JP2010215944A - Shot for peening, and method for producing the shot - Google Patents

Shot for peening, and method for producing the shot Download PDF

Info

Publication number
JP2010215944A
JP2010215944A JP2009061716A JP2009061716A JP2010215944A JP 2010215944 A JP2010215944 A JP 2010215944A JP 2009061716 A JP2009061716 A JP 2009061716A JP 2009061716 A JP2009061716 A JP 2009061716A JP 2010215944 A JP2010215944 A JP 2010215944A
Authority
JP
Japan
Prior art keywords
chromium
peening
shot
iron
nickel alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009061716A
Other languages
Japanese (ja)
Inventor
Shohei Kawano
昌平 川野
Ayaka Kawagishi
礼佳 川岸
Hiroyuki Miyasaka
広幸 宮坂
Minoru Obata
稔 小畑
Nobukazu Suezono
暢一 末園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009061716A priority Critical patent/JP2010215944A/en
Publication of JP2010215944A publication Critical patent/JP2010215944A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shot for peening which simultaneously form a compressive residual stress layer and a coating layer of a highly corrosion resistant element, and can improve the corrosion resistance of the material in a high temperature-high pressure water environment, and to provide a method for producing the same. <P>SOLUTION: The shot for peening is made of an iron-chromium-nickel alloy, which is used for a surface modification method where a compressive residual stress layer is formed on the surface layer of a material, and chromium as an element having high corrosion resistance is applied to the surface of the material; wherein the content of chromium in the surface layer 2 of the shot to be used is higher than that in the central part 1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はショットピーニング法により材料の表面に残留圧縮応力を付与するためのショットピーニング用ショットおよびそのショットの製造方法に関する。 The present invention relates to a shot for shot peening for applying a residual compressive stress to the surface of a material by a shot peening method, and a method for manufacturing the shot.

原子炉炉内構造物は高温高圧水中において耐食性に優れるオーステナイト系ステンレス鋼やニッケル基合金が使用されるが、引張応力が残留する溶接部あるいは機械加工を受けた部材で応力腐食割れ(SCC)が発生する可能性があることが知られている。   Austenitic stainless steel or nickel-base alloy that has excellent corrosion resistance in high-temperature and high-pressure water is used for the reactor internal structure. However, stress corrosion cracking (SCC) occurs in welded parts with residual tensile stress or machined parts. It is known that it can occur.

その対策として、より耐SCC性の高い材料の採用、及び、水質制御あるいは残留応力改善によりSCCの発生を未然に防止する対策が行われてきている。特に、SCCの一要因である引張残留応力を圧縮に変換することによりSCCの発生を抑制する目的で、ピーニングと呼ばれる応力改善プロセスが開発され、適用されている(特許文献1参照)。 As countermeasures, countermeasures have been taken to prevent the occurrence of SCC by adopting a material having higher SCC resistance and controlling water quality or improving residual stress. In particular, a stress improvement process called peening has been developed and applied for the purpose of suppressing the occurrence of SCC by converting tensile residual stress, which is a factor of SCC, into compression (see Patent Document 1).

また、原子力分野に限らず腐食環境で使用される機器、部品の信頼性向上、寿命延長の目的で表面に高耐食性を有する表面層を形成する技術が公開されている(特許文献2参照)。さらに、自動車などの輸送機器や回転機器に使用される摺動性を要求される部品に対して、レーザピーニングによる表面改質方法を適用し表面の硬度あるいは潤滑性を改善する手法が公開されている(特許文献3参照)。また、超音波ピーニングにより材質改善コーティングを行う工法が公開されている(特許文献4参照)。 Moreover, the technique which forms the surface layer which has high corrosion resistance on the surface for the purpose of the reliability improvement of not only the nuclear field but the apparatus used in a corrosive environment, components, and lifetime extension is disclosed (refer patent document 2). Furthermore, a method for improving surface hardness or lubricity by applying a surface modification method by laser peening to parts that require sliding properties used in transportation equipment and rotating equipment such as automobiles has been released. (See Patent Document 3). In addition, a method for performing material improvement coating by ultrasonic peening has been disclosed (see Patent Document 4).

