JP2009210285A - Reactor apparatus and its surface modification method - Google Patents

Reactor apparatus and its surface modification method Download PDF

Info

Publication number
JP2009210285A
JP2009210285A JP2008050915A JP2008050915A JP2009210285A JP 2009210285 A JP2009210285 A JP 2009210285A JP 2008050915 A JP2008050915 A JP 2008050915A JP 2008050915 A JP2008050915 A JP 2008050915A JP 2009210285 A JP2009210285 A JP 2009210285A
Authority
JP
Japan
Prior art keywords
layer
surface modification
corrosion resistance
work material
peening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008050915A
Other languages
Japanese (ja)
Inventor
Minoru Obata
稔 小畑
Keiichiro Oka
桂一朗 岡
Shohei Kawano
昌平 川野
Ayaka Kawagishi
礼佳 川岸
Nobukazu Suezono
暢一 末園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008050915A priority Critical patent/JP2009210285A/en
Publication of JP2009210285A publication Critical patent/JP2009210285A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Laser Beam Processing (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reactor apparatus and its surface modification method capable of preventing surely beforehand generation of an SCC damage form by improving simultaneously a material factor and a stress factor for SCC generation prevention in a material to be executed. <P>SOLUTION: In this reactor apparatus, a surface modification layer is constituted, wherein a highly corrosion-resistant layer serving simultaneously as a compressive stress layer for compressive stress application is achieved in a high-temperature high-pressure fluid environment, on a material surface part of the material to be executed such as a reactor internal structure or piping. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、原子力発電プラントを構成する被施工材の表面改質技術に係り、特に被施工材に表面改質プロセスを施した原子炉機器およびその表面改質方法に関する。   The present invention relates to a surface modification technique for a construction material constituting a nuclear power plant, and more particularly to a nuclear reactor apparatus and a surface modification method for the construction material subjected to a surface modification process.

原子力発電プラントを構成する商用軽水炉として多数の沸騰水型原子炉(BWR)や加圧水型原子炉(PWR)が国内外で稼動中であり、原子力発電プラントの主要機器はいずれも高温高圧水という過酷な腐食環境下に晒されている。中でも原子炉内構造物は高温高圧水中の腐食環境に長時間晒されており、引張応力が残留する炉内構造物の溶接部あるいは機械加工を受けた部材に応力腐食割れ(SCC)と呼ばれる損傷が発生することが知られている。   Numerous boiling water reactors (BWRs) and pressurized water reactors (PWRs) are in operation in Japan and overseas as commercial light water reactors that make up nuclear power plants. Exposed to corrosive environment. In particular, the reactor internals are exposed to a corrosive environment in high-temperature and high-pressure water for a long period of time, and damages called stress corrosion cracking (SCC) occur in the welded parts of the reactor internals where tensile stress remains or in parts subjected to machining. Is known to occur.

このSCC損傷防止対策として耐SCC性の高い金属や合金材料の採用、水質制御あるいは残留応力改善によりSCCの発生を未然に防止する対策が行なわれている。特に、SCC発生の主要因である引張残留応力を塑性変形させて圧縮応力に変換させることにより、SCCの発生を抑制する応力改善プロセスが開発され、ピーニング処理技術として実用化されている(特許文献1参照)。   As measures for preventing SCC damage, measures are taken to prevent the occurrence of SCC by adopting a metal or alloy material having high SCC resistance, controlling water quality or improving residual stress. In particular, a stress improvement process that suppresses the occurrence of SCC has been developed by plastically deforming the tensile residual stress, which is the main cause of SCC generation, and converting it into compressive stress, and has been put into practical use as a peening technique (Patent Literature). 1).

また、原子力分野に限らず、腐食環境下で使用される機器や部品の信頼性を向上させ、寿命延長を図る目的で、使用機器や部品の表面に高耐食性を有する表面層を形成する表面改質技術が出願されている(特許文献2参照)。   In addition, not only in the nuclear field, but also for the purpose of improving the reliability of equipment and parts used in corrosive environments and extending the life, surface modification that forms a surface layer with high corrosion resistance on the surface of the equipment and parts used. Quality technology has been filed (see Patent Document 2).

さらに、自動車などの輸送機器や回転機器に使用の摺動性部品に、レーザピーニングによる表面改質技術を適用し、部品表面の硬度あるいは潤滑性を改善する手法が出願されている。
米国特許第6993948(B2)号明細書 特開平10−30190号公報 特開2000−34581号公報 特開2006−320907号公報
Furthermore, a technique has been filed in which a surface modification technique by laser peening is applied to slidable parts used in transportation equipment and rotating equipment such as automobiles to improve the hardness or lubricity of the part surface.
US Pat. No. 6,993,948 (B2) Japanese Patent Laid-Open No. 10-30190 JP 2000-34581 A JP 2006-320907 A

原子力発電プラントのうち、特に運転開始から長期間経過した高経年化プラントでは、応力腐食割れ(SCC)という、残留応力、腐食性環境、材質劣化の3因子が重畳して発生する損傷形態の事例報告が生じている。残留応力因子は主に構造物溶接部に発生する引張残留応力であり、環境因子としてはBWRの場合、溶存酸素、各種不純物、PWRにおいては温度、特定濃度範囲の水素がその要因として挙げられる。また、材質面(材質劣化因子)では粒界近傍のクロム濃度の低下が一因と言われている。   Among nuclear power plants, especially in an aging plant that has been operating for a long time since the start of operation, an example of damage caused by the combination of residual stress, corrosive environment, and material deterioration called stress corrosion cracking (SCC) There are reports. The residual stress factor is mainly a tensile residual stress generated in a welded part of a structure. As an environmental factor, in the case of BWR, dissolved oxygen, various impurities, and in PWR, temperature and hydrogen in a specific concentration range are cited as factors. In addition, it is said that a decrease in chromium concentration in the vicinity of the grain boundary is one factor in terms of material (material deterioration factor).

SCC発生防止対策としてBWR、PWRとも各種対策工法が開発され実機に適用されている。残留応力因子を抑制する立場からはピーニングプロセスがBWR、PWRの両原子力プラントで適用されている。古くはPWRの蒸気発生器(SG)のSCC対策としてショットピーニング(SP)が適用され、その効果が実証されている。   Various countermeasure methods have been developed and applied to actual machines for both BWR and PWR as countermeasures against the occurrence of SCC. From the standpoint of suppressing the residual stress factor, the peening process is applied to both BWR and PWR nuclear power plants. In the past, shot peening (SP) has been applied as an SCC countermeasure for the steam generator (SG) of PWR, and its effect has been demonstrated.

原子力発電プラントにおいては、BWR、PWRの炉内機器の残留応力改善技術としては遠隔施工性に優れたレーザピーニング(LP)やウォータジェットピーニング(WJP)が実用化されている。   In nuclear power plants, laser peening (LP) and water jet peening (WJP), which are excellent in remote workability, have been put to practical use as techniques for improving residual stress in in-core equipment of BWR and PWR.

また、環境因子抑制の点からは、BWRプラントにおける水素注入による溶存酸素濃度の低減、PWRプラントにおけるノーブルメタル注入技術が適用され、その効果が実証されつつある。   Moreover, from the point of environmental factor suppression, the reduction of the dissolved oxygen concentration by the hydrogen injection in a BWR plant and the noble metal injection technique in a PWR plant are applied, and the effect is being demonstrated.

さらに、金属や合金材料の材質面の改善として、従来の材料に比較して高クロム化を計ったニッケル基溶接金属の適用、あるいは高クロムニッケル基合金が開発されPWRの取替え機器などに適用されている。   Furthermore, as a material improvement of metal and alloy materials, the application of nickel-base weld metal with higher chromium compared to conventional materials, or the development of high-chromium nickel-base alloys and application to PWR replacement equipment, etc. ing.

