitor with a large capacity. <P>SOLUTION: The present invention relates to an electrochemical capacitor including: a positive electrode active material coming into in contact with a positive electrode collector and having a rugged structure on its surface, a first insulator provided at a distal end of a projecting portion of the positive electrode active material, a negative electrode active material coming into contact with a negative electrode collector and having a rugged structure on its surface, a second insulator provided at a distal end of a projecting portion of the negative electrode active material, and an electrolyte containing lithium ions and provided in a space where the positive electrode collector and the negative electrode collector are disposed while facing each other, the first insulator and the second insulator are interposed, and the positive electrode active material and the negative electrode active material are formed while being engaged in such a way that their projecting portions and recessed portions are not brought into direct contact with each other. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本明細書に開示される発明は、電気化学キャパシタに関する。   The invention disclosed herein relates to an electrochemical capacitor.

近年、電池材料にリチウム金属酸化物を用い、リチウムイオンが正極と負極の間を移動することによって充放電を行う方式の二次電池である、リチウムイオン二次電池、及び、電気化学キャパシタの開発が盛んに進められている(特許文献1、特許文献2、特許文献3参照)。   In recent years, development of lithium ion secondary batteries and electrochemical capacitors that use lithium metal oxides as battery materials and charge and discharge by moving lithium ions between positive and negative electrodes (See Patent Literature 1, Patent Literature 2, and Patent Literature 3).

特開2008−294314号公報JP 2008-294314 A 特開2002−289174号公報JP 2002-289174 A 特開2007−299580号公報JP 2007-299580 A

容量の大きい電気化学キャパシタを得るためには、正極及び負極の表面積を大きくする必要がある。正極及び負極の表面積を大きくするには、正極及び負極のそれぞれの表面に凹凸を設ければよい。   In order to obtain an electrochemical capacitor having a large capacity, it is necessary to increase the surface areas of the positive electrode and the negative electrode. In order to increase the surface areas of the positive electrode and the negative electrode, it is only necessary to provide irregularities on the surfaces of the positive electrode and the negative electrode.

凹凸が設けられた正極及び負極の間に電解質を設けることにより、大容量のキャパシタを得ることができる。   A large-capacity capacitor can be obtained by providing an electrolyte between the positive and negative electrodes provided with unevenness.

しかしながら、正極及び負極のそれぞれの表面に凹凸を設けた電気化学キャパシタは、その厚さが厚くなってしまう恐れがある。   However, the electrochemical capacitor having irregularities on the surfaces of the positive electrode and the negative electrode may be thick.

正極及び負極それぞれの表面に複数の突起を設け、それぞれの突起上に絶縁体を配置し、かつ、正極及び負極それぞれの表面に複数の突起を互い違い(交互)に配置する。正極及び負極の突起は、突起状に設けられた絶縁体により絶縁されている。   A plurality of protrusions are provided on the surfaces of the positive electrode and the negative electrode, an insulator is disposed on each of the protrusions, and a plurality of protrusions are alternately (alternately) disposed on the surfaces of the positive electrode and the negative electrode. The protrusions of the positive electrode and the negative electrode are insulated by an insulator provided in a protrusion shape.

すなわち、正極集電体に接する正極活性物質及び負極集電体に接する負極活性物質のそれぞれの表面を凹凸構造とする。また、正極活性物質及び負極活性物質における凹凸構造の凸部の先端部には絶縁体を設ける。   That is, the surface of each of the positive electrode active material in contact with the positive electrode current collector and the negative electrode active material in contact with the negative electrode current collector has an uneven structure. In addition, an insulator is provided at the tip of the convex portion of the concave-convex structure in the positive electrode active material and the negative electrode active material.

また、正極活性物質及び負極活性物質における凹凸構造の凸部と凸部の間隔は、凸部の幅よりも広くしておき、正極活性物質及び負極活性物質の凹凸構造を噛み合わせた場合にも直接接触しないようにする。   In addition, the interval between the convex and concave portions of the concavo-convex structure in the positive electrode active material and the negative electrode active material is made wider than the width of the convex portion, and also when the concavo-convex structure of the positive electrode active material and the negative electrode active material is meshed. Avoid direct contact.

そして正極活性物質と負極活性物質の凸部と凹部が直接接触しないように噛み合って形成された空間部に電解質を充填する。   Then, the electrolyte is filled into the space formed by engaging the positive electrode active material and the negative electrode active material so that the convex portions and the concave portions are not in direct contact with each other.

さらに、正極集電体及びそれに接する正極活性物質(正極集電体及び正極活性物質を合わせて「正極」とする)、並びに、負極集電体及びそれに接する負極活性物質(負極集電体及び負極活性物質を合わせて「負極」とする)のそれぞれの表面を凹凸構造とする。また、正極及び負極における凹凸構造の凸部の先端部には絶縁体を設ける。   Furthermore, the positive electrode current collector and the positive electrode active material in contact therewith (the positive electrode current collector and the positive electrode active material are collectively referred to as “positive electrode”), the negative electrode current collector and the negative electrode active material in contact therewith (the negative electrode current collector and the negative electrode) The surface of each of the active materials is taken as a “negative electrode” to have a concavo-convex structure. In addition, an insulator is provided at the tip of the convex portion of the concavo-convex structure in the positive electrode and the negative electrode.

また、正極及び負極における凹凸構造の凸部と凸部の間隔は、凸部の幅よりも広くしておき、正極及び負極の凹凸構造を噛み合わせた場合にも直接接触しないようにする。   In addition, the interval between the convex and concave portions of the concavo-convex structure in the positive electrode and the negative electrode is set wider than the width of the convex portion so that the direct contact does not occur even when the concavo-convex structure of the positive and negative electrodes are engaged.

そして正極と負極の凸部と凹部が直接接触しないように噛み合って形成された空間部に電解質を充填してもよい。   Then, the electrolyte may be filled in a space formed by meshing so that the convex portions and the concave portions of the positive electrode and the negative electrode are not in direct contact with each other.

正極集電体に接し、表面に凹凸構造を有する正極活性物質と、前記正極活性物質の該凸部の先端部に設けられた第1の絶縁体と、負極集電体に接し、表面に凹凸構造を有する負極活性物質と、前記負極活性物質の該凸部の先端部に設けられた第2の絶縁体とを有する電気化学キャパシタに関する。該電気化学キャパシタにおいて、前記正極集電体と前記負極集電体とが対向配置され、前記第1の絶縁体と前記第2の絶縁体が介在して、前記正極活性物質と前記負極活性物質の凸部と凹部が直接接触しないように噛み合って形成された空間部に設けられ、リチウムイオンを含む電解質とを有することを特徴とする。   A positive electrode active material having a concavo-convex structure on the surface, in contact with the positive electrode current collector, a first insulator provided at a tip portion of the convex portion of the positive electrode active material, and a negative electrode current collector and having a rugged surface The present invention relates to an electrochemical capacitor having a negative active material having a structure and a second insulator provided at a tip of the convex portion of the negative active material. In the electrochemical capacitor, the positive electrode current collector and the negative electrode current collector are disposed to face each other, and the positive electrode active material and the negative electrode active material are interposed between the first insulator and the second insulator. It is provided in the space part formed by meshing so that a convex part and a recessed part may not contact directly, It has the electrolyte containing lithium ion, It is characterized by the above-mentioned.

表面に凹凸構造を有する正極集電体及び正極活性物質からなる正極と、前記正極の該凸部の先端部に設けられた第1の絶縁体と、表面に凹凸構造を有する負極集電体及び負極活性物質からなる負極と、前記負極の該凸部の先端部に設けられた第2の絶縁体とを有する電気化学キャパシタに関する。該電気化学キャパシタは、前記正極と前記負極とが対向配置され、前記第1の絶縁体と前記第2の絶縁体が介在して、前記正極と前記負極の凸部と凹部が直接接触しないように噛み合って形成された空間部に設けられ、リチウムイオンを含む電解質とを有することを特徴とする。   A positive electrode current collector having a concavo-convex structure on the surface and a positive electrode made of a positive electrode active material; a first insulator provided at a tip of the convex portion of the positive electrode; a negative electrode current collector having a concavo-convex structure on the surface; The present invention relates to an electrochemical capacitor having a negative electrode made of a negative electrode active material and a second insulator provided at the tip of the convex portion of the negative electrode. In the electrochemical capacitor, the positive electrode and the negative electrode are arranged to face each other, and the first insulator and the second insulator are interposed so that the convex portion and the concave portion of the positive electrode and the negative electrode are not in direct contact with each other. And an electrolyte containing lithium ions provided in a space formed by meshing with each other.