米国特許第6993948号公報US Pat. No. 6,993,948 特開2000−34581JP 2000-34581 A 特開2006−320907JP 2006-320907 A 特開2007−197764JP2007-197764A

商用軽水炉として沸騰水型原子炉(BWR)と加圧水型原子炉(PWR)が国内外で稼働中であるが、主要機器はいずれも高温高圧水環境に曝されている。特に、運転開始から長期間経過した高経年化プラントでは、応力腐食割れ(SCC)という残留応力、環境、材質劣化が重畳して発生する損傷事例が報告されている。残留応力は主に構造物溶接部に発生する引張残留応力であり、環境因子としてはBWRの場合、溶存酸素、各種不純物、PWRにおいては温度、特定濃度範囲の水素がその要因として挙げられている。また、材質面では粒界近傍のクロム濃度の低下が一因と言われている。   Boiling water reactors (BWR) and pressurized water reactors (PWR) are operating in Japan and abroad as commercial light water reactors, but all major equipment is exposed to high-temperature and high-pressure water environments. In particular, in an aging plant that has been in operation for a long time since the start of operation, there has been reported an example of damage caused by superposition of residual stress, environment, and material deterioration called stress corrosion cracking (SCC). Residual stress is mainly the tensile residual stress generated in the welds of structures. In the case of BWR, environmental factors include dissolved oxygen, various impurities, temperature in PWR, and hydrogen in a specific concentration range. . Moreover, it is said that the decrease in the chromium concentration in the vicinity of the grain boundary is partly due to the material.

SCC対策としてBWR、PWRとも各種対策工法が開発され実機に適用されている。残留応力因子を抑制する立場からはピーニング工法がBWR、PWR両プラントで適用されてきている。 As a countermeasure against SCC, various countermeasure methods for BWR and PWR have been developed and applied to actual machines. From the standpoint of suppressing the residual stress factor, the peening method has been applied to both BWR and PWR plants.

古くはPWRの蒸気発生器(SG)のSCC対策としてショットピーニング(SP)が適用され、その効果が実証されてきている。また、BWR、PWRの炉内機器の残留応力改善技術としては遠隔施工性に優れたレーザピーニング(LP)やウォータジェットピーニング(WJP)が実用化されている。また、環境因子抑制の点からは、BWRプラントにおける水素注入による溶存酸素濃度の低減や、ノーブルメタル注入技術が適用され、その効果が実証されつつある。さらに、材質面の改善として、従来の材料と比較して高クロム化を計ったニッケル基溶接金属の適用、あるいは高クロムニッケル基合金が開発されPWRの取替え機器などに適用されてきている。 In the old days, shot peening (SP) has been applied as an SCC countermeasure for the steam generator (SG) of PWR, and its effect has been demonstrated. Laser peening (LP) and water jet peening (WJP), which are excellent in remote workability, have been put to practical use as a residual stress improvement technique for in-furnace equipment of BWR and PWR. Moreover, from the point of environmental factor suppression, the reduction of the dissolved oxygen concentration by the hydrogen injection in a BWR plant and the noble metal injection technique are applied, and the effect is being demonstrated. Furthermore, as a material improvement, the application of a nickel-base weld metal with higher chromium compared to conventional materials, or a high-chromium nickel-base alloy has been developed and applied to PWR replacement devices and the like.