しかしながら、従来のSCC発生防止対策は、いずれの工法もSCC発生防止要因のうちの1因子のみを改善するものである。原子炉機器によっては製造履歴により不可避的に形成される機械加工層、運転中の熱、外部負荷履歴などの影響が重なることによりSCC発生が誘発される懸念もある。   However, the conventional SCC occurrence prevention measures improve only one of the SCC occurrence prevention factors in any of the construction methods. Depending on the nuclear reactor equipment, there is a concern that the occurrence of SCC is induced by the influence of a machining layer inevitably formed by the manufacturing history, heat during operation, external load history, and the like.

したがって、SCC発生防止対策を複数の発生因子を同時に低コストで改善できる表面改質プロセスが開発されれば、より確実なSCC発生防止対策が可能となり、原子炉機器の信頼性向上につながり、延いては安全・安心でより信頼性の高い原子力発電プラントの実現に貢献することができる。   Therefore, if a surface modification process is developed that can improve the SCC generation prevention measures at the same time at a low cost, more reliable SCC generation prevention measures will be possible, leading to an increase in the reliability of the nuclear reactor equipment. It can contribute to the realization of a nuclear power plant that is safer, more reliable and more reliable.

本発明は、上述した事情を考慮してなされたもので、被施工材にSCC発生防止対策を材質因子と応力因子を同時に改善し、SCCの損傷形態の発生を未然かつ確実に防止し、信頼性の高い原子炉機器およびその表面改質方法を提供することを目的とする。   The present invention has been made in consideration of the above-mentioned circumstances. The material factor and the stress factor are improved at the same time in the work material to prevent the occurrence of SCC, and the occurrence of the SCC damage form is surely prevented. An object of the present invention is to provide a highly reliable nuclear reactor equipment and a surface modification method thereof.

本発明の他の目的は、軽水炉の商用原子炉のみならず、高速増殖炉(FBR)の原子炉機器全般の被施工材を対象機器とし、高経年化プラントの予防保全に適用可能な原子炉機器およびその表面改質方法を提供するにある。   Another object of the present invention is not only a commercial reactor of a light water reactor, but also a reactor that can be applied to preventive maintenance of an aging plant with the construction material of all reactor equipment of a fast breeder reactor (FBR) as a target equipment. It is in providing an apparatus and its surface modification method.

本発明の別の目的は、プラント建設時の被施工材の溶接部や機器溶接部の表面改質技術に適用して、機器全体の信頼性を向上させ、被施工材に高価な改善材料を用いることなく、製造コストの低減を図ることができる原子炉機器およびその表面改質方法を提供するにある。   Another object of the present invention is to apply to the surface modification technology of welded parts of equipment and equipment welded parts at the time of plant construction to improve the reliability of the whole equipment and to add expensive improvement materials to the construction materials. An object of the present invention is to provide a nuclear reactor device and a surface modification method thereof that can reduce the manufacturing cost without using it.

本発明に係る原子炉機器は、上述した課題を解決するために、原子炉内構造物、配管等の被施工材の材料表面部に、圧縮応力付与の圧縮応力層を兼ねた高耐食層を高温高圧流体環境中で実現した表面改質層を構成したものである。   In order to solve the above-described problems, the nuclear reactor apparatus according to the present invention has a high corrosion resistance layer that also serves as a compressive stress layer for applying compressive stress to a material surface portion of a construction material such as a reactor internal structure and piping. This is a surface modification layer realized in a high-temperature and high-pressure fluid environment.

また、本発明に係る原子炉機器の表面改質方法は、原子炉機器等の被施工材の材料表面に、圧縮応力を付与した圧縮応力層を兼ねた高耐食層を高温高圧水環境中で実現する表面改質層を形成する方法である。   In addition, the method for modifying the surface of a nuclear reactor device according to the present invention includes a high corrosion resistance layer that also serves as a compressive stress layer imparted with a compressive stress on a material surface of a work material such as a nuclear reactor device in a high temperature and high pressure water environment. This is a method of forming a surface modified layer to be realized.

ここにおいて、原子炉機器は、商用軽水炉としてのBWR,PWRのみならず、FBRの原子炉機器全般が対象機器である。被施工材は、原子炉機器だけでなく、炉内構造物、炉内機器、配管や部品の高温高圧流体(水、蒸気)中に露出したり、高温高圧流体を通す部材が対象となる。   Here, the reactor equipment includes not only BWR and PWR as commercial light water reactors but also FBR reactor equipment in general. The work material is not only the reactor equipment but also the members that are exposed to the high-temperature and high-pressure fluid (water, steam) of the reactor internal structure, the furnace equipment, piping and parts, or the member that passes the high-temperature and high-pressure fluid.

本発明に係る原子炉機器およびその表面改質方法では、被施工材にSCC発生を構成する材質因子と応力因子を同時に改善する表面改質層を形成し、SCC損傷形態の発生を未然にかつ確実に防止し、原子炉機器の信頼性を向上させることができる。   In the nuclear reactor equipment and the surface modification method thereof according to the present invention, a surface modification layer that simultaneously improves the material factor and the stress factor constituting the SCC generation is formed on the work material, and the occurrence of the SCC damage form is obviated. It can be reliably prevented and the reliability of the reactor equipment can be improved.

本発明に係る原子炉機器およびその表面改質方法の実施形態について添付図面を参照して説明する。   Embodiments of a nuclear reactor apparatus and a surface modification method thereof according to the present invention will be described with reference to the accompanying drawings.

[第1の実施形態]
図1は、本発明に係る原子炉機器およびその表面改質方法の第1実施形態を示すものである。この図に示された原子炉機器10は、BWRおよびPWRの原子力発電プラント(原子炉関連施設)に適用されるもので、BWRでは高温高圧流体(水、蒸気)に晒される炉内構造物、炉内機器や高温高圧流体を案内する主蒸気管、復水・給水管等の各種配管、周辺機器に用いられ、また、PWRでは高温高圧流体に晒される炉内構造物、炉内機器や高温高圧水を発生させる加圧器、蒸気発生器、周辺機器、各種配管に適用される。
[First Embodiment]
FIG. 1 shows a first embodiment of a nuclear reactor apparatus and a surface modification method thereof according to the present invention. Reactor equipment 10 shown in this figure is applied to nuclear power plants (reactor-related facilities) of BWR and PWR, and in BWR, an internal structure exposed to high-temperature high-pressure fluid (water, steam), Used in various equipment such as main steam pipes, condensate / feed water pipes, and peripheral equipment for guiding in-furnace equipment and high-temperature / high-pressure fluid, and in PWR, internal structures, in-furnace equipment, Applicable to pressurizers, steam generators, peripheral equipment and various pipes that generate high-pressure water.

原子炉機器10の炉内構造物や主蒸気管等を構成する原子炉関連施設の被施工材(構造材)11は、高温高圧流体(水、蒸気)という腐食環境に長時間晒される。被施工材11には高温高圧流体に晒される表層部12に表面改質層を構成したものである。被施工材11は、表層部12が母材13から材質因子と応力因子とを改善した表面改質層として得られる。ほぼ層状に区分される。   The work-related material (structure material) 11 of the reactor-related facility that constitutes the reactor internal structure, the main steam pipe, and the like is exposed to a corrosive environment of high-temperature and high-pressure fluid (water, steam) for a long time. In the work material 11, a surface modification layer is formed on the surface layer portion 12 exposed to the high-temperature and high-pressure fluid. The work material 11 is obtained as a surface modified layer in which the surface layer portion 12 is improved from the base material 13 in terms of material factors and stress factors. Divided into layers.