表面に凹凸構造を有する正極集電体及び正極活性物質からなる正極と、前記正極の該凹部に設けられた第1の絶縁体と、表面に凹凸構造を有する負極集電体及び負極活性物質からなる負極と、前記負極の該凹部に設けられた第2の絶縁体とを有する電気化学キャパシタに関する。該電気化学キャパシタにおいて、前記正極と前記負極とが対向配置され、前記第1の絶縁体と前記第2の絶縁体が介在して、前記正極と前記負極の凸部と凹部が直接接触しないように噛み合って形成された空間部に設けられ、リチウムイオンを含む電解質とを有することを特徴とする。   A positive electrode made of a positive electrode current collector having a concavo-convex structure and a positive electrode active material, a first insulator provided in the concave portion of the positive electrode, and a negative electrode current collector and a negative electrode active material having a concavo-convex structure on the surface It is related with the electrochemical capacitor which has the negative electrode which becomes and the 2nd insulator provided in this recessed part of the said negative electrode. In the electrochemical capacitor, the positive electrode and the negative electrode are arranged to face each other, and the first insulator and the second insulator are interposed so that the convex portion and the concave portion of the positive electrode and the negative electrode are not in direct contact with each other. And an electrolyte containing lithium ions provided in a space formed by meshing with each other.

表面に凹凸構造を有する正極集電体と、前記正極活集電体の該凸部の先端部に設けられた第1の絶縁体と、前記正極集電体及び前記第1の絶縁体に接し、表面に凹凸構造を有する正極活物質と、表面に凹凸構造を有する負極集電体と、前記負極活集電体の該凸部の先端部に設けられた第2の絶縁体と、前記負極集電体及び前記第2の絶縁体に接し、表面に凹凸構造を有する負極活物質とを有する電気化学キャパシタに関する。該電気化学キャパシタにおいて、前記正極活物質と前記負極活物質とが対向配置され、前記第1の絶縁体と前記第2の絶縁体が介在して、前記正極活性物質と前記負極活性物質の凸部と凹部が直接接触しないように噛み合って形成された空間部に設けられ、リチウムイオンを含む電解質とを有することを特徴とする。   A positive electrode current collector having a concavo-convex structure on the surface; a first insulator provided at a tip of the convex portion of the positive electrode active current collector; and the positive electrode current collector and the first insulator. A positive electrode active material having a concavo-convex structure on the surface, a negative electrode current collector having a concavo-convex structure on the surface, a second insulator provided at a tip of the convex part of the negative electrode active current collector, and the negative electrode The present invention relates to an electrochemical capacitor having a negative electrode active material in contact with a current collector and the second insulator and having a concavo-convex structure on a surface thereof. In the electrochemical capacitor, the positive electrode active material and the negative electrode active material are disposed to face each other, and the first and second insulators are interposed so that the positive electrode active material and the negative electrode active material are convex. It is provided in the space part formed by meshing so that a part and a recessed part may not contact directly, It has the electrolyte containing lithium ion, It is characterized by the above-mentioned.

正極及び負極それぞれの表面に複数の突起を設けるため、表面積が大きくなり、大容量のキャパシタを得ることができる。   Since a plurality of protrusions are provided on the surfaces of the positive electrode and the negative electrode, the surface area is increased, and a large-capacity capacitor can be obtained.

またそれぞれの突起を互い違い(交互)に配置することにより、薄くて小型なキャパシタを得ることができる。   Further, by arranging the protrusions alternately (alternately), a thin and small capacitor can be obtained.

電気化学キャパシタの作製工程を示す断面図。Sectional drawing which shows the manufacturing process of an electrochemical capacitor. 電気化学キャパシタの作製工程を示す断面図。Sectional drawing which shows the manufacturing process of an electrochemical capacitor. 電気化学キャパシタの作製工程を示す断面図。Sectional drawing which shows the manufacturing process of an electrochemical capacitor. 電気化学キャパシタの作製工程を示す断面図。Sectional drawing which shows the manufacturing process of an electrochemical capacitor. 電気化学キャパシタの作製工程を示す断面図。Sectional drawing which shows the manufacturing process of an electrochemical capacitor. 電気化学キャパシタの作製工程を示す断面図。Sectional drawing which shows the manufacturing process of an electrochemical capacitor. 電気化学キャパシタの作製工程を示す断面図。Sectional drawing which shows the manufacturing process of an electrochemical capacitor. 電気化学キャパシタの作製工程を示す断面図。Sectional drawing which shows the manufacturing process of an electrochemical capacitor. 電気化学キャパシタの作製工程を示す断面図。Sectional drawing which shows the manufacturing process of an electrochemical capacitor. 電気化学キャパシタの作製工程を示す断面図。Sectional drawing which shows the manufacturing process of an electrochemical capacitor. 電気化学キャパシタの作製工程を示す断面図。Sectional drawing which shows the manufacturing process of an electrochemical capacitor.

以下、本明細書に開示された発明の実施の態様について、図面を参照して説明する。但し、本明細書に開示された発明は多くの異なる態様で実施することが可能であり、本明細書に開示された発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本実施の形態の記載内容に限定して解釈されるものではない。なお、以下に示す図面において、同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。   Hereinafter, embodiments of the invention disclosed in this specification will be described with reference to the drawings. However, the invention disclosed in this specification can be implemented in many different modes, and various changes can be made in form and details without departing from the spirit and scope of the invention disclosed in this specification. It will be readily understood by those skilled in the art. Therefore, the present invention is not construed as being limited to the description of this embodiment mode. Note that in the drawings described below, the same portions or portions having similar functions are denoted by the same reference numerals, and repetitive description thereof is omitted.

[実施の形態1]
本実施の形態を、図1(A)〜図1(B)、図2(A)〜図2(D)、図3(A)〜図3(D)、図4(A)〜図4(E)、図5(A)〜図5(E)、図6(A)〜図6(D)、図7(A)〜図7(B)、図8(A)〜図8(B)、図9(A)〜図9(B)、図10(A)〜図10(B)、図11(A)〜図11(B)を用いて説明する。
[Embodiment 1]
In this embodiment mode, FIGS. 1A to 1B, 2A to 2D, 3A to 3D, and 4A to 4 are used. (E), FIG. 5 (A) to FIG. 5 (E), FIG. 6 (A) to FIG. 6 (D), FIG. 7 (A) to FIG. 7 (B), FIG. 8 (A) to FIG. ), FIG. 9 (A) to FIG. 9 (B), FIG. 10 (A) to FIG. 10 (B), and FIG. 11 (A) to FIG. 11 (B).

まず図1(A)に示す電気化学キャパシタ135の構成及びその作製方法について、図1(A)、図2(A)〜図2(D)、図3(A)〜図3(D)を用いて説明する。   First, a structure of an electrochemical capacitor 135 shown in FIG. 1A and a manufacturing method thereof are shown in FIGS. 1A, 2A to 2D, and 3A to 3D. It explains using.

まず板状の正極集電体111を用意する(図2(A)参照)。正極集電体111は、アルミニウム(Al)、チタン(Ti)、等の単体あるいは化合物を用いればよい。   First, a plate-like positive electrode current collector 111 is prepared (see FIG. 2A). For the positive electrode current collector 111, a single substance or a compound such as aluminum (Al) or titanium (Ti) may be used.

次いで、正極集電体111上に、正極活物質112の材料となる板状正極活物質材料101を形成する(図2(B)参照)。   Next, a plate-like positive electrode active material 101 which is a material of the positive electrode active material 112 is formed over the positive electrode current collector 111 (see FIG. 2B).

板状正極活物質材料101は、活性炭、あるいは、LiCoO、LiNiO等の化学式Li(ただし、MはCo、Ni、Mn、V、Fe、またはTiを示し、xは0.2≦x≦2.5、yは0.8≦y≦1.25の範囲である)で示されるリチウム含有複合酸化物を用いればよい。 Plate positive electrode active material 101 is activated carbon or,, LiCoO 2, LiNiO 2 formula such as Li x M y O 2 (however, M represents Co, Ni, Mn, V, Fe or Ti,, x is 0 .2 ≦ x ≦ 2.5, y is in the range of 0.8 ≦ y ≦ 1.25).

板状正極活物質材料101上に、エッチング工程においてマスクとなる絶縁体113を複数形成する(図2(C)参照)。   A plurality of insulators 113 that serve as masks in the etching step are formed over the plate-like positive electrode active material 101 (see FIG. 2C).

