JP2009161802A - Highly corrosion-resistant austenitic stainless steel, nuclear power generation plant constructed by using the stainless steel, weld joint and structural member - Google Patents

Highly corrosion-resistant austenitic stainless steel, nuclear power generation plant constructed by using the stainless steel, weld joint and structural member Download PDF

Info

Publication number
JP2009161802A
JP2009161802A JP2007341253A JP2007341253A JP2009161802A JP 2009161802 A JP2009161802 A JP 2009161802A JP 2007341253 A JP2007341253 A JP 2007341253A JP 2007341253 A JP2007341253 A JP 2007341253A JP 2009161802 A JP2009161802 A JP 2009161802A
Authority
JP
Japan
Prior art keywords
stainless steel
austenitic stainless
less
corrosion cracking
stress corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007341253A
Other languages
Japanese (ja)
Inventor
Makoto Ishibashi
良 石橋
Hideya Anzai
英哉 安齋
Akihiko Hirano
明彦 平野
Junya Kaneda
潤也 金田
Takahiko Kato
隆彦 加藤
Kyoji Obata
亨司 小畠
Masaru Iwanami
勝 岩波
Masato Koshiishi
正人 越石
Naoto Shigenaka
尚登 茂中
Haruo Fujimori
治男 藤森
Kazumi Fujii
和美 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2007341253A priority Critical patent/JP2009161802A/en
Publication of JP2009161802A publication Critical patent/JP2009161802A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To maintain the soundness of a structure of a nuclear reactor by inhibiting stress corrosion cracking even when a scar due to surface working remains on the surface when a plant has been manufactured. <P>SOLUTION: The austenitic stainless steel includes, by mass%, 17 to 20% Cr, 10 to 13% Ni, 0.001 to 0.020% C, 0.1 to 1.0% Si, 0.1 to 2.0% Mn, 0.035% or less P, 0.015% or less S, 0.01 to 3.0% Mo, 0.001 to 0.08% N, 0.01 to 2.5% Cu and the balance Fe with impurities; and has an M value of 590 to 760, which is calculated according to the expression 1: M=462×(C+N)+9.2×Si+8.1×Mn+13.7×Cr+29×(Ni+Cu)+18.5×Mo, and an S value of 24 to 45, which is calculated according to the expression 2: S=32.7+101×C-13×Si-1.2×Mn-0.9×Cr+2×Ni-5.3×Mo+0.1×Cu-179×N, wherein symbols for elements in the expressions represent mass% of each component. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は厳しい腐食環境にさらされ応力腐食割れが問題となる構造物の材料に用いて好適な高耐食性オーステナイト系ステンレス鋼に係り、特に原子力発電プラントの炉内構造物、高温水経路の配管、制御棒等の応力腐食割れを防止するのに好適な高耐食性オーステナイト系ステンレス鋼、ならびにそのステンレス鋼を用いて構成した原子力発電プラント、溶接継手および構造部材に関する。   The present invention relates to a highly corrosion-resistant austenitic stainless steel suitable for use as a material for structures exposed to severe corrosive environments where stress corrosion cracking is a problem, particularly in-furnace structures of nuclear power plants, piping for high-temperature water paths, The present invention relates to a highly corrosion-resistant austenitic stainless steel suitable for preventing stress corrosion cracking of control rods, etc., and a nuclear power plant, welded joint, and structural member configured using the stainless steel.

沸騰水型軽水炉の炉内構造物や再循環冷却水配管には、近年SUS316L鋼といった炭素含有量の低い、耐応力腐食割れ性の高いステンレス鋼(低炭素ステンレス鋼)が用いられている。   In recent years, stainless steel (low carbon stainless steel) having a low carbon content and high stress corrosion cracking resistance, such as SUS316L steel, has been used for the in-furnace structure of the boiling water light water reactor and the recirculation cooling water piping.

しかしながら、これらの炉内構造物や再循環冷却水配管等の、特に機械加工された表面の機械加工による引張応力が残留した部位においては、それが原子炉水に接する場所に配置された場合は、原子炉水の酸化性環境の作用により、運転中に応力腐食割れを引き起こす損傷事例が顕在化しつつある。このような引張残留応力は、プラント製造時のグラインダ研削や切削加工等の機械加工によって加工表面に発生し、単独で影響する場合もあれば、製造過程の溶接施工時に溶接金属部の凝固収縮により溶接部周辺に発生する引張残留応力に重なって影響する。   However, in those areas where tensile stress remains due to machining of the machined surface, such as in-reactor structures and recirculated cooling water piping, if it is placed in a location where it contacts the reactor water, Damage cases that cause stress corrosion cracking during operation due to the action of the oxidizing environment of reactor water are becoming apparent. Such tensile residual stress is generated on the machined surface by machining such as grinder grinding or cutting at the time of plant production, and may be influenced by itself, or it may be caused by solidification shrinkage of the weld metal part during welding during the manufacturing process. It affects the tensile residual stress generated around the weld.

ところで、応力腐食割れは、材料・応力・環境(水質)のすべての要因が重なった条件で発生するとされており、それぞれの要因を緩和する対策が検討されてきた。応力対策としては、溶接や加工によって発生した引張応力の緩和もしくは圧縮応力化を指向して熱処理や表面処理が提案され、一部実施されている。また、環境対策としては、純水中の不純物低減、導電率や溶存酸素量の厳格な管理のほか、腐食電位の引き下げを指向して水素や貴金属注入が提案され、一部実施されている。他方、上記の低炭素ステンレス鋼の損傷事例が顕在化する前は、一般的に次のような材料対策が実施或いは提案されていた。   By the way, it is said that stress corrosion cracking occurs under the condition where all the factors of material, stress, and environment (water quality) overlap, and measures to alleviate each factor have been studied. As countermeasures against stress, heat treatment and surface treatment have been proposed and partially implemented in order to mitigate tensile stress generated by welding and processing or to create a compressive stress. In addition, as environmental measures, hydrogen and precious metal injections have been proposed and partially implemented in order to reduce impurities in pure water, strictly control the conductivity and dissolved oxygen content, and reduce the corrosion potential. On the other hand, the following material countermeasures have generally been implemented or proposed before the above-mentioned damage examples of the low carbon stainless steel become apparent.

すなわち、従来から、高温水中での応力腐食割れ抑制のため、その素過程の一つである粒界腐食を抑制する方法が検討されてきた。例えば、CrやMoといった耐食性に有効な元素の含有量を最適化したり、C添加を低減してCr炭化物の粒界析出によるCr欠乏領域の生成を防止したり、または耐粒界腐食性に有害な元素であるPおよびSの含有量を低減する手法があり、これらの知見の多くは既に実施されている。近年では、例えば、特許文献1(特開平6−122946号公報)に記載されているように、低炭素ステンレス鋼の粒界腐食の要因としてラーベス相およびχ相の粒界析出を特定し、これらの析出を抑制する化学成分が提案されている。   That is, conventionally, in order to suppress stress corrosion cracking in high-temperature water, methods for suppressing intergranular corrosion, which is one of the elementary processes, have been studied. For example, optimizing the content of elements effective for corrosion resistance such as Cr and Mo, reducing the addition of C to prevent the formation of Cr-deficient regions due to grain boundary precipitation of Cr carbide, or harmful to intergranular corrosion resistance There is a technique for reducing the contents of P and S, which are important elements, and many of these findings have already been implemented. In recent years, for example, as described in Patent Document 1 (Japanese Patent Laid-Open No. 6-122946), intergranular precipitation of Laves phase and χ phase is specified as a factor of intergranular corrosion of low carbon stainless steel, and these There have been proposed chemical components that suppress the precipitation of.

また、近年、鋼中の材料組織に着目して、耐応力腐食割れ性を向上させる手法が提案されている。結晶粒径に着目し、粗粒化もしくは細粒化を指向したものがある。例えば、特許文献2(特開平8−246106号公報)、特許文献3(特開平8−337853号公報)では細粒化によって、特許文献4(特開2005−23343号公報)では粗粒化によって、さらに特許文献5(特許第2897694号公報)では単結晶化によって、応力腐食割れやその素過程の一つである粒界腐食を抑制できることが示されている。   In recent years, a method for improving the stress corrosion cracking resistance has been proposed focusing on the material structure in steel. Some focus on the grain size and aim at coarsening or fine graining. For example, in Patent Document 2 (Japanese Patent Laid-Open No. 8-246106) and Patent Document 3 (Japanese Patent Laid-Open No. 8-337853), fine graining is used, and in Patent Document 4 (Japanese Patent Laid-Open No. 2005-23343), coarse graining is used. Furthermore, Patent Document 5 (Japanese Patent No. 2897694) shows that single crystallization can suppress stress corrosion cracking and intergranular corrosion which is one of the elementary processes.

更に、鋼中の粒界構造に着目して、耐食性に有効な構造を有する粒界の比率を増やすことにより、応力腐食割れの素過程の一つである粒界腐食の抑制を指向したものがある。例えば、特許文献6(特許第2983289号公報)、特許文献7(特開2003−253401号公報)、特許文献8(特開2004−339576号公報)、特許文献9(特開2005−15896公報)では、オーステナイト系ステンレス鋼を対象に耐食性に有効な低エネルギー粒界(双晶粒界などの特殊粒界)の比率を増やすことにより耐粒界腐食性が向上することが示されている。   Furthermore, by focusing on the grain boundary structure in steel, the one aiming at suppression of grain boundary corrosion, which is one of the elementary processes of stress corrosion cracking, by increasing the ratio of grain boundaries having a structure effective for corrosion resistance. is there. For example, Patent Document 6 (Japanese Patent No. 2983289), Patent Document 7 (Japanese Patent Laid-Open No. 2003-253401), Patent Document 8 (Japanese Patent Laid-Open No. 2004-339576), Patent Document 9 (Japanese Patent Laid-Open No. 2005-15896). Shows that the intergranular corrosion resistance is improved by increasing the ratio of low energy grain boundaries (special grain boundaries such as twin grain boundaries) effective for corrosion resistance in austenitic stainless steels.

一方、上記の低炭素ステンレス鋼の損傷事例が顕在化後は、その具体的な材料対策として特許文献10(特開2006−291325公報)の提案がある。特許文献10では、機械加工の影響を想定し、化学成分組成を限定して応力腐食割れを抑制するオーステナイト系ステンレス鋼を提案している。   On the other hand, after the above-mentioned damage examples of low-carbon stainless steel have become apparent, there is a proposal of Patent Document 10 (Japanese Patent Laid-Open No. 2006-291325) as a specific material countermeasure. Patent Document 10 proposes an austenitic stainless steel that suppresses stress corrosion cracking by limiting the chemical composition, assuming the influence of machining.