図1は、被施工材11の表面近傍に形成される表面改質層の残留応力分布とクロム(Cr)濃度分布とを断面構造表示で示す模式図である。この原子炉機器10は、高温高圧流体に晒される被施工材11に表面改質プロセスを適用し、被施工材11の表面近傍の表層部12に母材13のクロム濃度α、例えば18wt%より高い濃度の高濃度クロム層が形成され、同時に応力腐食割れ防止に効果的な圧縮応力を付与したものである。圧縮応力が付与された被施工材11を高温高圧流体環境下で高耐食性を付与して高耐食層を表層部12に構成してもよい。   FIG. 1 is a schematic view showing the residual stress distribution and the chromium (Cr) concentration distribution of the surface modification layer formed in the vicinity of the surface of the workpiece 11 in a cross-sectional structure display. This nuclear reactor apparatus 10 applies a surface modification process to the workpiece 11 exposed to the high-temperature and high-pressure fluid, and the surface layer portion 12 near the surface of the workpiece 11 has a chromium concentration α of the base material 13, for example, 18 wt%. A high-concentration chromium layer having a high concentration is formed, and at the same time, an effective compressive stress is applied to prevent stress corrosion cracking. The work material 11 to which the compressive stress is applied may be provided with high corrosion resistance in a high-temperature and high-pressure fluid environment to form a high corrosion-resistant layer on the surface layer portion 12.

図1に示された原子炉機器10でも被施工材11の表層部12に、表面改質層を構成し、この表面改質層は母材13のクロム濃度αより高濃度の高濃度クロム層(高耐食層)を兼ねた圧縮応力層を共通に有する内容としたものである。   In the nuclear reactor apparatus 10 shown in FIG. 1, a surface modification layer is formed on the surface layer portion 12 of the workpiece 11, and this surface modification layer is a high-concentration chromium layer having a higher concentration than the chromium concentration α of the base material 13. The content has a compressive stress layer that also serves as a (high corrosion resistance layer).

原子炉機器10の被施工材11に表面改質プロセスを適用してその表層部12に高温高圧流体環境下で高濃度クロムからなる高耐食層と圧縮応力を付与して塑性変形させた圧縮応力層との双方を共通に備えたものである。例えば、被施工材11がSUS304製の炉内構造物である場合、その表面に表面改質プロセスを適用することにより、高温高圧水に晒される高腐食環境においても、従来の表面改質プロセスに比較して耐応力腐食割れ(SCC)性に優れ、信頼性の高い炉内構造物を実現することができる。   Compressive stress obtained by applying a surface modification process to the work material 11 of the nuclear reactor 10 and applying a high corrosion resistance layer made of high-concentration chromium and compressive stress to the surface layer portion 12 in a high-temperature and high-pressure fluid environment. Both layers are provided in common. For example, when the work material 11 is an in-furnace structure made of SUS304, the surface modification process is applied to the surface of the work material 11 in a highly corrosive environment exposed to high temperature and high pressure water. In comparison, it is possible to realize a highly reliable in-furnace structure having excellent stress corrosion cracking (SCC) resistance.

また、原子炉機器10の被施工材11は、施工条件を制御することにより、被施工材11の表層部12に形成される圧縮応力層の厚さ、表層部12のクロム濃度を制御することができる。被施工材11の母材13のクロム濃度、例えば18wt%より大きな20wt%以上のクロム濃度を含有する表層部12を形成することにより、高耐食性を確保することができる。被施工材11が炉内構造物である場合には、高耐食性を確保して信頼性を向上させることができる。クロム濃度に関しては、SUS鋼のオーステナイト層の安全性の観点から26wt%以下であることが望ましい。   Moreover, the work material 11 of the nuclear reactor equipment 10 controls the thickness of the compressive stress layer formed on the surface layer portion 12 of the work material 11 and the chromium concentration of the surface layer portion 12 by controlling the work conditions. Can do. High corrosion resistance can be ensured by forming the surface layer portion 12 containing a chromium concentration of the base material 13 of the work material 11, for example, a chromium concentration of 20 wt% or more, which is larger than 18 wt%. When the work material 11 is an in-furnace structure, high corrosion resistance can be ensured and reliability can be improved. The chromium concentration is preferably 26 wt% or less from the viewpoint of safety of the austenite layer of SUS steel.

さらに、被施工材11の表層部12に形成される高クロム濃度層は、被施工材11である原子炉機器10が高温高圧流体(水、蒸気)中に晒された際に、被施工材11の表面に耐食性の良好な緻密な酸化皮膜を形成し、耐SCC性の大幅な改善が期待できる。   Further, the high chromium concentration layer formed on the surface layer portion 12 of the work material 11 is the work material when the reactor equipment 10 that is the work material 11 is exposed to a high-temperature high-pressure fluid (water, steam). A dense oxide film having good corrosion resistance is formed on the surface of No. 11, and a significant improvement in SCC resistance can be expected.

耐SCC性の改善効果に関しては、被施工材11の表面に形成される酸化皮膜中にクロム(Cr)に代えて亜鉛(Zn)を取り込むことによっても得られる。被施工材11の表層部12はクロム濃度の代りに亜鉛濃度の高い表層部を高耐食層として構成してもよい。   The effect of improving the SCC resistance can also be obtained by incorporating zinc (Zn) in place of chromium (Cr) into the oxide film formed on the surface of the work material 11. The surface layer portion 12 of the work material 11 may be configured with a surface layer portion having a high zinc concentration as a highly corrosion-resistant layer instead of the chromium concentration.

図1に示された原子炉機器10に表面改質プロセスを適用し、被施工材11の材料表面に、圧縮応力を付与した圧縮応力層と高温高圧流体環境中で高耐食性を有する表面改質層を形成し、被施工材11の表層部12に塑性変形させた圧縮応力層と高耐食性の表面改質層としての機能を同時に持たせることで、SCC発生要因を構成する因子のうち、材質因子と応力因子を同時に改善することができ、より安定したSCC発生防止対策を施すことができる。   A surface modification process is applied to the nuclear reactor apparatus 10 shown in FIG. 1, and a surface modification having high corrosion resistance in a high-temperature and high-pressure fluid environment and a compressive stress layer provided with a compressive stress on the material surface of the work material 11. Among the factors constituting the SCC generation factor, a layer is formed, and the surface layer portion 12 of the work material 11 is made to have a function of a plastically deformed compressive stress layer and a highly corrosion-resistant surface modified layer at the same time. The factor and the stress factor can be improved at the same time, and more stable SCC generation prevention measures can be taken.

[第2の実施形態]
図2は、原子炉機器の表面改質方法の第2実施形態を示すものである。
[Second Embodiment]
FIG. 2 shows a second embodiment of a surface modification method for nuclear reactor equipment.

この実施形態に示された原子炉機器の表面改質方法は、例えば、SUS304鋼からなる被施工材11に、超音波ショットピーニングを適用して、被施工材11の表面近傍に圧縮応力を付与した表面改質を施したものである。図1に示された原子炉機器の構成と同じ構成は同一符号を施して説明する。   In the method for modifying the surface of a nuclear reactor device shown in this embodiment, for example, ultrasonic shot peening is applied to a workpiece 11 made of SUS304 steel to apply a compressive stress near the surface of the workpiece 11. The surface modification was performed. The same components as those of the reactor equipment shown in FIG.

図2は、被施工材11の表層部12に超音波ショットピーニングを適用した場合における、被施工材11の表面近傍の深さ方向の硬度分布を示す図である。超音波ショットピーニングにより、被施工材11の表面近傍の残留応力改善を施し、表層部12に圧縮応力を付与して塑性変形させ、加工硬化層を形成する。   FIG. 2 is a diagram illustrating the hardness distribution in the depth direction near the surface of the workpiece 11 when ultrasonic shot peening is applied to the surface layer portion 12 of the workpiece 11. Residual stress in the vicinity of the surface of the workpiece 11 is improved by ultrasonic shot peening, and a compressive stress is applied to the surface layer portion 12 to cause plastic deformation, thereby forming a work hardened layer.

被施工材11の表層部は、ビッカース硬度で300Hvを超える過度の硬度上昇は、亀裂進展速度を加速するなどの悪影響が懸念されるため、ピーニング処理による施工後の硬度上昇はなるべく低く抑え、ビッカース硬度で300Hv未満とすることが望ましい。   Since the surface layer portion of the work material 11 has a Vickers hardness exceeding 300 Hv, there is a concern about an adverse effect such as accelerating the crack growth rate. The hardness is desirably less than 300 Hv.