しかしながら、いずれの工法も3因子のうちの1因子のみを改善するものであり、機器によっては製造履歴により不可避的に形成される機械加工層、運転中の熱、外部負荷履歴などの影響が重なることによりSCCが誘発される懸念もある。したがって、複数の因子を同時に低コストで改善できるプロセスが開発されれば、より確実なSCCの発生防止が可能となり、原子炉機器の信頼性向上につながり、経済性の高いプラントの実現に貢献することができる。 However, each method improves only one of the three factors, and depending on the equipment, the influence of the machining layer inevitably formed by the manufacturing history, heat during operation, external load history, etc. overlap. There is also a concern that SCC is induced. Therefore, if a process that can improve multiple factors at the same time at low cost is developed, it will be possible to more reliably prevent the occurrence of SCC, improve the reliability of nuclear reactor equipment, and contribute to the realization of a highly economical plant. be able to.

本発明は上述した課題を解決するためになされたものであり、材料表面に圧縮残留応力層と、高耐食性元素のコーティング層とを同時に形成し、高温高圧水環境中において材料の耐食性を向上することができるピーニング用ショットおよびその製造方法を提案する。   The present invention has been made to solve the above-described problems, and simultaneously forms a compressive residual stress layer and a coating layer of a high corrosion resistance element on the surface of the material, thereby improving the corrosion resistance of the material in a high temperature and high pressure water environment. A peening shot and a method for manufacturing the same are proposed.

上記課題を解決するために、本発明においては、材料表層に圧縮残留応力層を形成させ、材料表面に高耐食性を有する元素であるクロムを付与する表面改質方法に使用する鉄−クロム−ニッケル合金製ピーニング用ショットであって、使用するショットの表面層のクロム量が中心部に比べて多いことを特徴とする鉄−クロム−ニッケル合金製ピーニング用ショット、および球状の鉄−クロム−ニッケル合金を真空中で加熱処理することにより、表面層のクロム量を多く含む表面層を形成させることを特徴とする上記ピーニング用ショットの製造方法を提供する。 In order to solve the above problems, in the present invention, an iron-chromium-nickel used in a surface modification method for forming a compressive residual stress layer on a material surface layer and imparting chromium, which is an element having high corrosion resistance, to the material surface. A shot for peening made of an iron-chromium-nickel alloy and a spherical iron-chromium-nickel alloy, characterized in that the amount of chromium in the surface layer of the shot used is higher than that of the center portion. The method for producing the peening shot is characterized in that a surface layer containing a large amount of chromium in the surface layer is formed by heat treatment in a vacuum.

本発明にかかるピーニング用ショットおよびそのショットの製造方法によって、材料表面に圧縮残留応力層と、高耐食性元素のコーティング層とを同時に形成し、高温高圧水環境中において材料の耐食性を向上させることができる。 By the peening shot according to the present invention and the manufacturing method of the shot, it is possible to simultaneously form a compressive residual stress layer and a coating layer of a high corrosion resistance element on the surface of the material, thereby improving the corrosion resistance of the material in a high temperature and high pressure water environment. it can.

本発明に係るピーニング用ショットの概念図を示し、(a)は縦断面図、(b)は(a)のA部拡大図、(c)は表面近傍のクロム量の分布図。The conceptual diagram of the shot for peening which concerns on this invention is shown, (a) is a longitudinal cross-sectional view, (b) is the A section enlarged view of (a), (c) is the distribution map of the chromium content of the surface vicinity. 本発明によるピーニング用ショット製造の流れを示すフロー図。The flowchart which shows the flow of the shot for peening manufacture by this invention. ショット表面にクロムを多く含む層が形成される原理の概念図を示し、(a)は縦断面図、(b)は(a)のC部拡大図、(c)は表面近傍のクロム量の分布図。The conceptual diagram of the principle in which the layer containing much chromium is formed on the shot surface is shown, (a) is a longitudinal sectional view, (b) is an enlarged view of C part of (a), (c) is the amount of chromium near the surface. Distribution map.

以下、本発明に係るショットおよび表面改質方法の実施例について、図面を参照して説明する。   Embodiments of the shot and surface modification method according to the present invention will be described below with reference to the drawings.