特開平6−122946号公報JP-A-6-122946 特開平8−246106号公報JP-A-8-246106 特開平8−337853号公報JP-A-8-337853 特開2005−23343号公報JP 2005-23343 A 特許第2897694号公報Japanese Patent No. 2897694 特許第2983289号公報Japanese Patent No. 2983289 特開2003−253401JP2003-253401A 特開2004−339576JP 2004-339576 A 特開2005−15896公報JP-A-2005-15896 特開2006−291325公報JP 2006-291325 A

特許文献2〜9に記載の材料組織を制御した材料は、素材製造プロセスにおいて複雑かつ高度な制御が必要であるため製造可能な寸法が小さくなり、製造コストが高くなる場合が多いほか、プラントの製造工程を考慮すると成形加工や溶接により当初の制御組織が維持されない可能性が危惧され、プラントへの適用のために解決すべき課題も多い。逆に言えば、従来の素材製造プロセスを大きく変更せず製造でき、プラントの製造工程を経た後もその特性が維持できる材料が、プラントに早く適用されやすい。   The materials having controlled material structures described in Patent Documents 2 to 9 require complicated and advanced control in the material manufacturing process, so that the size that can be manufactured is reduced and the manufacturing cost is often increased. Considering the manufacturing process, there is a fear that the original control structure may not be maintained by molding or welding, and there are many problems to be solved for application to the plant. In other words, a material that can be manufactured without greatly changing the conventional material manufacturing process and that can maintain its characteristics even after the manufacturing process of the plant is easily applied to the plant.

また、近年顕在化しつつある低炭素ステンレス鋼の応力腐食割れは、上記のように、製造時の機械加工との関わりが指摘されている。強加工を受けた最表面では貫粒型の応力腐食割れも観察されることから、少なくとも応力腐食割れの発生段階では粒界腐食にのみ着目した材料は従来材と差異がないと考えられる。   In addition, stress corrosion cracking of low-carbon stainless steel, which is becoming apparent in recent years, has been pointed out as being related to machining during production as described above. Through-grain type stress corrosion cracking is also observed on the outermost surface that has undergone strong processing, so it is considered that the material that focuses only on intergranular corrosion at least at the stage of stress corrosion cracking is not different from conventional materials.

最近は、応力腐食割れの要因として製造時の機械加工を考慮し、製造時にグラインダ研削などで生じた表面加工層を研磨によって除去、さらに上述の応力緩和もしくは応力圧縮化対策、水質改善対策を併せて実施することにより、応力腐食割れに対する総合的なリスク低減を図っている。   Recently, considering the machining during manufacturing as a factor of stress corrosion cracking, the surface processed layer generated by grinder grinding etc. during manufacturing is removed by polishing, and the above stress relaxation or stress compression measures and water quality improvement measures are also combined To reduce the overall risk of stress corrosion cracking.

材料においても、このリスク低減に寄与できる対策を提案し、総合的に応力腐食割れを抑制することが望まれている。   Also in materials, measures that can contribute to this risk reduction are proposed, and it is desired to comprehensively suppress stress corrosion cracking.

特許文献10はこのような観点から、機械加工の影響を想定し、化学成分組成(化学成分とその割合)を限定して応力腐食割れを抑制するオーステナイト系ステンレス鋼を提案している。   From this point of view, Patent Document 10 proposes an austenitic stainless steel that suppresses stress corrosion cracking by limiting the chemical component composition (chemical component and its ratio) assuming the influence of machining.

より具体的には、特許文献10は、軽水炉において高温高圧水に接する構造材料として、表面への機械加工を受けても応力腐食割れに及ぼす影響を小さくでき、耐応力腐食割れ性に優れた被溶接材とそれを用いた溶接構造物及び原子力発電プラントと耐応力腐食割れ性の高い高耐食性オーステナイト系ステンレス鋼部材並びに高耐食性オーステナイト系ステンレス鋼を提供することを発明の目的として、質量で、C0.001〜0.020%、Si0.1〜1.0%、Mn0.2〜2.0%、Cr16〜20%、Ni9〜15%、Mo3%以下、N0.001〜0.12%含有し、残部がFe及び不可避不純物からなり、Crと式1によって求められるMd30とが式2を満たすことを特徴とする被溶接材を提案している。   More specifically, Patent Document 10 discloses a structural material that is in contact with high-temperature and high-pressure water in a light water reactor, which can reduce the effect on stress corrosion cracking even when subjected to machining on the surface, and has excellent resistance to stress corrosion cracking. It is an object of the present invention to provide a welding material, a welded structure using the same, a nuclear power plant, a high corrosion resistance austenitic stainless steel member having high stress corrosion cracking resistance, and a high corrosion resistance austenitic stainless steel. 0.001 ~ 0.020%, Si0.1 ~ 1.0%, Mn0.2 ~ 2.0%, Cr16 ~ 20%, Ni9 ~ 15%, Mo3% or less, N0.001 ~ 0.12%, the balance from Fe and inevitable impurities Therefore, a welded material is proposed in which Cr and Md30 obtained by Equation 1 satisfy Equation 2.

Md30=551−462(C+N)−9.2Si−8.1Mn−13.7Cr−29Ni−18.5Mo−1.42(ν−8.0)…(式1)
Cr+0.022Md30≧14.5…(式2)(νは結晶粒度番号)。
Md30 = 551-462 (C + N) -9.2Si-8.1Mn-13.7Cr-29Ni-18.5Mo-1.42 (ν-8.0) (Formula 1)
Cr + 0.022Md30 ≧ 14.5 (Formula 2) (ν is crystal grain size number).

しかしながら、本発明者等は、特許文献10の規定の範囲外にあるオーステナイト系ステンレス鋼の中にも、製造時の機械加工の影響による応力腐食割れを抑制できるものがあることを見いだした。   However, the present inventors have found that some of the austenitic stainless steels outside the range specified in Patent Document 10 can suppress stress corrosion cracking due to the influence of machining during production.

本発明は、特許文献10の発明を補完する技術を提供するものであって、特許文献10とは異なる観点から原子炉構造物の材料として用いられるオーステナイト系ステンレス鋼の化学成分組成および材料組織を規定することによって、プラント製造時の表面加工痕が残留した場合であっても応力腐食割れを抑制し、原子炉構造物の健全性を維持するものである。また、本発明は、そのようなオーステナイト系ステンレス鋼を用いて構成した溶接継手および構造部材を提供する。   The present invention provides a technique that complements the invention of Patent Document 10, and from the viewpoint different from Patent Document 10, the chemical composition and material structure of austenitic stainless steel used as a material for a nuclear reactor structure. By prescribing, stress corrosion cracking can be suppressed and the soundness of the reactor structure can be maintained even when surface processing traces remain during plant production. The present invention also provides a welded joint and a structural member configured using such austenitic stainless steel.

[1]上記課題を解決するため、本発明は、高耐食性オーステナイト系ステンレス鋼の化学成分組成(化学成分とその割合)を、質量%で、Crを17〜20%、Niを10〜15%、Cを0.001〜0.020%、Siを0.1〜1.0%、Mnを0.1〜2.0%、Pを0.035%以下、Sを0.015%以下、Moを0.01〜3.0%、Nを0.001〜0.08%、Cuを0.01〜2.5%含有し、残部がFeおよび不純物からなり、かつ下記式1でM値を計算し、下記式2でS値を計算するとき、
式1:
M=462×(C+N)+9.2×Si+8.1×Mn+13.7×Cr+29×(Ni+Cu)+18.5×Mo
式2:
S=32.7+101×C−13×Si−1.2×Mn−0.9×Cr+2×Ni−5.3×Mo+0.1×Cu−179×N
ここで、式1および2中の元素記号は各成分の質量%を示す;
前記M値が590以上760以下であり、前記S値が24以上45以下であるものとする。
[2]また、好ましくは、高耐食性オーステナイト系ステンレス鋼の化学成分組成を、上記化学成分組成を有し、さらに質量%で、Moを0.5%〜3.0%、Tiを0.01%〜0.4%、Nbを0.01%〜0.4%、Zrを0.01%〜1.14%、もしくはHfを0.01〜2.24%、1種以上含有するものとする。
[3]また、好ましくは、高耐食性オーステナイト系ステンレス鋼の化学成分組成を、上記化学成分組成を有するものとし、かつその材料組織を、平均結晶粒径が30μm以下、望ましくは10μm以下であるものとする。
[4]さらに、好ましくは、高耐食性オーステナイト系ステンレス鋼の化学成分組成を、上記化学成分組成を有するものとし、かつその材料組織を、腐食環境に接する表面から少なくとも2mm以上の深さ範囲内において、Σ値29以下の粒界を除いたランダム粒界からなる連続粒界網の深さ方向長さが1.5mm以下であるものとする。
[5]また、上記課題を解決するため、本発明は、原子力発電プラントの炉内構造物、配管、または制御棒を上記のオーステナイト系ステンレス鋼で製造されたものとする。
[6]さらに、上記課題を解決するため、本発明は、溶接継手を、表面を機械加工した上記のオーステナイト系ステンレス鋼を溶接後、余盛部を研削し、研磨、必要に応じてピーニングによる残留応力圧縮化処理を行うものとする。
[7]また、上記課題を解決するため、本発明は、構造部材を、上記のオーステナイト系ステンレス鋼を応力腐食割れが生じる環境と接する側にライニングするものとする。
[1] In order to solve the above-mentioned problems, the present invention has a chemical component composition (chemical component and its ratio) of high corrosion resistance austenitic stainless steel in mass%, Cr is 17 to 20%, Ni is 10 to 15%. C is 0.001 to 0.020%, Si is 0.1 to 1.0%, Mn is 0.1 to 2.0%, P is 0.035% or less, S is 0.015% or less, Containing Mo of 0.01 to 3.0%, N of 0.001 to 0.08%, Cu of 0.01 to 2.5%, the balance consisting of Fe and impurities, and M value in the following formula 1 And when calculating the S value with the following formula 2,
Formula 1:
M = 462 × (C + N) + 9.2 × Si + 8.1 × Mn + 13.7 × Cr + 29 × (Ni + Cu) + 18.5 × Mo
Formula 2:
S = 32.7 + 101 * C-13 * Si-1.2 * Mn-0.9 * Cr + 2 * Ni-5.3 * Mo + 0.1 * Cu-179 * N
Here, the element symbols in formulas 1 and 2 indicate the mass% of each component;
The M value is 590 or more and 760 or less, and the S value is 24 or more and 45 or less.
[2] Preferably, the chemical component composition of the high corrosion resistance austenitic stainless steel has the above-described chemical component composition, and further, in mass%, Mo is 0.5% to 3.0%, and Ti is 0.01. % To 0.4%, Nb from 0.01% to 0.4%, Zr from 0.01% to 1.14%, or Hf from 0.01 to 2.24%, To do.
[3] Preferably, the chemical component composition of the high corrosion resistance austenitic stainless steel has the above chemical component composition, and the material structure has an average crystal grain size of 30 μm or less, desirably 10 μm or less. And
[4] Further, preferably, the chemical component composition of the high corrosion resistance austenitic stainless steel has the above chemical component composition, and the material structure thereof is within a depth range of at least 2 mm from the surface in contact with the corrosive environment. The length direction length of the continuous grain boundary network formed of random grain boundaries excluding the grain boundaries having a Σ value of 29 or less is 1.5 mm or less.
[5] Moreover, in order to solve the said subject, this invention shall manufacture the reactor internal structure, piping, or control rod of a nuclear power plant from said austenitic stainless steel.
[6] Further, in order to solve the above-mentioned problems, the present invention provides a welded joint by welding the above-mentioned austenitic stainless steel whose surface is machined, grinding the surplus portion, polishing, and peening as necessary. Residual stress compression processing shall be performed.
[7] In order to solve the above-mentioned problems, the present invention linings the structural member on the side where the austenitic stainless steel is in contact with the environment where stress corrosion cracking occurs.