絶縁体113は、アクリル樹脂、ポリイミド樹脂、ポリイミドアミド樹脂、フェノール樹脂、エポキシ樹脂、レジスト等の有機樹脂が挙げられる。絶縁体113は、このような有機樹脂を、印刷法やスピンコート法等で形成すればよい。例えば、未感光の感光性アクリルを板状正極活物質材料101の表面に印刷法で形成し、絶縁体113を形成する領域に光を当てることにより、絶縁体113を形成すればよい。   Examples of the insulator 113 include an organic resin such as an acrylic resin, a polyimide resin, a polyimide amide resin, a phenol resin, an epoxy resin, and a resist. The insulator 113 may be formed using such an organic resin by a printing method, a spin coating method, or the like. For example, the insulator 113 may be formed by forming unexposed photosensitive acrylic on the surface of the plate-like positive electrode active material 101 by a printing method and applying light to a region where the insulator 113 is formed.

また絶縁体113として、酸化珪素膜、窒素を含む酸化珪素膜、酸素を含む窒化珪素膜、窒化珪素膜等の無機絶縁物を用いてもよい。   As the insulator 113, an inorganic insulator such as a silicon oxide film, a silicon oxide film containing nitrogen, a silicon nitride film containing oxygen, or a silicon nitride film may be used.

さらに絶縁体113は、上述の有機樹脂あるいは無機絶縁物の単層でもよいし、2つ以上の有機樹脂の積層あるいは2つ以上の無機絶縁物の積層、さらにあるいは、2つ以上の有機樹脂と無機絶縁物を積層したものを用いてもよい。   Further, the insulator 113 may be a single layer of the above-described organic resin or inorganic insulator, a laminate of two or more organic resins, a laminate of two or more inorganic insulators, or, alternatively, two or more organic resins and A laminate of inorganic insulators may be used.

次いで、絶縁体113をマスクとして、板状正極活物質材料101をドライエッチング法で異方性エッチングを行う。これにより、幅aと高さbの比が3以上1000以下、好ましくは、10以上1000以下、例えば、幅aが1μm〜10μm、高さbが10μm〜100μm、さらに例えば幅aが1μm、高さbが10μmとなる突起115を複数有する正極活物質112を形成する(図2(D)参照)。図2(D)は断面図のため、正極活物質112は櫛状に示されている。しかし突起115が奥方向にも連なって形成されるので、正極活物質112は剣山のような形状を有する。   Next, using the insulator 113 as a mask, the plate-like positive electrode active material 101 is anisotropically etched by a dry etching method. Thereby, the ratio of the width a to the height b is 3 to 1000, preferably 10 to 1000, for example, the width a is 1 μm to 10 μm, the height b is 10 μm to 100 μm, and further, for example, the width a is 1 μm, high A positive electrode active material 112 having a plurality of protrusions 115 each having a thickness b of 10 μm is formed (see FIG. 2D). Since FIG. 2D is a cross-sectional view, the positive electrode active material 112 is shown in a comb shape. However, since the protrusion 115 is formed continuously in the back direction, the positive electrode active material 112 has a shape like a sword mountain.

また、突起115の上面から見た形状は、円、四角形、三角形、星型、五角形、六角形等を用いることができ、必要に応じて形状を決めればよい。   The shape of the protrusion 115 viewed from the top can be a circle, a quadrangle, a triangle, a star, a pentagon, a hexagon, or the like, and the shape may be determined as necessary.

板状正極活物質材料101の材料のうち、ドライエッチングが難しい材料は、例えば、機械加工、スクリーン印刷、電解メッキ、ホットエンボス加工等の別の方法で、突起115を形成してもよい。さらにドライエッチングが可能な板状正極活物質材料101であっても、これらの方法を用いて突起115を形成してもよい。以上のようにして正極117が形成される。   Among the materials of the plate-like positive electrode active material 101, a material that is difficult to dry-etch may form the protrusion 115 by another method such as machining, screen printing, electrolytic plating, hot embossing, or the like. Furthermore, even if it is the plate-shaped positive electrode active material material 101 which can be dry-etched, you may form the protrusion 115 using these methods. As described above, the positive electrode 117 is formed.

また一方、板状の負極集電体121を用意する(図2(A)参照)。負極集電体121は、銅(Cu)、アルミニウム(Al)、ニッケル(Ni)、チタン(Ti)等の単体あるいは化合物を用いればよい。   On the other hand, a plate-like negative electrode current collector 121 is prepared (see FIG. 2A). The negative electrode current collector 121 may be a single substance or a compound such as copper (Cu), aluminum (Al), nickel (Ni), titanium (Ti), or the like.

次いで、負極集電体121上に、負極活物質122の材料となる板状負極活物質材料105を形成する(図3(B)参照)。   Next, a plate-like negative electrode active material 105 which is a material of the negative electrode active material 122 is formed over the negative electrode current collector 121 (see FIG. 3B).

板状負極活物質材料105は、リチウムイオンを吸蔵、放出可能な炭素材、シリコン材料、シリコン合金材料等のリチウムイオン保持体を負極活物質として用いる。このような炭素材として、粉末状または繊維状の黒鉛等の炭素材を用いることが可能である。   The plate-like negative electrode active material 105 uses a lithium ion carrier such as a carbon material, silicon material, or silicon alloy material capable of occluding and releasing lithium ions as a negative electrode active material. As such a carbon material, a carbon material such as powdery or fibrous graphite can be used.

次いで、板状負極活物質材料105上に、エッチング工程においてマスクとなる絶縁体123を複数形成する(図3(C)参照)。絶縁体123は、絶縁体113と同様の材料及び同様の作製方法で形成すればよい。   Next, a plurality of insulators 123 that serve as masks in the etching step are formed over the plate-like negative electrode active material 105 (see FIG. 3C). The insulator 123 may be formed using a material similar to that of the insulator 113 and a similar manufacturing method.

次いで、絶縁体123をマスクとして、ドライエッチングが可能な板状負極活物質材料105をドライエッチング法で異方性エッチングを行う。これにより、幅cと高さdの比が3以上1000以下、好ましくは、10以上1000以下、例えば、幅cが1μm〜10μm、高さdが10μm〜100μm、さらに例えば幅cが1μm、高さdが10μmとなる突起125を複数有する負極活物質122を形成する(図3(D)参照)。図3(D)は断面図のため、負極活物質122は櫛状に示されている。しかし突起125が奥方向にも連なって形成されるので、負極活物質122は剣山のような形状を有する。   Next, using the insulator 123 as a mask, anisotropic etching is performed on the plate-shaped negative electrode active material material 105 that can be dry etched by a dry etching method. Thereby, the ratio of the width c to the height d is 3 to 1000, preferably 10 to 1000, for example, the width c is 1 μm to 10 μm, the height d is 10 μm to 100 μm, and further, for example, the width c is 1 μm, high A negative electrode active material 122 having a plurality of protrusions 125 each having a thickness d of 10 μm is formed (see FIG. 3D). 3D is a cross-sectional view, the negative electrode active material 122 is shown in a comb shape. However, since the protrusion 125 is formed continuously in the back direction, the negative electrode active material 122 has a shape like a sword mountain.

また、突起125の上面から見た形状は、円、四角形、三角形、星型、五角形、六角形等を用いることができ、必要に応じて形状を決めればよい。また突起115に対応する形状を形成すればよい。   The shape of the protrusion 125 viewed from the top can be a circle, a quadrangle, a triangle, a star, a pentagon, a hexagon, or the like, and the shape may be determined as necessary. Further, a shape corresponding to the protrusion 115 may be formed.

板状負極活物質材料105の材料のうち、ドライエッチングが難しい材料は、例えば、機械加工、スクリーン印刷、電解メッキ、ホットエンボス加工等の別の方法で、突起125を形成してもよい。さらにドライエッチングが可能な板状負極活物質材料105であっても、これらの方法を用いて突起125を形成してもよい。以上のようにして、負極127が形成される。   Of the material of the plate-like negative electrode active material 105, a material that is difficult to dry-etch may form the protrusion 125 by another method such as machining, screen printing, electrolytic plating, hot embossing, or the like. Furthermore, even if it is the plate-shaped negative electrode active material material 105 which can be dry-etched, the protrusion 125 may be formed using these methods. As described above, the negative electrode 127 is formed.

また、電気化学キャパシタの中でも、リチウムイオンキャパシタを作製する場合には、負極にリチウムイオンを添加するプレドーピング工程を行う。   Moreover, when producing a lithium ion capacitor among electrochemical capacitors, a pre-doping step of adding lithium ions to the negative electrode is performed.

次いで、正極117と負極127を対向させ、正極活物質112の突起115と、負極活物質122の突起125が互い違い(交互)となるように配置する。このとき、正極活物質112の突起115と負極活物質122、並びに、負極活物質122の突起125と正極活物質112は、それぞれ絶縁体113並びに絶縁体123により絶縁されるように配置する。   Next, the positive electrode 117 and the negative electrode 127 are opposed to each other, and the protrusions 115 of the positive electrode active material 112 and the protrusions 125 of the negative electrode active material 122 are arranged alternately (alternately). At this time, the protrusion 115 and the negative electrode active material 122 of the positive electrode active material 112 and the protrusion 125 and the positive electrode active material 112 of the negative electrode active material 122 are disposed so as to be insulated by the insulator 113 and the insulator 123, respectively.

