JP2013000832A - Water jet peening method, and device for the same - Google Patents

Water jet peening method, and device for the same Download PDF

Info

Publication number
JP2013000832A
JP2013000832A JP2011133799A JP2011133799A JP2013000832A JP 2013000832 A JP2013000832 A JP 2013000832A JP 2011133799 A JP2011133799 A JP 2011133799A JP 2011133799 A JP2011133799 A JP 2011133799A JP 2013000832 A JP2013000832 A JP 2013000832A
Authority
JP
Japan
Prior art keywords
water
wjp
nozzle
jet peening
water jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011133799A
Other languages
Japanese (ja)
Other versions
JP5572592B2 (en
Inventor
Takeya Ohashi
健也 大橋
Koichi Kurosawa
孝一 黒澤
Hisamitsu Hato
久光 波東
Noboru Saito
昇 斎藤
Makoto Ishibashi
良 石橋
Seiji Fukaya
征史 深谷
Yuji Matsui
祐二 松井
Fujio Yoshikubo
富士夫 吉久保
Takahiro Aoki
孝浩 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2011133799A priority Critical patent/JP5572592B2/en
Priority to PCT/JP2012/065122 priority patent/WO2012173140A1/en
Publication of JP2013000832A publication Critical patent/JP2013000832A/en
Application granted granted Critical
Publication of JP5572592B2 publication Critical patent/JP5572592B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/02Devices or arrangements for monitoring coolant or moderator
    • G21C17/022Devices or arrangements for monitoring coolant or moderator for monitoring liquid coolants or moderators
    • G21C17/0225Chemical surface treatment, e.g. corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C11/00Selection of abrasive materials or additives for abrasive blasts
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/02Details of handling arrangements
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/20Arrangements for introducing objects into the pressure vessel; Arrangements for handling objects within the pressure vessel; Arrangements for removing objects from the pressure vessel
    • G21C19/207Assembling, maintenance or repair of reactor components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To enhance corrosion resistance by forming an oxide film on a surface of an object to be worked by noble metal ions contained in a spray solution, when an entire surface of the object to be worked is subjected to WJP (water jet peening).SOLUTION: Platinum group ions (at least one kind selected from Pt, Pd, Ru, Ir, Rh and Os) are dissolved in spray water, and the spray water is sprayed onto to the surface of the object to be worked, and the film containing platinum groups is formed. Alternately, the noble metal ions are dissolved in water where the object to be worked is disposed, and then WJP can be performed using pure water.

Description

本発明は、ウォータージェットピーニング(以下、WJP(Water Jet Peening)と称する)方法とそれに用いる装置に係り、特に、施工対象物の溶接部等の限られた部位だけにWJP施工するのではなく、施工対象物の表面全面、或いは、広範囲に亘ってWJP施工する場合に好適なWJP方法に関する。   The present invention relates to a water jet peening (hereinafter referred to as WJP (Water Jet Peening)) method and an apparatus used therefor, and in particular, WJP construction is not performed only on a limited part such as a welded portion of a construction object, The present invention relates to a WJP method suitable for WJP construction over the entire surface of a construction object or over a wide range.

原子炉の構成部材の溶接部及び熱影響部などの表面近傍に残留応力が存在する場合には、この溶接部及びこれの熱影響部などにウォータージェットピーニング(以下、WJPと称する)を施工して構成部材の表面付近に存在する引張残留応力を圧縮残留応力に改善することが行われている。WJPは、残留応力を改善する構成部材を水中に浸漬させた状態で、水中でノズルから高圧の水流を噴射して行われる。噴射された水流に含まれる気泡が崩壊することによって衝撃波が生じる。この衝撃波が水中の構成部材の表面に衝突することによって、その構成部材の表面付近の引張残留応力が圧縮残留応力に改善される。このため、構成部材における応力腐食割れ(SCC)の発生が抑制される。WJPによる応力改善方法は、例えば、特許文献1,2に記載されている。   When residual stress exists near the surface of the welded part and heat-affected zone of the components of the nuclear reactor, water jet peening (hereinafter referred to as WJP) is applied to the welded zone and the heat-affected zone. Thus, the tensile residual stress existing in the vicinity of the surface of the component member is improved to the compressive residual stress. WJP is performed by injecting a high-pressure water flow from a nozzle in water in a state where a component for improving residual stress is immersed in water. Shock waves are generated by the collapse of the bubbles contained in the jetted water stream. When this shock wave collides with the surface of the constituent member in water, the tensile residual stress near the surface of the constituent member is improved to the compressive residual stress. For this reason, generation | occurrence | production of the stress corrosion crack (SCC) in a structural member is suppressed. The stress improvement method by WJP is described in Patent Documents 1 and 2, for example.

また、特許文献3には、WJPで原子炉の構造部材の表面に、貴金属を含む化合物を付着させることが記載されている。   Patent Document 3 describes that a compound containing a noble metal is attached to the surface of a structural member of a nuclear reactor by WJP.

さらに、表面改質による耐食性向上については、炭素鋼のような鉄鋼材料において、WJP施工により、分極測定における電流密度で示される腐食速度が低減することを一例のみだが、非特許文献1に記載されている。   Furthermore, the improvement of corrosion resistance by surface modification is only an example that the corrosion rate indicated by the current density in polarization measurement is reduced by WJP construction in a steel material such as carbon steel, but is described in Non-Patent Document 1. ing.

