JP2010216712A - Heat pipe - Google Patents

Heat pipe Download PDF

Info

Publication number
JP2010216712A
JP2010216712A JP2009063631A JP2009063631A JP2010216712A JP 2010216712 A JP2010216712 A JP 2010216712A JP 2009063631 A JP2009063631 A JP 2009063631A JP 2009063631 A JP2009063631 A JP 2009063631A JP 2010216712 A JP2010216712 A JP 2010216712A
Authority
JP
Japan
Prior art keywords
heat
wick
heat pipe
container
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009063631A
Other languages
Japanese (ja)
Inventor
Hideaki Tezuka
英昭 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2009063631A priority Critical patent/JP2010216712A/en
Publication of JP2010216712A publication Critical patent/JP2010216712A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pipe capable of suppressing generation of dryout and enhancing heat transfer capacity. <P>SOLUTION: The heat pipe includes: a cylindrical container (10) of which longitudinal direction is a direction for transferring heat; working fluid for transferring heat within the container (10); and a wick functional component (20) for circulating the working fluid in the heat transfer direction. The wick functional component (20) includes a coil-shaped member (21). Part or the entire of the coil-shaped member (21) is formed of shape memory alloy (22) formed so that the winding number becomes large in the evaporation temperature region and becomes small in the condensation temperature region. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、ヒートパイプに関する。特に、ドライアウトの発生を抑制し、熱の移動能力を高められるヒートパイプに関する。   The present invention relates to a heat pipe. In particular, the present invention relates to a heat pipe that can suppress the occurrence of dryout and increase the heat transfer capability.

ヒートパイプは、熱を移動させたい方向を長手方向とする筒状の容器と、その容器内で熱を移動させるための作動液と、その作動液を熱移動方向に循環させるための筒網状ウィックと、を備える。
前記の容器における一端側が高温部(蒸発部)、他端側が低温部(凝縮部)であり、前記の作動液は、高温部で蒸発し、低温部で凝結して液化する。
液化したら前記のウィックを伝って(毛細管現象)高温側に戻る、という循環を繰り返し、結果として、高温側の熱を低温側に移動させ、冷却している。
熱の移動量が最大となると、前記作動液は全て蒸発し、熱が移動できなくなる。これを「ドライアウト」と言う。
A heat pipe is a cylindrical container whose longitudinal direction is the direction in which heat is to be transferred, a hydraulic fluid for moving the heat in the container, and a cylindrical mesh wick for circulating the hydraulic fluid in the heat transfer direction. And comprising.
One end side of the container is a high temperature part (evaporation part) and the other end side is a low temperature part (condensation part), and the hydraulic fluid evaporates in the high temperature part and condenses and liquefies in the low temperature part.
When the liquid is liquefied, the circulation of returning to the high temperature side through the wick (capillary phenomenon) is repeated, and as a result, the heat on the high temperature side is moved to the low temperature side for cooling.
When the amount of heat transfer is maximized, all of the hydraulic fluid evaporates and heat cannot be transferred. This is called “dry out”.

ヒートパイプには、流体の蒸発及び凝縮を利用した自励振動型ヒートパイプと、蛇行する閉ループ流路に強制振動を与える逆位相式強制振動型ヒートパイプとがある。
自励振動型ヒートパイプは、自励振動に依存するため熱輸送量の制御が困難である。一方、逆位相式強制振動型ヒートパイプは、熱輸送能力を高めるためにターン数を増やす必要があるため、装置の小型化などには更なる熱輸送能力の向上が必要である。
There are two types of heat pipes: a self-excited vibration type heat pipe that utilizes evaporation and condensation of fluid, and an antiphase forced vibration type heat pipe that applies forced vibration to a meandering closed loop flow path.
Since the self-excited vibration type heat pipe depends on the self-excited vibration, it is difficult to control the amount of heat transport. On the other hand, since the antiphase forced vibration heat pipe needs to increase the number of turns in order to enhance the heat transport capability, further improvement of the heat transport capability is required for downsizing of the apparatus.