電解質132を正極117及び負極127の間の空間に配置する。以上により電気化学キャパシタ135を作製する。(図1(A)参照)。   The electrolyte 132 is disposed in a space between the positive electrode 117 and the negative electrode 127. Thus, the electrochemical capacitor 135 is manufactured. (See FIG. 1A).

電解質132はリチウムイオンを含み、リチウムイオンが電気伝導を担っている。電解質132は、溶媒と、その溶媒に溶解するリチウム塩とから構成されている。リチウム塩として、例えば、LiPF(六フッ化リン酸リチウム)、LiClO、LiBF、LiPF、LiAlCl、LiSbF、LiSCN、LiCl、LiCFSO、LiCFCO、Li(CFSO、LiAsF、LiN(CFSO、LiB10Cl10、LiN(CSO)、LiPF(CF、およびLiPF(C等を挙げることができ、これらを使用する電解質132に単独または二種以上を組み合わせて使用することができる。 The electrolyte 132 contains lithium ions, and the lithium ions are responsible for electrical conduction. The electrolyte 132 is composed of a solvent and a lithium salt that dissolves in the solvent. Examples of the lithium salt include LiPF 6 (lithium hexafluorophosphate), LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2) 2, LiAsF 6, LiN (CF 3 SO 2) 2, LiB 10 Cl 10, LiN (C 2 F 5 SO 2), LiPF 3 (CF 3) 3, and LiPF 3 (C 2 F 5) 3 The electrolyte 132 using these can be used alone or in combination of two or more.

また電解質132中の溶媒として、例えば、エチレンカーボネート(以下、ECと略す)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、およびビニレンカーボネート(VC)などの環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(以下、EMCと略す)、メチルプロピルカーボネート(MPC)、メチルイソブチルカーボネート(MIPC)、およびジプロピルカーボネート(DPC)などの非環状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸メチル、およびプロピオン酸エチルなどの脂肪族カルボン酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、1,2−ジメトキシエタン(DME)、1,2−ジエトキシエタン(DEE)、およびエトキシメトキシエタン(EME)等の非環状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3−ジオキソラン等やリン酸トリメチル、リン酸トリエチル、およびリン酸トリオクチルなどのアルキルリン酸エステルやそのフッ化物を挙げることができ、これらの一種または二種以上を混合して使用する。   Examples of the solvent in the electrolyte 132 include cyclic carbonates such as ethylene carbonate (hereinafter abbreviated as EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC), dimethyl carbonate (DMC), Acyclic carbonates such as diethyl carbonate (DEC), ethyl methyl carbonate (hereinafter abbreviated as EMC), methyl propyl carbonate (MPC), methyl isobutyl carbonate (MIPC), and dipropyl carbonate (DPC), methyl formate, methyl acetate Aliphatic carboxylic acid esters such as methyl propionate and ethyl propionate, γ-lactones such as γ-butyrolactone, 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DE E), acyclic ethers such as ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, trimethyl phosphate, triethyl phosphate, and phosphoric acid Examples thereof include alkyl phosphate esters such as trioctyl and fluorides thereof, and these are used alone or in combination.

正極活物質112の突起115と負極活物質122の突起125は、それぞれ絶縁体113及び絶縁体123に絶縁するので、正極117と負極127が接触しショートすることがない。以上によって、容量は大きく、かつ、厚さが薄い電気化学キャパシタを得ることが可能である。   Since the protrusion 115 of the positive electrode active material 112 and the protrusion 125 of the negative electrode active material 122 are insulated from the insulator 113 and the insulator 123, respectively, the positive electrode 117 and the negative electrode 127 do not come into contact with each other and short-circuit. As described above, an electrochemical capacitor having a large capacity and a small thickness can be obtained.

次いで図1(A)と異なる構成を有する電気化学キャパシタ235及びその作製方法について、図1(B)、図4(A)〜図4(E)、図5(A)〜図5(E)を用いて説明する。   Next, an electrochemical capacitor 235 having a structure different from that in FIG. 1A and a manufacturing method thereof are described with reference to FIGS. 1B, 4A to 4E, and FIGS. 5A to 5E. Will be described.

正極集電体211の材料となる板状正極材料219上に、エッチング工程においてマスクとなる絶縁体217を複数形成する(図4(A)参照)。   A plurality of insulators 217 that serve as masks in the etching step are formed over the plate-like positive electrode material 219 that serves as the material of the positive electrode current collector 211 (see FIG. 4A).

板状正極材料219は、正極集電体111と同様の材料をを用いればよい。また絶縁体217は、絶縁体113と同様の材料及び作製方法を用いてばよい。   As the plate-like positive electrode material 219, a material similar to that of the positive electrode current collector 111 may be used. The insulator 217 may be formed using the same material and manufacturing method as the insulator 113.

次いで、絶縁体217をマスクとして、板状正極材料219をドライエッチング法で異方性エッチングを行う。これにより、突起247を複数有する正極集電体211を形成する(図4(B)参照)。図4(B)は断面図のため、正極集電体211は櫛状に示されている。しかし突起247が奥方向にも連なって形成されるので、正極集電体211は剣山のような形状を有する。   Next, using the insulator 217 as a mask, the plate-like positive electrode material 219 is anisotropically etched by a dry etching method. Thus, the positive electrode current collector 211 having a plurality of protrusions 247 is formed (see FIG. 4B). Since FIG. 4B is a cross-sectional view, the positive electrode current collector 211 is shown in a comb shape. However, since the protrusion 247 is formed continuously in the back direction, the positive electrode current collector 211 has a shape like a sword mountain.

板状正極材料219の材料のうち、ドライエッチングが難しい材料は、例えば、機械加工、スクリーン印刷、電解メッキ、ホットエンボス加工等の別の方法で、突起247を形成してもよい。さらにドライエッチングが可能な板状正極材料219であっても、これらの方法を用いて突起247を形成してもよい。   Of the materials of the plate-like positive electrode material 219, a material that is difficult to dry-etch may form the protrusions 247 by another method such as machining, screen printing, electrolytic plating, hot embossing, or the like. Furthermore, even if it is the plate-shaped positive electrode material 219 which can be dry-etched, you may form the protrusion 247 using these methods.

次いで、正極集電体211の突起247の先端上に存在する絶縁体217を除去する(図4(C)参照)。   Next, the insulator 217 existing on the tip of the protrusion 247 of the positive electrode current collector 211 is removed (see FIG. 4C).

次いで、複数の突起247を有する正極集電体211を覆って、正極活物質212を形成する(図4(D)参照)。正極活物質212は、板状正極活物質材料101と同様の材料を用いればよい。   Next, the positive electrode active material 212 is formed so as to cover the positive electrode current collector 211 having the plurality of protrusions 247 (see FIG. 4D). The positive electrode active material 212 may be formed using the same material as the plate-like positive electrode active material 101.

以上の工程により、正極集電体211及び正極活物質212により、複数の突起245が形成される。図4(D)は断面図のため、正極集電体211及び正極活物質212を含む突起245は櫛状に示されている。しかし突起245が奥方向にも連なって形成されるので、剣山のような形状となる。   Through the above steps, the plurality of protrusions 245 are formed by the positive electrode current collector 211 and the positive electrode active material 212. 4D is a cross-sectional view, the protrusion 245 including the positive electrode current collector 211 and the positive electrode active material 212 is shown in a comb shape. However, since the protrusion 245 is formed continuously in the back direction, it has a shape like a sword mountain.

また、突起245の上面から見た形状は、円、四角形、三角形、星型、五角形、六角形等を用いることができ、必要に応じて形状を決めればよい。   The shape of the protrusion 245 viewed from the top can be a circle, a rectangle, a triangle, a star, a pentagon, a hexagon, or the like, and the shape may be determined as necessary.

突起245は幅cと高さdを有しているが、幅eと高さfの比が3以上1000以下、好ましくは、10以上1000以下、例えば、幅eが1μm〜10μm、高さhが10μm〜100μm、さらに例えば幅eが1μm、高さhが10μmとなるとよい。   The protrusion 245 has a width c and a height d, but the ratio of the width e to the height f is 3 or more and 1000 or less, preferably 10 or more and 1000 or less, for example, the width e is 1 μm to 10 μm and the height h. 10 μm to 100 μm, and for example, the width e is preferably 1 μm and the height h is 10 μm.