この原子炉機器の表面改質方法によれば、表面改質プロセスに超音波ピーニングを採用することにより、被施工材11の表層部12に、ビッカース硬度が300Hv以下の表面改質層を形成することにより、表面改質層に過度の硬度上昇を抑えることができ、より信頼性の高い炉内構造物を提供できる。   According to this surface modification method for nuclear reactor equipment, by employing ultrasonic peening for the surface modification process, a surface modified layer having a Vickers hardness of 300 Hv or less is formed on the surface layer portion 12 of the workpiece 11. Thus, an excessive increase in hardness can be suppressed in the surface modified layer, and a more reliable in-furnace structure can be provided.

原子炉機器の表面改質方法によれば、表層部の圧縮応力層を超音波ショットピーニングに代えてウォータジェットピーニングやレーザピーニングを施すことによっても、信頼性の高い表面改質層を形成することができ、この表面改質層は、高温高圧流体(水)環境中でクロム濃度や亜鉛濃度をより高い濃度とする表面改質プロセス処理と併用させてもよい。   According to the surface modification method for nuclear reactor equipment, a highly reliable surface modification layer can be formed by performing water jet peening or laser peening instead of ultrasonic shot peening on the compressive stress layer in the surface layer. This surface modification layer may be used in combination with a surface modification process treatment in which the chromium concentration and the zinc concentration are higher in a high temperature and high pressure fluid (water) environment.

[第3の実施形態]
図3は、原子炉機器の表面改質方法の第3実施形態を示すものである。
[Third Embodiment]
FIG. 3 shows a third embodiment of a surface modification method for nuclear reactor equipment.

この実施形態に示された原子炉機器10Aの表面改質方法は、被施工材11の施工部表面に予め高温高圧流体(水、蒸気)中で、高耐食性皮膜を形成する合金組成を得る耐食性改善元素(A)を含有する揮発性溶液を塗布し、塗布層15を形成する。この揮発性溶液を塗布した被施工材11の表面に形成した塗布層15に鋼球等のショット材16を打ち込むショットピーニング処理を施すものである。耐食性改善元素(A)は、例えばクロム(Cr)あるいは亜鉛(Zn)で構成される。   The surface modification method for the reactor apparatus 10A shown in this embodiment is a corrosion resistance that obtains an alloy composition that forms a high corrosion resistance film on the surface of the work part of the work material 11 in advance in a high temperature and high pressure fluid (water, steam). A volatile solution containing the improving element (A) is applied to form the coating layer 15. A shot peening process is performed in which a shot material 16 such as a steel ball is applied to the coating layer 15 formed on the surface of the workpiece 11 to which the volatile solution is applied. The corrosion resistance improving element (A) is made of, for example, chromium (Cr) or zinc (Zn).

被施工材11を高温高圧流体環境下でショットピーニング処理の表面改質プロセスを実施することにより、被施工材11の表面に塗布された塗布層15を構成する耐食性改善元素(A)の一部は、ショットピーニングのエネルギにより被施工材11の表層部12に打ち込まれ、耐食性改善元素(A)の濃度が高い層が形成されると同時に、被施工材11の表層部12に塑性変形による圧縮応力層が形成される。   A part of the corrosion resistance improving element (A) constituting the coating layer 15 applied to the surface of the workpiece 11 by performing the surface modification process of the shot peening process on the workpiece 11 in a high-temperature and high-pressure fluid environment. Is driven into the surface layer portion 12 of the work material 11 by shot peening energy, and a layer having a high concentration of the corrosion resistance improving element (A) is formed. At the same time, the surface layer portion 12 of the work material 11 is compressed by plastic deformation. A stress layer is formed.

この表面改質プロセスを適用した炉内構造物等の被施工材11が、プロセス処理中に高温高圧流体に晒されることにより、被施工材11の表面に安定した皮膜が形成され、耐SCC発生防止効果を向上させることができる。   When the work material 11 such as an in-furnace structure to which this surface modification process is applied is exposed to a high-temperature and high-pressure fluid during the process, a stable film is formed on the surface of the work material 11 and SCC resistance is generated. The prevention effect can be improved.

被施工材11の表層部12に表面改質プロセスを実施するピーニング方法としては、ショットピーニングのほかにレーザピーニング、ウォータジェットピーニング、超音波ショットピーニング、超音波キャビテーションピーニング、超音波を照射しながら部材や棒でたたく超音波ロトピーニングなどいずれの施工方法でも良く、施工環境、施工面積に応じて適宜選択される。   As a peening method for performing the surface modification process on the surface layer portion 12 of the work material 11, in addition to shot peening, laser peening, water jet peening, ultrasonic shot peening, ultrasonic cavitation peening, ultrasonic irradiating members Any construction method such as ultrasonic rotopeening by hitting with a rod or a rod may be used, and it is appropriately selected according to the construction environment and construction area.

そして、被施工材11の表面に耐食性改善元素(A)を有する揮発性溶液を塗布した塗布層15を形成し、この塗布層15上から表面改質処理プロセスにより、ピーニング処理を施すことにより、被施工材11の表層部12に高耐食性層を兼ねる圧縮応力層を改善した表面改質層を形成することができ、SCCの材質因子と応力因子を同時に改善することができる。SCCの発生防止をより効果的に確実に図ることができ、原子炉機器10の信頼性を向上させることができる。   And by forming the coating layer 15 which apply | coated the volatile solution which has a corrosion-resistance improvement element (A) on the surface of the to-be-processed material 11, and performing a peening process by the surface modification process process on this coating layer 15, A surface-modified layer with an improved compressive stress layer that also serves as a high corrosion resistance layer can be formed on the surface layer portion 12 of the work material 11, and the material factor and stress factor of SCC can be improved at the same time. The occurrence of SCC can be prevented more effectively and reliably, and the reliability of the nuclear reactor equipment 10 can be improved.

[第4の実施形態]
図4は、原子炉機器の表面改質方法の第4実施形態を示すものである。
[Fourth Embodiment]
FIG. 4 shows a fourth embodiment of a surface modification method for nuclear reactor equipment.

この実施形態に示される原子炉機器10Bの表面改質方法では被施工材11の表面に高温高圧流体(水、蒸気)中で高耐食性皮膜を形成する合金組成を得るクロム(Cr)、亜鉛(Zn)等の耐食性改善元素(A)あるいはこの元素(A)が高濃度で含有する粉末層17を形成する。そして、この粉末層17を表面に形成した被施工材11に、表面改質プロセスを施し、ショットピーニング処理を実施する。   In the surface modification method for the nuclear reactor 10B shown in this embodiment, chromium (Cr), zinc (which obtains an alloy composition that forms a highly corrosion-resistant film in a high-temperature high-pressure fluid (water, steam) on the surface of the work material 11 is obtained. The corrosion resistance improving element (A) such as Zn) or the powder layer 17 containing the element (A) at a high concentration is formed. And the surface modification process is given to the to-be-processed material 11 which formed this powder layer 17 on the surface, and a shot peening process is implemented.

被施工材11の表面に形成された粉末の一部はショットピーニングのエネルギにより被施工部に打ち込まれ、耐食性改善元素の濃度を向上させた高濃度層が形成されると同時に、ピーニング材16の噴射による表層部12の塑性変形により圧縮応力層が形成される。   Part of the powder formed on the surface of the work material 11 is driven into the work part by shot peening energy to form a high-concentration layer in which the concentration of the corrosion resistance improving element is increased. A compressive stress layer is formed by plastic deformation of the surface layer portion 12 by injection.

被施工材11の表層部12に表面改質プロセスを適用して粉末層17の上方からショットピーニング処理を施し、かつ高温高圧流体で晒すことにより、被施工材11の表面(表層部12)に安定な圧縮応力を付与した高耐食性の皮膜が形成され、耐SCC防止の改善効果を向上させることができる。   A surface modification process is applied to the surface layer portion 12 of the work material 11 to perform shot peening from above the powder layer 17 and expose it to a surface (surface layer portion 12) of the work material 11 by exposing it to a high temperature and high pressure fluid. A highly corrosion-resistant film imparted with a stable compressive stress is formed, and the effect of improving SCC resistance can be improved.