両タイプのヒートパイプに存在した課題を解決するため、特許文献1では、『第1 の流路を形成する細管と、振動機構と、オリフィス板、内管、円板と、前記細管内に充填される作動流体と、を有するヒートパイプであり、前記第1の流路内に、内管を挿入することで特殊二重管流路を形成するヒートパイプ』を開示している。
この技術により、『特殊二重管内に脈動流を発生させることができるため、従来技術に比べ高い熱輸送量を実現することができ、更に、装置を小型化することが可能となる』としている。
In order to solve the problems that existed in both types of heat pipes, Patent Document 1 states that “the narrow tube forming the first flow path, the vibration mechanism, the orifice plate, the inner tube, the circular plate, and the narrow tube are filled. A heat pipe that forms a special double-pipe flow path by inserting an inner pipe into the first flow path.
According to this technology, “It is possible to generate a pulsating flow in a special double pipe, so that it is possible to realize a higher amount of heat transport than the conventional technology, and it is possible to further reduce the size of the device”. .

特開2006−177652号公報Japanese Patent Application Laid-Open No. 2006-177652

前述した特許文献1に開示された技術でも、ドライアウトが発生してしまっては、熱を移動させることはできない。   Even with the technique disclosed in Patent Document 1 described above, heat cannot be transferred if dryout occurs.

そのドライアウトの発生を抑えられる構造があれば、熱を移動させられる最大量を増加させることができる。しかし、ドライアウトの発生を抑制するための構造を実現したヒートパイプは、従来技術からは発見できなかった。   If there is a structure that can prevent the occurrence of dryout, the maximum amount of heat that can be transferred can be increased. However, a heat pipe that realizes a structure for suppressing the occurrence of dryout could not be found from the prior art.

本発明が解決しようとする課題は、ドライアウトの発生を抑制するための構造を備えたヒートパイプを提供することにある。   The problem to be solved by the present invention is to provide a heat pipe having a structure for suppressing the occurrence of dryout.

(第一の発明)
本願の第一の発明は、 熱を移動させたい方向を長手方向とする筒状の容器(10)と、 その容器(10)内で熱を移動させるための作動液と、 その作動液を熱移動方向に循環させるために前記容器(10)の内側において長手方向に配置されるウィック機能部材(20)とを備える。 そのウィック機能部材(20)は、コイル状部材(21)を備える。 そのコイル状部材(21)は、蒸発温度域にて巻数が密となり、且つ凝縮温度域にて巻数が疎となるように形成された形状記憶合金(22)にて一部または全部を形成したヒートパイプである。
(First invention)
The first invention of the present application is a cylindrical container (10) whose longitudinal direction is a direction in which heat is desired to be transferred, a working liquid for moving heat in the container (10), and the working liquid to heat A wick functional member (20) disposed in the longitudinal direction inside the container (10) for circulation in the moving direction. The wick functional member (20) includes a coiled member (21). The coil-shaped member (21) is partially or entirely formed of a shape memory alloy (22) formed so that the number of turns is dense in the evaporation temperature range and the number of turns is sparse in the condensation temperature range. It is a heat pipe.

(用語説明)
形状記憶合金(22)にてコイル状部材(21)の全部を形成しない場合、すなわちコイル状部材(21)の一部を形状記憶合金(22)とした場合には、他の部分は、たとえばリン青銅にて形成する。 なお、コイルを形成する線の径は、0.1〜1.0ミリメートル程度である。
(Glossary)
When not forming all of the coil-shaped member (21) with the shape memory alloy (22), that is, when a part of the coil-shaped member (21) is a shape memory alloy (22), the other part is, for example, It is made of phosphor bronze. In addition, the diameter of the wire which forms a coil is about 0.1-1.0 millimeter.