(実施例)
図1を用いて本発明に係わる実施例1を説明する。図1(a)は本発明に係るピーニング用ショットの断面を模式的に示した図である。なお、以下に示す成分の%は質量%を示している。
(Example)
A first embodiment according to the present invention will be described with reference to FIG. FIG. 1A is a diagram schematically showing a cross section of a peening shot according to the present invention. In addition,% of the component shown below has shown the mass%.

図1において例えばクロムを25.28%、ニッケルを19.38%、炭素を0.05%、マンガンを0.99%、ケイ素を0.75%、残部が鉄であるSUS310S製の略球状のショットを真空中で熱処理することにより、中心部1の材質がSUS310Sであり、表面層がクロムを多く含む層2となるピーニング用ショットを製造することができる。 In FIG. 1, for example, a substantially spherical shape made of SUS310S having 25.28% chromium, 19.38% nickel, 0.05% carbon, 0.99% manganese, 0.75% silicon, and the balance iron. By heat-treating the shot in vacuum, it is possible to manufacture a peening shot in which the material of the central portion 1 is SUS310S and the surface layer is the layer 2 containing a large amount of chromium.

図1(b)および(c)は、図1(a)のA部を拡大した表面近傍要部拡大図と、図1(b)におけるBラインにおけるクロム量と表面からの距離との関係を示した図である。 FIGS. 1B and 1C show an enlarged view of the main part in the vicinity of the surface obtained by enlarging part A in FIG. 1A, and the relationship between the amount of chromium and the distance from the surface in line B in FIG. FIG.

クロムを多く含む層2は、表面から5μmまでの範囲でクロム量が中心部に比べて高くなっている。表面部のクロム量が50%と最も大きく、表面からの距離が増加するに伴い、クロム量が原料であるSUS310Sの略25%に近づく。図1示した表面にクロムを多く含むショットをピーニングに使用することにより、材料表面に圧縮残留応力層を形成し、かつ、ショット表面層の移着による高耐食性元素のコーティング層を形成することが可能となる。このとき、高耐食性元素のコーティング層を形成するためには、クロムを多く含む表面層の厚さが少なくとも1μm以上必要である。 In the layer 2 containing a large amount of chromium, the amount of chromium is higher than that in the center in the range from the surface to 5 μm. The amount of chromium in the surface portion is as large as 50%, and as the distance from the surface increases, the amount of chromium approaches approximately 25% of SUS310S as a raw material. By using a shot containing a large amount of chromium on the surface shown in FIG. 1 for peening, a compressive residual stress layer can be formed on the surface of the material, and a coating layer of a high corrosion resistance element can be formed by transferring the shot surface layer. It becomes possible. At this time, in order to form the coating layer of the high corrosion resistance element, the thickness of the surface layer containing a large amount of chromium needs to be at least 1 μm or more.

また、本実施例ではクロムが50%の量で説明したがピーニング効果が得られる硬さではクロムの量が多ければ良く、多ければより短時間のショット加工時間で被加工表面のクロムの量を多くすることができる。このため最低限、被加工材表面のクロム濃度よりもクロムの濃度が高ければ良い。 In this embodiment, the amount of chromium is 50%. However, the hardness of the peening effect is sufficient if the amount of chromium is large. If it is large, the amount of chromium on the surface to be processed can be reduced in a shorter shot processing time. Can do a lot. For this reason, it is sufficient that the chromium concentration is higher than the chromium concentration on the surface of the workpiece.

図2は本発明におけるピーニング用ショットの製造方法のフロー図であり、はじめに鉄−クロム−ニッケル合金の素材(S1)から、球状のショットを作成する(S2)。例えば、SUS310S製の丸棒(φ3mm)を3mm長さに切断し、球状に加工するラウンドカット処理をすることにより、直径φ3mmの球状ショットを作成することができる。   FIG. 2 is a flowchart of a method for manufacturing a peening shot according to the present invention. First, a spherical shot is created from an iron-chromium-nickel alloy material (S1) (S2). For example, a round shot with a diameter of 3 mm can be created by cutting a round bar (φ3 mm) made of SUS310S into a length of 3 mm and processing it into a spherical shape.