この場合にも、被施工材11の表層部12に表面改質プロセスを実施するピーニング方法としては、ショットピーニングのほかにレーザピーニング、ウォータジェットピーニング、超音波ショットピーニング、超音波キャビテーションピーニング、超音波ロトピーニングなどいずれの施工方法でも良く、施工環境、施工面積に応じて適宜選択される。   Also in this case, as a peening method for performing the surface modification process on the surface layer portion 12 of the work material 11, in addition to shot peening, laser peening, water jet peening, ultrasonic shot peening, ultrasonic cavitation peening, ultrasonic Any construction method such as rotopeening may be used, and it is appropriately selected according to the construction environment and construction area.

[第5の実施形態]
図5は、原子炉機器の表面改質方法の第5実施形態を説明する。
[Fifth Embodiment]
FIG. 5 illustrates a fifth embodiment of a surface modification method for nuclear reactor equipment.

この実施形態に示された原子炉機器10Cの表面改質方法では、被施工材11の表面に予め高温高圧流体環境下で高耐食性皮膜を形成する合金組成を得るクロム(Cr)や亜鉛(Zn)等の耐食性改善元素(A)あるいはこの元素(A)が高濃度で含有するフィルム状あるいはシート状の薄膜18を形成する。被施工材11の表面に設けたシート状あるいはフィルム状の薄膜18の上から表面改質プロセスを実施し、ショットピーニング処理を施す。   In the surface modification method for reactor equipment 10C shown in this embodiment, chromium (Cr) or zinc (Zn) that obtains an alloy composition that forms a high corrosion-resistant film on the surface of the workpiece 11 in advance in a high-temperature and high-pressure fluid environment. Or the like, or a film-like or sheet-like thin film 18 containing the element (A) at a high concentration. A surface modification process is performed from above the sheet-like or film-like thin film 18 provided on the surface of the workpiece 11, and a shot peening process is performed.

ショットピーニング処理機構により、被施工材11の表面に形成された薄膜18を構成する耐食性改善元素(A)の一部はショットピーニングのエネルギにより被施工部に打ち込まれ、耐食性改善元素(A)の高温度層が表層部12に形成されると同時に、表層部12に圧縮応力を付与して塑性変形された圧力応力層が形成される。   Due to the shot peening treatment mechanism, a part of the corrosion resistance improving element (A) constituting the thin film 18 formed on the surface of the workpiece 11 is driven into the construction portion by the shot peening energy, and the corrosion resistance improving element (A) At the same time as the high temperature layer is formed on the surface layer portion 12, a pressure stress layer that is plastically deformed by applying a compressive stress to the surface layer portion 12 is formed.

表面改質プロセスが適用された被施工材11が高温高圧流体に晒された状態で、炉内構造物を構成する被施工材11の表面に薄膜18の上からショットピーニング処理を施すことにより、安定した耐食性および圧縮応力が付与された皮膜が形成され、耐SCC発生防止の改善効果を高めることができる。   By subjecting the surface of the work material 11 constituting the in-furnace structure to the shot peening process from above the thin film 18 in a state where the work material 11 to which the surface modification process is applied is exposed to the high-temperature and high-pressure fluid, A film to which stable corrosion resistance and compressive stress are applied is formed, and the effect of improving the SCC resistance can be enhanced.

被施工材11の表面に表面改質処理を施すピーニング方法としては、ショットピーニングのほかにレーザピーニング、ウォータジェットピーニング、超音波ショットピーニング、超音波キャビテーションピーニング、超音波ロトピーニングなどいずれの施工方法でも良く、施工環境、施工面積に応じて所要のピーニング方法が適宜選択される。   As a peening method for subjecting the surface of the workpiece 11 to surface modification, any of the construction methods such as laser peening, water jet peening, ultrasonic shot peening, ultrasonic cavitation peening, and ultrasonic rotopeening can be used in addition to shot peening. The required peening method is appropriately selected according to the construction environment and construction area.

[第6の実施形態]
図6は、原子炉機器の表面改質方法の第6実施形態を示すものである。
[Sixth Embodiment]
FIG. 6 shows a sixth embodiment of a surface modification method for nuclear reactor equipment.

この実施形態に示された原子炉機器10Dの表面改質方法は、超音波ショットピーニングを利用した表面改質方法の例を示す。超音波ショットピーニングに用いられる鋼球からなるショット材20の材質は、被施工材11の表面に高温高圧水中で高耐食性皮膜を形成する合金組成を得るクロム(Cr)、亜鉛(Zn)等の耐食性改善元素(A)あるいはこの元素(A)が高濃度で含有する合金が用いられる。   The surface modification method for nuclear reactor equipment 10D shown in this embodiment is an example of a surface modification method using ultrasonic shot peening. The material of the shot material 20 made of a steel ball used for ultrasonic shot peening is made of chromium (Cr), zinc (Zn), or the like that obtains an alloy composition that forms a highly corrosion-resistant film in high-temperature high-pressure water on the surface of the work material 11. The corrosion resistance improving element (A) or an alloy containing this element (A) at a high concentration is used.

この実施形態では、耐食性改善元素(A)あるいはこの元素(A)が高濃度で含有する合金製のショット材20を用意し、被施工材11の表面に表面改質施工装置21を設置する。表面改質施工装置21は処理ボックス22内に超音波振動子23を取り付けて構成される。   In this embodiment, the corrosion resistance improving element (A) or an alloy shot material 20 containing this element (A) at a high concentration is prepared, and the surface modification construction device 21 is installed on the surface of the work material 11. The surface modification construction device 21 is configured by attaching an ultrasonic transducer 23 in a processing box 22.

図6に示した原子炉機器10Dの表面処理方法では、被施工材11の表面に表面改質施工装置21を設置し、処理ボックス22内のチャンバ24に高温高圧流体(水)中で超音波振動子23に通電して、超音波ショットピーニングを実施する。この超音波ショットピーニングにより、ショット材20が被施工材11の施工面(表面)に移行して打ち込まれ、被施工材11の表面に耐食性改善元素(A)を有する高濃度の表面層が形成されると同時に、被施工材11の表層部12に圧縮応力層が形成される。   In the surface treatment method for the nuclear reactor 10D shown in FIG. 6, a surface modification construction device 21 is installed on the surface of the work material 11, and ultrasonic waves are generated in a chamber 24 in the treatment box 22 in a high-temperature high-pressure fluid (water). The vibrator 23 is energized to perform ultrasonic shot peening. By this ultrasonic shot peening, the shot material 20 is transferred to the construction surface (surface) of the work material 11 and driven, and a high-concentration surface layer having the corrosion resistance improving element (A) is formed on the surface of the work material 11. At the same time, a compressive stress layer is formed on the surface layer portion 12 of the workpiece 11.

この実施形態においては、被施工材11の表面改質処理プロセスにより、超音波ショットピーニングを施すことにより、被施工材11の表面に耐食性に富み、圧縮応力が付与されて、塑性変形した表面改質層が形成される。この被施工材11の表層部12に形成される表面改質層は、SCC発生因子を構成する材質因子と応力因子を同時に改善することができる。被施工材11の表面に安定した高耐食層と圧縮応力層を同時に共通して実施できる。   In this embodiment, by applying ultrasonic shot peening by the surface modification process of the work material 11, the surface of the work material 11 is rich in corrosion resistance and is subjected to a plastic deformation due to a compressive stress. A quality layer is formed. The surface modification layer formed on the surface layer portion 12 of the workpiece 11 can simultaneously improve the material factor and the stress factor constituting the SCC generation factor. A stable high corrosion resistant layer and compressive stress layer can be simultaneously applied to the surface of the work material 11.