(作用)
通常の状態では、コイル状部材(21)などのウィック機能部材(20)によって、蒸発温度域(吸熱領域)において作動液が気化し、蒸発温度域(吸熱領域)に接する容器(10)の外表面を介して熱を奪う。気化した作動液は、凝縮温度域(排熱領域)にて液化し、凝縮温度域(排熱領域)に接する容器(10)の外表面から熱を排出する。液化した作動液は、コイル状部材(21)などのウィック機能部材(20)を伝わって蒸発温度域(吸熱領域)に移動し、また気化する。
(Function)
Under normal conditions, the wick functional member (20) such as the coiled member (21) vaporizes the working fluid in the evaporation temperature range (endothermic region), and the outside of the container (10) in contact with the evaporation temperature range (endothermic region). Take heat away through the surface. The vaporized working fluid is liquefied in the condensation temperature region (exhaust heat region), and heat is discharged from the outer surface of the container (10) in contact with the condensation temperature region (exhaust heat region). The liquefied hydraulic fluid travels through the wick functional member (20) such as the coiled member (21), moves to the evaporation temperature range (heat absorption region), and vaporizes.

排熱の速度を超えて蒸発温度域が高熱になると、ドライアウト状態となる。その場合、形状記憶合金(22)にて形成された蒸発温度域のコイル状部材(21)は、縮んで巻数が密になる。形状記憶合金(22)は熱伝導率が低いため、容器(10)の外表面からの入熱が制限され、容器(10)内部の温度が低下する。その結果、ドライアウト状態が解消し、通常の状態に戻る。   When the temperature of the exhaust heat exceeds the speed of exhaust heat and the temperature of the evaporation becomes high, a dry-out state occurs. In that case, the coiled member (21) in the evaporation temperature region formed of the shape memory alloy (22) is contracted and the number of turns becomes dense. Since the shape memory alloy (22) has a low thermal conductivity, heat input from the outer surface of the container (10) is limited, and the temperature inside the container (10) decreases. As a result, the dryout state is canceled and the normal state is restored.

(第一の発明のバリエーション1)
第一の発明に係るヒートパイプにおいて、前記コイル状部材は、蒸発温度域側(吸熱域コイル22)を形状記憶合金とし、 凝縮温度域側(排熱域コイル23)をリン青銅製とすることが、より望ましい。
(Variation 1 of the first invention)
In the heat pipe according to the first aspect of the present invention, the coiled member is made of a shape memory alloy on the evaporation temperature region side (endothermic region coil 22) and made of phosphor bronze on the condensation temperature region side (exhaust heat region coil 23). Is more desirable.

(第一の発明のバリエーション2)
第一の発明に係るヒートパイプにおいて、コイル状部材は、蒸発温度域側を凝縮温度域側よりも熱伝導率が低くなるように形成すると、より望ましい。ドライアウト時に入熱が、更に制限されるからである。
(Variation 2 of the first invention)
In the heat pipe according to the first invention, it is more desirable that the coil-shaped member is formed such that the evaporation temperature region side has a lower thermal conductivity than the condensation temperature region side. This is because heat input is further limited during dryout.

(第一の発明のバリエーション3)
第一の発明に係るヒートパイプにおいて、前記のウィック機能部材(20)に、筒網状のウィック(図示を省略)を含むこととし、その筒網の筒内に前記コイル状部材(21)を位置させることもできる。
(Variation 3 of the first invention)
In the heat pipe according to the first aspect of the present invention, the wick functional member (20) includes a cylindrical net-like wick (not shown), and the coil-shaped member (21) is positioned in a cylinder of the cylindrical net. It can also be made.

(作用)
ウィック機能部材(20)が、一般に用いられる網筒状のウィックと、前記のコイル状部材(21)との組み合わせであるので、条件によっては排熱効率を高められる。
(Function)
Since the wick functional member (20) is a combination of a commonly used mesh tube wick and the coiled member (21), the heat exhaust efficiency can be increased depending on conditions.

(第一の発明のバリエーション4)
第一の発明に係るヒートパイプにおいて、前記のウィック機能部材(20)には、長手方向に垂直な軸に対する螺旋を描く形状に形成したねじり板(25)を含み、 そのねじり板(25)は、前記コイル状部材(21)の内側に位置させることもできる。
(Variation 4 of the first invention)
In the heat pipe according to the first invention, the wick functional member (20) includes a torsion plate (25) formed in a shape drawing a spiral with respect to an axis perpendicular to the longitudinal direction, and the torsion plate (25) is The coil-shaped member (21) can be positioned inside.