以上のように構成した本発明の作用原理は次のようである。   The operation principle of the present invention configured as described above is as follows.

現行のプラント製造プロセスでは製造時の機械加工は避けられない。この際生じる加工表面が応力腐食割れの要因として考えられており、研磨による表面加工層除去、熱処理やピーニングによる応力緩和もしくは応力圧縮化対策、水質改善対策を併せて実施することにより、応力腐食割れに対する総合的なリスク低減を図っている。本発明は、材料そのものの応力腐食割れ発生感受性を低下させることにより、一層のリスク低減を図るものである。   In the current plant manufacturing process, machining during production is inevitable. The processed surface is considered to be the cause of stress corrosion cracking, and stress corrosion cracking can be achieved by combining surface removal layer removal by polishing, stress relaxation or stress compression measures by heat treatment and peening, and water quality improvement measures. Total risk reduction for The present invention is intended to further reduce the risk by reducing the sensitivity of the material itself to stress corrosion cracking.

応力腐食割れに及ぼす表面への機械加工の影響として、引張残留応力の生成と、加工組織形成に伴う硬度上昇ならびに局部腐食経路の生成とが挙げられる。硬度の上昇は、加工層の脆化と対応し、一旦き裂が発生した際にき裂の進展を助長する。また、表面への機械加工は、表面に対して局所的に高いひずみ速度で大きな変形を強いるため、巨大すべり変形による変形帯や、変形双晶もしくはマルテンサイト変態によるせん断変形帯からなる加工組織を生成する。その局所的な変形帯は、結晶性が乱れているため腐食現象の優先サイトとなり、局所腐食の発生起点および経路となる。これらの要因に加えて、引張残留応力が働くことにより、応力腐食割れが発生するものと考えている。   The effects of machining on the surface on stress corrosion cracking include the generation of tensile residual stress, the increase in hardness associated with the formation of the processed structure, and the generation of local corrosion paths. The increase in hardness corresponds to the embrittlement of the processed layer, and promotes the growth of the crack once it has occurred. In addition, since machining on the surface forces a large deformation at a locally high strain rate on the surface, a machining structure consisting of a deformation zone due to giant slip deformation or a shear deformation zone due to deformation twinning or martensitic transformation. Generate. The local deformation zone becomes a priority site for the corrosion phenomenon because the crystallinity is disturbed, and is a starting point and a path for the local corrosion. In addition to these factors, stress corrosion cracking is considered to occur due to the action of tensile residual stress.

本発明では、表面への機械加工を受けても、応力腐食割れに及ぼすその影響を小さくできる材料を提供する。グラインダ施工といった表面への機械加工は大きな変形を擁すため、発生する引張残留応力は応力腐食割れを発生させるのに十分大きく、ステンレス鋼の化学成分を変化させても引張残留応力を応力腐食割れが発生しないレベルまで低下させることはできない。しかしながら、本発明者等は、化学成分組成によって加工表面の硬さ上昇量と加工組織を変えて、応力腐食割れを抑制できることを見出した。   The present invention provides a material that can reduce the effect on stress corrosion cracking even when subjected to machining on the surface. Machining to the surface, such as grinder construction, has large deformations, so the tensile residual stress generated is large enough to cause stress corrosion cracking, and even if the chemical composition of stainless steel is changed, the tensile residual stress is stress corrosion cracking. It cannot be reduced to a level where no occurrence occurs. However, the present inventors have found that stress corrosion cracking can be suppressed by changing the amount of increase in hardness of the processed surface and the processed structure depending on the chemical component composition.

一般的な316Lステンレス鋼の強加工した表面は、最表面層は粒径50〜200 nmの微細結晶組織からなり、その深部では直線的なせん断変形帯がつづく加工層組織を呈している。直線的なせん断変形帯は、巨大すべり変形による変形帯や、変形双晶もしくはεマルテンサイト変態によるせん断変形帯である。304系および316系のオーステナイト系ステンレス鋼は一般に、積層欠陥エネルギーが低いため、このような直線的なせん断変形帯を形成しやすい。さらに、オーステナイト安定性の低い304Lステンレス鋼では、α’マルテンサイト変態により直線的なせん断変形帯を形成する。このような直線的なせん断変形帯が局所腐食の経路となっており、応力腐食割れの一形態である粒内型応力腐食割れの要因となる。また、積層欠陥エネルギーが低い場合やα’マルテンサイト変態が生じる場合は、加工硬化率が上昇して硬さが上昇し、応力腐食割れを助長する。   As for the strongly processed surface of general 316L stainless steel, the outermost surface layer is composed of a fine crystal structure having a particle size of 50 to 200 nm, and in the deep part thereof, a processed layer structure in which a linear shear deformation band continues is exhibited. The linear shear deformation zone is a deformation zone due to giant slip deformation or a shear deformation zone due to deformation twins or ε martensite transformation. Since 304 series and 316 series austenitic stainless steels generally have low stacking fault energy, it is easy to form such a linear shear deformation band. Furthermore, in 304L stainless steel with low austenite stability, a linear shear deformation band is formed by α ′ martensite transformation. Such a linear shear deformation zone is a path of local corrosion, and becomes a factor of intragranular stress corrosion cracking which is one form of stress corrosion cracking. In addition, when the stacking fault energy is low or α ′ martensite transformation occurs, the work hardening rate increases and the hardness increases, which promotes stress corrosion cracking.

したがって、積層欠陥エネルギーを高くし、かつα’マルテンサイト変態を抑制することによって、割れ経路となる直線的なせん断変形帯の形成を抑制し、強加工表面の硬さを低減でき、その結果、応力腐食割れを抑制することができる。   Therefore, by increasing the stacking fault energy and suppressing the α ′ martensite transformation, it is possible to suppress the formation of linear shear deformation bands that become crack paths and reduce the hardness of the hard-worked surface. Stress corrosion cracking can be suppressed.

式1に示されるM値は、α’マルテンサイト変態能に関わる値である。30%の引張変形を与えたときに組織の体積率50%がα’マルテンサイトに変態する温度Md30の化学成分依存性を参考に式1を決定した。このM値が大きいほど、α’マルテンサイト変態は生じにくくなり、オーステナイトが安定となる。α’マルテンサイトに起因した応力腐食割れを抑制するには、590以上のM値が必要である。他方、オーステナイトが安定になりすぎると加工性や溶接性が低下するため、M値は760以下に制限される。   The M value shown in Formula 1 is a value related to the α ′ martensite transformation ability. Formula 1 was determined with reference to the chemical composition dependence of the temperature Md30 at which 50% of the volume of the structure transformed into α ′ martensite when 30% tensile deformation was applied. The larger the M value, the less the α ′ martensite transformation occurs and the austenite becomes more stable. An M value of 590 or more is required to suppress stress corrosion cracking due to α ′ martensite. On the other hand, if the austenite becomes too stable, workability and weldability deteriorate, so the M value is limited to 760 or less.

式2に示されるS値は、積層欠陥エネルギーに関わる値である。報告されている積層欠陥エネルギーの化学成分依存性を参考に積層欠陥エネルギーに関わる特性の実験結果から式2を決定した。このS値が大きいほど、積層欠陥エネルギーは高くなり、直線的なせん断変形帯の形成が抑制される。積層欠陥エネルギーが低いことに起因した応力腐食割れを抑制するには、24以上のS値が必要である。他方、Ni量が大きくなるとS値が大きくなるが、その結果オーステナイトが安定になりすぎると加工性や溶接性が低下するため、S値は45以下に制限される。   The S value shown in Equation 2 is a value related to stacking fault energy. Formula 2 was determined from the experimental results of characteristics related to stacking fault energy with reference to the reported chemical composition dependence of stacking fault energy. The larger the S value, the higher the stacking fault energy, and the formation of a linear shear deformation band is suppressed. In order to suppress stress corrosion cracking caused by low stacking fault energy, an S value of 24 or more is required. On the other hand, when the amount of Ni increases, the S value increases. As a result, if the austenite becomes too stable, workability and weldability deteriorate, so the S value is limited to 45 or less.

一方、積層欠陥エネルギーを高くし、かつα’マルテンサイト変態を抑制することによって加工硬化率が低下するため、強度、特に引張強さの低下を招くことがある。強度を要求される部材については、結晶粒微細化強化により強度を向上させる。平均粒径90μm程度の材料を平均粒径30μmまで結晶粒微細化を図ることにより、引張強さを20Mpa程度上昇させることができ、平均粒径10μmまで結晶粒微細化した場合は40Mpa程度上昇させることができる。   On the other hand, by increasing the stacking fault energy and suppressing the α ′ martensite transformation, the work hardening rate is lowered, so that the strength, particularly the tensile strength, may be lowered. For members that require strength, the strength is improved by strengthening the grain refinement. By refining the crystal grain of a material having an average grain size of about 90 μm to an average grain size of 30 μm, the tensile strength can be increased by about 20 Mpa, and when the crystal grain is refined to an average grain size of 10 μm, it is increased by about 40 Mpa. be able to.

上述のとおり粒内型応力腐食割れを抑制することで、強加工に伴う応力腐食割れ感受性を大きく低減できるが、応力腐食割れに対する万全な健全性を確保するには、さらに粒界型応力腐食割れに対する施策も必要である。まずは、Cr炭化物析出に伴う粒界鋭敏化を抑制するため、C量の低減とともに鋭敏化抑制元素であるMo、もしくはC安定化元素であるTi,Nb,Zr,Hf等を添加する。   Suppressing intragranular stress corrosion cracking as described above can greatly reduce the stress corrosion cracking susceptibility associated with strong processing. However, in order to ensure complete soundness against stress corrosion cracking, further intergranular stress corrosion cracking is required. Measures against this are also necessary. First, in order to suppress grain boundary sensitization associated with Cr carbide precipitation, Mo, which is a sensitization-inhibiting element, or Ti, Nb, Zr, Hf, etc., which are C-stabilizing elements, are added together with a reduction in the amount of C.

粒界性格によって隣り合う結晶粒の結合性や耐食性が異なることが知られている。加工熱処理によって、エネルギーの低い対応粒界の割合を増やし、エネルギーの高いランダム粒界からなる粒界網を分断すると、腐食や応力腐食割れは対応粒界を回避してエネルギーの高いランダム粒界に沿って進むことが多い。超音波探傷によるき裂の検出限界が2 mm程度であることを考慮すると、発生した応力腐食割れの進展を表面部から深さ2mm以内で止めることができれば、検査上は応力腐食割れの発生を抑えたことになる。また、十分な厚さをもつ構造物であれば強度上も問題ない。表面強加工による加工影響層の深さは300〜400μmであり、観察されている粒内型応力腐食割れは深さ200〜300μmまで達しているものもある。さらに深部では粒界型応力腐食割れが進展するが、その進展を1.5mm程度以内で止めることができれば、全体でみると深さ2mm以内で止めたことになる。三次元分布を考慮したランダム粒界網の深さ方向長さを1.5mm以内とすることにより、ランダム粒界に沿った粒界型応力腐食割れを確率的に止めることができる。   It is known that the bondability and corrosion resistance of adjacent crystal grains differ depending on the grain boundary character. If the grain boundary network consisting of random grain boundaries with high energy is increased by thermomechanical treatment and the grain boundary network consisting of random grain boundaries with high energy is divided, corrosion and stress corrosion cracking will avoid the corresponding grain boundaries and become random grain boundaries with high energy. Often along the way. Considering that the detection limit of cracks by ultrasonic flaw detection is about 2 mm, if the progress of the generated stress corrosion cracking can be stopped within 2 mm from the surface, stress corrosion cracking will be generated on the inspection. It was suppressed. Further, there is no problem in strength as long as the structure has a sufficient thickness. The depth of the processing-affected layer by the strong surface processing is 300 to 400 μm, and the observed intragranular stress corrosion cracking may reach a depth of 200 to 300 μm. Furthermore, although the intergranular stress corrosion cracking progresses in the deep part, if the progress can be stopped within about 1.5 mm, the total is stopped within the depth of 2 mm. By setting the length in the depth direction of the random grain boundary network in consideration of the three-dimensional distribution to 1.5 mm or less, the grain boundary type stress corrosion cracking along the random grain boundary can be stochastically stopped.