この実施形態においては、原子炉機器10Dに表面改質処理プロセスを実施した被施工材11を用いて、この被施工材11を高温高圧流体(水)に晒しても、表面に安定した皮膜が形成されるので、耐SCCの改善効果をより一層高めることができる。ピーニング方法としては、超音波ショットピーニングに代えてショットピーニングでも同様な効果が得られた。   In this embodiment, even when the work material 11 that has been subjected to the surface modification treatment process is used for the nuclear reactor equipment 10D, even if the work material 11 is exposed to a high-temperature and high-pressure fluid (water), a stable film is formed on the surface. Since it is formed, the effect of improving SCC resistance can be further enhanced. As a peening method, the same effect was obtained by shot peening instead of ultrasonic shot peening.

[第7の実施形態]
図7は、原子炉機器の表面改質方法の第7実施形態を示すものである。
[Seventh Embodiment]
FIG. 7 shows a seventh embodiment of a surface modification method for nuclear reactor equipment.

この実施形態に示される原子炉機器10Eの表面改質方法は、超音波ショットピーニングを利用した表面改質方法の例を示すものである。   The surface modification method for reactor equipment 10E shown in this embodiment is an example of a surface modification method using ultrasonic shot peening.

この実施形態では、被施工材11の表面に表面改質施工装置21を設置し、この施工装置21の処理ボックス22内に超音波振動子23を取り付け、この超音波振動子23に通電することにより、鋼球製のショット材16と粉末25を混在させた状態で超音波ショットピーニング処理を施すものである。   In this embodiment, the surface modification construction device 21 is installed on the surface of the work material 11, the ultrasonic vibrator 23 is attached in the processing box 22 of the construction device 21, and the ultrasonic vibrator 23 is energized. Thus, an ultrasonic shot peening process is performed in a state where the steel ball shot material 16 and the powder 25 are mixed.

超音波ショットピーニング処理は、処理ボックス22内の超音波ショットピーニングチャンバ24中に、高温高圧流体中で被施工材11の表面に高耐食性皮膜を形成する合金組成の耐食性改善元素(A)あるいはこの元素(A)が高濃度で含有する粉末を混在させた状態で超音波ショットピーニング施工を実施する。   In the ultrasonic shot peening process, the corrosion resistance improving element (A) having an alloy composition for forming a high corrosion resistance film on the surface of the workpiece 11 in the high temperature and high pressure fluid in the ultrasonic shot peening chamber 24 in the processing box 22 or this Ultrasonic shot peening is performed in a state where powder containing the element (A) at a high concentration is mixed.

この超音波ショットピーニング施工中に、粉末を構成する表面改善元素(A)が被施工材11の表面(被施工面)に移行し、被施工材11の表面に表面改質元素(A)の高濃度層が形成されると同時に、表層部12に圧縮応力層が形成される。   During this ultrasonic shot peening construction, the surface improving element (A) constituting the powder moves to the surface of the work material 11 (work surface), and the surface modifying element (A) is formed on the surface of the work material 11. At the same time as the high concentration layer is formed, a compressive stress layer is formed on the surface layer portion 12.

この表面改質処理プロセスを実施した被施工材11を原子炉機器10Eの炉内構造物に用いて、高温高圧水中に晒されても、被施工材11の表面に高耐食層と圧縮応力層からなる表面改質層が形成されているので、被施工材11の表層部12に安定した皮膜が形成され、SCC発生防止の改善効果を高めることができる。   Even if the work material 11 subjected to this surface modification treatment process is used for the in-reactor structure of the nuclear reactor equipment 10E and exposed to high-temperature high-pressure water, a highly corrosion-resistant layer and a compressive stress layer are formed on the surface of the work material 11 Since the surface modification layer which consists of is formed, the stable membrane | film | coat is formed in the surface layer part 12 of the to-be-processed material 11, and the improvement effect of SCC generation | occurrence | production prevention can be heightened.

[第8の実施形態]
図8は、原子炉機器の表面改質方法の第8実施形態を示すものである。
[Eighth Embodiment]
FIG. 8 shows an eighth embodiment of a surface modification method for nuclear reactor equipment.

この実施形態に示される原子炉機器10Fの表面改質方法では、被施工材11の表面改質処理プロセスに図8に示す施工フローが実施される。   In the surface modification method for the reactor equipment 10F shown in this embodiment, the construction flow shown in FIG.

この原子炉機器10Fの表面改質方法においては、表面改質プロセスを実施する前に被施工材11の表面に予め微細な凹凸成形がグラインダ加工により実施され、被施工材11の表面に付着するクロム(Cr)や亜鉛(Zn)等の耐食性改善元素(A)あるいはこの元素を含有する元素の付着確率を改善することができる。   In the surface modification method for the nuclear reactor 10 </ b> F, before the surface modification process is performed, fine uneven forming is performed on the surface of the workpiece 11 in advance by grinder processing, and adheres to the surface of the workpiece 11. It is possible to improve the adhesion probability of the corrosion resistance improving element (A) such as chromium (Cr) or zinc (Zn) or an element containing this element.

高温高圧流体中で被施工材11の表面に高耐食性皮膜を形成する合金組成を得ることがあり、耐食性改善元素(A)やこの元素(A)を含有する元素を付着確率を改善して耐食性改善元素(A)の高濃度層を被施工材11の表面層として形成することができる。このため、被施工材11の表面に高耐食性を有する高濃度層の表面改質層を形成することができる。   An alloy composition that forms a highly corrosion-resistant film on the surface of the work material 11 in a high-temperature and high-pressure fluid may be obtained, and the corrosion resistance-improving element (A) or an element containing this element (A) is improved in the probability of adhesion and corrosion resistance. A high concentration layer of the improving element (A) can be formed as a surface layer of the work material 11. For this reason, the surface modification layer of the high concentration layer having high corrosion resistance can be formed on the surface of the work material 11.

被施工材11の表面にグラインダ加工等で凹凸面を形成し、この凹凸形成手段を用いることで、表面改質プロセスの施工時間の短縮を図ることができる。   By forming a concavo-convex surface on the surface of the workpiece 11 by grinder processing or the like and using this concavo-convex forming means, it is possible to shorten the construction time of the surface modification process.

[第9の実施形態]
図9は、原子炉機器の第9実施形態を示すものである。
[Ninth Embodiment]
FIG. 9 shows a ninth embodiment of nuclear reactor equipment.

この実施形態に示された原子炉機器は、被施工材11の原子炉構造物溶接部26に超音波ショットピーニングの表面改質処理プロセスを実施した例を示す。原子炉構造物溶接部26は、炉内構造物や配管の溶接部のように、溶接部による材質劣化、引張残留応力の形成などにより、SCCの発生が懸念される部位が対象となる。   The reactor equipment shown in this embodiment shows an example in which a surface modification treatment process of ultrasonic shot peening is performed on the reactor structure welded portion 26 of the work material 11. The reactor structure welded portion 26 is a portion where there is a concern about the occurrence of SCC due to material deterioration due to the welded portion, formation of tensile residual stress, or the like, such as a welded portion of a reactor internal structure or piping.

図9に示された原子炉機器10Gでは、被施工材11を構成する原子炉構造物(配管)の溶接部26に表面改質プロセスを実施することにより、原子炉構造物溶接部26およびその近傍の表層に表面改質装置21を用いて表面改質層を形成することができる。表面改質層は、表面改質装置21を用いて、第3実施形態ないし第7実施形態のいずれかの表面改質処理方法を用いて高温高圧流体環境下で表面改質処理プロセスを実施することで、原子炉構造物溶接部26およびその近傍の表層に、圧縮応力層を兼ねた高耐食層の表面改質層を施すことができる。表面改質層は原子炉構造物溶接部26およびその近傍の全周に亘って形成することもできる。   In the nuclear reactor apparatus 10G shown in FIG. 9, the surface structure process is performed on the welded portion 26 of the reactor structure (pipe) that constitutes the workpiece 11, so that the reactor structure welded portion 26 and its welded portion 26 A surface modification layer can be formed on a nearby surface layer using the surface modification device 21. The surface modification layer is subjected to a surface modification treatment process in a high-temperature and high-pressure fluid environment by using the surface modification apparatus 21 and the surface modification treatment method according to any one of the third to seventh embodiments. Thus, a surface modification layer of a highly corrosion-resistant layer that also serves as a compressive stress layer can be applied to the reactor structure weld 26 and the surface layer in the vicinity thereof. The surface modification layer may be formed over the entire circumference of the reactor structure weld 26 and the vicinity thereof.