(第二の発明)
本願における第二の発明は、 熱を移動させたい方向を長手方向とする筒状の容器(10)と、 その容器(10)内で熱を移動させるための作動液と、 その作動液を熱移動方向に循環させるために前記容器(10)の内側において長手方向に配置されるウィック機能部材(20)と、を備え、 そのウィック機能部材(20)は、長手方向に垂直な軸に対する螺旋を描く形状に形成したねじり板(25)を含み、 そのねじり板(25)は、前記筒網状のウィックの筒内中心に位置させたヒートパイプに係る。
(Second invention)
The second invention in the present application is a cylindrical container (10) whose longitudinal direction is the direction in which heat is desired to be transferred, a working fluid for moving heat in the container (10), and the working fluid to heat the working fluid. A wick functional member (20) disposed longitudinally inside the container (10) for circulation in a moving direction, the wick functional member (20) having a helix with respect to an axis perpendicular to the longitudinal direction. The torsion plate (25) formed in a shape to be drawn is included, and the torsion plate (25) relates to a heat pipe positioned in the center of the cylinder-like wick.

(作用)
ウィック機能部材(20)が、一般に用いられる網筒状のウィックと、前記のねじり板(25)との組み合わせであるので、条件によっては排熱効率を高められる。
(Function)
Since the wick functional member (20) is a combination of a generally used mesh tube wick and the torsion plate (25), exhaust heat efficiency can be increased depending on conditions.

請求項1から請求項6に記載の発明によれば、ドライアウトの発生を抑制するための構造を備えたヒートパイプを提供することができた。   According to the invention described in claims 1 to 6, a heat pipe having a structure for suppressing the occurrence of dry-out can be provided.

第一の実施形態のヒートパイプにおける通常の状態を示す概略的断面図である。It is a schematic sectional drawing which shows the normal state in the heat pipe of 1st embodiment. 第一の実施形態のヒートパイプにおけるドライアウトの状態を示す概略的断面図である。It is a schematic sectional drawing which shows the state of the dryout in the heat pipe of 1st embodiment. 第二の実施形態のヒートパイプにおける通常の状態を示す概略的断面図である。It is a schematic sectional drawing which shows the normal state in the heat pipe of 2nd embodiment.

以下、本発明を図面に基づいて説明する。ここで使用する図面は、図1から図3である。図1および図2が第一の実施形態を示し、図3が第二の実施形態を示す。 図1は通常時、すなわち熱の移動が順調に行われている状態のヒートパイプを示し、図2はドライアウト時、すなわち熱の移動が行われにくくなっている状態のヒートパイプを示す。   Hereinafter, the present invention will be described with reference to the drawings. The drawings used here are FIGS. 1 to 3. 1 and 2 show the first embodiment, and FIG. 3 shows the second embodiment. FIG. 1 shows a heat pipe in a normal state, that is, a state where heat transfer is performed smoothly, and FIG. 2 shows a heat pipe in a dry-out state, that is, a state where heat transfer is difficult to be performed.

(第一の実施形態)
図1において容器10のヒートパイプ内が淡い色で内壁が濃い色で示されているのは、気化している作動液と液化した作動液のバランスがとれていることを示しており図2において容器10のヒートパイプ内の淡い色が消滅しているのは、一旦ドライアウト(すなわち作動液がすべて気化)したあと、本発明の形状記憶合金の作用による入熱の制限の効果により気化している作動液の割合が低い(蒸発した作動液の液化を促進した)ことを示している。
(First embodiment)
The fact that the inside of the heat pipe of the container 10 is shown in a light color and the inner wall is shown in a dark color in FIG. 1 indicates that the vaporized hydraulic fluid and the liquefied hydraulic fluid are balanced. The light color in the heat pipe of the container 10 disappears once it is dry out (that is, all the working fluid is vaporized) and then vaporized due to the effect of the heat input restriction by the action of the shape memory alloy of the present invention. It is shown that the ratio of the working fluid is low (the liquefaction of the evaporated working fluid was promoted).