次いで、突起245の先端表面上に、絶縁体213を形成する(図4(E)参照)。絶縁体213は、絶縁体113で説明した有機樹脂を用いインクジェット法等にて形成すればよい。以上にして正極241が作製される。   Next, an insulator 213 is formed over the tip surface of the protrusion 245 (see FIG. 4E). The insulator 213 may be formed using an organic resin described in the insulator 113 by an inkjet method or the like. Thus, the positive electrode 241 is manufactured.

また一方、負極集電体221の材料となる板状負極材料229上に、エッチング工程においてマスクとなる絶縁体227を複数形成する(図5(A)参照)。   On the other hand, a plurality of insulators 227 that serve as masks in the etching step are formed over the plate-like negative electrode material 229 that serves as the material of the negative electrode current collector 221 (see FIG. 5A).

板状負極材料229は、負極集電体121と同様の材料を用いればよい。絶縁体227は、絶縁体113と同様の材料及び同様の作製方法で形成すればよい。   As the plate-like negative electrode material 229, a material similar to that of the negative electrode current collector 121 may be used. The insulator 227 may be formed using a material similar to that of the insulator 113 and a similar manufacturing method.

次いで、絶縁体227をマスクとして、ドライエッチングが可能な板状負極材料229をドライエッチング法で異方性エッチングを行う。これにより、突起248を複数有する負極集電体221を形成する(図(B)参照)。図4(B)は断面図のため、負極集電体221は櫛状に示されている。しかし突起248が奥方向にも連なって形成されるので、負極集電体221は剣山のような形状を有する。   Next, using the insulator 227 as a mask, anisotropic etching is performed on the plate-shaped negative electrode material 229 capable of dry etching by a dry etching method. Thus, the negative electrode current collector 221 having a plurality of protrusions 248 is formed (see FIG. 5B). 4B is a cross-sectional view, the negative electrode current collector 221 is shown in a comb shape. However, since the protrusion 248 is formed continuously in the back direction, the negative electrode current collector 221 has a shape like a sword mountain.

板状負極材料229の材料のうち、ドライエッチングが難しい材料は、例えば、機械加工、スクリーン印刷、電解メッキ、ホットエンボス加工等の別の方法で、突起248を形成してもよい。さらにドライエッチングが可能な板状負極材料229であっても、これらの方法を用いて突起248を形成してもよい。   Of the materials of the plate-like negative electrode material 229, a material that is difficult to dry-etch may form the protrusions 248 by another method such as machining, screen printing, electrolytic plating, hot embossing, or the like. Furthermore, even if it is the plate-shaped negative electrode material 229 which can be dry-etched, you may form the protrusion 248 using these methods.

次いで、負極集電体221の突起248の先端上に存在する絶縁体227を除去する(図5(C)参照)。   Next, the insulator 227 existing on the tip of the protrusion 248 of the negative electrode current collector 221 is removed (see FIG. 5C).

次いで、複数の突起248を有する負極集電体221を覆って、負極活物質222を形成する(図5(D)参照)。負極活物質222は、板状負極活物質材料105と同様の材料を用いればよい。   Next, the negative electrode active material 222 is formed so as to cover the negative electrode current collector 221 having the plurality of protrusions 248 (see FIG. 5D). The negative electrode active material 222 may be formed using the same material as the plate-like negative electrode active material 105.

以上の工程により、負極集電体221及び負極活物質222により、複数の突起246が形成される。図5(D)は断面図のため、負極集電体221及び負極活物質222を含む突起246は櫛状に示されている。しかし突起246が奥方向にも連なって形成されるので、剣山のような形状となる。   Through the above steps, the plurality of protrusions 246 are formed by the negative electrode current collector 221 and the negative electrode active material 222. 5D is a cross-sectional view, the protrusion 246 including the negative electrode current collector 221 and the negative electrode active material 222 is shown in a comb shape. However, since the protrusion 246 is formed continuously in the back direction, it has a shape like a sword mountain.

また、突起246の上面から見た形状は、円、四角形、三角形、星型、五角形、六角形等を用いることができ、必要に応じて形状を決めればよい。また突起245に対応する形状を形成すればよい。   Further, the shape of the protrusion 246 viewed from the top can be a circle, a quadrangle, a triangle, a star, a pentagon, a hexagon, or the like, and the shape may be determined as necessary. In addition, a shape corresponding to the protrusion 245 may be formed.

突起246は幅gと高さhを有しているが、幅gと高さhの比が3以上1000以下、好ましくは、10以上1000以下、例えば、幅gが1μm〜10μm、高さhが10μm〜100μm、さらに例えば幅gが1μm、高さhが10μmとなるとよい。   The protrusion 246 has a width g and a height h, and the ratio of the width g to the height h is 3 to 1000, preferably 10 to 1000, for example, the width g is 1 μm to 10 μm, and the height h. 10 μm to 100 μm, and for example, the width g may be 1 μm and the height h may be 10 μm.

また、電気化学キャパシタの中でも、リチウムイオンキャパシタを作製する場合には、負極にリチウムイオンを添加するプレドーピング工程を行う。   Moreover, when producing a lithium ion capacitor among electrochemical capacitors, a pre-doping step of adding lithium ions to the negative electrode is performed.

次いで、突起246の先端表面上に、絶縁体223を形成する(図5(E)参照)。絶縁体223は、絶縁体113で説明した有機樹脂を用いインクジェット法等にて形成すればよい。以上にして負極242が作製される。   Next, an insulator 223 is formed over the tip surface of the protrusion 246 (see FIG. 5E). The insulator 223 may be formed using the organic resin described for the insulator 113 by an inkjet method or the like. In this way, the negative electrode 242 is manufactured.

次いで、正極241と負極242を対向させ、正極241の突起245と、負極242のの突起246が互い違い(交互)となるように配置する。このとき、正極241の突起245と負極活物質222、並びに、負極242の突起245と正極活物質212は、それぞれ絶縁体213並びに絶縁体223により絶縁されるように配置する。   Next, the positive electrode 241 and the negative electrode 242 are opposed to each other, and the protrusions 245 of the positive electrode 241 and the protrusions 246 of the negative electrode 242 are arranged alternately (alternately). At this time, the protrusion 245 and the negative electrode active material 222 of the positive electrode 241 and the protrusion 245 and the positive electrode active material 212 of the negative electrode 242 are disposed so as to be insulated by the insulator 213 and the insulator 223, respectively.

電解質232を正極241及び負極242の間の空間に配置する。以上により電気化学キャパシタ235を作製する。(図1(B)参照)。   The electrolyte 232 is disposed in a space between the positive electrode 241 and the negative electrode 242. Thus, the electrochemical capacitor 235 is produced. (See FIG. 1B).

また図1(A)及び図1(B)の構成とは異なる電気化学キャパシタ及びその作製方法を、図6(A)〜図6(D)及び図7(A)を用いて説明する。   Further, an electrochemical capacitor different from the structure in FIGS. 1A and 1B and a manufacturing method thereof will be described with reference to FIGS. 6A to 6D and FIG. 7A.

まず図4(A)〜図4(D)で述べられた作製工程に基づいて、突起245を有する正極集電体211及び正極活物質212を作製する。次いで、正極集電体211及び正極活物質212上に、絶縁層271を形成する(図6(A)参照)。   First, the positive electrode current collector 211 and the positive electrode active material 212 each having the protrusion 245 are manufactured based on the manufacturing process described with reference to FIGS. Next, the insulating layer 271 is formed over the positive electrode current collector 211 and the positive electrode active material 212 (see FIG. 6A).

絶縁層271は、絶縁体113の材料のうち有機樹脂を用いて形成すればよい。   The insulating layer 271 may be formed using an organic resin among the materials of the insulator 113.

次いで、絶縁層271と正極活物質212との間で選択比が異なるエッチャントを用いて、絶縁層271をエッチングする。絶縁層271のエッチングは、突起245の先端が露出し、かつ、隣り合う突起245の間の凹部に絶縁体272が残るように行う(図6(B)参照)。以上のようにして、正極237を形成する。   Next, the insulating layer 271 is etched using an etchant having a different selection ratio between the insulating layer 271 and the positive electrode active material 212. The insulating layer 271 is etched so that the tips of the protrusions 245 are exposed and the insulator 272 remains in the recesses between the adjacent protrusions 245 (see FIG. 6B). As described above, the positive electrode 237 is formed.

一方、まず図5(A)〜図5(D)で述べられた作製工程に基づいて、突起246を有する負極集電体221及び負極活物質222を作製する。次いで、負極集電体221及び負極活物質222上に、絶縁層273を形成する(図6(C)参照)。   On the other hand, first, the negative electrode current collector 221 and the negative electrode active material 222 having the protrusions 246 are manufactured based on the manufacturing steps described with reference to FIGS. Next, an insulating layer 273 is formed over the negative electrode current collector 221 and the negative electrode active material 222 (see FIG. 6C).