Cは、材料強度を確保する上で必要な元素であり、0.001%以上でその効果が得られる。0.020%を超えるとCr炭化物の粒界析出による粒界鋭敏化が顕著となり、耐粒界腐食性が損なわれる。そこで、C含有量の範囲を0.001〜0.020%とした。   C is an element necessary for securing the material strength, and its effect can be obtained at 0.001% or more. If it exceeds 0.020%, grain boundary sensitization due to grain boundary precipitation of Cr carbide becomes remarkable, and intergranular corrosion resistance is impaired. Therefore, the range of the C content is set to 0.001 to 0.020%.

Siは、素材製造工程で脱酸材として必要な元素であり、0.1%以上で脱酸の効果を得られる。1.0%を超えると靭性が低下する。そこで、Si含有量の範囲を0.1〜1.0%とした。   Si is an element necessary as a deoxidizing material in the raw material manufacturing process, and a deoxidizing effect can be obtained at 0.1% or more. If it exceeds 1.0%, the toughness decreases. Therefore, the range of the Si content is set to 0.1 to 1.0%.

Mnは、素材製造工程で脱酸に有効な元素であり、0.1%以上で脱酸の効果を得られる。2.0%を超えると耐食性が低下する。そこで、Mn含有量の範囲を0.1〜2.0%とした。   Mn is an element effective for deoxidation in the raw material production process, and a deoxidation effect can be obtained at 0.1% or more. If it exceeds 2.0%, the corrosion resistance decreases. Therefore, the range of the Mn content is set to 0.1 to 2.0%.

Pは、鋼中の不純物元素であり、粒界の耐食性を低下させ、溶接時の高温割れの原因となるので、極力含有量を低減するのが望ましい。しかし、含有量を低減するには素材製造コストが高くなるため、経済性を考慮し現行の通常プロセス水準である0.035%以下とした。   P is an impurity element in steel, which lowers the corrosion resistance of grain boundaries and causes hot cracking during welding. Therefore, it is desirable to reduce the content as much as possible. However, in order to reduce the content, the raw material manufacturing cost becomes high. Therefore, considering the economic efficiency, the current normal process level is set to 0.035% or less.

Sは、鋼中の不純物元素であり、粒界の耐食性を低下させ、溶接時の高温割れの原因となるので、含有量を低減するのが望ましく、含有量の上限を0.015%とした。   S is an impurity element in steel, which lowers the corrosion resistance of grain boundaries and causes hot cracking during welding. Therefore, it is desirable to reduce the content, and the upper limit of the content is set to 0.015%. .

Crは、耐食性を向上するのに必要な元素であり、高温水環境では17%以上で効果が得られる。20%を超えると、熱間加工性を低下させ、経済性を損ねる。そこで、Cr含有量の範囲を17〜20%とした。   Cr is an element necessary for improving the corrosion resistance, and an effect can be obtained at 17% or more in a high-temperature water environment. If it exceeds 20%, the hot workability is lowered and the economy is impaired. Therefore, the Cr content range is set to 17 to 20%.

Niは、耐食性の向上およびオーステナイト相の形成に有効な元素であり、10%以上でこれらの効果が得られる。15%を超えるとオーステナイト相の安定度が増し、加工性や溶接性が低下させ、経済性を損ねる。そこで、Ni含有量の範囲を10〜15%とした。   Ni is an element effective in improving corrosion resistance and forming an austenite phase, and these effects can be obtained at 10% or more. If it exceeds 15%, the stability of the austenite phase is increased, workability and weldability are lowered, and economic efficiency is impaired. Therefore, the range of Ni content is set to 10 to 15%.

Cuは、耐食性の向上およびオーステナイト相の形成に有効な元素である。通常のステンレス鋼に含まれる成分であり、α’マルテンサイト変態能に与える影響も大きいことから2.5%を上限とする。   Cu is an element effective in improving corrosion resistance and forming an austenite phase. Since it is a component contained in ordinary stainless steel and has a great influence on the α ′ martensite transformation ability, the upper limit is set to 2.5%.

Moは、粒界鋭敏化を抑制し、さらに照射環境下で照射誘起偏析を抑制し、耐食性を向上させる作用を有する。Moを0.01%以上、より好ましくは、0.4%より多く含有させることでその効果が得られるが、3.0%を超えると、金属間化合物が粒界析出し、耐粒界腐食性が劣化する。そこで、Mo含有量の範囲を3%以下とした。   Mo has the effect of suppressing grain boundary sensitization, further suppressing irradiation-induced segregation in an irradiation environment, and improving corrosion resistance. The effect can be obtained by adding Mo in an amount of 0.01% or more, more preferably more than 0.4%. However, if it exceeds 3.0%, intermetallic compounds precipitate at the grain boundaries, and intergranular corrosion resistance. Deteriorates. Therefore, the range of the Mo content is set to 3% or less.

Nは、材料強度を確保する上で必要な元素であり、0.001%以上でその効果が得られる。0.08%を超えると粒内型応力腐食割れ感受性が増加する。そこで、N含有量の範囲を0.001〜0.08%とした。   N is an element necessary for securing the material strength, and the effect can be obtained at 0.001% or more. If it exceeds 0.08%, the sensitivity to intragranular stress corrosion cracking increases. Therefore, the range of N content is set to 0.001 to 0.08%.

ZrおよびHfは、少量の含有量からCと炭化物を形成し、粒界鋭敏化を抑制する。さらに照射環境下で照射誘起偏析を抑制し、耐食性を向上させる作用を有する。ZrおよびHfを含有させることによる耐食性の向上が要求される場合には、これらの元素の1種以上をそれぞれ0.2%以上含有させることによりその効果が得られる。Zr1.14%およびHf2.24%を超えて含有させてもその効果は飽和する。そこで、含有量の範囲を、Zrは0.01%〜1.14%、Hfは0.01〜2.24%とした。   Zr and Hf form carbides with C from a small amount, and suppress grain boundary sensitization. Furthermore, it has the effect | action which suppresses irradiation-induced segregation in an irradiation environment and improves corrosion resistance. When improvement in corrosion resistance by containing Zr and Hf is required, the effect can be obtained by containing at least 0.2% of one or more of these elements. Even if it contains more than 1.14% Zr and 2.24% Hf, the effect is saturated. Therefore, the content ranges were set to 0.01% to 1.14% for Zr and 0.01 to 2.24% for Hf.

上記の条件を満たすオーステナイト系ステンレス鋼を用いることにより、表面への機械加工を受けた場合の材料そのものの応力腐食割れ発生に対するポテンシャルを低減できる。さらに、研磨による表面加工層除去、熱処理やピーニングによる応力緩和もしくは応力圧縮化対策、水質改善対策といった諸対策と併せて実施することにより、応力腐食割れに対する総合的なリスク低減を図り、原子炉構造物の健全性を維持できる。   By using austenitic stainless steel that satisfies the above conditions, the potential for stress corrosion cracking of the material itself when subjected to machining on the surface can be reduced. Furthermore, by implementing various measures such as removal of surface processed layers by polishing, stress relaxation or stress compression measures by heat treatment and peening, and water quality improvement measures, the overall risk reduction for stress corrosion cracking is achieved, and the reactor structure The health of things can be maintained.

本発明により、プラント製造時の表面加工痕が残留した部材であって、原子炉構造物の高温高圧水にさらされる部材での応力腐食割れの発生を抑制することが可能になった。本発明で示した材料は原子炉構造物や応力腐食割れが生じる環境に配置される溶接継手および構造部材に対して適用するのに好適である。   According to the present invention, it is possible to suppress the occurrence of stress corrosion cracking in a member in which surface processing marks remain at the time of plant manufacture and which is exposed to high-temperature high-pressure water in a nuclear reactor structure. The material shown in the present invention is suitable for application to a welded joint and a structural member disposed in an environment where a nuclear reactor structure or stress corrosion cracking occurs.

<実施例(化学成分組成)>
表1は本発明の実施例として用いられた供試材の化学成分、式1および式2で化学成分から計算したM値およびS値を示す表である。
<Example (chemical component composition)>
Table 1 is a table showing the chemical components of the test materials used as examples of the present invention and the M and S values calculated from the chemical components in Formulas 1 and 2.

Figure 2009161802
Figure 2009161802

図1にM値およびS値における本発明材の範囲を示す。各供試材には、固溶化熱処理ののち、溶接部を摸擬した鋭敏化熱処理を実施した。試験片の表面をグラインダなどで機械加工し、一定ひずみを負荷した上で、288℃、8.3MPaの高圧高温水中に最大5000時間浸漬した。浸漬後、試験片表面での割れの有無により応力腐食割れ発生感受性を評価した。   FIG. 1 shows the range of the material of the present invention in M value and S value. Each sample material was subjected to a sensitizing heat treatment simulating a weld after the solution heat treatment. The surface of the test piece was machined with a grinder or the like, loaded with a constant strain, and then immersed in high pressure high temperature water at 288 ° C. and 8.3 MPa for a maximum of 5000 hours. After immersion, the stress corrosion cracking susceptibility was evaluated by the presence or absence of cracks on the surface of the test piece.

表2にこれら供試材に対して高圧高温水中で実施した応力腐食割れ試験結果を示す。応力腐食割れ試験は、機械加工条件や試験水質条件を変え、供試材を分けて実施された。一次評価では条件の異なる試験の結果を整理し、割れを生じたものと生じなかったものに分けた。一次評価で割れを生じなかった供試材と比較材として用いる供試材に対して、二次評価を行った。二次評価では、表面機械加工、付加ひずみ量および試験水質の面で厳しい条件を選択し、同一の条件で試験を行った。その結果、いずれの供試材においても応力腐食割れが発生したが、き裂数およびき裂深さに有意な差が生じた。供試材13,14,15,23に対して、本発明材は平均き裂数が約3分の1以下となった。また、最大き裂深さにおいても供試材15を基準とすれば、本発明材は約2分の1以下となった。   Table 2 shows the results of stress corrosion cracking tests performed on these test materials in high-pressure and high-temperature water. The stress corrosion cracking test was performed by changing the machining conditions and test water quality conditions and dividing the test materials. In the primary evaluation, the results of tests under different conditions were organized and divided into those that did not crack and those that did not. Secondary evaluation was performed on the test material that was not cracked in the primary evaluation and the test material used as a comparative material. In the secondary evaluation, severe conditions were selected in terms of surface machining, applied strain, and test water quality, and tests were performed under the same conditions. As a result, stress corrosion cracking occurred in any of the test materials, but a significant difference occurred in the number of cracks and crack depth. Compared to the test materials 13, 14, 15, 23, the present invention material had an average number of cracks of about one-third or less. In addition, when the specimen 15 was used as a reference even at the maximum crack depth, the material of the present invention was about one-half or less.