そのコイル状部材21は、容器10の内壁に接するように配置され、蒸発温度域にて巻数が密となり、且つ凝縮温度域にて巻数が疎となるように形成されている。具体的には蒸発温度域に位置する吸熱域コイル22は形状記憶合金にて形成し、排熱域コイル23はリン青銅にて、一体に形成している。全体の長さにおいて、吸熱域コイル22である形状記憶合金を約四分の一とし、リン青銅にて形成する部位が残りとなるのが、費用対効果の面で合理的である。   The coil-shaped member 21 is disposed so as to be in contact with the inner wall of the container 10 and is formed so that the number of turns is dense in the evaporation temperature range and the number of turns is sparse in the condensation temperature range. Specifically, the endothermic region coil 22 located in the evaporation temperature region is formed of a shape memory alloy, and the exhaust heat region coil 23 is integrally formed of phosphor bronze. It is reasonable from the viewpoint of cost effectiveness that the shape memory alloy that is the endothermic coil 22 is reduced to about a quarter of the entire length and the portion formed of phosphor bronze remains.

通常時の吸熱領域においては、吸熱域のコイル22の巻数が疎であり、ドライアウト時の吸熱領域においては、吸熱域のコイル22の巻数が密となる。換言すれば、通常時の排熱領域のコイル23は、吸熱域のコイル22が伸張し、相対的に縮められており、ドライアウト時の排熱領域のコイル23は伸張し、吸熱域のコイル22を縮めている。   In the normal endothermic region, the number of turns of the coil 22 in the endothermic region is sparse, and in the endothermic region during the dryout, the number of turns of the coil 22 in the endothermic region is dense. In other words, the coil 23 in the exhaust heat region at the normal time is expanded relatively with the coil 22 in the heat absorption region, and the coil 23 in the heat exhaust region at the time of dryout is expanded, and the coil in the heat absorption region is expanded. 22 is shortened.

ドライアウト時においては、吸熱域コイル22の巻数が密になり、一時的に入熱が制限されるため排熱の効果が高まり、ヒートパイプ内の温度が低下する。このため、ドライアウト状態を解消することができる。   At the time of dry-out, the number of turns of the endothermic coil 22 becomes dense and the heat input is temporarily limited, so that the effect of exhaust heat is increased and the temperature in the heat pipe is decreased. For this reason, a dry-out state can be eliminated.

なお、吸熱域コイル22を形成している形状記憶合金は、収縮時の入熱制限をより行いやすくするため、熱伝導率の低い、たとえばテフロン(登録商標)など非常に熱伝導率が低い耐熱性高分子材料によって被覆されていることが望ましい。   Note that the shape memory alloy forming the endothermic coil 22 has a low heat conductivity, such as Teflon (registered trademark), for example. It is desirable to be coated with a conductive polymer material.

(第二の実施形態)
第二の実施形態は、第一の実施形態にて示したヒートパイプに対して、ウィック機能部材20を複合的に用いたものである。すなわち、前述のコイル状部材21の内側に、長手方向に垂直な軸に対する螺旋を描く形状に形成したねじり板25を備えたものである。
ねじり板25の存在により、容器内の流れが旋回流となり単に軸方向の流れだったものが径方向の速度成分が加わることになる。その結果、境界層厚さが減少し熱伝達率が向上するため、吸熱及び排熱の両方の伝熱が促進される。その結果、冷却能率が上がることになる。
(Second embodiment)
In the second embodiment, the wick functional member 20 is used in combination with the heat pipe shown in the first embodiment. That is, the torsion board 25 formed in the shape which draws the helix with respect to the axis | shaft perpendicular | vertical to a longitudinal direction inside the above-mentioned coil-shaped member 21 is provided.
Due to the presence of the torsion plate 25, the flow in the container becomes a swirling flow, and the velocity component in the radial direction is added to the flow that is merely the flow in the axial direction. As a result, the boundary layer thickness is reduced and the heat transfer coefficient is improved, so that both heat absorption and exhaust heat transfer are promoted. As a result, the cooling efficiency is increased.

(第三の実施形態)
図示は省略するが、前述のねじり板25を単独のウィック機能部材20としたヒートパイプを提供することもできる。
(Third embodiment)
Although illustration is omitted, it is also possible to provide a heat pipe in which the twist plate 25 described above is used as a single wick functional member 20.