絶縁層273は、絶縁体113の材料のうち有機樹脂を用いて形成すればよい。   The insulating layer 273 may be formed using an organic resin among the materials of the insulator 113.

次いで、絶縁層273と負極活物質222との間で選択比が異なるエッチャントを用いて、絶縁層273をエッチングする。絶縁層273のエッチングは、突起246の先端が露出し、かつ、隣り合う突起246の間の凹部に絶縁体274が残るように行う(図6(D)参照)。以上のようにして、負極238を形成する。   Next, the insulating layer 273 is etched using an etchant having a different selection ratio between the insulating layer 273 and the negative electrode active material 222. The insulating layer 273 is etched so that the tips of the protrusions 246 are exposed and the insulator 274 remains in the recesses between the adjacent protrusions 246 (see FIG. 6D). As described above, the negative electrode 238 is formed.

次いで、正極237と負極238を対向させ、正極237の突起245と、負極238の突起246が互い違い(交互)となるように配置する。このとき、正極237の突起245と負極活物質222、並びに、負極238の突起245と正極活物質212は、それぞれ絶縁体274並びに絶縁体272により絶縁されるように配置する。   Next, the positive electrode 237 and the negative electrode 238 are opposed to each other, and the protrusions 245 of the positive electrode 237 and the protrusions 246 of the negative electrode 238 are arranged alternately (alternately). At this time, the protrusion 245 and the negative electrode active material 222 of the positive electrode 237 and the protrusion 245 and the positive electrode active material 212 of the negative electrode 238 are arranged to be insulated by the insulator 274 and the insulator 272, respectively.

電解質275を正極237及び負極242の間の空間に配置する。以上により電気化学キャパシタ236を作製する。(図7(A)参照)。   An electrolyte 275 is disposed in a space between the positive electrode 237 and the negative electrode 242. Thus, the electrochemical capacitor 236 is produced. (See FIG. 7A).

また図1(A)、図1(B)及び図7(A)の構成とは異なる電気化学キャパシタ及びその作製方法を、図7(B)、図8(A)〜図8(B)、図9(A)〜図9(B)、図10(A)〜図10(B)、図11(A)〜図11(B)を用いて説明する。   Further, an electrochemical capacitor different from the structure of FIGS. 1A, 1B, and 7A and a manufacturing method thereof are illustrated in FIGS. 7B, 8A to 8B, This will be described with reference to FIGS. 9A to 9B, FIGS. 10A to 10B, and FIGS. 11A to 11B.

まず図4(A)〜図4(B)で述べられた作製工程に基づいて、突起247を有する正極集電体211、並びに、突起247上の絶縁体217を形成する。さらに正極集電体211及び絶縁体217を覆って、正極活物質251を形成する(図8(A)参照)。   First, the positive electrode current collector 211 having the protrusion 247 and the insulator 217 over the protrusion 247 are formed based on the manufacturing process described with reference to FIGS. Further, the positive electrode active material 251 is formed so as to cover the positive electrode current collector 211 and the insulator 217 (see FIG. 8A).

なお、突起247の上面から見た形状は、円、四角形、三角形、星型、五角形、六角形等を用いることができ、必要に応じて形状を決めればよい。   In addition, the shape seen from the upper surface of the protrusion 247 can be a circle, a square, a triangle, a star, a pentagon, a hexagon, or the like, and the shape may be determined as necessary.

次いで、正極活物質251上に、絶縁層252を形成する(図8(B)参照)。   Next, the insulating layer 252 is formed over the positive electrode active material 251 (see FIG. 8B).

絶縁層252は、絶縁体113の材料のうち有機樹脂を用いて形成すればよい。   The insulating layer 252 may be formed using an organic resin among the materials of the insulator 113.

次いで、絶縁層252及び正極活物質251、並びに、絶縁体217との間で選択比が異なるエッチャントを用い、絶縁層252及び正極活物質251をエッチングして、絶縁体254及び正極活物質253を得る。   Next, the insulating layer 252 and the positive electrode active material 251 are etched using the etchant having a selection ratio different from that of the insulating layer 252 and the positive electrode active material 251, and the insulator 217. obtain.

絶縁層252及び正極活物質251のエッチングは、絶縁体217が後の工程で正極活物質253と負極活物質263が絶縁できる程度の厚さになるように行う(図9(A)参照)。すなわち、絶縁体217の一部が露出しており、露出している絶縁体217の一部は正極活物質253に覆われていない。   The insulating layer 252 and the positive electrode active material 251 are etched so that the insulator 217 has a thickness that allows the positive electrode active material 253 and the negative electrode active material 263 to be insulated in a later step (see FIG. 9A). That is, part of the insulator 217 is exposed, and part of the exposed insulator 217 is not covered with the positive electrode active material 253.

次いで絶縁体254と正極活物質253との間で、選択比が異なるエッチャントを用い、絶縁体254をエッチングして除去する(図9(B)参照)。これにより正極255が作製される。   Next, the insulator 254 is etched and removed using etchants having different selectivity between the insulator 254 and the positive electrode active material 253 (see FIG. 9B). Thereby, the positive electrode 255 is manufactured.

一方、まず図5(A)〜図5(B)で述べられた作製工程に基づいて、突起248を有する負極集電体221、並びに、突起248上の絶縁体227を形成する。さらに負極集電体221及び絶縁体227を覆って、負極活物質261を形成する(図10(A)参照)。   On the other hand, first, the negative electrode current collector 221 having the protrusions 248 and the insulator 227 on the protrusions 248 are formed based on the manufacturing steps described with reference to FIGS. Further, the negative electrode active material 261 is formed so as to cover the negative electrode current collector 221 and the insulator 227 (see FIG. 10A).

また、突起248の上面から見た形状は、円、四角形、三角形、星型、五角形、六角形等を用いることができ、必要に応じて形状を決めればよい。また突起247に対応する形状を形成すればよい。   The shape of the protrusion 248 viewed from the top can be a circle, a quadrangle, a triangle, a star, a pentagon, a hexagon, or the like, and the shape may be determined as necessary. In addition, a shape corresponding to the protrusion 247 may be formed.

次いで、負極活物質261上に、絶縁層262を形成する(図10(B)参照)。   Next, the insulating layer 262 is formed over the negative electrode active material 261 (see FIG. 10B).

絶縁層262は、絶縁体113の材料のうち有機樹脂を用いて形成すればよい。   The insulating layer 262 may be formed using an organic resin among the materials of the insulator 113.

次いで、絶縁層262及び負極活物質261、並びに、絶縁体227との間で選択比が異なるエッチャントを用い、絶縁層262及び負極活物質261をエッチングして、絶縁体264及び負極活物質263を得る。   Next, the insulating layer 262 and the negative electrode active material 261 and the etchant having a selection ratio different from that of the insulator 227 are used to etch the insulating layer 262 and the negative electrode active material 261 so that the insulator 264 and the negative electrode active material 263 are obtained. obtain.

絶縁層262及び負極活物質261のエッチングは、絶縁体227が後の工程で正極活物質253と負極活物質263が絶縁できる程度の厚さになるように行う(図11(A)参照)。すなわち、絶縁体227の一部が露出しており、露出している絶縁体227の一部は負極活物質263に覆われていない。   The insulating layer 262 and the negative electrode active material 261 are etched so that the insulator 227 has a thickness enough to insulate the positive electrode active material 253 and the negative electrode active material 263 in a later step (see FIG. 11A). That is, part of the insulator 227 is exposed, and part of the exposed insulator 227 is not covered with the negative electrode active material 263.

次いで絶縁体264と負極活物質263との間で、選択比が異なるエッチャントを用い、絶縁体264をエッチングして除去する(図11(B)参照)。これにより負極265が作製される。   Next, the insulator 264 is etched away using an etchant having a different selectivity between the insulator 264 and the negative electrode active material 263 (see FIG. 11B). Thereby, the negative electrode 265 is manufactured.

次いで、正極255と負極265を対向させ、正極255の突起247上の絶縁体217と、負極265の突起248上の絶縁体227が互い違い(交互)となるように配置する。このとき、正極255の正極活物質253と負極265の負極活物質263は、絶縁体217並びに絶縁体227により絶縁されるように配置する。   Next, the positive electrode 255 and the negative electrode 265 are opposed to each other, and the insulator 217 on the protrusion 247 of the positive electrode 255 and the insulator 227 on the protrusion 248 of the negative electrode 265 are alternately arranged. At this time, the positive electrode active material 253 of the positive electrode 255 and the negative electrode active material 263 of the negative electrode 265 are disposed so as to be insulated by the insulator 217 and the insulator 227.

電解質257を正極255及び負極265の間の空間に配置する。以上により電気化学キャパシタ267を作製する。(図7(B)参照)。   An electrolyte 257 is disposed in a space between the positive electrode 255 and the negative electrode 265. Thus, an electrochemical capacitor 267 is manufactured. (See FIG. 7B).