Figure 2009161802
Figure 2009161802

研削加工を施した表面に対して、研削表面から深さ20μmの位置でのビッカース硬さを測定した結果を表3に示す。比較のため表面加工の影響を受けていない深さ2 mmの位置でのビッカース硬さ測定結果も示す。   Table 3 shows the results of measuring the Vickers hardness at a position 20 μm deep from the ground surface with respect to the ground surface. For comparison, the results of Vickers hardness measurement at a position of 2 mm depth not affected by surface processing are also shown.

Figure 2009161802
Figure 2009161802

3つの位置で測定したビッカース硬さをみると、比較材に対して本発明材の硬さが低くなっていた。供試材15に対しては、表面加工による硬さ上昇が低くなっていた。高N材の供試材23に対しては、表面加工による硬さ上昇には大きな差異はないが、供試材23の未加工状態での硬さが高いため、表面での硬さも高くなっていた。本発明材は、積層欠陥エネルギーが高く、かつ加工誘起α’マルテンサイト変態能が小さい化学成分組成を有しており、その結果加工硬化率が低下し、表面加工による硬さ上昇が抑える効果がある。   Looking at the Vickers hardness measured at three positions, the hardness of the present invention material was lower than that of the comparative material. For the specimen 15, the increase in hardness due to surface processing was low. Although there is no significant difference in hardness increase due to surface processing for the high N material 23, the hardness on the surface is high because the hardness of the material 23 in the unprocessed state is high. It was. The material of the present invention has a chemical component composition that has a high stacking fault energy and a small processing-induced α 'martensite transformation ability. As a result, the work hardening rate is reduced, and the effect of suppressing the increase in hardness due to surface processing is suppressed. is there.

本発明材では、粗大すべり、変形双晶、加工誘起マルテンサイト変態を抑える化学成分組成を有しており、材料組織内で直線的なせん断変形帯を伴って局所的な変形をするのではなく、転位の交叉すべりが比較的容易であることから均一に変形しやすい。表面加工による硬さ上昇を抑制するほか、加工組織内の粒内型応力腐食割れ経路となる直線的なせん断変形帯の生成を抑制することにより、本発明材では応力腐食割れの発生を抑制する効果がある。   The material of the present invention has a chemical composition that suppresses coarse sliding, deformation twinning, and processing-induced martensite transformation, and does not deform locally with a linear shear deformation band in the material structure. Since the cross slip of dislocations is relatively easy, it is easily deformed uniformly. In addition to suppressing the increase in hardness due to surface processing, the present invention material suppresses the occurrence of stress corrosion cracking by suppressing the generation of linear shear deformation bands that form the intragranular stress corrosion cracking path in the processed structure. effective.

<結晶微細化強化>
一方、本発明材では加工硬化率が低下することから、強度、特に引張強さが低下する傾向があり、強度を要求される部位では望ましくない。このような部位に使用される部材については結晶粒微細化により強化した材料を用いる。表4に本発明材の一つである供試材6の強度に及ぼす結晶粒微細化の効果を示すため、供試材6について加工熱処理(圧延、鍛造等の加工と熱処理)により結晶粒微細化した場合の引張試験結果を示す。通常の固溶化熱処理後では平均結晶粒径が90μmであり、これに加工熱処理を施すことにより平均結晶粒径を25μmないし9μmまで微細化した。その結果、表4に示すとおり耐力ないし引張強さを増加させることができた。
<Strengthen crystal refinement>
On the other hand, since the work hardening rate is lowered in the material of the present invention, the strength, particularly the tensile strength, tends to be lowered, which is not desirable in a portion where strength is required. For the member used in such a part, a material strengthened by crystal grain refinement is used. In order to show the effect of grain refinement on the strength of the test material 6 which is one of the materials of the present invention in Table 4, the grain size of the test material 6 is refined by processing heat treatment (processing and heat treatment such as rolling and forging). The result of a tensile test in the case of the change is shown. After the normal solution heat treatment, the average crystal grain size was 90 μm, and the average crystal grain size was refined to 25 μm to 9 μm by subjecting it to a heat treatment. As a result, as shown in Table 4, proof stress or tensile strength could be increased.

Figure 2009161802
Figure 2009161802

<粒界性格分布制御>
表2の応力腐食割れ試験二次評価では、厳しい条件を選択したため、すべての試験片に応力腐食割れが発生した。応力腐食割れは深部で粒界割れに移行しており、割れ進展を抑制するには粒界型応力腐食割れを抑制する施策が必要である。安定化元素NbないしTiを添加した供試材および不純物元素を低減しHfやZrを添加した供試材で、き裂深さが低下しているのが認められた。これらに加えて、粒界性格によって隣り合う結晶粒の結合強度や耐食性が異なることに着目し、表面強加工による応力腐食割れ発生を抑制できる本発明材に粒界型応力腐食割れ進展を抑制する機能を付加する位置づけで粒界性格分布制御を検討した。
<Grain boundary character distribution control>
In the secondary evaluation of the stress corrosion cracking test of Table 2, since severe conditions were selected, stress corrosion cracking occurred in all the test pieces. Stress corrosion cracking has shifted to intergranular cracking in the deep part, and measures to suppress intergranular stress corrosion cracking are necessary to suppress crack growth. It was observed that the crack depth was lowered in the test material to which the stabilizing elements Nb to Ti were added and the test material to which the impurity elements were reduced and Hf and Zr were added. In addition to these, focusing on the fact that the bonding strength and corrosion resistance of adjacent crystal grains differ depending on the grain boundary character, suppress the development of intergranular stress corrosion cracking in the material of the present invention that can suppress the occurrence of stress corrosion cracking due to surface hard working Grain boundary character distribution control was examined in terms of adding functions.

プラントの保全では、応力腐食割れによる損傷は定期点検時に目視または超音波探傷により検査される。超音波探傷によるき裂の検出限界が2mm程度であることを考慮すると、発生した応力腐食割れの進展を表面部から深さ2mm以内で止めることができれば、検査上は応力腐食割れの発生を抑えたことになる。また、超音波探傷による検査が必要とされる厚みのある部材では、深さ2mm程度のき裂は強度上問題ない。表面加工により導入される加工影響層は300〜400μmであり、これまで観察されている粒内型応力腐食割れの深さは深いものでも200〜300μmである。このことから、深部での粒界型応力腐食割れを1.5mm程度に抑えれば、全体で深さ2mm以内に抑えることができると考えられる。   In plant maintenance, damage due to stress corrosion cracking is inspected by visual inspection or ultrasonic inspection during periodic inspection. Considering that the limit of crack detection by ultrasonic flaw detection is about 2 mm, if the progress of the generated stress corrosion cracking can be stopped within a depth of 2 mm from the surface, the occurrence of stress corrosion cracking is suppressed for inspection. That's right. Further, in the case of a thick member that requires inspection by ultrasonic flaw detection, a crack with a depth of about 2 mm has no problem in strength. The processing-affected layer introduced by surface processing is 300 to 400 μm, and the depth of intragranular stress corrosion cracking observed so far is 200 to 300 μm even if it is deep. From this, it is considered that if the intergranular stress corrosion cracking in the deep part is suppressed to about 1.5 mm, the entire depth can be suppressed to within 2 mm.

図2に、供試材6の固溶化熱処理後の通常組織と、加工熱処理(圧延、鍛造等の加工と熱処理)によって粒界性格分布制御を施した組織について、電子線後方散乱回折法によって解析した粒界性格分布マップを示す。図2(a)が通常組織、図2(b)が粒界性格分布制御を施した組織示している。ここで粒界性格は、隣り合う結晶粒の結晶方位関係で決定されるΣ値を採用し、Σ値が1〜29までの粒界を対応粒界とし、それ以外の粒界をランダム粒界として取り扱った。図2の黒線で示された粒界がランダム粒界であり、白色で示された粒界は対応粒界である。図2(a)の通常組織では、ランダム粒界がネットワーク状に分布しているが、図2(b)の粒界性格分布制御組織ではランダム粒界のネットワークが分断されている。   FIG. 2 shows an analysis of the normal structure after solution heat treatment of specimen 6 and the structure subjected to grain boundary character distribution control by processing heat treatment (processing and heat treatment such as rolling and forging) by an electron backscatter diffraction method. A grain boundary character distribution map is shown. FIG. 2A shows a normal structure, and FIG. 2B shows a structure subjected to grain boundary character distribution control. Here, the grain boundary character adopts the Σ value determined by the crystal orientation relationship between adjacent crystal grains, the grain boundary having a Σ value of 1 to 29 as the corresponding grain boundary, and the other grain boundaries as random grain boundaries. Treated as. The grain boundaries shown by the black lines in FIG. 2 are random grain boundaries, and the grain boundaries shown in white are corresponding grain boundaries. In the normal structure of FIG. 2A, random grain boundaries are distributed in a network form, but in the grain boundary character distribution control structure of FIG. 2B, the network of random grain boundaries is divided.

図2の上下方向を部材の深さ方向と捉えると、図中に記載しているようにランダム粒界が連続しているネットワークについて深さ方向長さを求めることができる。10視野から各視野の最大深さ方向長さを計測し、最大値分布の最頻値を求めると450μmであった。本発明材について、実際に応力腐食割れ試験をしてみると、厳しい試験条件としてみても深いき裂を得ることが難しかった。そこで、炭素量を0.06%と増やし、同様に粒界性格分布制御を施した材料を鋭敏化して応力腐食割れ試験を実施した。その結果を通常組織材と比較したものを表5に示す。この粒界性格分布制御材の最大き裂深さは、通常組織材と比べて小さく870μmであった。応力腐食割れは概ねランダム粒界に沿って進展していた。この粒界性格分布制御材のランダム粒界深さ方向長さの最大値分布最頻値は460μmであった。このことを考慮すると、ランダム粒界は3次元で結合していて迂回して進展している。しかし、その深さは、本試験結果では高々最大値分布最頻値の2倍程度であり、き裂がその3倍進展するには確率が低く、長時間を要するといえる。   When the vertical direction in FIG. 2 is taken as the depth direction of the member, the length in the depth direction can be obtained for a network in which random grain boundaries are continuous as described in the figure. The maximum depth direction length of each visual field was measured from 10 visual fields, and the mode value of the maximum value distribution was found to be 450 μm. When the stress corrosion cracking test was actually performed on the material of the present invention, it was difficult to obtain a deep crack even under severe test conditions. Therefore, the amount of carbon was increased to 0.06%, and a stress corrosion cracking test was conducted by sensitizing a material which was similarly subjected to grain boundary character distribution control. Table 5 shows a comparison of the results with a normal tissue material. The maximum crack depth of this grain boundary character distribution control material was 870 μm, which was smaller than that of the normal structure material. The stress corrosion cracking generally progressed along random grain boundaries. The maximum value distribution mode of the length direction of the random grain boundary in the grain boundary character distribution control material was 460 μm. In consideration of this, the random grain boundaries are coupled in three dimensions and progress around. However, the depth of this test is about twice as high as the maximum value distribution mode in the test results, and it can be said that it takes a long time for the crack to grow three times as long.