次にショットを真空中で加熱処理する(S3)ことにより、ショット表面にクロムを多く含む層を形成することができる。ショットを真空中に保持する方法としては、真空チャンバーを有する加熱炉を用いる方法や、石英管にショットを真空封入する方法がある。このときの真空度は10-4Pa以下、加熱処理の温度は980〜1020℃、加熱処理時間は60〜80分間の条件が、クロムを多く含む層の形成に適した条件である。 Next, the shot is heat-treated in vacuum (S3), whereby a layer containing a large amount of chromium can be formed on the shot surface. As a method of holding the shot in vacuum, there are a method using a heating furnace having a vacuum chamber and a method of vacuum-sealing the shot in a quartz tube. At this time, the degree of vacuum is 10 −4 Pa or less, the temperature of the heat treatment is 980 to 1020 ° C., and the heat treatment time is 60 to 80 minutes, which is a suitable condition for forming a layer containing a large amount of chromium.

図3は、ショット表面にクロムを多く含む層が形成される原理を模式的に示す説明図である。なお、図3(b)および(c)は、図3(a)のA部を拡大した表面近傍要部拡大図と、図3(b)におけるDラインにおけるクロム量と表面からの距離との関係を示した図である。   FIG. 3 is an explanatory view schematically showing the principle of forming a layer containing a large amount of chromium on the shot surface. 3 (b) and 3 (c) are an enlarged view of the main part in the vicinity of the surface in which part A in FIG. 3 (a) is enlarged, and the amount of chromium in the D line in FIG. 3 (b) and the distance from the surface. It is the figure which showed the relationship.

クロムの蒸気圧は、鉄やニッケルに比べて大きい。例えば絶対温度1373Kで、クロムと鉄の蒸気圧は、それぞれ3.3×10−3Paと8.9×10−4Paである。 The vapor pressure of chromium is higher than that of iron or nickel. For example, at an absolute temperature of 1373 K, the vapor pressures of chromium and iron are 3.3 × 10 −3 Pa and 8.9 × 10 −4 Pa, respectively.

図3(a)に示す球状の鉄−クロム−ニッケル合金3を真空中で加熱すると、表面近傍において蒸気圧の大きいクロムが合金中から選択的に蒸発するため、図3(b)に示すように中心部から表面に向かってクロムが移動する。 When the spherical iron-chromium-nickel alloy 3 shown in FIG. 3 (a) is heated in a vacuum, chromium having a high vapor pressure is selectively evaporated from the alloy in the vicinity of the surface, and as shown in FIG. 3 (b). The chrome moves from the center to the surface.

図3(c)は表面近傍のクロム量分布であり、実線4は熱処理前のクロム量、破線5は熱処理後のクロム量分布を示す。蒸気圧の違いにより中心部から表面に向かってクロムが移動するため、表面近傍のクロム量が次第に大きくなる。このとき、真空度を10−4Pa以下とし、加熱処理の温度を980〜1020℃、加熱処理時間を60〜80分間とすると、ショット表面にクロム量の多い層が形成される。 FIG. 3C shows the chromium content distribution near the surface, the solid line 4 shows the chromium content before heat treatment, and the broken line 5 shows the chromium content distribution after heat treatment. Since chromium moves from the center toward the surface due to the difference in vapor pressure, the amount of chromium in the vicinity of the surface gradually increases. At this time, if the degree of vacuum is 10 −4 Pa or less, the temperature of the heat treatment is 980 to 1020 ° C., and the heat treatment time is 60 to 80 minutes, a layer with a large amount of chromium is formed on the shot surface.