101 板状正極活物質材料
105 板状負極活物質材料
111 正極集電体
112 正極活物質
113 絶縁体
115 突起
117 正極
121 負極集電体
122 負極活物質
123 絶縁体
125 突起
127 負極
132 電解質
135 電気化学キャパシタ
211 正極集電体
212 正極活物質
213 絶縁体
217 絶縁体
219 板状正極材料
221 負極集電体
222 負極活物質
223 絶縁体
227 絶縁体
229 板状負極材料
232 電解質
235 電気化学キャパシタ
236 電気化学キャパシタ
237 正極
238 負極
241 正極
242 負極
245 突起
246 突起
247 突起
248 突起
251 正極活物質
252 絶縁層
253 正極活物質
254 絶縁体
255 正極
257 電解質
261 負極活物質
262 絶縁層
263 負極活物質
264 絶縁体
265 負極
267 電気化学キャパシタ
271 絶縁層
272 絶縁体
273 絶縁層
274 絶縁体
275 電解質
101 plate-like positive electrode active material 105 plate-like negative electrode active material material 111 positive electrode current collector 112 positive electrode active material 113 insulator 115 protrusion 117 positive electrode 121 negative electrode current collector 122 negative electrode active material 123 insulator 125 protrusion 127 negative electrode 132 electrolyte 135 electricity Chemical capacitor 211 Positive electrode current collector 212 Positive electrode active material 213 Insulator 217 Insulator 219 Plate-like positive electrode material 221 Negative electrode current collector 222 Negative electrode active material 223 Insulator 227 Insulator 229 Plate-like negative electrode material 232 Electrolyte 235 Electrochemical capacitor 236 Electricity Chemical capacitor 237 Positive electrode 238 Negative electrode 241 Positive electrode 242 Negative electrode 245 Protrusion 246 Protrusion 247 Protrusion 248 Protrusion 251 Positive electrode active material 252 Insulating layer 253 Positive electrode active material 254 Insulator 255 Positive electrode 257 Electrolyte 261 Negative electrode active material 262 Insulating layer 263 Negative electrode active material 264 Insulator 2 5 negative 267 electrochemical capacitor 271 insulating layer 272 insulating 273 insulating layer 274 insulator 275 electrolyte

Claims (4)

正極集電体に接し、表面に凹凸構造を有する正極活性物質と、
前記正極活性物質の該凸部の先端部に設けられた第1の絶縁体と、
負極集電体に接し、表面に凹凸構造を有する負極活性物質と、
前記負極活性物質の該凸部の先端部に設けられた第2の絶縁体と、
前記正極集電体と前記負極集電体とが対向配置され、前記第1の絶縁体と前記第2の絶縁体が介在して、前記正極活性物質と前記負極活性物質の凸部と凹部が直接接触しないように噛み合って形成された空間部に設けられ、リチウムイオンを含む電解質と、
を有することを特徴とする電気化学キャパシタ。
A positive electrode active material in contact with the positive electrode current collector and having a concavo-convex structure on the surface;
A first insulator provided at a tip of the convex portion of the positive electrode active material;
A negative electrode active material in contact with the negative electrode current collector and having an uneven structure on the surface;
A second insulator provided at the tip of the convex portion of the negative electrode active material;
The positive electrode current collector and the negative electrode current collector are arranged to face each other, the first insulator and the second insulator are interposed, and the positive electrode active material, the convex portion and the concave portion of the negative electrode active material are provided. An electrolyte containing lithium ions provided in a space formed by meshing so as not to be in direct contact;
An electrochemical capacitor comprising:
表面に凹凸構造を有する正極集電体及び正極活性物質からなる正極と、
前記正極の該凸部の先端部に設けられた第1の絶縁体と、
表面に凹凸構造を有する負極集電体及び負極活性物質からなる負極と、
前記負極の該凸部の先端部に設けられた第2の絶縁体と、
前記正極と前記負極とが対向配置され、前記第1の絶縁体と前記第2の絶縁体が介在して、前記正極と前記負極の凸部と凹部が直接接触しないように噛み合って形成された空間部に設けられ、リチウムイオンを含む電解質と、
を有することを特徴とする電気化学キャパシタ。
A positive electrode comprising a positive electrode current collector having a concavo-convex structure on the surface and a positive electrode active material;
A first insulator provided at a tip of the convex portion of the positive electrode;
A negative electrode current collector having a concavo-convex structure on the surface and a negative electrode comprising a negative electrode active material;
A second insulator provided at the tip of the convex portion of the negative electrode;
The positive electrode and the negative electrode are arranged to face each other, and the first insulator and the second insulator are interposed, and the positive electrode and the negative electrode are formed so as not to be in direct contact with each other. An electrolyte provided in the space and containing lithium ions;
An electrochemical capacitor comprising:
表面に凹凸構造を有する正極集電体及び正極活性物質からなる正極と、
前記正極の該凹部に設けられた第1の絶縁体と、
表面に凹凸構造を有する負極集電体及び負極活性物質からなる負極と、
前記負極の該凹部に設けられた第2の絶縁体と、
前記正極と前記負極とが対向配置され、前記第1の絶縁体と前記第2の絶縁体が介在して、前記正極と前記負極の凸部と凹部が直接接触しないように噛み合って形成された空間部に設けられ、リチウムイオンを含む電解質と、
を有することを特徴とする電気化学キャパシタ。
A positive electrode comprising a positive electrode current collector having a concavo-convex structure on the surface and a positive electrode active material;
A first insulator provided in the recess of the positive electrode;
A negative electrode current collector having a concavo-convex structure on the surface and a negative electrode comprising a negative electrode active material;
A second insulator provided in the recess of the negative electrode;
The positive electrode and the negative electrode are arranged to face each other, and the first insulator and the second insulator are interposed, and the positive electrode and the negative electrode are formed so as not to be in direct contact with each other. An electrolyte provided in the space and containing lithium ions;
An electrochemical capacitor comprising:
表面に凹凸構造を有する正極集電体と、
前記正極活集電体の該凸部の先端部に設けられた第1の絶縁体と、
前記正極集電体及び前記第1の絶縁体に接し、表面に凹凸構造を有する正極活物質と、
表面に凹凸構造を有する負極集電体と、
前記負極活集電体の該凸部の先端部に設けられた第2の絶縁体と、
前記負極集電体及び前記第2の絶縁体に接し、表面に凹凸構造を有する負極活物質と、
前記正極活物質と前記負極活物質とが対向配置され、前記第1の絶縁体と前記第2の絶縁体が介在して、前記正極活性物質と前記負極活性物質の凸部と凹部が直接接触しないように噛み合って形成された空間部に設けられ、リチウムイオンを含む電解質と、
を有することを特徴とする電気化学キャパシタ。
A positive electrode current collector having an uneven structure on the surface;
A first insulator provided at the tip of the convex portion of the positive electrode active current collector;
A positive electrode active material in contact with the positive electrode current collector and the first insulator and having a concavo-convex structure on the surface;
A negative electrode current collector having an uneven structure on the surface;
A second insulator provided at the tip of the convex portion of the negative electrode active current collector;
A negative electrode active material in contact with the negative electrode current collector and the second insulator and having a concavo-convex structure on the surface;
The positive electrode active material and the negative electrode active material are arranged to face each other, and the first insulator and the second insulator are interposed, so that the convex portion and the concave portion of the positive electrode active material and the negative electrode active material are in direct contact with each other. An electrolyte containing lithium ions, provided in a space formed so as not to mesh with each other,
An electrochemical capacitor comprising:
JP2009065970A 2009-03-18 2009-03-18 Method for producing electrochemical capacitor Expired - Fee Related JP5337546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009065970A JP5337546B2 (en) 2009-03-18 2009-03-18 Method for producing electrochemical capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009065970A JP5337546B2 (en) 2009-03-18 2009-03-18 Method for producing electrochemical capacitor

Publications (3)

Publication Number Publication Date
JP2010219392A true JP2010219392A (en) 2010-09-30
JP2010219392A5 JP2010219392A5 (en) 2012-04-12
JP5337546B2 JP5337546B2 (en) 2013-11-06

Family

ID=42977886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009065970A Expired - Fee Related JP5337546B2 (en) 2009-03-18 2009-03-18 Method for producing electrochemical capacitor

Country Status (1)