Figure 2009161802
Figure 2009161802

このことから、このような粒界性格分布制御された組織が表面から2mm以上存在し、ランダム粒界が連続しているネットワークの深さ方向長さについて、その最大値分布最頻値の3倍の値が1.5mm以下であれば、粒界型応力腐食割れが1.5mm進展する確率はかなり低くなると考えられる。   This indicates that the grain boundary character distribution controlled structure exists at least 2 mm from the surface, and the length in the depth direction of the network in which random grain boundaries are continuous is three times the maximum value distribution mode. If the value of is 1.5 mm or less, it is considered that the probability that the intergranular stress corrosion cracking progresses by 1.5 mm is considerably low.

<原子炉構造物への適用>
本発明のオーステナイト系ステンレス鋼を使って、図3に示す沸騰水型原子炉炉心用の各種構造用部材を作製した。本原子炉は蒸気温度286℃、蒸気圧力70.7atgで運転され、発電出力として500,800,1100MWの発電が可能である。
<Application to reactor structure>
Using the austenitic stainless steel of the present invention, various structural members for a boiling water reactor core shown in FIG. 3 were produced. This reactor is operated at a steam temperature of 286 ° C. and a steam pressure of 70.7 atg, and can generate 500, 800, 1100 MW of power as power generation output.

各名称は次のとおりである。   The names are as follows.

中性子源パイプ51、炉心支持板52、中性子計装検出管53、制御棒54、炉心シュラウド55、上部格子板56、燃料集合体57、上鏡スプレイノズル58、ベントノズル59、圧力容器蓋60、フランジ61、計測用ノズル62、気水分離器63、シュラウドヘッド64、給水入口ノズル65、ジェットポンプ66、蒸気乾燥器68、蒸気出口ノズル69、給水スパージャ70、炉水スプレイ用ノズル71、下部炉心格子72、再循環水入口ノズル73、バッフル板74、制御棒案内管75。   Neutron source pipe 51, core support plate 52, neutron instrumentation detection tube 53, control rod 54, core shroud 55, upper lattice plate 56, fuel assembly 57, upper mirror spray nozzle 58, vent nozzle 59, pressure vessel lid 60, Flange 61, measuring nozzle 62, steam separator 63, shroud head 64, feed water inlet nozzle 65, jet pump 66, steam dryer 68, steam outlet nozzle 69, feed water sparger 70, reactor water spray nozzle 71, lower core Lattice 72, recirculation water inlet nozzle 73, baffle plate 74, control rod guide tube 75.

所定の厚さと形状に熱間圧延ないし熱間鍛造にて成形、溶体化処理を施した鋼板および管を使用し、切断、曲げ、溶接により、炉心支持板52、炉心シュラウド55、上部格子板56、ジェットポンプ66、給水スパージャ70、炉水スプレイ用ノズル71、下部炉心格子72、再循環水入口ノズル73を作製した。溶接部に対しては、溶接後、余盛部を研削し、研磨、必要に応じてピーニングによる残留応力圧縮化処理を行った。   Using a steel plate and tube formed and solution-treated by hot rolling or hot forging to a predetermined thickness and shape, the core support plate 52, the core shroud 55, and the upper lattice plate 56 are cut, bent, and welded. A jet pump 66, a feed water sparger 70, a reactor water spray nozzle 71, a lower core lattice 72, and a recirculation water inlet nozzle 73 were produced. For the welded portion, after welding, the surplus portion was ground, polished, and subjected to residual stress compression treatment by peening as necessary.

図4に本発明のオーステナイト系ステンレス鋼で作製した制御棒の斜視図を示す。制御棒は高照射量にさらされることから、照射偏析を抑制するためHfを0.8%含有した本発明材を適用し、ハンドル、シース、ブレード部を作製した。   FIG. 4 shows a perspective view of a control rod made of the austenitic stainless steel of the present invention. Since the control rod is exposed to a high irradiation dose, the present invention material containing 0.8% of Hf was applied to suppress irradiation segregation, and a handle, a sheath, and a blade portion were produced.

再循環系配管など圧力境界となる配管では、強度が要求される。本発明のオーステナイト系ステンレス鋼では、炭素および窒素量を抑えているため、結晶粒微細化により強度を担保した。継目無配管を製造する際に、予め加工熱処理にて細粒化しておき、穿孔することによって、平均結晶粒径が30μm以下、条件によっては10μm以下とした。配管の一部では、配管内側に冷間加工を施し、引き続き熱処理する加工熱処理により、粒界性格分布を変化させた。その結果、配管内側表面から2mm以上の深さまで、ランダム粒界からなる連続粒界網の深さ方向長さが1.5mm以下の粒界性格分布制御組織層を作り込むことができた。   For piping that becomes a pressure boundary, such as recirculation piping, strength is required. In the austenitic stainless steel of the present invention, the carbon and nitrogen contents are suppressed, so that the strength is ensured by refining crystal grains. When the seamless pipe was manufactured, the average crystal grain size was 30 μm or less, and 10 μm or less depending on conditions, by finely pulverizing and drilling in advance. In some of the pipes, the grain boundary character distribution was changed by a cold treatment inside the pipe and subsequent heat treatment. As a result, a grain boundary character distribution control structure layer in which the length in the depth direction of a continuous grain boundary network composed of random grain boundaries was 1.5 mm or less from the inner surface of the pipe to a depth of 2 mm or more could be formed.

一方、大径管では、体積が大きくなることにより、プレス容量の制限などから加工量が制限され細粒化が困難となる。そこで、従来の原子力用低炭素ステンレス鋼配管の内部に本発明のオーステナイト系ステンレス鋼をライニングしたクラッド配管を用いた。   On the other hand, in a large-diameter tube, when the volume is increased, the amount of processing is limited due to the limitation of the press capacity, and it is difficult to make fine particles. Therefore, a clad pipe in which the austenitic stainless steel of the present invention is lined inside a conventional low-carbon stainless steel pipe for nuclear power is used.

図5は上述の本発明のオーステナイト系ステンレス鋼を用いた配管の溶接継手部断面の模式図である。図5(a)は、本発明の化学成分組成を有するオーステナイト系ステンレス鋼であって、特別な加工熱処理を施していないものを用いた配管の溶接継手を示し、図5(b)は、結晶微細化強化を施した本発明のオーステナイト系ステンレス鋼を用いた配管の溶接継手を示し、図5(c)は、さらに、配管内側に粒界性格分布制御を施した本発明のオーステナイト系ステンレス鋼を用いた配管の溶接継手を示し、図5(d)は、配管内側の内径合わせ加工部に粒界性格分布制御を施した本発明のオーステナイト系ステンレス鋼を用いた配管の溶接継手を示し、図5(e)は、配管内側に本発明のオーステナイト系ステンレス鋼からなるライニングを施した配管の溶接継手を示す。配管内側の溶接部近傍に、内面機械加工と溶接による引張残留応力のため応力腐食割れの発生するポテンシャルがあるが、その部位に本発明材を用いることにより材料面で応力腐食割れの発生を抑制することができる。さらに、誘導加熱で内外面温度差付与などを行い内面応力の圧縮化を図り、応力腐食割れによる材料損傷に対して一層高い信頼性を有する配管継手を作製した。   FIG. 5 is a schematic view of a cross section of a welded joint portion of a pipe using the austenitic stainless steel of the present invention described above. FIG. 5 (a) shows a welded joint of a pipe using austenitic stainless steel having the chemical composition of the present invention, which has not been subjected to special processing heat treatment, and FIG. FIG. 5 (c) shows a welded joint of a pipe using the austenitic stainless steel of the present invention subjected to refinement strengthening, and FIG. 5 (c) further shows the austenitic stainless steel of the present invention in which grain boundary character distribution control is applied to the inside of the pipe FIG. 5 (d) shows a pipe welded joint using the austenitic stainless steel of the present invention in which grain boundary character distribution control is applied to the inner diameter matching portion inside the pipe, FIG.5 (e) shows the welded joint of the pipe | tube which gave the lining which consists of an austenitic stainless steel of this invention inside piping. There is a potential for stress corrosion cracking in the vicinity of the welded part inside the pipe due to internal residual machining and tensile residual stress due to welding. can do. Furthermore, the inner and outer surface temperature difference was given by induction heating to compress the internal stress, and a pipe joint having higher reliability against material damage due to stress corrosion cracking was produced.

本発明のオーステナイト系ステンレス鋼を使って、図6に示す改良型沸騰水型原子炉炉心用の各種構造用部材を作製した。本原子炉は、発電出力として1350MWの発電が可能である。   Using the austenitic stainless steel of the present invention, various structural members for an improved boiling water reactor core shown in FIG. 6 were produced. This reactor can generate 1350 MW as a power generation output.

各名称は次のとおりである。   The names are as follows.

炉心支持板52、制御棒54、炉心シュラウド55、上部格子板56、燃料集合体57、気水分離器63、蒸気乾燥器68、蒸気出口ノズル69、インターナルポンプ126。   A core support plate 52, a control rod 54, a core shroud 55, an upper lattice plate 56, a fuel assembly 57, a steam separator 63, a steam dryer 68, a steam outlet nozzle 69, and an internal pump 126;

所定の厚さと形状に熱間圧延ないし熱間鍛造にて成形、溶体化処理を施した鋼板および管を使用し、切断、曲げ、溶接により、炉心支持板52、制御棒54、炉心シュラウド55、上部格子板56、給水スパージャ70、炉水スプレイ用ノズル71、下部炉心格子72、インターナルポンプ126を作製した。溶接部に対しては、溶接後、余盛部を研削し、研磨、必要に応じてピーニングによる残留応力圧縮化処理を行った。   Using steel plates and tubes formed and solution-treated by hot rolling or hot forging to a predetermined thickness and shape, core support plate 52, control rod 54, core shroud 55, by cutting, bending and welding, An upper lattice plate 56, a water supply sparger 70, a reactor water spray nozzle 71, a lower core lattice 72, and an internal pump 126 were produced. For the welded portion, after welding, the surplus portion was ground, polished, and subjected to residual stress compression treatment by peening as necessary.

表6に沸騰水型原子炉および改良型沸騰水型原子炉の仕様を比較して示す。   Table 6 compares the specifications of the boiling water reactor and the improved boiling water reactor.

Figure 2009161802
Figure 2009161802

改良型沸騰水型原子炉では、再循環方式を沸騰水型原子炉の外部再循環ポンプおよびジェットポンプから、インターナルポンプに変更しており、再循環系配管が不要であることが特長の一つである。インターナルポンプを取り付けるノズル部は、原子炉圧力容器内に温度および圧力変化を生じても、インターナルポンプの回転機能へ影響を与えず、また電動機部への熱の伝達が少なくなるような、スリーブ型最適形状とした。また、炉内構造物も、インターナルポンプ採用による流動振動への影響を少なくしている。   One of the features of the improved boiling water reactor is that the recirculation system is changed from the external recirculation pump and jet pump of the boiling water reactor to the internal pump, and no recirculation piping is required. One. The nozzle part to which the internal pump is attached does not affect the rotation function of the internal pump even if temperature and pressure changes occur in the reactor pressure vessel, and heat transfer to the electric motor part is reduced. The sleeve shape is optimal. In addition, the internal structure of the furnace reduces the influence on the flow vibration caused by the internal pump.