(第四の実施形態)
図示は省略するが、第一から第三の実施形態におけるウィック機能部材20に、一般のヒートパイプに用いられる筒網を組み合わせたヒートパイプを提供することもできる。
(Fourth embodiment)
Although illustration is omitted, it is also possible to provide a heat pipe in which a wick function member 20 in the first to third embodiments is combined with a cylinder network used for a general heat pipe.

本願発明は、ヒートパイプの製造業、ヒートパイプのメンテナンス業、ヒートパイプを用いるコンピュータや内燃機関の製造業などにおいて利用可能性を有する。   The present invention has applicability in a heat pipe manufacturing industry, a heat pipe maintenance industry, a computer using a heat pipe, an internal combustion engine manufacturing industry, and the like.

10 容器
20 ウィック機能部材
21 コイル状部材 22 高温域コイル
23 排熱域コイル 25 ねじり板
DESCRIPTION OF SYMBOLS 10 Container 20 Wick functional member 21 Coil-shaped member 22 High temperature region coil 23 Waste heat region coil 25 Torsion board

Claims (6)

熱を移動させたい方向を長手方向とする筒状の容器と、 その容器内で熱を移動させるための作動液と、 その作動液を熱移動方向に循環させるために前記容器の内側において長手方向に配置されるウィック機能部材とを備え、
そのウィック機能部材は、コイル状部材を備え、
そのコイル状部材は、蒸発温度域にて巻数が密となり、且つ凝縮温度域にて巻数が疎となるように形成された形状記憶合金にて一部または全部を形成したヒートパイプ。
A cylindrical container whose longitudinal direction is the direction in which heat is to be transferred, a working fluid for moving the heat in the container, and a longitudinal direction inside the container for circulating the working fluid in the heat moving direction And a wick functional member disposed on the
The wick functional member comprises a coiled member,
The coil-shaped member is a heat pipe in which a part or the whole is formed of a shape memory alloy formed so that the number of turns is dense in the evaporation temperature range and the number of turns is sparse in the condensation temperature range.
前記コイル状部材は、蒸発温度域側を形状記憶合金とし、 凝縮温度域側をリン青銅製とした請求項1に記載のヒートパイプ。   The heat pipe according to claim 1, wherein the coiled member is made of a shape memory alloy on the evaporation temperature region side and made of phosphor bronze on the condensation temperature region side. コイル状部材は、蒸発温度域側を凝縮温度域側よりも熱伝導率が低くなるように形成した請求項1または請求項2のいずれかに記載のヒートパイプ。   The heat pipe according to any one of claims 1 and 2, wherein the coiled member is formed such that the evaporation temperature region side has a lower thermal conductivity than the condensation temperature region side. 前記のウィック機能部材には、筒網状のウィックを含むこととし、その筒網の筒内に前記コイル状部材を位置させた請求項1から請求項3のいずれかに記載のヒートパイプ。   The heat pipe according to any one of claims 1 to 3, wherein the wick functional member includes a cylindrical net-like wick, and the coil-shaped member is positioned in a cylinder of the cylindrical net. 前記のウィック機能部材には、長手方向に垂直な軸に対する螺旋を描く形状に形成したねじり板を含み、
そのねじり板は、前記コイル状部材の内側に位置させた請求項1から請求項3のいずれかに記載のヒートパイプ。
The wick function member includes a torsion plate formed in a spiral shape with respect to an axis perpendicular to the longitudinal direction,
The heat pipe according to any one of claims 1 to 3, wherein the torsion plate is positioned inside the coiled member.
熱を移動させたい方向を長手方向とする筒状の容器と、
その容器内で熱を移動させるための作動液と、
その作動液を熱移動方向に循環させるために前記容器の内側において長手方向に配置されるウィック機能部材と、を備え、
そのウィック機能部材は、長手方向に垂直な軸に対する螺旋を描く形状に形成したねじり板を含み、そのねじり板は、前記筒網状のウィックの筒内中心に位置させたヒートパイプ。
A cylindrical container whose longitudinal direction is the direction in which heat is to be transferred;
A hydraulic fluid for transferring heat in the container;
A wick functional member disposed longitudinally inside the container to circulate the hydraulic fluid in the heat transfer direction, and
The wick functional member includes a torsion plate formed in a shape that draws a spiral with respect to an axis perpendicular to the longitudinal direction, and the torsion plate is a heat pipe positioned at the center of the cylinder-like wick.
JP2009063631A 2009-03-16 2009-03-16 Heat pipe Pending JP2010216712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009063631A JP2010216712A (en) 2009-03-16 2009-03-16 Heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009063631A JP2010216712A (en) 2009-03-16 2009-03-16 Heat pipe