なお、球状の鉄−クロム−ニッケル合金3の化学成分としては、SUS310Sの代わりに、熱処理によって表面にクロムが移動し、表面にクロム量の多い層が形成されるクロムを24〜26%、ニッケルを19〜22%含むSUS304や、クロムを16〜18%、ニッケルを10〜14%含むSUS316を用いてもよい。   In addition, as a chemical component of the spherical iron-chromium-nickel alloy 3, instead of SUS310S, chromium moves to the surface by heat treatment, and a layer having a large amount of chromium is formed on the surface. SUS304 containing 19 to 22%, or SUS316 containing 16 to 18% chromium and 10 to 14% nickel may be used.

1… 中心部
2… クロムを多く含む表面層
3… 球状の鉄−クロム−ニッケル合金
4… 熱処理前のクロム量分布
5… 熱処理後のクロム量分布
DESCRIPTION OF SYMBOLS 1 ... Center part 2 ... Surface layer containing many chromium 3 ... Spherical iron-chromium-nickel alloy 4 ... Chromium content distribution before heat processing 5 ... Chromium content distribution after heat processing

Claims (8)

材料表層に圧縮残留応力層を形成させ、材料表面に高耐食性を有する元素であるクロムを付与する表面改質方法に使用する鉄−クロム−ニッケル合金製ピーニング用ショットであって、使用するショットの表面層のクロム量が中心部に比べて多いことを特徴とする鉄−クロム−ニッケル合金製ピーニング用ショット。   An iron-chromium-nickel alloy peening shot used for a surface modification method in which a compressive residual stress layer is formed on the material surface layer and chromium, which is an element having high corrosion resistance, is provided on the material surface. An iron-chromium-nickel alloy peening shot characterized in that the amount of chromium in the surface layer is larger than that in the center. クロムを多く含む表面層の厚さが1μm以上であることを特徴とする請求項1記載のピーニング用ショット。   The peening shot according to claim 1, wherein the surface layer containing a large amount of chromium has a thickness of 1 µm or more. 球状の鉄−クロム−ニッケル合金を真空中で加熱処理することにより、表面層のクロム量を多く含む表面層を形成させることを特徴とする請求項1記載のピーニング用ショットの製造方法。   The method for producing a peening shot according to claim 1, wherein a surface layer containing a large amount of chromium in the surface layer is formed by heat-treating a spherical iron-chromium-nickel alloy in a vacuum. 前記加熱処理は、球状の鉄−クロム−ニッケル合金を10−4Pa以下の真空中で加熱することを特徴とする請求項3記載のピーニング用ショットの製造方法。 4. The method for producing a peening shot according to claim 3, wherein the heat treatment comprises heating a spherical iron-chromium-nickel alloy in a vacuum of 10 <-4> Pa or less. 前記加熱処理は、球状の鉄−クロム−ニッケル合金を980℃から1020℃の温度のいずれかの温度で60〜80分間、加熱することを特徴とする請求項3記載のピーニング用ショットの製造方法。   The method for producing a peening shot according to claim 3, wherein the heat treatment is performed by heating the spherical iron-chromium-nickel alloy at a temperature of 980 ° C to 1020 ° C for 60 to 80 minutes. . 前記球状の鉄−クロム−ニッケル合金の化学成分が、クロムを24〜26質量%、ニッケルを19〜22質量%含み残部鉄および不可避成分から成ることを特徴とする請求項3記載のピーニング用ショットの製造方法。   4. A peening shot according to claim 3, wherein the chemical component of the spherical iron-chromium-nickel alloy comprises 24-26% by mass of chromium and 19-22% by mass of nickel and the balance iron and inevitable components. Manufacturing method. 前記球状の鉄−クロム−ニッケル合金の化学成分が、クロムを18〜20質量%、ニッケルを8〜10.5質量%含み残部鉄および不可避成分から成ることを特徴とする請求項3記載のピーニング用ショットの製造方法。   4. The peening according to claim 3, wherein the chemical component of the spherical iron-chromium-nickel alloy comprises 18 to 20% by mass of chromium and 8 to 10.5% by mass of nickel, the balance being iron and inevitable components. Method for manufacturing shots. 前記球状の鉄−クロム−ニッケル合金の化学成分が、クロムを16〜18質量%、ニッケルを10〜14質量%含み残部鉄および不可避成分から成ることを特徴とする請求項3記載のピーニング用ショットの製造方法。   4. The peening shot according to claim 3, wherein the chemical component of the spherical iron-chromium-nickel alloy comprises 16 to 18% by mass of chromium and 10 to 14% by mass of nickel, the balance being iron and inevitable components. Manufacturing method.
JP2009061716A 2009-03-13 2009-03-13 Shot for peening, and method for producing the shot Pending JP2010215944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009061716A JP2010215944A (en) 2009-03-13 2009-03-13 Shot for peening, and method for producing the shot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009061716A JP2010215944A (en) 2009-03-13 2009-03-13 Shot for peening, and method for producing the shot