原子炉圧力容器は、冷却材の圧力境界を構成するとともに、炉心および圧力容器内部構造物を内蔵し保持する機能を有する。沸騰水型原子炉では燃料集合体764体、ジェットポンプおよび内部構造物を収納して内径約6.4mであるのに対して、改良型沸騰水型原子炉では燃料集合体が872体に増加したこと、インターナルポンプの炉内取扱いスペースを確保したことにより内径約7.1mと大きくなっている。一方、内高は、高効率気水分離器、改良型制御棒駆動機構の採用、上蓋・主フランジ構造変更、下鏡の形状変更により、沸騰水型原子炉では約22mであるのに対して改良型沸騰水型原子炉では約21mとわずかにコンパクト化している。下鏡形状はインターナルポンプの採用に伴い、インターナルポンプの圧力容器下部への据付必要スペース確保、および冷却水循環流路を考慮して、沸騰水型原子炉の半球状から皿型に変更した。インターナルポンプは一体鍛造により作製し、溶接線数の少ない設計とした。支持スカート127は、インターナルポンプの取扱い必要スペースの確保とともに、インターナルポンプ用熱交換器をペデスタル内に設置するために円錐形状とした。   The reactor pressure vessel constitutes the pressure boundary of the coolant and has a function of incorporating and holding the core and the pressure vessel internal structure. The boiling water reactor contains 764 fuel assemblies, jet pumps and internal structures and has an inner diameter of about 6.4 m, whereas the improved boiling water reactor has 872 fuel assemblies. In addition, the inner diameter of the internal pump is increased to about 7.1 m by securing a space for handling the internal pump in the furnace. On the other hand, the internal height is about 22m in the boiling water reactor due to the adoption of a high-efficiency steam separator, improved control rod drive mechanism, upper lid / main flange structure change, and lower mirror shape change. The improved boiling water reactor is slightly compact, about 21m. With the adoption of the internal pump, the lower mirror shape was changed from a hemispherical boiling water reactor to a dish type in consideration of the space required for installation of the internal pump under the pressure vessel and the cooling water circulation flow path. . The internal pump was manufactured by integral forging and designed with a small number of weld lines. The support skirt 127 has a conical shape so as to secure a necessary space for handling the internal pump and install the internal pump heat exchanger in the pedestal.

沸騰水型原子炉および改良型沸騰水型原子炉において、本発明のオーステナイト系ステンレス鋼で作製した各部材は、応力腐食割れによる材料損傷に対して裕度が向上しており、応力腐食割れ要因である応力および水質に対する施策と組み合わせることにより、制御棒や燃料集合体といった交換機器を除き、30年以上無交換で使用可能となることが見込まれる。また、12ヶ月運転後で1回当り50日以内、好ましくは40日以内、特に好ましくは30日での定期点検が繰り返し実施されるとともに、稼動率85%以上、好ましくは90%以上、特に好ましくは92%、熱効率35%で運転される。   In boiling water reactors and improved boiling water reactors, each member made of the austenitic stainless steel of the present invention has improved tolerance to material damage due to stress corrosion cracking, and causes of stress corrosion cracking By combining with measures for stress and water quality, it is expected that it can be used without replacement for over 30 years, except for replacement equipment such as control rods and fuel assemblies. Further, after 12 months of operation, periodic inspections are repeatedly performed within 50 days, preferably within 40 days, particularly preferably within 30 days, and the operation rate is 85% or more, preferably 90% or more, particularly preferably. Is operated at 92% and thermal efficiency of 35%.

本発明のオーステナイト系ステンレス鋼は、表面への機械加工を受けた場合の材料そのものの応力腐食割れ発生に対するポテンシャルを低減できることから、同様に応力腐食割れ対策が必要となる、加圧水型原子炉など他型原子炉や開発中の次世代原子炉に対しても有効に機能することが期待される。   Since the austenitic stainless steel of the present invention can reduce the potential for the occurrence of stress corrosion cracking of the material itself when subjected to machining on the surface, it is necessary to take measures against stress corrosion cracking, etc. It is expected to function effectively for the next-generation nuclear reactor and the next generation nuclear reactor under development.

化学成分から計算されるM値およびS値に対して本発明材の範囲を示す図である。It is a figure which shows the range of this invention material with respect to M value and S value which are calculated from a chemical component. 電子線後方散乱図形法にて測定した材料断面の粒界性格分布を示す図であり、図2(a)が通常組織、図2(b)が粒界性格分布制御を施した組織を示す。It is a figure which shows the grain-boundary character distribution of the material cross section measured by the electron beam backscattering pattern method, FIG. 2 (a) shows a normal structure | tissue, FIG.2 (b) shows the structure | tissue which performed grain boundary character distribution control. 本発明のオーステナイト系ステンレス鋼を用いた沸騰水型原子炉炉心を示す部分断面斜視図である。1 is a partial cross-sectional perspective view showing a boiling water reactor core using the austenitic stainless steel of the present invention. 本発明のオーステナイト系ステンレス鋼を用いた制御棒を示す部分断面斜視図である。It is a fragmentary sectional perspective view which shows the control rod using the austenitic stainless steel of this invention. 本発明のオーステナイト系ステンレス鋼を用いた配管の溶接継手部断面模式図であり、図5(a)は、本発明の化学成分組成を有するオーステナイト系ステンレス鋼であって、特別な加工熱処理を施していないものを用いた配管の溶接継手を、図5(b)は、結晶微細化強化を施した本発明のオーステナイト系ステンレス鋼を用いた配管の溶接継手を、図5(c)は、さらに、配管内側に粒界性格分布制御を施した本発明のオーステナイト系ステンレス鋼を用いた配管の溶接継手を、図5(d)は、配管内側の内径合わせ加工部に粒界性格分布制御を施した本発明のオーステナイト系ステンレス鋼を用いた配管の溶接継手を、図5(e)は、配管内側に本発明のオーステナイト系ステンレス鋼からなるライニングを施した配管の溶接継手をそれぞれ示す。FIG. 5 (a) is a schematic cross-sectional view of a welded joint portion of a pipe using the austenitic stainless steel of the present invention, and FIG. 5 (a) is an austenitic stainless steel having the chemical composition of the present invention and subjected to a special thermomechanical treatment. Fig. 5 (b) shows a pipe welded joint using the austenitic stainless steel of the present invention that has been refined and refined, and Fig. 5 (c) Fig. 5 (d) shows the welded joint of a pipe using the austenitic stainless steel of the present invention in which the grain boundary character distribution control is applied to the inside of the pipe. FIG. 5 (e) shows a pipe welded joint with a lining made of the austenitic stainless steel of the present invention on the inner side of the pipe. Each show. 本発明のオーステナイト系ステンレス鋼を用いた改良型沸騰水型原子炉炉心を示す断面図である。It is sectional drawing which shows the improved boiling water reactor core using the austenitic stainless steel of this invention.

符号の説明Explanation of symbols

1 油圧ポンプ
1a 斜板
1b 吐出油路
2〜5 アクチュエータ(2:旋回モータ)
7a,7b 方向切換弁
8〜10 方向切換弁
210 運転室
DESCRIPTION OF SYMBOLS 1 Hydraulic pump 1a Swash plate 1b Discharge oil path 2-5 Actuator (2: Swing motor)
7a, 7b Directional switching valve 8-10 Directional switching valve 210 Cab

Claims (7)

質量%で、Crを17〜20%、Niを10〜15%、Cを0.001〜0.020%、Siを0.1〜1.0%、Mnを0.1〜2.0%、Pを0.035%以下、Sを0.015%以下、Moを0.01〜3.0%、Nを0.001〜0.08%、Cuを0.01〜2.5%含有し、残部がFeおよび不純物からなり、かつ下記式1でM値を計算し、下記式2でS値を計算するとき、
式1:
M=462×(C+N)+9.2×Si+8.1×Mn+13.7×Cr+29×(Ni+Cu)+18.5×Mo
式2:
S=32.7+101×C−13×Si−1.2×Mn−0.9×Cr+2×Ni−5.3×Mo+0.1×Cu−179×N
ここで、式1および2中の元素記号は各成分の質量%を示す;
前記M値が590以上760以下であり、前記値が24以上45以下であることを特徴とする高耐食性オーステナイト系ステンレス鋼。
In mass%, Cr is 17-20%, Ni is 10-15%, C is 0.001-0.020%, Si is 0.1-1.0%, Mn is 0.1-2.0% , P is 0.035% or less, S is 0.015% or less, Mo is 0.01 to 3.0%, N is 0.001 to 0.08%, Cu is 0.01 to 2.5%. When the balance is Fe and impurities, and the M value is calculated by the following formula 1 and the S value is calculated by the following formula 2,
Formula 1:
M = 462 × (C + N) + 9.2 × Si + 8.1 × Mn + 13.7 × Cr + 29 × (Ni + Cu) + 18.5 × Mo
Formula 2:
S = 32.7 + 101 * C-13 * Si-1.2 * Mn-0.9 * Cr + 2 * Ni-5.3 * Mo + 0.1 * Cu-179 * N
Here, the element symbols in formulas 1 and 2 indicate the mass% of each component;
The M value is 590 or more and 760 or less, and the value is 24 or more and 45 or less.
質量%で、Moを0.4%より多く3.0%以下、Tiを0.01%〜0.4%、Nbを0.01%〜0.4%、Zrを0.01%〜1.14%、もしくはHfを0.01〜2.24%、1種以上含有することを特徴とする請求項1に記載の高耐食性オーステナイト系ステンレス鋼。   In mass%, Mo is more than 0.4% and not more than 3.0%, Ti is 0.01% to 0.4%, Nb is 0.01% to 0.4%, Zr is 0.01% to 1%. The high corrosion-resistant austenitic stainless steel according to claim 1, containing 0.14% or Hf in an amount of 0.01 to 2.24% or more. 平均結晶粒径が30μm以下であることを特徴とする請求項1または2記載の高耐食性オーステナイト系ステンレス鋼。   The high-corrosion-resistant austenitic stainless steel according to claim 1 or 2, wherein the average crystal grain size is 30 µm or less. 腐食環境に接する表面から少なくとも2mm以上の深さ範囲内において、Σ値29以下の粒界を除いたランダム粒界からなる連続粒界網の深さ方向長さが1.5mm以下であることを特徴とする請求項1〜3のいずれか1項記載の高耐食性オーステナイト系ステンレス鋼。   The depth direction length of the continuous grain boundary network composed of random grain boundaries excluding the grain boundaries with a Σ value of 29 or less within a depth range of at least 2 mm from the surface in contact with the corrosive environment is 1.5 mm or less. The highly corrosion-resistant austenitic stainless steel according to any one of claims 1 to 3. 請求項1〜4のいずれか1項記載の高耐食性オーステナイト系ステンレス鋼で製造された炉内構造物、配管、または制御棒からなる原子力発電プラント。   A nuclear power plant comprising an in-furnace structure, piping, or control rods manufactured from the highly corrosion-resistant austenitic stainless steel according to any one of claims 1 to 4. 表面を機械加工した請求項1〜4のいずれか1項記載の高耐食性オーステナイト系ステンレス鋼を溶接後、余盛部を研削し、研磨、必要に応じてピーニングによる残留応力圧縮化処理を行うことを特徴とする溶接継手。   After welding the highly corrosion-resistant austenitic stainless steel according to any one of claims 1 to 4 whose surface has been machined, the surplus portion is ground, polished, and subjected to residual stress compression treatment by peening as necessary. A welded joint characterized by 請求項1〜4のいずれか1項記載の高耐食性オーステナイト系ステンレス鋼を応力腐食割れが生じる環境と接する側にライニングすることを特徴とする構造部材。   A structural member characterized by lining the highly corrosion-resistant austenitic stainless steel according to any one of claims 1 to 4 on a side in contact with an environment where stress corrosion cracking occurs.
JP2007341253A 2007-12-28 2007-12-28 Highly corrosion-resistant austenitic stainless steel, nuclear power generation plant constructed by using the stainless steel, weld joint and structural member Pending JP2009161802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007341253A JP2009161802A (en) 2007-12-28 2007-12-28 Highly corrosion-resistant austenitic stainless steel, nuclear power generation plant constructed by using the stainless steel, weld joint and structural member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007341253A JP2009161802A (en) 2007-12-28 2007-12-28 Highly corrosion-resistant austenitic stainless steel, nuclear power generation plant constructed by using the stainless steel, weld joint and structural member

Publications (1)

Publication Number Publication Date
JP2009161802A true JP2009161802A (en) 2009-07-23

Family

ID=40964740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007341253A Pending JP2009161802A (en) 2007-12-28 2007-12-28 Highly corrosion-resistant austenitic stainless steel, nuclear power generation plant constructed by using the stainless steel, weld joint and structural member

Country Status (1)

Country Link
JP (1) JP2009161802A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185313A (en) * 2008-02-04 2009-08-20 Japan Atomic Energy Agency Intergranular control type exposure-resistant sus316-equivalent steel and producing method therefor
WO2012060380A1 (en) * 2010-11-02 2012-05-10 三菱重工業株式会社 Machining condition setting system, machining condition setting method, and machined object which is machined using same
WO2013191202A1 (en) * 2012-06-20 2013-12-27 新日鐵住金株式会社 Austenitic alloy tube
JP2014005509A (en) * 2012-06-26 2014-01-16 Hitachi-Ge Nuclear Energy Ltd Highly corrosion-resistant austenitic stainless steel and weld joint structure
JP2014181383A (en) * 2013-03-19 2014-09-29 Hitachi-Ge Nuclear Energy Ltd High corrosion resistance high strength stainless steel, structure in atomic furnace and manufacturing method of high corrosion resistance high strength stainless steel
JP2014532174A (en) * 2011-09-30 2014-12-04 アレバ・エヌペ Method for producing stainless steel parts for wear-resistant and corrosion-resistant reactors, corresponding parts, and corresponding control clusters
JP2014532175A (en) * 2011-09-30 2014-12-04 アレバ・エヌペ Method for producing cladding tubes for wear-resistant and corrosion-resistant reactors from preforms made from austenitic stainless steel having a low carbon content, corresponding cladding tubes and corresponding controls cluster
JPWO2018043565A1 (en) * 2016-08-30 2019-06-24 日本製鉄株式会社 Austenitic stainless steel
CN110218943A (en) * 2019-07-02 2019-09-10 珠海国合融创科技有限公司 A kind of austenitic stainless steel and preparation method thereof
CN111564670A (en) * 2020-04-27 2020-08-21 天能电池集团股份有限公司 Method for manufacturing low-temperature stable lead storage battery
CN112203787A (en) * 2018-05-28 2021-01-08 达玛斯蒂尔股份公司 Blank for Damascus pattern product
JP2021504587A (en) * 2017-12-06 2021-02-15 ポスコPosco Non-magnetic austenitic stainless steel with excellent corrosion resistance and its manufacturing method
CN112626425A (en) * 2020-12-08 2021-04-09 山西太钢不锈钢股份有限公司 Method for controlling welding seam dross of 316L self-fluxing welding material
WO2024024679A1 (en) * 2022-07-26 2024-02-01 三菱造船株式会社 Tank manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253401A (en) * 2002-02-28 2003-09-10 Jfe Steel Kk Austenitic stainless steel excellent in intergranular corrosion resistance and production method thereof
JP2004339576A (en) * 2003-05-16 2004-12-02 Hitachi Ltd Materials for constituting nuclear reactor
JP2006291325A (en) * 2005-04-14 2006-10-26 Hitachi Ltd Welded member, welded structure using the same and highly corrosion-resistant austenitic stainless steel
JP2007217776A (en) * 2006-02-20 2007-08-30 Nisshin Steel Co Ltd Stainless steel member having crevice structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253401A (en) * 2002-02-28 2003-09-10 Jfe Steel Kk Austenitic stainless steel excellent in intergranular corrosion resistance and production method thereof
JP2004339576A (en) * 2003-05-16 2004-12-02 Hitachi Ltd Materials for constituting nuclear reactor
JP2006291325A (en) * 2005-04-14 2006-10-26 Hitachi Ltd Welded member, welded structure using the same and highly corrosion-resistant austenitic stainless steel
JP2007217776A (en) * 2006-02-20 2007-08-30 Nisshin Steel Co Ltd Stainless steel member having crevice structure

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185313A (en) * 2008-02-04 2009-08-20 Japan Atomic Energy Agency Intergranular control type exposure-resistant sus316-equivalent steel and producing method therefor
WO2012060380A1 (en) * 2010-11-02 2012-05-10 三菱重工業株式会社 Machining condition setting system, machining condition setting method, and machined object which is machined using same
US9914986B2 (en) 2011-09-30 2018-03-13 Areva Np Method for producing, from a preform made of austenitic stainless steel with a low carbon content, a wear-resistant and corrosion-resistant cladding for a nuclear reactor, corresponding cladding and corresponding control cluster
JP2014532174A (en) * 2011-09-30 2014-12-04 アレバ・エヌペ Method for producing stainless steel parts for wear-resistant and corrosion-resistant reactors, corresponding parts, and corresponding control clusters
JP2014532175A (en) * 2011-09-30 2014-12-04 アレバ・エヌペ Method for producing cladding tubes for wear-resistant and corrosion-resistant reactors from preforms made from austenitic stainless steel having a low carbon content, corresponding cladding tubes and corresponding controls cluster
JP5459633B1 (en) * 2012-06-20 2014-04-02 新日鐵住金株式会社 Austenitic alloy tube
WO2013191202A1 (en) * 2012-06-20 2013-12-27 新日鐵住金株式会社 Austenitic alloy tube
KR101660154B1 (en) 2012-06-20 2016-09-26 신닛테츠스미킨 카부시키카이샤 Austenitic alloy tube
KR20150012288A (en) * 2012-06-20 2015-02-03 신닛테츠스미킨 카부시키카이샤 Austenitic alloy tube
CN104379787A (en) * 2012-06-20 2015-02-25 新日铁住金株式会社 Austenitic alloy tube
US9859026B2 (en) 2012-06-20 2018-01-02 Nippon Steel & Sumitomo Metal Corporation Austenitic alloy tube
JP2014005509A (en) * 2012-06-26 2014-01-16 Hitachi-Ge Nuclear Energy Ltd Highly corrosion-resistant austenitic stainless steel and weld joint structure
JP2014181383A (en) * 2013-03-19 2014-09-29 Hitachi-Ge Nuclear Energy Ltd High corrosion resistance high strength stainless steel, structure in atomic furnace and manufacturing method of high corrosion resistance high strength stainless steel
JPWO2018043565A1 (en) * 2016-08-30 2019-06-24 日本製鉄株式会社 Austenitic stainless steel
JP2021504587A (en) * 2017-12-06 2021-02-15 ポスコPosco Non-magnetic austenitic stainless steel with excellent corrosion resistance and its manufacturing method
JP2021525829A (en) * 2018-05-28 2021-09-27 ダーマスティール アクティエボラーグ Blank for Damascus patterned goods
JP7339968B2 (en) 2018-05-28 2023-09-06 ダーマスティール アクティエボラーグ Blanks for Damascus patterned articles
CN112203787A (en) * 2018-05-28 2021-01-08 达玛斯蒂尔股份公司 Blank for Damascus pattern product
CN112203787B (en) * 2018-05-28 2023-07-25 达玛斯蒂尔股份公司 Blank for damascene patterned article
US20210207250A1 (en) * 2018-05-28 2021-07-08 Damasteel Ab Blank for a damascus patterned article
CN110218943A (en) * 2019-07-02 2019-09-10 珠海国合融创科技有限公司 A kind of austenitic stainless steel and preparation method thereof
CN111564670A (en) * 2020-04-27 2020-08-21 天能电池集团股份有限公司 Method for manufacturing low-temperature stable lead storage battery
CN112626425A (en) * 2020-12-08 2021-04-09 山西太钢不锈钢股份有限公司 Method for controlling welding seam dross of 316L self-fluxing welding material
WO2024024679A1 (en) * 2022-07-26 2024-02-01 三菱造船株式会社 Tank manufacturing method

Similar Documents

Publication Publication Date Title
JP2009161802A (en) Highly corrosion-resistant austenitic stainless steel, nuclear power generation plant constructed by using the stainless steel, weld joint and structural member
JP4616772B2 (en) Austenitic stainless steel, method for producing the same, and structure using the same
EP2728031B1 (en) Austenitic stainless steel tube
CA2784760C (en) Austenitic stainless steel pipe excellent in steam oxidation resistance and manufacturing method therefor
JP4062190B2 (en) Austenitic stainless steel pipe for nuclear power
JP2009079240A (en) Austenitic stainless steel and producing method therefor, and structural material and piping in nuclear reactor
JP4503483B2 (en) Material to be welded, welded structure using the same and high corrosion resistance austenitic stainless steel
JP5326339B2 (en) Ferritic heat-resistant steel and heat-resistant structure with excellent creep characteristics in weld heat-affected zone
CN109504916B (en) Copper-titanium-containing high-strength high-corrosion-resistance austenitic stainless steel and preparation method thereof
CN109504835B (en) Copper-tungsten reinforced corrosion-resistant austenitic stainless steel and preparation method thereof
Rao Materials development for indian nuclear power programme: an industry perspective
JP2010275569A (en) Austenitic stainless steel and method of manufacturing the same
JP2014005509A (en) Highly corrosion-resistant austenitic stainless steel and weld joint structure
KR101982961B1 (en) Ni-based alloy tube for nuclear power
EP2100977A1 (en) Method of increasing resistance to stress corrosion cracking of austenitic stainless steels
JP2009287104A (en) Thin sheet of austenitic stainless steel and manufacturing method therefor
CN109504826B (en) Copper-vanadium-containing high-strength high-corrosion-resistance stainless steel and preparation method thereof
JP2008063602A (en) Corrosion resistant austenitic alloy and its production method
JP2006144068A (en) Austenitic stainless steel
Pillot et al. Development and Production of Creep and Hydrogen Resistant Grade 91 (9Cr1MoV) Heavy Plates for New Generation High Efficiency Refining Reactors
Ford et al. Environmenta11yJAssisted Degradation of Carbon and LowJA11oy Stee1s in WaterJCoo1ed Nuc1ear Reactors
Scheuer et al. Use of Zircaloy 4 material for the pressure vessels of hot and cold neutron sources and beam tubes for research reactors
JP2005171278A (en) Steel material and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925