Publications (1)

Publication Number Publication Date
JP2010216712A true JP2010216712A (en) 2010-09-30

Family

ID=42975749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009063631A Pending JP2010216712A (en) 2009-03-16 2009-03-16 Heat pipe

Country Status (1)

Country Link
JP (1) JP2010216712A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070863A (en) * 2012-10-01 2014-04-21 Fujikura Ltd Wick structure, and its process of manufacture
CN104454461A (en) * 2013-08-20 2015-03-25 英格索尔-兰德公司 Compressor system with thermally active heat exchanger
KR20160113103A (en) * 2014-01-28 2016-09-28 포노닉 디바이시즈, 인크. Mechanism for mitigating high heat-flux conditions in a thermosiphon evaporator or condenser
US11459127B2 (en) 2018-04-17 2022-10-04 Raytheon Company Integrated thermal energy transport and storage structures

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070863A (en) * 2012-10-01 2014-04-21 Fujikura Ltd Wick structure, and its process of manufacture
CN104454461A (en) * 2013-08-20 2015-03-25 英格索尔-兰德公司 Compressor system with thermally active heat exchanger
CN104454461B (en) * 2013-08-20 2018-11-06 英格索尔-兰德公司 Compressor assembly with heat activatable heat exchanger
KR20160113103A (en) * 2014-01-28 2016-09-28 포노닉 디바이시즈, 인크. Mechanism for mitigating high heat-flux conditions in a thermosiphon evaporator or condenser
JP2017510778A (en) * 2014-01-28 2017-04-13 フォノニック デバイセズ、インク Mechanisms to reduce high heat flux conditions in thermosyphon evaporators or condensers
KR102291447B1 (en) * 2014-01-28 2021-08-18 포노닉, 인크. Mechanism for mitigating high heat-flux conditions in a thermosiphon evaporator or condenser
US11459127B2 (en) 2018-04-17 2022-10-04 Raytheon Company Integrated thermal energy transport and storage structures

Similar Documents

Publication Publication Date Title
US10184729B2 (en) Heat pipe
JP6560425B1 (en) heat pipe
JP5117101B2 (en) Evaporator and circulating cooling device using the same
US8590601B2 (en) Sintered heat pipe
KR20020072344A (en) The heat pipe with woven-wire wick and straight wire wick
JP2007120935A (en) Heat transfer tube
JP2011043320A (en) Flattened heat pipe, and method of manufacturing the same
JP2019184219A (en) Reflow heat pipe with liquid bullet pipe conduit
TWI585358B (en) Heat pipe and method for manufacturing the same
JP2010216712A (en) Heat pipe
US20220341681A1 (en) Heat pipe
JP2005180907A (en) Internally enhanced tube with smaller groove top
US20090178785A1 (en) Composite heat pipe structure
JP3140425B2 (en) Heat pipe manufacturing method
CN104634147A (en) Pulsating heat pipe with micro-groove structure
US11892243B2 (en) Heat pipe with capillary structure
JP2013242135A (en) Heat pipe
US20160153722A1 (en) Heat pipe
JP3175221U (en) Heat pipe structure
JP2009115346A (en) Heat pipe
US20120043059A1 (en) Loop heat pipe
JPS5816187A (en) Heat transfer device
JP5636803B2 (en) Loop heat pipe and electronic equipment
RU2502931C2 (en) Double-pipe heat exchanger
JP6960651B2 (en) Electronics, heat exchangers and evaporators