この原子炉機器10Gにおいても、被施工材11の溶接部およびその近傍に、材質因子と応力因子を同時に改善したSCC発生防止対策を施すことができ、SCC損傷形態の発生を未然にかつ確実に防止することができる。   Also in this reactor equipment 10G, it is possible to take measures to prevent SCC occurrence by simultaneously improving the material factor and the stress factor at the welded portion of the work material 11 and the vicinity thereof, so that the occurrence of the SCC damage form is ensured in advance. Can be prevented.

なお、本発明の実施形態では、BWR、PWRの原子炉機器に適用した例を示したが、FBRの原子炉機器を対象とすることができ、この原子炉機器には炉内機器や周辺機器だけではなく、炉内構造物、配管、部品等も含まれる。   In the embodiment of the present invention, an example is shown in which the present invention is applied to BWR and PWR nuclear reactor equipment. However, FBR nuclear reactor equipment can be targeted, and the reactor equipment includes in-core equipment and peripheral equipment. As well as in-furnace structures, piping, parts and the like.

本発明に係る原子炉機器およびその表面改質方法の第1実施形態を示す構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram which shows 1st Embodiment of the nuclear reactor apparatus which concerns on this invention, and its surface modification method. 本発明に係る原子炉機器の表面改質方法の第2実施形態を示すもので、表面改質処理を施した被施工材の断面硬度分布測定例を示す図。The 2nd Embodiment of the surface modification method of the nuclear reactor apparatus which concerns on this invention is a figure which shows the cross-sectional hardness distribution measurement example of the to-be-processed material which performed the surface modification process. 本発明に係る原子炉機器の表面改質方法の第3実施形態を示す表面改質プロセスの構成図。The block diagram of the surface modification process which shows 3rd Embodiment of the surface modification method of the nuclear reactor apparatus which concerns on this invention. 本発明に係る原子炉機器の表面改質方法の第4実施形態を示す表面改質プロセスの構成図。The block diagram of the surface modification process which shows 4th Embodiment of the surface modification method of the nuclear reactor apparatus which concerns on this invention. 本発明に係る原子炉機器の表面改質方法の第5実施形態を示す表面改質プロセスの構成図。The block diagram of the surface modification process which shows 5th Embodiment of the surface modification method of the nuclear reactor apparatus which concerns on this invention. 本発明に係る原子炉機器の表面改質方法の第6実施形態を示すもので、表面改質施工装置を用いた構成図。The 6th Embodiment of the surface modification method of the nuclear reactor apparatus which concerns on this invention is shown, and the block diagram using the surface modification construction apparatus. 本発明に係る原子炉機器の表面改質方法の第7実施形態を示すもので、表面改質施工装置を用いた構成図。The 7th Embodiment of the surface modification method of the nuclear reactor apparatus which concerns on this invention is shown, and the block diagram using the surface modification construction apparatus. 本発明に係る原子炉機器の表面改質方法の第8実施形態を示すもので、表面改質プロセスのフローを示す構成図。The 8th Embodiment of the surface modification method of the nuclear reactor apparatus which concerns on this invention is shown, and the block diagram which shows the flow of a surface modification process. 本発明に係る原子炉機器の第9実施形態を示す構成図。The block diagram which shows 9th Embodiment of the nuclear reactor apparatus which concerns on this invention.

符号の説明Explanation of symbols

10,10A,10B,10C,10D,10E,10F,10G 原子炉機器
11 被施工材(構成材)
12 表層部(表面改質層)
13 母材
15 塗布層
16 ショット材
17 粉末層
18 薄膜
21 表面改質施工装置
22 処理ボックス
23 超音波振動子
24 超音波ショットピーニングチャンバ
25 粉末
26 原子炉構造物溶接部
10, 10A, 10B, 10C, 10D, 10E, 10F, 10G Reactor equipment 11 Construction material (component)
12 Surface layer (surface modified layer)
13 Base Material 15 Coating Layer 16 Shot Material 17 Powder Layer 18 Thin Film 21 Surface Modification Equipment 22 Processing Box 23 Ultrasonic Vibrator 24 Ultrasonic Shot Peening Chamber 25 Powder 26 Reactor Structure Welding Portion

Claims (15)

原子炉関連施設に使用される被施工材の材料表面部に、圧縮応力付与の圧縮応力層を兼ねた高耐食層を高温高圧流体環境中で実現した表面改質層を構成したことを特徴とする原子炉機器。 The surface modification layer that realizes a high corrosion resistance layer that also serves as a compressive stress layer for applying compressive stress in a high-temperature and high-pressure fluid environment on the material surface of work materials used in reactor-related facilities. Reactor equipment. 前記被施工材の表面改質層は、母材中のクロム濃度あるいは亜鉛濃度より高い濃度を有する表層である請求項1に記載の原子炉機器。 The reactor apparatus according to claim 1, wherein the surface modification layer of the work material is a surface layer having a concentration higher than a chromium concentration or a zinc concentration in the base material. 前記被施工材の表面改質層は、クロム濃度が20wt%以上26wt%以下の表層である請求項1に記載の原子炉機器。 The reactor apparatus according to claim 1, wherein the surface modification layer of the work material is a surface layer having a chromium concentration of 20 wt% or more and 26 wt% or less. 前記被施工材の表面改質層は、ビッカース硬度が300Hv以下の硬度である請求項1に記載の原子炉機器。 The reactor apparatus according to claim 1, wherein the surface modified layer of the work material has a Vickers hardness of 300 Hv or less. 前記被施工材は、その溶接部および溶接部近傍の表層に表面改質層を形成した請求項1に記載の原子炉機器。 The reactor apparatus according to claim 1, wherein the work material has a surface modification layer formed on a welded portion thereof and a surface layer near the welded portion. 原子炉関連施設に使用される被施工材の材料表面に、圧縮応力を付与した圧縮応力層を兼ねた高耐食層を高温高圧水環境中で実現する表面改質層を形成することを特徴とする原子炉機器の表面改質方法。 It is characterized by forming a surface modification layer that realizes a high corrosion resistance layer that also serves as a compressive stress layer to which compressive stress is applied in a high-temperature and high-pressure water environment on the material surface of work materials used in nuclear reactor-related facilities. Reactor equipment surface modification method. 前記被施工材は、母材中のクロム濃度あるいは亜鉛濃度より高い濃度の表層を表面改質層として形成する請求項6に記載の原子炉機器の表面改質方法。 The surface modification method for nuclear reactor equipment according to claim 6, wherein the work material is formed with a surface layer having a concentration higher than a chromium concentration or a zinc concentration in a base material as a surface modification layer. 前記被施工材は、クロム濃度が20wt%以上26wt%以下の表層を表面改質層として形成する請求項6に記載の原子炉機器の表面改質方法。 The surface modification method for a nuclear reactor apparatus according to claim 6, wherein the work material is formed with a surface layer having a chromium concentration of 20 wt% or more and 26 wt% or less as a surface modification layer. 前記被施工材はビッカース硬度が300Hv以下の硬度の表層を表面改質層として形成する請求項6に記載の原子炉機器の表面改質方法。 The surface modification method for nuclear reactor equipment according to claim 6, wherein the work material is formed with a surface layer having a Vickers hardness of 300 Hv or less as a surface modification layer. 前記被施工材は高温高圧水中で高耐食性を付与する耐食性改善元素が被施工部表面あるいは表層に存在する状態でピーニング処理を施し、表面改質層を形成する請求項6に記載の原子炉機器の表面改質方法。 The reactor apparatus according to claim 6, wherein the work material is subjected to a peening treatment in a state where a corrosion resistance improving element that imparts high corrosion resistance in high-temperature and high-pressure water is present on the surface or surface layer of the work part to form a surface modified layer. Surface modification method. 前記被施工材の表面あるいは表層に圧縮応力を付与する手段がショットピーニング、レーザピーニング、ウォータジェットピーニング、超音波ショットピーニングまたは超音波ロトピーニングである請求項10に記載の原子炉機器の表面改質方法。 The surface modification of nuclear reactor equipment according to claim 10, wherein the means for applying compressive stress to the surface or surface layer of the workpiece is shot peening, laser peening, water jet peening, ultrasonic shot peening or ultrasonic rotopeening. Method. 前記被施工材の表面あるいは表層にピーニング処理を施す前に、高温高圧流体中で高耐食性を付与する耐食性改善元素を含有する溶液あるいは粉末を被施工部表面に塗布する請求項10に記載の原子炉機器の表面改質方法。 The atom according to claim 10, wherein a solution or a powder containing a corrosion resistance improving element that imparts high corrosion resistance in a high-temperature and high-pressure fluid is applied to the surface of the workpiece before peening the surface or surface layer of the workpiece. Surface modification method for furnace equipment. 前記被施工材の表面あるいは表層にピーニング処理を施す前に高温高圧流体中で高耐食性を付与する耐食性改善元素を含有する薄膜を被施工部表面に形成する請求項10に記載の原子炉機器の表面改質方法。 The reactor apparatus according to claim 10, wherein a thin film containing a corrosion resistance improving element that imparts high corrosion resistance in a high-temperature and high-pressure fluid is formed on a surface of a work part before peening the surface or surface layer of the work material. Surface modification method. 前記被施工材の表面あるいは表層に圧縮応力を付与する手段が超音波ショットピーニングあるいはショットピーニングであり、ピーニング処理に使用するショット材が、高温高圧流体中で高耐食性を付与する耐食性改善元素、この耐食性改善元素を含有する合金または耐食性改善元素を構成元素とする複合材である請求項6に記載の原子炉機器の表面改質方法。 The means for imparting compressive stress to the surface or surface layer of the work material is ultrasonic shot peening or shot peening, and the shot material used for the peening treatment is an element for improving corrosion resistance that imparts high corrosion resistance in a high-temperature and high-pressure fluid. The method for modifying the surface of a nuclear reactor device according to claim 6, wherein the surface modification method is an alloy containing a corrosion resistance improving element or a composite material having a corrosion resistance improving element as a constituent element. 前記被施工材の表面あるいは表層に圧縮応力を付与する手段が超音波ショットピーニングであり、前記超音波ショットピーニングのチャンバー中に高温高圧水中で高耐食性を付与する耐食性改善元素を含有する粉末を混在させた状態で前記超音波ショットピーニングを実施する請求項6に記載の原子炉機器の表面改質方法。 The means for imparting compressive stress to the surface or surface layer of the workpiece is ultrasonic shot peening, and the ultrasonic shot peening chamber is mixed with a powder containing a corrosion resistance improving element that imparts high corrosion resistance in high-temperature high-pressure water. The method for modifying the surface of a nuclear reactor device according to claim 6, wherein the ultrasonic shot peening is performed in a state of being caused to occur.
JP2008050915A 2008-02-29 2008-02-29 Reactor apparatus and its surface modification method Pending JP2009210285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008050915A JP2009210285A (en) 2008-02-29 2008-02-29 Reactor apparatus and its surface modification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008050915A JP2009210285A (en) 2008-02-29 2008-02-29 Reactor apparatus and its surface modification method

Publications (1)

Publication Number Publication Date
JP2009210285A true JP2009210285A (en) 2009-09-17

Family

ID=41183607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008050915A Pending JP2009210285A (en) 2008-02-29 2008-02-29 Reactor apparatus and its surface modification method

Country Status (1)

Country Link
JP (1) JP2009210285A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074759A (en) * 2010-09-27 2012-04-12 Toshiba Corp Content summarizing device and content summary display device
WO2012173140A1 (en) * 2011-06-16 2012-12-20 日立Geニュークリア・エナジー株式会社 Water jet peening method and device therefor
KR20180077203A (en) * 2015-10-29 2018-07-06 일렉트릭 파워 리서치 인스티튜트, 인크. Methods for creating zinc-metal oxide layers on metal components for corrosion resistance

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074759A (en) * 2010-09-27 2012-04-12 Toshiba Corp Content summarizing device and content summary display device
WO2012173140A1 (en) * 2011-06-16 2012-12-20 日立Geニュークリア・エナジー株式会社 Water jet peening method and device therefor
JP2013000832A (en) * 2011-06-16 2013-01-07 Hitachi-Ge Nuclear Energy Ltd Water jet peening method, and device for the same
KR20180077203A (en) * 2015-10-29 2018-07-06 일렉트릭 파워 리서치 인스티튜트, 인크. Methods for creating zinc-metal oxide layers on metal components for corrosion resistance
JP2018538435A (en) * 2015-10-29 2018-12-27 エレクトリック パワー リサーチ インスチテュート インコーポレイテッド Method for producing a zinc-metal oxide layer on a metal component for corrosion resistance
JP7246187B2 (en) 2015-10-29 2023-03-27 エレクトリック パワー リサーチ インスチテュート インコーポレイテッド Method for producing a zinc-metal oxide layer on metal components for corrosion resistance
KR102586769B1 (en) * 2015-10-29 2023-10-06 일렉트릭 파워 리서치 인스티튜트, 인크. Methods for creating a zinc-metal oxide layer on metal components for corrosion resistance

Similar Documents

Publication Publication Date Title
JP2009161802A (en) Highly corrosion-resistant austenitic stainless steel, nuclear power generation plant constructed by using the stainless steel, weld joint and structural member
Xin et al. Effects of dissolved oxygen on partial slip fretting corrosion of Alloy 690TT in high temperature pure water
JP2009210285A (en) Reactor apparatus and its surface modification method
Váz et al. Welding and thermal spray processes for maintenance of hydraulic turbine runners: case studies
KR20090107341A (en) Method to prevent corrosion degradation using Ni-metal or Ni-alloy plating
JP2013079844A (en) Nuclear reactor containment and anticorrosive coating method for nuclear reactor containment
CA2926597C (en) Method for the in situ passivation of the steel surfaces of a nuclear reactor
JP2008137141A (en) Surface modification method and device
Scheel et al. Mitigation of stress corrosion cracking in nuclear weldments using low plasticity burnishing
Yamashita et al. SCC growth behavior of BWR core shroud materials
Antunes et al. Stress corrosion cracking of structural nuclear materials: Influencing factors and materials selection
JP2010215944A (en) Shot for peening, and method for producing the shot
Hackel et al. Laser peening for reducing hydrogen embrittlement
Mohr et al. Development of the Technical Basis for the New Code Case “Performance and Qualification Criteria for Mitigation of Stress Corrosion Cracking by Surface Stress Improvement”
JP2010144192A (en) Shot for surface modification, and surface modification method
Terachi et al. Inter-granular Stress Corrosion Cracking in the Heat Affected Zone of the Pressurizer spray line piping of a Pressurized Water Reactor
Pathania et al. Overview of environmentally assisted cracking in LWR components
Xiong et al. Stress corrosion cracking (SCC) of nickel-base weld metals in PWR primary water
Morinaka et al. Field experience of water jet peening application on BWR reactor internals with cracked surfaces
Tahara et al. Chronological Review of Manufacturing Technologies and Considerations to Maintenance/Inspection for Heavy Wall Hydroprocessing Reactors
Hirano et al. Mechanism of anisotropic stress generation in laser peening process
Nam Liquid droplet impingement erosion mechanism of low-alloy steels in the secondary side of pressurized water reactors
Scheel et al. Preventing Stress Corrosion Cracking of Nuclear Weldments via Low Plasticity Burnishing
Payne et al. Application of Surface Stress Improvement Technologies to Nuclear Power Plant Components
Kaneda et al. Microstructural characterization of surface modified Alloy 82 welds regarding susceptibility to environmentally assisted cracking

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100426