Publications (1)

Publication Number Publication Date
JP2010215944A true JP2010215944A (en) 2010-09-30

Family

ID=42975081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009061716A Pending JP2010215944A (en) 2009-03-13 2009-03-13 Shot for peening, and method for producing the shot

Country Status (1)

Country Link
JP (1) JP2010215944A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101422776B1 (en) * 2014-03-20 2014-07-28 (주)한국마루이 The prevention method of corrosion of austenitic stainless steel welds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101422776B1 (en) * 2014-03-20 2014-07-28 (주)한국마루이 The prevention method of corrosion of austenitic stainless steel welds

Similar Documents

Publication Publication Date Title
Ghosh et al. Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel
KR101393784B1 (en) Austenitic stainless steel
US8419868B2 (en) Process and method to increase the hardness of Fe-Cr-C weld overlay alloy
JP2009161802A (en) Highly corrosion-resistant austenitic stainless steel, nuclear power generation plant constructed by using the stainless steel, weld joint and structural member
KR100964172B1 (en) Method to prevent corrosion degradation using Ni-metal or Ni-alloy plating
Kim et al. Effects of heat treatment on mechanical properties and sensitization behavior of materials in dissimilar metal weld
Li et al. Failure analysis of reheater tubes in a 350 MW supercritical circulating fluidized bed boiler
JP4503483B2 (en) Material to be welded, welded structure using the same and high corrosion resistance austenitic stainless steel
Natesan et al. Preliminary materials selection issues for the next generation nuclear plant reactor pressure vessel.
JP2010215944A (en) Shot for peening, and method for producing the shot
JP6199725B2 (en) Piping connection method and piping connection structure
CA2926597C (en) Method for the in situ passivation of the steel surfaces of a nuclear reactor
JP4196755B2 (en) Pipe welded joint of low carbon stainless steel pipe and its manufacturing method
JP2009210285A (en) Reactor apparatus and its surface modification method
CN101537542B (en) 2.25Cr-1Mo steel butt joint welding structure with low welding residual stress
JP2007044698A (en) Welded structure, and welding method of structure
JP2014005509A (en) Highly corrosion-resistant austenitic stainless steel and weld joint structure
Mukhtar et al. Reactor pressure vessel (RPV) design and fabrication: a literature review
JP4026554B2 (en) Pipe welded joint of low carbon stainless steel pipe and its manufacturing method
JP2009287104A (en) Thin sheet of austenitic stainless steel and manufacturing method therefor
Kim A study of the heat treatment effect on the fatigue crack growth behavior in dissimilar weld metal joints of SA508 low-carbon steel and AISI316 austenitic stainless steel
Antunes et al. Stress corrosion cracking of structural nuclear materials: Influencing factors and materials selection
RU2559598C2 (en) Reconditioning of articles from low-carbon perlite steel after operation
Lee et al. Comparison of microstructure and residual stress affecting stress corrosion cracking susceptibility of austenitic stainless steel tubes
JP2006161114A (en) Austenitic stainless steel material and weld joint thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111205