Country Link
JP (1) JP5337546B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130035894A (en) 2011-09-30 2013-04-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Power storage device
KR20130064019A (en) * 2011-12-07 2013-06-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Negative electrode for lithium secondary battery, lithium secondary battery, and manufacturing methods thereof
JP2013149612A (en) * 2011-12-23 2013-08-01 Semiconductor Energy Lab Co Ltd Power storage device
CN103311554A (en) * 2012-03-06 2013-09-18 株式会社半导体能源研究所 Negative electrode for secondary battery and secondary battery
US8663841B2 (en) 2011-09-16 2014-03-04 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US8822088B2 (en) 2011-09-16 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9401247B2 (en) 2011-09-21 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
US9461300B2 (en) 2011-09-30 2016-10-04 Semiconductor Energy Laboratory Co., Ltd. Power storage device
KR20170023595A (en) * 2015-08-24 2017-03-06 주식회사 엘지화학 Electrode having lamellar structure and secondary battery containing the same
JP2018028970A (en) * 2016-08-15 2018-02-22 トヨタ自動車株式会社 Lithium-ion battery and method of manufacturing lithium-ion battery
JP2018055951A (en) * 2016-09-28 2018-04-05 日産自動車株式会社 Secondary battery
CN109478636A (en) * 2016-06-23 2019-03-15 荷兰应用科学研究会(Tno) The method for manufacturing lithium battery
KR20190035588A (en) * 2017-09-25 2019-04-03 한양대학교 에리카산학협력단 Electrode structure comprising barrier layer, and method of fabricating of the same
CN109817885A (en) * 2019-03-15 2019-05-28 湖北锂诺新能源科技有限公司 A kind of high-performance honeycomb lithium ion button shape cell
CN112420977A (en) * 2019-08-21 2021-02-26 比亚迪股份有限公司 Lithium battery and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774057A (en) * 1993-09-04 1995-03-17 Nagano Japan Radio Co Electrical double-layer capacitor and its manufacturing method
JP2005116248A (en) * 2003-10-06 2005-04-28 Nissan Motor Co Ltd Battery and vehicle mounting battery
JP2005149891A (en) * 2003-11-14 2005-06-09 Nissan Motor Co Ltd Bipolar battery and packed battery using the same
JP2008078119A (en) * 2006-08-25 2008-04-03 Ngk Insulators Ltd Totally solid storage element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774057A (en) * 1993-09-04 1995-03-17 Nagano Japan Radio Co Electrical double-layer capacitor and its manufacturing method
JP2005116248A (en) * 2003-10-06 2005-04-28 Nissan Motor Co Ltd Battery and vehicle mounting battery
JP2005149891A (en) * 2003-11-14 2005-06-09 Nissan Motor Co Ltd Bipolar battery and packed battery using the same
JP2008078119A (en) * 2006-08-25 2008-04-03 Ngk Insulators Ltd Totally solid storage element

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9911973B2 (en) 2011-09-16 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US8663841B2 (en) 2011-09-16 2014-03-04 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US8822088B2 (en) 2011-09-16 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9401247B2 (en) 2011-09-21 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
KR20130035894A (en) 2011-09-30 2013-04-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Power storage device
JP2013084588A (en) * 2011-09-30 2013-05-09 Semiconductor Energy Lab Co Ltd Power storage device
US9461300B2 (en) 2011-09-30 2016-10-04 Semiconductor Energy Laboratory Co., Ltd. Power storage device
KR20130064019A (en) * 2011-12-07 2013-06-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Negative electrode for lithium secondary battery, lithium secondary battery, and manufacturing methods thereof
US10026966B2 (en) 2011-12-07 2018-07-17 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for lithium secondary battery, lithium secondary battery, and manufacturing methods thereof
CN107180941B (en) * 2011-12-07 2021-01-05 株式会社半导体能源研究所 Negative electrode for lithium secondary battery, and method for producing same
JP2013235811A (en) * 2011-12-07 2013-11-21 Semiconductor Energy Lab Co Ltd Negative electrode for lithium secondary battery, lithium secondary battery, and method for manufacturing negative electrode for lithium secondary battery
CN107180941A (en) * 2011-12-07 2017-09-19 株式会社半导体能源研究所 Negative electrode for lithium secondary battery, lithium secondary battery and its manufacture method
JP2013149612A (en) * 2011-12-23 2013-08-01 Semiconductor Energy Lab Co Ltd Power storage device
CN103311554A (en) * 2012-03-06 2013-09-18 株式会社半导体能源研究所 Negative electrode for secondary battery and secondary battery
JP2013214501A (en) * 2012-03-06 2013-10-17 Semiconductor Energy Lab Co Ltd Negative electrode for secondary battery and secondary battery
KR20170023595A (en) * 2015-08-24 2017-03-06 주식회사 엘지화학 Electrode having lamellar structure and secondary battery containing the same
KR102036666B1 (en) * 2015-08-24 2019-10-28 주식회사 엘지화학 Electrode having lamellar structure and secondary battery containing the same
JP7037509B2 (en) 2016-06-23 2022-03-16 ネーデルランセ オルハニサチエ フォール トゥーヘパスト-ナツールウェーテンシャッペルック オンデルズク テーエヌオー Lithium battery manufacturing method
CN109478636A (en) * 2016-06-23 2019-03-15 荷兰应用科学研究会(Tno) The method for manufacturing lithium battery
JP2019519079A (en) * 2016-06-23 2019-07-04 ネーデルランセ オルハニサチエ フォール トゥーヘパスト−ナツールウェーテンシャッペルック オンデルズク テーエヌオーNederlandse Organisatie voor toegepast−natuurwetenschappelijk onderzoek TNO Method of manufacturing lithium battery
CN109478636B (en) * 2016-06-23 2022-03-22 荷兰应用科学研究会(Tno) Method for manufacturing lithium battery
DE102017114996B4 (en) 2016-08-15 2022-08-25 Toyota Jidosha Kabushiki Kaisha LITHIUM-ION BATTERY AND METHOD OF MAKING THE LITHIUM-ION BATTERY
JP2018028970A (en) * 2016-08-15 2018-02-22 トヨタ自動車株式会社 Lithium-ion battery and method of manufacturing lithium-ion battery
US10811653B2 (en) 2016-08-15 2020-10-20 Toyota Jidosha Kabushiki Kaisha Lithium ion battery and method for producing lithium ion battery
JP2018055951A (en) * 2016-09-28 2018-04-05 日産自動車株式会社 Secondary battery
KR20190035588A (en) * 2017-09-25 2019-04-03 한양대학교 에리카산학협력단 Electrode structure comprising barrier layer, and method of fabricating of the same
KR102195049B1 (en) 2017-09-25 2020-12-24 한양대학교 에리카산학협력단 Electrode structure comprising barrier layer, and method of fabricating of the same
CN109817885A (en) * 2019-03-15 2019-05-28 湖北锂诺新能源科技有限公司 A kind of high-performance honeycomb lithium ion button shape cell
CN112420977B (en) * 2019-08-21 2021-12-07 比亚迪股份有限公司 Lithium battery and preparation method thereof
CN112420977A (en) * 2019-08-21 2021-02-26 比亚迪股份有限公司 Lithium battery and preparation method thereof

Also Published As

Publication number Publication date
JP5337546B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5337546B2 (en) Method for producing electrochemical capacitor
JP6025915B2 (en) Power storage device
JP5463156B2 (en) Power storage device
JP4183401B2 (en) Method for manufacturing electrode for lithium secondary battery and lithium secondary battery
JP4236390B2 (en) Lithium secondary battery
JP4865673B2 (en) Lithium secondary battery
JP5436657B2 (en) Lithium ion secondary battery
JP2008171802A (en) Negative electrode for nonaqueous electrolyte secondary battery and its manufacturing method, and nonaqueous electrolyte secondary battery using the same
JPWO2008023733A1 (en) Anode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2010086717A (en) Electrode for lithium secondary battery, and lithium secondary cell
JP2010267540A (en) Nonaqueous electrolyte secondary battery
WO2017138382A1 (en) Positive electrode for lithium ion secondary battery, lithium ion secondary battery, and method of producing and method of evaluating positive electrode for lithium ion secondary battery
WO2015087580A1 (en) Production method for secondary battery
KR100985648B1 (en) Negative electrode for non-aqueous electrolyte secondary battery, method for manufacturing the same, and non-aqueous electrolyte secondary battery using the same
JP2011096646A (en) Manufacturing method for electrode for power storage device, and manufacturing method for power storage device
JP4433163B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JPWO2017149927A1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2008300255A (en) Electrode for electrochemical element and electrochemical element using it
JP5913611B2 (en) Sealed battery and method for manufacturing the same
JP2008198462A (en) Non-aqueous electrolyte secondary battery
JP2009032408A (en) Secondary battery separator
JP5372589B2 (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
JP2008277242A (en) Electrode for lithium secondary battery and lithium secondary battery
JP2007250499A (en) Lithium ion secondary battery
JP2008103231A (en) Electrode for lithium secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Ref document number: 5337546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees