JP2009079240A - Austenitic stainless steel and producing method therefor, and structural material and piping in nuclear reactor - Google Patents

Austenitic stainless steel and producing method therefor, and structural material and piping in nuclear reactor Download PDF

Info

Publication number
JP2009079240A
JP2009079240A JP2007247747A JP2007247747A JP2009079240A JP 2009079240 A JP2009079240 A JP 2009079240A JP 2007247747 A JP2007247747 A JP 2007247747A JP 2007247747 A JP2007247747 A JP 2007247747A JP 2009079240 A JP2009079240 A JP 2009079240A
Authority
JP
Japan
Prior art keywords
less
stainless steel
austenitic stainless
amount
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007247747A
Other languages
Japanese (ja)
Inventor
Toshio Yonezawa
利夫 米澤
Shunichi Suzuki
俊一 鈴木
Hideshi Tezuka
英志 手塚
Kenro Takamori
謙郎 高守
Takashi Oki
俊 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tohoku University NUC
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Tokyo Electric Power Co Inc filed Critical Tohoku University NUC
Priority to JP2007247747A priority Critical patent/JP2009079240A/en
Publication of JP2009079240A publication Critical patent/JP2009079240A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an austenitic stainless steel which is made hardly sensible and has excellent stress-corrosion cracking resistance, and even when the stress-corrosion crack is caused, hardly causes propagation of the stress-corrosion crack, since it has high stacking-fault energy value, and a producing method therefor, and the structural material thereof. <P>SOLUTION: The austenitic stainless steel is composed of, by wt.%, ≤0.030% C, ≤0.030% N, ≤0.1% Si, ≤1.0% Mn, 10-26% Ni, 15-30% Cr, ≤3.0% Mo and the balance substantially Fe with inevitable impurities, wherein solid-solution content of C is ≤0.010% and solid-solution content of N is ≤0.010%. Further, the constitution containing 0.01-2.0% Al and the constitution containing ≤1.0% one or more kinds selected from V, Ti and Nb can be adopted. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、オーステナイト系ステンレス鋼とその製造方法、及びそれを用いた構造物に関するものである。   The present invention relates to austenitic stainless steel, a method for producing the same, and a structure using the same.

低炭素オーステナイト系ステンレス鋼は、鋭敏化し難く、高温高圧水下での耐応力腐食割れ性に優れていることから、原子炉の配管や炉内構造物の構成材料に多用されてきた。しかし近年、低炭素オーステナイト系ステンレス鋼は、鋭敏化や隙間腐食を生じていなくても、グラインダー加工や、溶接熱歪により硬化した領域から応力腐食割れを発生し、粒界応力腐食割れとして進展することが明らかとなった。このオーステナイト系ステンレス鋼の冷間加工や溶接熱歪による応力腐食割れ感受性の増大については、その割れ機構が不明であり、割れ機構の解明とそれに基づく対策材の開発が緊急の課題とされていた。
国際公開第05/068674号パンフレット
Low-carbon austenitic stainless steel has been widely used as a constituent material for reactor piping and in-reactor structures because it is difficult to sensitize and has excellent stress corrosion cracking resistance under high-temperature and high-pressure water. In recent years, however, low carbon austenitic stainless steels have developed as intergranular stress corrosion cracks by causing stress corrosion cracking from areas hardened by grinder processing or welding thermal strain, even without sensitization or crevice corrosion. It became clear. Regarding the increase in stress corrosion cracking susceptibility due to cold working and welding thermal strain of this austenitic stainless steel, the cracking mechanism was unknown, and the elucidation of the cracking mechanism and the development of countermeasure materials based on it were considered urgent issues. .
WO05 / 068674 pamphlet

本発明は上記課題を解決するために成されたものであって、冷間加工や溶接熱歪による応力腐食割れ感受性の増大を防止し、耐久性に優れたオーステナイト系ステンレス鋼を提供することを目的としている。   The present invention has been made to solve the above problems, and provides an austenitic stainless steel excellent in durability by preventing an increase in stress corrosion cracking susceptibility due to cold working or welding thermal strain. It is aimed.

本発明者らは、上記課題「鋭敏化や隙間腐食を生じ難く、冷間加工等による硬化に基づく粒界応力腐食割れの発生や、進展し難い、オーステナイト系ステンレス鋼対策材の開発」に対して、長年研究に取り組んできた。   The present inventors have responded to the above-mentioned problem "development of an austenitic stainless steel countermeasure material that is difficult to cause sensitization and crevice corrosion, is difficult to progress, and is difficult to progress due to the occurrence of intergranular stress corrosion cracking based on hardening by cold working or the like. '' I have been working on research for many years.

従来から、オーステナイト系ステンレス鋼の冷間加工や溶接熱歪による応力腐食割れ感受性の増大については、オーステナイト系ステンレス鋼の積層欠陥エネルギー値が寄与するのではないかとの考えも一部にはあったが、積層欠陥エネルギー値は化学成分で定まり、熱処理や金属組織では変化しないとされていた。   Conventionally, some thought that the stacking fault energy value of austenitic stainless steel might contribute to the increase in stress corrosion cracking susceptibility due to cold working of austenitic stainless steel and welding thermal strain. However, the stacking fault energy value is determined by the chemical component, and it is said that it does not change by heat treatment or metal structure.

しかし、本発明者らは、オーステナイト系ステンレス鋼の積層欠陥エネルギー値については重大な誤解があり、オーステナイト系ステンレス鋼の積層欠陥エネルギー値を最も大きく左右するのはNi、Cr、Mo、Si、Mn量などの主要合金元素量のほかに化学成分としてのC、N量ではなく、結晶母相すなわちマトリクス中に固溶している固溶C量、固溶N量が重要であると着想した。すなわち上記問題点を解決する為には、オーステナイト系ステンレス鋼の積層欠陥エネルギー値を高くする事が肝要であるが、従来から定説とされてきた、「積層欠陥エネルギー値は単に化学成分のみで定まり、加工・熱処理によっては変化しない」とする考え方には誤りがあると考えた。化学成分のみならず、加工・熱処理により固溶C量、固溶N量を減少させることで積層欠陥エネルギー値を高め、耐応力腐食割れ性に優れたオーステナイト系ステンレス鋼対策材開発の道が開けるものと考え、実験を積み重ねてきた。   However, the present inventors have a serious misunderstanding about the stacking fault energy value of austenitic stainless steel, and Ni, Cr, Mo, Si, Mn have the greatest influence on the stacking fault energy value of austenitic stainless steel. In addition to the amount of main alloy elements such as the amount, not the amount of C and N as chemical components, but the amount of solid solution C and the amount of solution N dissolved in the crystal matrix, that is, the matrix, was invented. In other words, in order to solve the above problems, it is important to increase the stacking fault energy value of austenitic stainless steel, but the conventional theory has been that "the stacking fault energy value is determined solely by chemical components. I thought that there was an error in the idea that “it does not change depending on the processing and heat treatment”. Not only the chemical components but also the amount of solid solution C and solid solution N are reduced by processing and heat treatment, thereby increasing the stacking fault energy value and opening the way for the development of countermeasures for austenitic stainless steel with excellent stress corrosion cracking resistance. I thought it was a thing, and have been experimenting.

本発明者らは、化学成分を系統的に変化させた各種低炭素オーステナイト系ステンレス鋼について積層欠陥エネルギー値を計測した。
従来、「オーステナイト系ステンレス鋼中のC量は積層欠陥エネルギー値に影響を与えない」とか、「C量は高くなると積層欠陥エネルギー値を高くする」とか、「オーステナイト系ステンレス鋼中のN量は、ある含有量までは増大するにつれて、積層欠陥エネルギー値が低下するがそれ以降は影響がない」などとする考え方が一般的であった。
これに対して本発明者らは、上記計測結果から「オーステナイト系ステンレス鋼の積層欠陥エネルギー値には、オーステナイト系ステンレス鋼中に含まれるC、N量で定まるのではなく、オーステナイト系ステンレス鋼のマトリクスに固溶したC、N量によって定まり、固溶C量及び固溶N量が低下すると積層欠陥エネルギー値が増大する」ことを見出した。すなわち、化学分析による成分分析でC、N量がいくら含まれているかではなく、オーステナイト系ステンレス鋼マトリクスにC、N量がどの程度固溶しているかが重要であることを見出した。
The present inventors measured the stacking fault energy value for various low carbon austenitic stainless steels in which chemical components were systematically changed.
Conventionally, “the amount of C in the austenitic stainless steel does not affect the stacking fault energy value”, “the higher the C amount, the higher the stacking fault energy value”, or “the N amount in the austenitic stainless steel is As the content increases, the stacking fault energy value decreases, but there is no influence thereafter.
On the other hand, the present inventors have found from the above measurement results that “the stacking fault energy value of austenitic stainless steel is not determined by the amounts of C and N contained in austenitic stainless steel, but of austenitic stainless steel. It was determined by the amounts of C and N dissolved in the matrix, and it was found that the stacking fault energy value increases as the amount of C and N decreases. That is, it was found that the amount of C and N contained in the austenitic stainless steel matrix is important, not the amount of C and N contained in the component analysis by chemical analysis.

前述したように、従来「積層欠陥エネルギー値とは材料の化学組成で一義的に定まり、熱処理条件等によっては変化しない」と考えられてきたのに対して、本発明者らは「オーステナイト系ステンレス鋼中の固溶C、N量が低下すると積層欠陥エネルギー値が増大する」との知見に基づき、「オーステナイト系ステンレス鋼は熱処理により固溶C、N量が低下する」ことと併せ考え、「オーステナイト系ステンレス鋼の積層欠陥エネルギー値は、溶体化処理後の冷却速度や、溶体化処理後の時効処理や鋭敏化処理により固溶C、N量が低下することにより、増大する」ことを見出した。   As described above, it has been thought that the stacking fault energy value is uniquely determined by the chemical composition of the material and does not change depending on the heat treatment conditions. Based on the knowledge that “the amount of stacking fault energy increases as the amount of solid solution C and N in the steel decreases,” “Austenitic stainless steel reduces the amount of solid solution C and N by heat treatment” It has been found that the stacking fault energy value of austenitic stainless steel increases as the amount of solid solution C and N decreases due to the cooling rate after solution treatment and the aging treatment and sensitization treatment after solution treatment. It was.

また、固溶C量、固溶N量を変化させたオーステナイト系ステンレス鋼や、溶体化処理後の時効処理や鋭敏化処理および軽微な冷間加工と時効処理や鋭敏化処理により積層欠陥エネルギー値が増大したオーステナイト系ステンレス鋼の応力腐食割れ試験をした結果、固溶C、N量を低下させ、積層欠陥エネルギー値を増大させたオーステナイト系ステンレス鋼は耐応力腐食割れ性に優れていることを見出した。   In addition, the austenitic stainless steel with varying amounts of solute C and solute N, stacking fault energy values due to aging treatment and sensitization treatment after solution treatment and slight cold working and aging treatment and sensitization treatment As a result of the stress corrosion cracking test of the austenitic stainless steel with increased steel, the austenitic stainless steel with reduced solid solution C and N content and increased stacking fault energy value is superior in stress corrosion cracking resistance. I found it.

さらにオーステナイト系ステンレス鋼中のMn含有量が増大すると固溶N量も増大することから、オーステナイト系ステンレス鋼の積層欠陥エネルギー値を増大させるには、Mn量は極力下げた方が好ましいことを見出した。   Further, as the Mn content in the austenitic stainless steel increases, the amount of solute N also increases. Therefore, in order to increase the stacking fault energy value of the austenitic stainless steel, it has been found that the Mn content is preferably reduced as much as possible. It was.

さらに本発明者らは、材料の積層欠陥エネルギー値を高くするということは、積層欠陥を生じ難くすることと同義とも捉えられるとの発想に立ち、体心立方晶(BCC)や、体心正方晶(BCT)では積層欠陥が生じ難い事から、オーステナイトステンレス鋼のδフェライト量やマルテンサイト生成量を増やせば耐粒界応力腐食割れ性は向上すると考えた。供試材の応力腐食割れ試験によりそれを裏付ける結果を得ている。   Furthermore, the inventors have taken the idea that increasing the stacking fault energy value of the material is synonymous with making the stacking fault less likely to occur, and therefore, body-centered cubic (BCC) and body-centered square It was thought that the intergranular stress corrosion cracking resistance would be improved by increasing the amount of δ ferrite and the amount of martensite generated in the austenitic stainless steel, since it is difficult for crystal grains (BCT) to cause stacking faults. The results confirming it by the stress corrosion cracking test of the specimen.

これにより、オーステナイト系ステンレス鋼の冷間加工等による硬化で生じる耐粒界応力腐食割れの感受性は、化学成分のみでなく、溶体化処理後の冷間加工や熱処理等の硬化処理前の加工・熱処理条件により変化することを見出した。
本発明はかかる見地より完成されたものである。
As a result, the susceptibility to intergranular stress corrosion cracking caused by hardening of austenitic stainless steel by cold working, etc. is not limited to chemical components, and processing before hardening treatment such as cold working and heat treatment after solution treatment. It has been found that it varies depending on the heat treatment conditions.
The present invention has been completed from such a viewpoint.

また本発明は、重量%で、C:0.030%以下、N:0.030%以下、Si:0.1%以下、Mn:1.0%以下、Ni:10%以上26%以下、Cr:15%以上30%以下、Mo:3.0%以下、を含有し、残部が実質的にFe及び不可避不純物からなり、固溶C量が0.010%以下であり、固溶N量が0.010%以下であることを特徴とするオーステナイト系ステンレス鋼を提供するものである。
上記固溶C量及び固溶N量は、結晶母相すなわちマトリクス中に固溶しているC量及びN量であり、炭化物、窒化物として析出しているC、N量や化合物を形成しているC量及びN量は含まない。これら固溶C量及び固溶N量に関する規定は、以下の構成においても同様である。
Further, the present invention is by weight%, C: 0.030% or less, N: 0.030% or less, Si: 0.1% or less, Mn: 1.0% or less, Ni: 10% or more and 26% or less, Cr: 15% or more and 30% or less, Mo: 3.0% or less, the balance being substantially composed of Fe and inevitable impurities, the amount of solid solution C is 0.010% or less, and the amount of solid solution N Is an austenitic stainless steel characterized by being 0.010% or less.
The amount of solid solution C and the amount of solid solution N are the amounts of C and N dissolved in the crystal matrix, that is, the matrix, and form C, N amounts and compounds precipitated as carbides and nitrides. C amount and N amount are not included. The rules regarding the solid solution C amount and the solid solution N amount are the same in the following configurations.

また本発明は、重量%で、C:0.030%以下、N:0.030%以下、Si:0.1%以下、Mn:1.0%以下、Ni:10%以上26%以下、Cr:15%以上30%以下、Mo:3.0%以下、Al:0.01%以上2.0%以下、を含有し、残部が実質的にFe及び不可避不純物からなり、固溶C量が0.010%以下であり、固溶N量が0.010%以下であることを特徴とするオーステナイト系ステンレス鋼を提供するものである。   Further, the present invention is by weight%, C: 0.030% or less, N: 0.030% or less, Si: 0.1% or less, Mn: 1.0% or less, Ni: 10% or more and 26% or less, Cr: 15% or more and 30% or less, Mo: 3.0% or less, Al: 0.01% or more and 2.0% or less, with the balance being substantially composed of Fe and inevitable impurities, and the amount of solid solution C Is an austenitic stainless steel characterized by having a solid solution N content of 0.010% or less.

また本発明は、重量%で、C:0.030%以下、N:0.030%以下、Si:0.1%以下、Mn:1.0%以下、Ni:10%以上26%以下、Cr:15%以上30%以下、Mo:3.0%以下、Al:0.01%以上2.0%以下、V、Ti、Nbから選ばれるいずれか1種以上:各1.0%以下、を含有し、残部が実質的にFe及び不可避不純物からなり、固溶C量が0.010%以下であり、固溶N量が0.010%以下であることを特徴とするオーステナイト系ステンレス鋼を提供するものである。   Further, the present invention is by weight%, C: 0.030% or less, N: 0.030% or less, Si: 0.1% or less, Mn: 1.0% or less, Ni: 10% or more and 26% or less, Cr: 15% or more and 30% or less, Mo: 3.0% or less, Al: 0.01% or more and 2.0% or less, any one or more selected from V, Ti and Nb: 1.0% or less each , The balance being substantially composed of Fe and inevitable impurities, the solid solution C amount being 0.010% or less, and the solid solution N amount being 0.010% or less. It provides steel.

また本発明において、固溶C量及び固溶N量が、重量%で0.007%以下であることが好ましい。   Moreover, in this invention, it is preferable that the amount of solid solution C and the amount of solid solution N are 0.007% or less by weight%.

以上に示した本発明の積層欠陥エネルギーを高めた低炭素オーステナイト系ステンレス鋼では、Ni量を増し、Si量、Mn量等を減らすのみでなく、固溶C量、固溶N量を低減することにより、積層欠陥エネルギー値を増大させている。これにより、応力腐食割れの原因となる加工歪や溶接熱影響歪による硬化を抑制することができる。   In the above-described low carbon austenitic stainless steel with increased stacking fault energy according to the present invention, not only increases the amount of Ni and decreases the amount of Si, Mn, etc., but also reduces the amount of solute C and amount of solute N. As a result, the stacking fault energy value is increased. Thereby, the hardening by the process distortion and welding heat influence distortion which become the cause of stress corrosion cracking can be suppressed.

また本発明において、Mo含有量が重量%で1.0%以下であり、下記式で表されるMd30点が10℃以上であることが好ましい。 In the present invention, the Mo content is 1.0% by weight, it is preferable Md 30 points represented by the following formula is 10 ° C. or higher.

(式) Md30(℃)=413−462x(C+N)−9.2xSi−8.1xMn−13.7xNi−9.5xNi−18.5xMo
Md30点とは、30%の加工で、50%の加工誘起マルテンサイトを生じる加工温度を意味する。
(Formula) Md 30 (℃) = 413-462x (C + N) -9.2xSi-8.1xMn-13.7xNi-9.5xNi-18.5xMo
Md 30 points means a processing temperature at which 50% processing-induced martensite is generated in 30% processing.

すなわち、先に示した組成のオーステナイト系ステンレス鋼において、Mo含有量が1.0%以下の場合に、Md30点が10℃以上となる化学成分とすれば、冷間加工により、加工誘起マルテンサイトを生じやすくすることができる。一方、Mo量が1.0%を超える場合には、δフェライトを重量%で10%以下含むものが好ましい。 That is, in the austenitic stainless steel having the composition shown above, when the Mo content is 1.0% or less, if the chemical component is such that the Md 30 point is 10 ° C. or higher, the cold-working causes a work-induced martensite. You can make your site easier to create. On the other hand, when the amount of Mo exceeds 1.0%, it is preferable to contain 10% or less of δ ferrite by weight.

このようにMo含有量に応じて所定の化学成分に調整することで、加工誘起マルテンサイト生成量の適正化を図ることができる。その結果、積層欠陥を生じ難くすることができ、耐応力腐食割れ性を向上させることができる。
これは例えば、通常304ステンレス鋼は、316ステンレス鋼に比べてNi含有量が1〜2%低く、積層欠陥エネルギー値は316ステンレス鋼の方が304ステンレス鋼よりも高いとされるが、304ステンレス鋼は前述のMd30点が加工温度よりも高い場合には、冷間加工により加工誘起マルテンサイトを生じ、積層欠陥を生じ難くなることから、加工による積層欠陥は逆に304ステンレス鋼の方が生じにくくなり耐応力腐食割れ性は316ステンレス鋼よりも高くなる。
一方、Md30点が加工温度よりも低いときには、冷間加工により加工誘起マルテンサイトを生じ難く、積層欠陥は生じやすくなり、加工による積層欠陥は304ステンレス鋼の方が生じやすくなり、耐応力腐食割れ性は316ステンレス鋼よりも低くなる。
さらにMo量が1.0%を超える場合には、δフェライトを重量%で10%以下含むものが好ましいことを、本発明者らは見出した。
Thus, by adjusting to a predetermined chemical component according to the Mo content, it is possible to optimize the amount of work-induced martensite generation. As a result, stacking faults can be made difficult to occur, and the stress corrosion cracking resistance can be improved.
For example, 304 stainless steel usually has a Ni content of 1 to 2% lower than 316 stainless steel, and the stacking fault energy value of 316 stainless steel is higher than 304 stainless steel. When steel has a Md of 30 points higher than the processing temperature, cold-working causes work-induced martensite, which makes it difficult for stacking faults to occur. The stress corrosion cracking resistance becomes higher than that of 316 stainless steel.
On the other hand, when the Md 30 point is lower than the processing temperature, processing-induced martensite is less likely to occur due to cold processing, and stacking faults are more likely to occur. The crackability is lower than 316 stainless steel.
Furthermore, the present inventors have found that when the amount of Mo exceeds 1.0%, it is preferable to contain 10% or less of δ ferrite by weight%.

加えて、本発明は、上記いずれかのオーステナイト系ステンレス鋼からなる鋼片(鋼板、鍛鋼品または鋼管)に、1000℃〜1150℃で溶体化処理後、30%以下の冷間加工を施し、その後に400℃〜850℃で0.5〜50時間の炭・窒化物析出熱処理を施すことを特徴とするオーステナイト系ステンレス鋼の製造方法を提供するものである。
この製造方法によれば、溶体化処理後の各処理によりステンレス鋼のマトリクスからC、Nを粒界に析出させることができ、固溶C、N量を低減させることができる。これにより、積層欠陥エネルギーを向上させたオーステナイト系ステンレス鋼を製造することができる。
In addition, the present invention is a steel piece (steel plate, forged steel product or steel pipe) made of any of the above austenitic stainless steel, subjected to a solution treatment at 1000 ° C. to 1150 ° C., and then subjected to cold working of 30% or less, Then, a carbon / nitride precipitation heat treatment is performed at 400 ° C. to 850 ° C. for 0.5 to 50 hours, and a method for producing an austenitic stainless steel is provided.
According to this manufacturing method, C and N can be precipitated at the grain boundaries from the stainless steel matrix by each treatment after the solution treatment, and the amount of solid solution C and N can be reduced. Thereby, austenitic stainless steel with improved stacking fault energy can be produced.

上記いずれのオーステナイト系ステンレス鋼についても、例えば原子炉用の配管又は炉内構造物のような原子炉部材用オーステナイト系ステンレス鋼として特に好適に用いることができる。また、上記製造方法により得られたステンレス鋼も、原子炉部材用オーステナイト系ステンレス鋼として原子炉用の配管又は炉内構造物の構成材料として好適に用いることができる。   Any of the above-mentioned austenitic stainless steels can be used particularly suitably as austenitic stainless steel for nuclear reactor members such as reactor piping or reactor internals. Moreover, the stainless steel obtained by the said manufacturing method can also be used suitably as a structural material of the piping for reactors, or a reactor internal structure as austenitic stainless steel for nuclear reactor members.

本発明によれば、オーステナイト系ステンレス鋼の積層欠陥エネルギーを高めることができ、鋭敏化し難く、耐応力腐食割れ性に優れ、万が一応力腐食割れが発生しても応力腐食割れき裂が伝播し難いオーステナイト系ステンレス鋼を得ることができる。
本発明のオーステナイト系ステンレス鋼を原子炉構成部材の一部である原子炉の配管や炉内構造物に適用することによって、これら原子炉構成部材が長期間使用できる。
According to the present invention, the stacking fault energy of austenitic stainless steel can be increased, it is difficult to be sensitized, it has excellent resistance to stress corrosion cracking, and even if stress corrosion cracking occurs, it is difficult for stress corrosion cracking to propagate. Austenitic stainless steel can be obtained.
By applying the austenitic stainless steel of the present invention to a reactor pipe or a reactor internal structure which is a part of the reactor component, these reactor components can be used for a long period of time.

加えて、本発明の製造方法によれば、簡便な熱処理(炭・窒化物析出熱処理)により固溶C、N量を低減させることができ、鋭敏化し難く、耐応力腐食割れ性に優れたオーステナイト系ステンレス鋼を容易に製造することができる。   In addition, according to the production method of the present invention, the amount of solid solution C and N can be reduced by a simple heat treatment (charcoal / nitride precipitation heat treatment), is not easily sensitized, and has excellent stress corrosion cracking resistance. Stainless steel can be easily manufactured.

以下、本発明を実施の形態によって詳細に説明するが、本発明はこれらの実施の形態によって何ら限定されるものではない。
本発明のオーステナイト系ステンレス鋼は、C、Si、Mn、P、S、Ni、Cr、Mo、N、の含有量が重量%で規定されており、残部が実質的にFe及び不可避不純物からなるものである。以下、合金中の各元素の役割について説明する。
Hereinafter, the present invention will be described in detail with reference to embodiments, but the present invention is not limited to these embodiments.
In the austenitic stainless steel of the present invention, the contents of C, Si, Mn, P, S, Ni, Cr, Mo, and N are specified by weight%, and the balance is substantially made of Fe and inevitable impurities. Is. Hereinafter, the role of each element in the alloy will be described.

Cはオーステナイト系ステンレス鋼において、所定の強度を得る為に、またオーステナイトを安定化させる為に不可欠の元素であるが、400℃〜850℃で加熱されたり、この温度域を徐冷するとCr炭化物を結晶粒界に析出し、その析出物の周辺ではCr欠乏層を生じて、粒界が腐食に敏感となる鋭敏化を生じることが良く知られており、この鋭敏化を抑制する為にC量を0.03%以下にする事が一般的に成されている。   C is an indispensable element for obtaining a predetermined strength in austenitic stainless steel and for stabilizing austenite. When heated at 400 ° C. to 850 ° C. or gradually cooled in this temperature range, Cr carbide It is well known that crystallization occurs at the grain boundaries and a Cr-deficient layer is formed around the precipitates, resulting in sensitization in which the grain boundaries are sensitive to corrosion. In order to suppress this sensitization, C Generally, the amount is made 0.03% or less.

しかし、C量を0.03%以下にすると、強度が不足し、またオーステナイトの安定性が不足する事から、従来はCと同様にオーステナイト系ステンレス鋼の強度を得、オーステナイトを安定化させる為に重要な元素であるNを添加して強度を確保し、オーステナイトを安定化させる事が成されてきた。
これに対して発明者らは、固溶C量や固溶N量を増すと加工歪や熱歪が加わった際に硬化し易くなり、また熱影響を受けるとCr炭化物やCr窒化物を析出し、結晶母相中のCr含有量が低下し、かえって応力腐食割れを生じやすくなることに着目した。
そして従来の常識を破り、本発明では、固溶C量及び固溶N量を低減することとし、工業的に安定して下げられるレベルまで固溶C、N量を低減することが望ましいと考え、固溶C量及びN量は0.010%以下、好ましくは0.007%以下とした。なお、可能であれば固溶C量及び固溶N量をさらに少なくしてもよく、固溶量の測定において検出されない程度であってもよい。
However, if the C content is 0.03% or less, the strength is insufficient and the stability of austenite is insufficient. Therefore, conventionally, the strength of austenitic stainless steel is obtained in the same manner as C, and the austenite is stabilized. N, which is an important element, is added to ensure strength and stabilize austenite.
On the other hand, the inventors, when increasing the amount of solute C or solute N, easily harden when processing strain or thermal strain is applied, and precipitate Cr carbide or Cr nitride when affected by heat. However, the inventors have focused on the fact that the Cr content in the crystal matrix is lowered, and stress corrosion cracking tends to occur.
Then, the conventional common sense is broken, and in the present invention, it is considered that it is desirable to reduce the amount of solid solution C and the amount of solid solution N, and to reduce the amount of solid solution C and N to a level that can be stably lowered industrially. The solid solution C amount and N amount were 0.010% or less, preferably 0.007% or less. In addition, if possible, the amount of solid solution C and the amount of solid solution N may be further reduced, and the amount may not be detected in the measurement of the amount of solid solution.

オーステナイト系ステンレス鋼の製造過程において、Siは脱酸材として重要な役割を果たしており、通常0.5%程度含まれている。しかし、この0.5%程度のSi量を含むオーステナイト系ステンレス鋼は、加工歪や熱歪が加わった際に硬化し易くなる事に発明者らは着目し、本発明では、Si量も工業的に安定して低減できる範囲で極力低減する事が望ましいと考え、0.1%以下好ましくは0.02%以下とした。
そこで、脱酸元素が不足するが、その不足する分は固溶Nを固定する作用も持つAlを極力少ない範囲で少量添加する事で解消した。本発明におけるAl添加量は0.01%以上2.0%以下である。
In the production process of austenitic stainless steel, Si plays an important role as a deoxidizing material and is usually contained in an amount of about 0.5%. However, the inventors have noted that this austenitic stainless steel containing about 0.5% of Si is easily hardened when processing strain or thermal strain is applied. Therefore, it is desirable to reduce it as much as possible within a range where it can be stably reduced, and it is set to 0.1% or less, preferably 0.02% or less.
Therefore, the amount of deoxidizing element is insufficient, but the shortage has been solved by adding a small amount of Al, which also has the effect of fixing solute N, in a very small range. In the present invention, the Al addition amount is 0.01% or more and 2.0% or less.

Cr、Moはオーステナイト系ステンレス鋼の耐食性を保持する上で極めて重要な元素として知られているが、Cr、Moはフェライト生成元素であり、Cr、Mo量をあまり高くすると、オーステナイトの安定性が悪くなり、また、オーステナイト系ステンレス鋼の延性を低くし、加工性を劣化させる事が知られている。そこで従来はCr、Mo量は極度に高くしないようにされてきている。
これに対して本発明者らは、耐応力腐食割れ性向上の為にC、N、Si量を極力低くしたが、これにより同時にオーステナイト系ステンレス鋼の延性を増すことも出来、Cr、Mo量を増し、C、N量を極力低くすることでオーステナイトの安定性が悪くなる問題に対しては、Ni量を増してオーステナイトの安定性を保持するようにした。
なお、前記したようにC、N量を極力低減した場合には、強度が低下するため所定の強度レベルが得られないことも想定される。この場合には、部材の肉厚を増すなどして機器・配管の役割を果たせる強度設計とすることで解決できる。
Cr and Mo are known as extremely important elements for maintaining the corrosion resistance of austenitic stainless steel. However, Cr and Mo are ferrite-forming elements. If the amount of Cr and Mo is too high, the stability of austenite is improved. It is known to deteriorate, and to lower the ductility of austenitic stainless steel and deteriorate the workability. Therefore, conventionally, the amount of Cr and Mo has been kept from becoming extremely high.
In contrast, the present inventors have reduced the amounts of C, N and Si as much as possible in order to improve the stress corrosion cracking resistance, but at the same time, the ductility of the austenitic stainless steel can be increased. In order to prevent the austenite stability from decreasing by increasing the C and N amounts as much as possible, the Ni amount is increased to maintain the austenite stability.
As described above, when the amounts of C and N are reduced as much as possible, it is assumed that a predetermined strength level cannot be obtained because the strength decreases. In this case, the problem can be solved by increasing the thickness of the member, etc., so that the strength design can play the role of equipment and piping.

また、本発明のオーステナイト系ステンレス鋼は、V、Ti、Nbのうち1種又は2種以上を含んでいてもよい。これらの金属はCrに比べてもCとの化合物を生成しやすく、添加することでマトリクス中の固溶C量が減少する。本発明におけるこれらの添加量はいずれも1.0%以下である。   Moreover, the austenitic stainless steel of this invention may contain 1 type, or 2 or more types among V, Ti, and Nb. These metals are more likely to form a compound with C than Cr, and the amount of dissolved C in the matrix decreases when added. These addition amounts in the present invention are all 1.0% or less.

オーステナイト系ステンレス鋼は、従来は、鋭敏化を避けるため、溶体化処理のままで用いられ、溶体化処理後には400℃から850℃での熱履歴が加わらないようにしている。しかし、本発明者らは、当該オーステナイト系ステンレス鋼のC、N量を0.01%以下にしたことにより、400℃から850℃で0.5〜50時間の熱処理を施しても鋭敏化は問題とならず、極めて微細なCr炭化物、Cr窒化物を析出させ、マトリクス中の固溶C、N量をさらに低減させ、積層欠陥エネルギー値を増大させられることが判明した。これにより、高温高圧水中での応力腐食割れ伝播速度を大幅に低減させることができる事を知見した。
よって本発明の製造方法では、マトリクス中の固溶C、N量をさらに低減させる為に、溶体化処理後、30%以下の冷間加工を施し、その後400〜850℃で0.5〜50時間のCr炭化物、Cr窒化物析出処理を施すことが好ましい。
Conventionally, austenitic stainless steel is used in the form of a solution treatment in order to avoid sensitization, and a heat history at 400 ° C. to 850 ° C. is not added after the solution treatment. However, the present inventors have made the austenitic stainless steel less sensitized even when heat treatment is performed at 400 to 850 ° C. for 0.5 to 50 hours by setting the C and N amounts to 0.01% or less. It has been found that it is not a problem, and extremely fine Cr carbide and Cr nitride are precipitated, the amount of solid solution C and N in the matrix can be further reduced, and the stacking fault energy value can be increased. As a result, it has been found that the propagation rate of stress corrosion cracking in high-temperature and high-pressure water can be greatly reduced.
Therefore, in the production method of the present invention, in order to further reduce the amount of dissolved C and N in the matrix, after the solution treatment, cold work of 30% or less is performed, and then 0.5 to 50 at 400 to 850 ° C. It is preferable to perform a Cr carbide / Cr nitride precipitation treatment for a period of time.

上記オーステナイト系ステンレス鋼については、例えば原子炉用の配管又は炉内構造材として特に好適に用いることができる。また、上記製造方法により得られたステンレス鋼も、原子炉用の配管又は炉内構造物の構成材料として好適に用いることができる。以下、具体的な態様について図面を用いて説明する。   About the said austenitic stainless steel, it can use especially suitably, for example as piping for reactors or a structural material in a reactor. Moreover, the stainless steel obtained by the said manufacturing method can also be used suitably as a constituent material of piping for reactors, or a reactor internal structure. Specific embodiments will be described below with reference to the drawings.

図10(a)及び図10(b)は、それぞれ沸騰水型原子炉および加圧水型原子炉の要部説明図であり、図11(a)及び図11(b)は、図10で示すそれぞれの原子炉の内部構造を示す縦断面図である。   FIGS. 10 (a) and 10 (b) are explanatory views of the main parts of a boiling water reactor and a pressurized water reactor, respectively, and FIGS. 11 (a) and 11 (b) are respectively shown in FIG. It is a longitudinal cross-sectional view which shows the internal structure of a nuclear reactor.

図11において、原子炉圧力容器40内には核反応を生じるための燃料集合体(燃料棒)41が炉心シュラウド42の内側に設置され、燃料集合体41の下部もしくは上部には制御棒案内管又は制御棒駆動機構44等が設置されている。そして、これらの機器は炉心支持板45および燃料支持金具等により固定されている。さらに、燃料集合体41の最上部は上部支持板47により固定されている。   In FIG. 11, a fuel assembly (fuel rod) 41 for generating a nuclear reaction is installed inside a reactor core shroud 42 in a reactor pressure vessel 40, and a control rod guide tube is provided below or above the fuel assembly 41. Alternatively, a control rod drive mechanism 44 or the like is installed. These devices are fixed by a core support plate 45 and a fuel support fitting. Further, the uppermost portion of the fuel assembly 41 is fixed by an upper support plate 47.

図10(a)及び図11(a)に示す沸騰水型原子炉では、炉心上部に燃料集合体41で沸騰して発生した気液二相流から蒸気のみを取り出すために、気水分離器48、さらに、その上部には蒸気乾燥器49が設置されており、また、主蒸気−給水系統とは別にジェットポンプ50と再循環ポンプ51とを組合せた外部再循環回路52を構成している。   In the boiling water reactor shown in FIGS. 10 (a) and 11 (a), a steam separator is used to extract only steam from a gas-liquid two-phase flow generated by boiling in the fuel assembly 41 at the upper part of the core. 48, and further, a steam dryer 49 is installed in the upper part thereof, and an external recirculation circuit 52 in which the jet pump 50 and the recirculation pump 51 are combined is constituted separately from the main steam-water supply system. .

また、図10(b)及び図11(b)に示す加圧水型原子炉では、燃料集合体41で高温となった熱水は、高温側配管53にて蒸気発生器54へ供給され、蒸気発生器54にて熱交換され低温となって一次冷却材ポンプ55を介して低温側配管56にて原子炉圧力容器40内へ戻される構成となっている。また、低温側配管56と高温側配管53は、開閉弁58を有するバイパス配管59を介して接続されている。   Further, in the pressurized water reactor shown in FIGS. 10B and 11B, the hot water having a high temperature in the fuel assembly 41 is supplied to the steam generator 54 through the high temperature side pipe 53 to generate steam. The heat is exchanged in the vessel 54 and becomes a low temperature, and is returned to the reactor pressure vessel 40 through the primary coolant pump 55 through the low temperature side pipe 56. The low temperature side pipe 56 and the high temperature side pipe 53 are connected via a bypass pipe 59 having an on-off valve 58.

前述した原子炉の各系統や循環回路等を構成する各種配管およびポンプ等の構成部材、あるいは炉心シュラウド42、炉心支持板45、燃料支持金具、上部支持板47等の炉内構造物を本発明のオーステナイト系ステンレス鋼によって作製することによって、高温高圧水環境下においても、応力腐食割れが発生し難く、長時間使用できることとなる。また、万が一応力腐食割れが発生したとしても応力腐食割れき裂伝搬がし難いので、原子力プラントの安全性と信頼性向上に顕著な効果が得られる。 The present invention includes the above-described components such as various pipes and pumps constituting each system of the nuclear reactor and the circulation circuit, or the reactor internal structure such as the core shroud 42, the core support plate 45, the fuel support fitting, and the upper support plate 47. By using the austenitic stainless steel, stress corrosion cracking hardly occurs even in a high-temperature and high-pressure water environment, and it can be used for a long time. In addition, even if stress corrosion cracking occurs, it is difficult for stress corrosion cracking to propagate, so a remarkable effect can be obtained in improving the safety and reliability of the nuclear power plant.

以下、本発明を実施例により更に詳細に説明するが、本発明はこれら実施例によって何ら制限されるものでない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not restrict | limited at all by these Examples.

(実施例1)
表1に、従来のSUS316L(従来材1)、原子力用材料として広く使われている316NG(従来材2)、及び310S(従来材3)、並びに、本発明をするに至った各供試材の化学成分(含有量は何れも重量%)を試作材1〜47として、その組成を示す。また表2に、表1に示した各試作材の加工・熱処理条件を示す。
Example 1
Table 1 shows conventional SUS316L (conventional material 1), 316NG (conventional material 2) and 310S (conventional material 3), which are widely used as nuclear materials, and the test materials that led to the present invention. The chemical composition (the content is all in wt%) is shown as prototype materials 1 to 47, and the composition is shown. Table 2 shows the processing and heat treatment conditions for each prototype shown in Table 1.

図1から図9は、表1に示した試作材1〜47について積層欠陥エネルギーを測定した結果を示すグラフである。積層欠陥エネルギーは公知の方法を用いて測定することができる。例えば、規格寸法の試験片に規定の歪みを加え、組織観察を行うことで測定する。
なお、図1から図9に示す各元素の含有量はいずれも重量%である。
1 to 9 are graphs showing the results of measuring the stacking fault energy for the prototype materials 1 to 47 shown in Table 1. FIG. The stacking fault energy can be measured using a known method. For example, measurement is performed by applying a specified strain to a test piece having a standard dimension and observing the structure.
In addition, all content of each element shown in FIGS. 1-9 is weight%.

図1は、表1の試作材1〜8について、固溶C量と積層欠陥エネルギーとの関係を示すグラフであり、オーステナイト系ステンレス鋼の耐応力腐食割れ性を左右する積層欠陥エネルギー値に及ぼす固溶C量の影響が示されている。
C量が低下するにつれ、オーステナイト系ステンレス鋼の積層欠陥エネルギー値は増大し、固溶C量が0.03%以下でその傾向が現れ、0.01%以下で顕著となり、0.007%以下では著しく増大している。
なお、表1には各試作材の全C量を表示しているが、本実施例で作製した試作材1〜8については全C量と固溶C量とが一致している(すべてのCがマトリクスに固溶している)ことが確認されている。
FIG. 1 is a graph showing the relationship between the amount of dissolved C and stacking fault energy for prototype materials 1 to 8 shown in Table 1, and affects the stacking fault energy value that affects the stress corrosion cracking resistance of austenitic stainless steel. The influence of the amount of solid solution C is shown.
As the C content decreases, the stacking fault energy value of austenitic stainless steel increases, and the tendency appears when the solid solution C content is 0.03% or less, and becomes prominent at 0.01% or less, and 0.007% or less. In, it has increased remarkably.
Table 1 shows the total C amount of each prototype material, but the total C amount and the solute C amount are the same for the prototype materials 1 to 8 produced in this example (all It is confirmed that C is dissolved in the matrix).

図2は、表1の試作材9〜15について、固溶N量と積層欠陥エネルギーとの関係を示すグラフであり、オーステナイト系ステンレス鋼の耐応力腐食割れ性を左右する積層欠陥エネルギー値に及ぼす固溶N量の影響が示されている。N量が低下するにつれ、オーステナイト系ステンレス鋼の積層欠陥エネルギー値は増大し、固溶N量が0.03%以下でその傾向が現れ、0.01%以下で顕著となり、0.007%以下では著しく増大した。
なお、表1には各試作材の全N量を表示しているが、本実施例で作製した試作材9〜15については全N量と固溶N量とが一致している(すべてのNがマトリクスに固溶している)ことが確認されている。
FIG. 2 is a graph showing the relationship between the amount of solute N and stacking fault energy for the prototype materials 9 to 15 shown in Table 1, and affects the stacking fault energy value that affects the stress corrosion cracking resistance of austenitic stainless steel. The effect of the amount of dissolved N is shown. As the N content decreases, the stacking fault energy value of the austenitic stainless steel increases, and this tendency appears when the solid solution N content is 0.03% or less, and becomes noticeable at 0.01% or less, and 0.007% or less. It increased significantly.
In Table 1, the total N amount of each prototype material is displayed. However, for the prototype materials 9 to 15 produced in this example, the total N amount and the solute N amount coincide with each other (all It is confirmed that N is dissolved in the matrix.

図3は、表1の試作材16〜20について、Si量と積層欠陥エネルギーとの関係を示すグラフであり、オーステナイト系ステンレス鋼の耐応力腐食割れ性を左右する積層欠陥エネルギー値に及ぼすSi量の影響が示されている。Si量が低下するにつれ、オーステナイト系ステンレス鋼の積層欠陥エネルギー値は増大し、Si量が0.1%以下でその傾向が現れ、0.02%以下で顕著となった。   FIG. 3 is a graph showing the relationship between the Si amount and stacking fault energy for the prototype materials 16 to 20 in Table 1, and the Si amount affecting the stacking fault energy value that affects the stress corrosion cracking resistance of austenitic stainless steel. The impact of is shown. As the Si content decreased, the stacking fault energy value of the austenitic stainless steel increased, and this tendency appeared when the Si content was 0.1% or less, and became noticeable when it was 0.02% or less.

図4は、表1の試作材21〜23(高C高N材)及び試作材24〜30(低C低N材)について、Mn量と積層欠陥エネルギーとの関係を示すグラフであり、オーステナイト系ステンレス鋼の耐応力腐食割れ性を左右する積層欠陥エネルギー値に及ぼすMn量の影響が示されている。C量及びN量によらず、Mn量が低下するにつれ、オーステナイト系ステンレス鋼の積層欠陥エネルギー値は増大している。さらに、Mn量が0.5%以下の範囲では低C低N材と高C高N材との差が大きくなる傾向が現れており、0.21%以下、0.02%以下とMn量が少なくなるにつれて顕著となった。つまり、本発明のオーステナイト系ステンレス鋼では、Mn量の調整による積層欠陥エネルギー値の増大作用も従来品に比して向上することがわかる。   FIG. 4 is a graph showing the relationship between the amount of Mn and the stacking fault energy for the prototype materials 21 to 23 (high C high N material) and the prototype materials 24 to 30 (low C low N material) in Table 1, and shows austenite. The effect of the amount of Mn on the stacking fault energy value that determines the stress corrosion cracking resistance of a stainless steel is shown. Regardless of the amount of C and the amount of N, as the amount of Mn decreases, the stacking fault energy value of the austenitic stainless steel increases. Furthermore, when the amount of Mn is 0.5% or less, the difference between the low C low N material and the high C high N material tends to increase, and the Mn amount is 0.21% or less and 0.02% or less. Became more noticeable as the number decreased. That is, it can be seen that in the austenitic stainless steel of the present invention, the effect of increasing the stacking fault energy value by adjusting the amount of Mn is improved as compared with the conventional product.

図5は、表1の試作材32〜35(12−13Ni材)及び試作材36,37,39,41(15−25Ni材)について、Cr量と積層欠陥エネルギーとの関係を示すグラフであり、オーステナイト系ステンレス鋼の耐応力腐食割れ性を左右する積層欠陥エネルギー値に及ぼすCr量の影響が示されている。Ni量が12〜13重量%である試作材32〜35、Ni量が15〜25重量%である試作材36,37,39,41のいずれにおいてもCr量が増大するにつれ、オーステナイト系ステンレス鋼の積層欠陥エネルギー値は増大する。   FIG. 5 is a graph showing the relationship between the amount of Cr and stacking fault energy for prototype materials 32-35 (12-13Ni material) and prototype materials 36, 37, 39, 41 (15-25Ni material) in Table 1. The effect of Cr content on the stacking fault energy value that affects the stress corrosion cracking resistance of austenitic stainless steel is shown. The austenitic stainless steel increases as the Cr content increases in any of the prototype materials 32 to 35 in which the Ni amount is 12 to 13% by weight and the prototype materials 36, 37, 39, and 41 in which the Ni amount is 15 to 25% by weight. The stacking fault energy value of increases.

図6は、表1の試作材32,38(15−18Cr材)及び試作材34〜37、39〜41(20−25Cr材)について、Ni量と積層欠陥エネルギーとの関係を示すグラフであり、オーステナイト系ステンレス鋼の耐応力腐食割れ性を左右する積層欠陥エネルギー値に及ぼすNi量の影響が示されている。Cr量が15〜18%である試作材32,38、及びCr量が20〜25%である試作材34〜37,39〜41のいずれにおいてもCr量が増大するにつれ、オーステナイト系ステンレス鋼の積層欠陥エネルギー値は増大する。   FIG. 6 is a graph showing the relationship between the amount of Ni and stacking fault energy for the prototype materials 32 and 38 (15-18Cr material) and the prototype materials 34 to 37 and 39 to 41 (20-25Cr material) in Table 1. The influence of the amount of Ni on the stacking fault energy value that affects the stress corrosion cracking resistance of austenitic stainless steel is shown. As the Cr content increases in any of the prototype materials 32 and 38 having a Cr content of 15 to 18% and the prototype materials 34 to 37 and 39 to 41 having a Cr content of 20 to 25%, the austenitic stainless steel The stacking fault energy value increases.

図7は、表1の試作材42〜47について、Mo量と積層欠陥エネルギーとの関係を示すグラフであり、オーステナイト系ステンレス鋼の耐応力腐食割れ性を左右する積層欠陥エネルギー値に及ぼすMo量の影響が示されている。Mo量が増大するにつれ、オーステナイト系ステンレス鋼の積層欠陥エネルギー値は増大する。   FIG. 7 is a graph showing the relationship between the amount of Mo and stacking fault energy for the prototype materials 42 to 47 in Table 1, and the amount of Mo affecting the stacking fault energy value that affects the stress corrosion cracking resistance of austenitic stainless steel. The impact of is shown. As the amount of Mo increases, the stacking fault energy value of austenitic stainless steel increases.

Figure 2009079240
Figure 2009079240

Figure 2009079240
Figure 2009079240

(実施例2)
次に、Md30点を変化させた304ステンレス鋼を用いて応力腐食割れき裂進展速度計測を行った。用いた供試材の化学成分(重量%)を表3に示す。
(Example 2)
Next, the stress corrosion crack growth rate was measured using 304 stainless steel with Md of 30 points changed. Table 3 shows the chemical components (% by weight) of the test materials used.

応力腐食割れき裂進展試験は以下の装置及び手順により行った。
表3に示した試作材から図8に示す形状の応力腐食割れき裂進展試験片に加工した。そして、これらの試験片を図9に示すオートクレーブ中で、以下に示す試験条件で、1500時間の応力腐食割れき裂進展試験を行った。
The stress corrosion crack growth test was conducted with the following equipment and procedure.
The prototype material shown in Table 3 was processed into a stress corrosion crack growth test piece having the shape shown in FIG. These test pieces were subjected to a 1500 hour stress corrosion crack growth test in the autoclave shown in FIG. 9 under the test conditions shown below.

[試験装置]
図9に示す応力腐食割れき裂試験用循環式オートクレーブでは、補給水タンク11で水質を調整し、Nガスで脱気後、高圧定量ポンプ12により予熱器15を通じて試験容器19であるオートクレーブに高温高圧水を送り、一部を循環させる。予熱器15の前段では、冷却器16を接続する再生熱交換器14が設けられている。試験容器19は電気炉18に覆われている。
[Test equipment]
In the cyclic autoclave for stress corrosion cracking test shown in FIG. 9, the water quality is adjusted with the make-up water tank 11, degassed with N 2 gas, and then fed into the autoclave as the test container 19 through the preheater 15 with the high-pressure metering pump 12. Send high temperature and high pressure water and circulate a part. In the previous stage of the preheater 15, a regenerative heat exchanger 14 for connecting a cooler 16 is provided. The test vessel 19 is covered with an electric furnace 18.

[試験条件]
腐食電位 :200mV
伝導度 :0.3μS/cm
pH(25℃):6.5
温度 :288℃
Cl濃度 :20ppb
[Test conditions]
Corrosion potential: 200 mV
Conductivity: 0.3 μS / cm
pH (25 ° C.): 6.5
Temperature: 288 ° C
Cl concentration: 20 ppb

Figure 2009079240
Figure 2009079240

表4に、本発明でなしたMd30点が高く加工誘起マルテンサイトを生じているオーステナイト系ステンレス鋼(試作材48、50〜54)と従来材3、Md30点の低いNo.49との応力腐食割れき裂進展速度を比較して示す。
従来材3及びMd30点の低いNo.49が大きなき裂進展速度を示したのに比べて、本発明でなした加工誘起マルテンサイトを生じているオーステナイト系ステンレス鋼(試作材48、50〜54)は応力腐食割れき裂進展が認められず、優れた耐SCC性を有することが判る。
Table 4 shows an austenitic stainless steel (prototype material 48, 50-54) having a high Md 30 point and high work-induced martensite made in the present invention, conventional material 3, and a low Md 30 point No. 49 shows a comparison of the stress corrosion crack growth rate with 49.
Conventional material 3 and Md 30 point low No. Austenitic stainless steels (prototype materials 48, 50 to 54) in which work-induced martensite is produced in the present invention show a stress corrosion crack growth as compared with 49 showing a large crack growth rate. Thus, it can be seen that it has excellent SCC resistance.

Figure 2009079240
Figure 2009079240

(実施例3)
次に、本発明でなした高積層欠陥エネルギー値を有するオーステナイト系ステンレス鋼(試作材43)と従来材3とについて、実施例2と同等の応力腐食割れき裂進展試験を行った。表5に試作材43と従来材3との応力腐食割れき裂進展速度を比較して示す。
(Example 3)
Next, an austenitic stainless steel (prototype material 43) having a high stacking fault energy value according to the present invention and the conventional material 3 were subjected to a stress corrosion crack growth test equivalent to that in Example 2. Table 5 shows a comparison of stress corrosion crack growth rates between the prototype material 43 and the conventional material 3.

表5に示されているように、従来材3が大きなき裂進展速度を示したのに比べて、本発明でなした高積層欠陥エネルギー値を有するオーステナイト系ステンレス鋼(試作材43)は応力腐食割れき裂進展が認められず、優れた耐SCC性を有することが判る。   As shown in Table 5, the austenitic stainless steel (prototype material 43) having a high stacking fault energy value according to the present invention is stressed compared to the conventional material 3 exhibiting a large crack growth rate. It can be seen that no corrosion crack crack growth was observed and that the film had excellent SCC resistance.

Figure 2009079240
Figure 2009079240

また、従来材3に種々の条件で時効処理を施して試作材を作製し、これらについて実施例2と同等の応力腐食割れき裂進展試験を行った。表6に結果を示している。
表6に示すように、溶体化処理後のステンレス鋼に対して時効処理を施すことで、き裂進展速度を小さくすることができる。このことから、時効処理によって固溶C量及び固溶N量を減少させることで、応力腐食割れ性が向上することが判る。
Moreover, the aging treatment was performed on the conventional material 3 under various conditions to produce prototype materials, and a stress corrosion cracking growth test equivalent to that in Example 2 was performed on these materials. Table 6 shows the results.
As shown in Table 6, the crack growth rate can be reduced by applying an aging treatment to the stainless steel after the solution treatment. From this, it can be seen that the stress corrosion cracking property is improved by reducing the amount of dissolved C and the amount of dissolved N by aging treatment.

Figure 2009079240
Figure 2009079240

本発明のオーステナイト系ステンレス鋼は、鋭敏化し難く、耐応力腐食割れ性に優れ、万が一応力腐食割れが発生しても応力腐食割れき裂伝播し難いので、高温高圧水環境下で稼動する原子炉の各種配管や炉内構造物の構成材料として特に好適であり、原子力プラントの安全性と信頼性向上の観点から、産業上の意義は極めて大きい。   The austenitic stainless steel of the present invention is difficult to sensitize, has excellent resistance to stress corrosion cracking, and even if stress corrosion cracking occurs, it is difficult for stress corrosion cracking to propagate. From the viewpoint of improving the safety and reliability of the nuclear power plant, the industrial significance is extremely large.

固溶C量と積層欠陥エネルギーとの関係を示すグラフ。The graph which shows the relationship between the amount of solute C and stacking fault energy. 固溶N量と積層欠陥エネルギーとの関係を示すグラフ。The graph which shows the relationship between solid solution N amount and stacking fault energy. Si量と積層欠陥エネルギーとの関係を示すグラフ。The graph which shows the relationship between Si amount and stacking fault energy. Mn量と積層欠陥エネルギーとの関係を示すグラフ。The graph which shows the relationship between Mn amount and stacking fault energy. Cr量と積層欠陥エネルギーとの関係を示すグラフ。The graph which shows the relationship between Cr amount and stacking fault energy. Ni量と積層欠陥エネルギーとの関係を示すグラフ。The graph which shows the relationship between Ni amount and stacking fault energy. Mo量と積層欠陥エネルギーとの関係を示すグラフ。The graph which shows the relationship between Mo amount and stacking fault energy. 応力腐食割れき裂伝播試験用CT試験片形状を示す図。The figure which shows CT test piece shape for a stress corrosion crack crack propagation test. 応力腐食割れ試験用循環式オートクレーブのシステム構成図。The system block diagram of the circulation type autoclave for a stress corrosion cracking test. (a)沸騰水型原子炉、及び(b)加圧水型原子炉の要部説明図。(A) Boiling water reactor, (b) The principal part explanatory drawing of a pressurized water reactor. 図10の各原子炉の内部構成を示す断面図。FIG. 11 is a cross-sectional view showing an internal configuration of each nuclear reactor in FIG. 10.

符号の説明Explanation of symbols

10…ガスボンベ、11、30…補給水タンク、12…高圧定量ポンプ、13…アキュムレータ、14、32…再生熱交換器、15、34…予熱器、16、33…冷却器、17…高圧ディスクフィルタ、18…電気炉、19、35…試験容器、20…圧力調整弁、21…安全弁   DESCRIPTION OF SYMBOLS 10 ... Gas cylinder, 11, 30 ... Make-up water tank, 12 ... High pressure metering pump, 13 ... Accumulator, 14, 32 ... Regenerative heat exchanger, 15, 34 ... Preheater, 16, 33 ... Cooler, 17 ... High pressure disk filter , 18 ... Electric furnace, 19, 35 ... Test container, 20 ... Pressure regulating valve, 21 ... Safety valve

Claims (9)

重量%で、
C:0.030%以下、
N:0.030%以下、
Si:0.1%以下、
Mn:1.0%以下、
Ni:10%以上26%以下、
Cr:15%以上30%以下、
Mo:3.0%以下、
を含有し、残部が実質的にFe及び不可避不純物からなり、
固溶C量が0.010%以下であり、固溶N量が0.010%以下であることを特徴とするオーステナイト系ステンレス鋼。
% By weight
C: 0.030% or less,
N: 0.030% or less,
Si: 0.1% or less,
Mn: 1.0% or less,
Ni: 10% or more and 26% or less,
Cr: 15% to 30%,
Mo: 3.0% or less,
And the balance substantially consists of Fe and inevitable impurities,
An austenitic stainless steel having a solid solution C content of 0.010% or less and a solid solution N content of 0.010% or less.
重量%で、
C:0.030%以下、
N:0.030%以下、
Si:0.1%以下、
Mn:1.0%以下、
Ni:10%以上26%以下、
Cr:15%以上30%以下、
Mo:3.0%以下、
Al:0.01%以上2.0%以下、
を含有し、残部が実質的にFe及び不可避不純物からなり、
固溶C量が0.010%以下であり、固溶N量が0.010%以下であることを特徴とするオーステナイト系ステンレス鋼。
% By weight
C: 0.030% or less,
N: 0.030% or less,
Si: 0.1% or less,
Mn: 1.0% or less,
Ni: 10% or more and 26% or less,
Cr: 15% to 30%,
Mo: 3.0% or less,
Al: 0.01% or more and 2.0% or less,
And the balance substantially consists of Fe and inevitable impurities,
An austenitic stainless steel having a solid solution C content of 0.010% or less and a solid solution N content of 0.010% or less.
重量%で、
C:0.030%以下、
N:0.030%以下、
Si:0.1%以下、
Mn:1.0%以下、
Ni:10%以上26%以下、
Cr:15%以上30%以下、
Mo:3.0%以下、
Al:0.01%以上2.0%以下、
V、Ti、Nbから選ばれるいずれか1種以上:各1.0%以下、
を含有し、残部が実質的にFe及び不可避不純物からなり、
固溶C量が0.010%以下であり、固溶N量が0.010%以下であることを特徴とするオーステナイト系ステンレス鋼。
% By weight
C: 0.030% or less,
N: 0.030% or less,
Si: 0.1% or less,
Mn: 1.0% or less,
Ni: 10% or more and 26% or less,
Cr: 15% to 30%,
Mo: 3.0% or less,
Al: 0.01% or more and 2.0% or less,
Any one or more selected from V, Ti, and Nb: 1.0% or less,
And the balance substantially consists of Fe and inevitable impurities,
An austenitic stainless steel having a solid solution C content of 0.010% or less and a solid solution N content of 0.010% or less.
固溶C量及び固溶N量が、重量%で0.007%以下であることを特徴とする請求項1から3のいずれか1項に記載のオーステナイト系ステンレス鋼。   The austenitic stainless steel according to any one of claims 1 to 3, wherein the amount of solid solution C and the amount of solid solution N are 0.007% or less by weight%. Mo含有量が重量%で1.0%以下であり、
下記式で表されるMd30点が10℃以上であることを特徴とする請求項1から4のいずれか1項に記載のオーステナイト系ステンレス鋼。
(式)
Md30(℃)=413−462x(C+N)−9.2xSi−8.1xMn−13.7xNi−9.5xNi−18.5xMo
Mo content is 1.0% or less by weight%,
The austenitic stainless steel according to any one of claims 1 to 4, wherein the Md 30 point represented by the following formula is 10 ° C or higher.
(formula)
Md 30 (° C.) = 413-462 × (C + N) −9.2 × Si−8.1 × Mn−13.7 × Ni−9.5 × Ni−18.5 × Mo
Mo含有量が、重量%で1.0%を超えており、重量%で10%以下のδフェライトを含むことを特徴とする請求項1から4のいずれか1項に記載のオーステナイト系ステンレス鋼。   The austenitic stainless steel according to any one of claims 1 to 4, wherein the Mo content exceeds 1.0% by weight and includes δ ferrite of 10% or less by weight. . 請求項1から4のいずれか1項に記載の成分組成を有する鋼からなる鋼片に、1000℃〜1150℃で溶体化処理を施した後、30%以下の冷間加工を施し、その後に400℃〜850℃で0.5〜50時間の炭・窒化物析出熱処理を施すことを特徴とするオーステナイト系ステンレス鋼の製造方法。   A steel slab made of steel having the component composition according to any one of claims 1 to 4 is subjected to a solution treatment at 1000 ° C to 1150 ° C, and then cold-worked at 30% or less, and thereafter A method for producing an austenitic stainless steel, characterized by performing a carbon / nitride precipitation heat treatment at 400 ° C to 850 ° C for 0.5 to 50 hours. 請求項1〜6のいずれか1項に記載のオーステナイト系ステンレス鋼からなることを特徴とする原子炉内構造物。   A reactor internal structure comprising the austenitic stainless steel according to any one of claims 1 to 6. 請求項1〜6のいずれか1項に記載のオーステナイト系ステンレス鋼からなることを特徴とする原子炉内配管。   An in-reactor pipe comprising the austenitic stainless steel according to any one of claims 1 to 6.
JP2007247747A 2007-09-25 2007-09-25 Austenitic stainless steel and producing method therefor, and structural material and piping in nuclear reactor Pending JP2009079240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007247747A JP2009079240A (en) 2007-09-25 2007-09-25 Austenitic stainless steel and producing method therefor, and structural material and piping in nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007247747A JP2009079240A (en) 2007-09-25 2007-09-25 Austenitic stainless steel and producing method therefor, and structural material and piping in nuclear reactor

Publications (1)

Publication Number Publication Date
JP2009079240A true JP2009079240A (en) 2009-04-16

Family

ID=40654219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007247747A Pending JP2009079240A (en) 2007-09-25 2007-09-25 Austenitic stainless steel and producing method therefor, and structural material and piping in nuclear reactor

Country Status (1)

Country Link
JP (1) JP2009079240A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016123715A1 (en) * 2015-02-06 2016-08-11 Atomic Energy Of Canada Limited / Énergie Atomique Du Canada Limitée Nickel-chromium-iron alloys with improved resistance to stress corrosion cracking in nuclear environments
CN108486502A (en) * 2018-03-16 2018-09-04 杭州佐帕斯工业有限公司 Effective stainless steel of a kind of Broiled Dishes heating and preparation method thereof
CN109972048A (en) * 2018-05-25 2019-07-05 中国科学院金属研究所 Nuclear reactor used by nuclear fuel jacketing FeCrAl alloy and the heat-resisting steel pipe of T91 ferrite/martensite and preparation
JPWO2020241851A1 (en) * 2019-05-31 2020-12-03
CN113584382A (en) * 2021-07-06 2021-11-02 广东省科学院新材料研究所 Iron-based ceramic composite material and preparation method and application thereof
CN113667903A (en) * 2021-08-11 2021-11-19 浙江久立特材科技股份有限公司 Stepped structure austenitic stainless steel, seamless pipe and preparation method and application thereof
CN115369331A (en) * 2022-07-12 2022-11-22 中广核研究院有限公司 Stainless steel material, stainless steel cladding tube and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263928A (en) * 1989-04-05 1990-10-26 Nippon Steel Corp Production of cr-ni stainless steel sheet excellent in stress corrosion cracking resistance and surface quality
JPH07209485A (en) * 1994-01-18 1995-08-11 Hitachi Ltd Nuclear reactor and nuclear fusion reactor
JP2000319761A (en) * 1999-05-06 2000-11-21 Nisshin Steel Co Ltd Austenitic stainless steel excellent in molten salt corrosion resistance in chloride environment
WO2005068674A1 (en) * 2004-01-13 2005-07-28 Mitsubishi Heavy Industries, Ltd. Austenitic stainless steel, method for producing same and structure using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263928A (en) * 1989-04-05 1990-10-26 Nippon Steel Corp Production of cr-ni stainless steel sheet excellent in stress corrosion cracking resistance and surface quality
JPH07209485A (en) * 1994-01-18 1995-08-11 Hitachi Ltd Nuclear reactor and nuclear fusion reactor
JP2000319761A (en) * 1999-05-06 2000-11-21 Nisshin Steel Co Ltd Austenitic stainless steel excellent in molten salt corrosion resistance in chloride environment
WO2005068674A1 (en) * 2004-01-13 2005-07-28 Mitsubishi Heavy Industries, Ltd. Austenitic stainless steel, method for producing same and structure using same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016123715A1 (en) * 2015-02-06 2016-08-11 Atomic Energy Of Canada Limited / Énergie Atomique Du Canada Limitée Nickel-chromium-iron alloys with improved resistance to stress corrosion cracking in nuclear environments
EP3253898A4 (en) * 2015-02-06 2018-07-11 Atomic Energy of Canada Limited/ Énergie Atomique du Canada Limitée Nickel-chromium-iron alloys with improved resistance to stress corrosion cracking in nuclear environments
CN108486502A (en) * 2018-03-16 2018-09-04 杭州佐帕斯工业有限公司 Effective stainless steel of a kind of Broiled Dishes heating and preparation method thereof
CN109972048B (en) * 2018-05-25 2021-03-26 中国科学院金属研究所 FeCrAl alloy and ferrite/martensite heat-resistant steel composite tube for nuclear fuel cladding of nuclear reactor and preparation method thereof
CN109972048A (en) * 2018-05-25 2019-07-05 中国科学院金属研究所 Nuclear reactor used by nuclear fuel jacketing FeCrAl alloy and the heat-resisting steel pipe of T91 ferrite/martensite and preparation
JPWO2020241851A1 (en) * 2019-05-31 2020-12-03
WO2020241851A1 (en) * 2019-05-31 2020-12-03 日本製鉄株式会社 Austenitic stainless steel material
CN113924378A (en) * 2019-05-31 2022-01-11 日本制铁株式会社 Austenitic stainless steel material
JP7307366B2 (en) 2019-05-31 2023-07-12 日本製鉄株式会社 Austenitic stainless steel material
CN113584382A (en) * 2021-07-06 2021-11-02 广东省科学院新材料研究所 Iron-based ceramic composite material and preparation method and application thereof
CN113667903A (en) * 2021-08-11 2021-11-19 浙江久立特材科技股份有限公司 Stepped structure austenitic stainless steel, seamless pipe and preparation method and application thereof
CN113667903B (en) * 2021-08-11 2022-05-06 浙江久立特材科技股份有限公司 Stepped structure austenitic stainless steel, seamless pipe and preparation method and application thereof
CN115369331A (en) * 2022-07-12 2022-11-22 中广核研究院有限公司 Stainless steel material, stainless steel cladding tube and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4616772B2 (en) Austenitic stainless steel, method for producing the same, and structure using the same
JP2009079240A (en) Austenitic stainless steel and producing method therefor, and structural material and piping in nuclear reactor
JP2009161802A (en) Highly corrosion-resistant austenitic stainless steel, nuclear power generation plant constructed by using the stainless steel, weld joint and structural member
JPWO2018151222A1 (en) Ni-base heat-resistant alloy and method for producing the same
CN102943209B (en) Radiation-resistant martensite heat-resistant steel having excellent compatibility with Pb and Pb-Bi
KR101140651B1 (en) High-Cr ferritic/martensitic steels having an improved creep resistance and preparation method thereof
JPS604895B2 (en) Structure with excellent stress corrosion cracking resistance and its manufacturing method
JP2014181383A (en) High corrosion resistance high strength stainless steel, structure in atomic furnace and manufacturing method of high corrosion resistance high strength stainless steel
JP5675958B2 (en) Heat generator tube for steam generator, steam generator and nuclear power plant
JP4503483B2 (en) Material to be welded, welded structure using the same and high corrosion resistance austenitic stainless steel
Rao Materials development for indian nuclear power programme: an industry perspective
Ilinčev et al. The effect of temperature and oxygen content on the flowing liquid metal corrosion of structural steels in the Pb–Bi eutectic
KR100896988B1 (en) High-Cr Ferritic/Martensitic Steels having improved neutron irradiation stability containing an enriched boron-11 for the in-core component materials in the Gen-? fission reactor and the fusion reactor
KR20140130590A (en) Ferrite-martensite steel having high impact properties and method thereof
CN101532075A (en) Method of increasing resistance to stress corrosion cracking of austenitic stainless steels
JP2010275569A (en) Austenitic stainless steel and method of manufacturing the same
US10550451B2 (en) Ni-based alloy pipe or tube for nuclear power
CN109504826B (en) Copper-vanadium-containing high-strength high-corrosion-resistance stainless steel and preparation method thereof
JP2013208627A (en) HIGH CORROSION RESISTANT Ni-BASED WELD METAL, WELDED STRUCTURE USING THE SAME, AND NUCLEAR POWER PLANT
JP2014005509A (en) Highly corrosion-resistant austenitic stainless steel and weld joint structure
JP2006144068A (en) Austenitic stainless steel
JP2004091816A (en) Nickel-based alloy, heat treatment method for nickel-based alloy, and member for nuclear power with the use of nickel-based alloy
Vatulin et al. Corrosion and radiation resistance of “Bochvaloy” nickel-chromium alloy
Shen Review of the Effect of Cold Work on Stress Corrosion Cracking
JPWO2012121389A1 (en) Materials for nuclear equipment, heat transfer tubes for steam generators, steam generators and nuclear power plants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205