WJP施工中では、気泡崩壊時に衝撃波が発生するので、施工対象物への応力改善効果が期待できる。さらに、WJPで気泡が崩壊する際に、気泡内部からOHラジカルやO原子等の水分子(H2O)の分解物が放出される場合があるので、施工対象物表面の耐食性を改善できる可能性がある。このような場合には、WJPの施工範囲は溶接部や熱影響部に限定されず、施工対象物の表面全面、或いは、表面の広範囲に亘る。全面施工の場合には噴射ノズルを2軸で走査することになり、施工抜けや多重施工を回避しながら、なるべく短い時間で全面施工を完了させることが重要で、WJPの有効幅を施工中に把握することが必要である。 During the WJP construction, a shock wave is generated when the bubble collapses, so that a stress improvement effect on the construction object can be expected. In addition, when bubbles collapse in WJP, decomposition products of water molecules (H 2 O) such as OH radicals and O atoms may be released from the inside of the bubbles, which can improve the corrosion resistance of the construction object surface. There is sex. In such a case, the construction range of WJP is not limited to the welded portion or the heat affected zone, but covers the entire surface of the construction object or a wide range of the surface. In the case of full-scale construction, it is important to complete the full-scale construction in as short time as possible while avoiding construction omissions and multiple constructions. It is necessary to grasp.

このような技術のうち、施工対象物表面の耐食性改善については、不明点が多く、非特許文献1に示された効果が報告されているにとどまっている。   Among such techniques, there are many unclear points regarding the improvement of the corrosion resistance of the surface of the construction object, and only the effects shown in Non-Patent Document 1 have been reported.

特許2841963号公報Japanese Patent No. 2841963 特許3530005号公報Japanese Patent No. 3530005 特許4283166号公報Japanese Patent No. 4283166

祖山均、キャビテーション噴流による材料試験と表面改質、材料、vol.47,NO.4,pp.381-387,Apr.1998Soyama So, Material test and surface modification by cavitation jet, Material, vol.47, NO.4, pp.381-387, Apr.1998

本発明の目的は、WJPで施工対象物の表面全面、或いは、表面の広範囲に施工する場合に、耐食性を向上させるウォータージェットピーニング方法及びその装置を提供することにある。   An object of the present invention is to provide a water jet peening method and an apparatus for improving corrosion resistance when the entire surface of a construction object or a wide area of the surface is constructed by WJP.

本発明のウォータージェットピーニング方法は、ノズルが存在する水中に、ポンプから供給された水を前記ノズルから噴射し、前記水を噴射している前記ノズルを、前記水中に存在するウォータージェットピーニング施工対象物に沿って走査し、前記ノズルから前記水中に噴射された前記水に含まれた気泡が潰れて発生する酸化性イオンを、前記ウォータージェットピーニング施工対象物にあてて、施工対象物の表面に酸化皮膜を形成することを特徴とする。   In the water jet peening method of the present invention, water supplied from a pump is injected from the nozzle into the water in which the nozzle is present, and the nozzle that is injecting the water is subjected to water jet peening execution in the water. Scanning along the object, the oxidizing ions generated by crushing the bubbles contained in the water jetted from the nozzle into the water are applied to the water jet peening object, and applied to the surface of the object. An oxide film is formed.

本発明によれば、WJPで施工対象物の表面全面に耐食性を付与することができる。   According to the present invention, corrosion resistance can be imparted to the entire surface of the construction object by WJP.

本発明の一実施例である実施例1のWJP方法に用いられるWJP装置の構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram of the WJP apparatus used for the WJP method of Example 1 which is one Example of this invention. 図1のWJP装置を用いて炭素鋼表面にWJP処理を施した後に、人工海水中で計測した腐食量を比較した図。The figure which compared the corrosion amount measured in artificial seawater, after giving the WJP process to the carbon steel surface using the WJP apparatus of FIG. 図1のWJP装置を用いてステンレス鋼(SUS316L)表面にWJP処理を施した後に、人工海水中で計測した腐食量を比較した図。The figure which compared the corrosion amount measured in the artificial seawater after performing a WJP process on the stainless steel (SUS316L) surface using the WJP apparatus of FIG. 図1のWJP装置を用いてニッケル基合金であるアロイ182表面にWJP処理を施した後に、人工海水中で計測した腐食量を比較した図。The figure which compared the corrosion amount measured in artificial seawater, after performing the WJP process to the alloy 182 surface which is a nickel base alloy using the WJP apparatus of FIG. 図1のWJP装置により、316Lステンレス鋼表面を処理し、3.5%の人工海水中に1000時間まで浸漬した際の腐食量の経時間変化を示した図。The figure which showed the time-dependent change of the corrosion amount at the time of processing 316L stainless steel surface with the WJP apparatus of FIG. 1, and being immersed in the artificial seawater of 3.5% for 1000 hours. 図1のWJP装置により、ニッケル基合金182表面を処理し、原子炉水環境である溶存酸素濃度(DO)200ppb、温度288度の高温純水中に1000時間まで浸漬した際の腐食量の経時間変化を示した図。The surface of the nickel base alloy 182 is processed by the WJP apparatus of FIG. 1 and the amount of corrosion when immersed in high-temperature pure water having a dissolved oxygen concentration (DO) of 200 ppb and a temperature of 288 degrees, which is a reactor water environment, for up to 1000 hours. The figure which showed the time change. 衝撃波を示す図である。It is a figure which shows a shock wave. 本発明の他の実施例である実施例2のWJP方法に用いられるWJP装置の構成図。The block diagram of the WJP apparatus used for the WJP method of Example 2 which is another Example of this invention. 図8に示すWJP装置のターンテーブル付近の斜視図。The perspective view of the turntable vicinity of the WJP apparatus shown in FIG. 図8に示すWJP装置のノズルが設けられる移動装置の拡大図。The enlarged view of the moving apparatus provided with the nozzle of the WJP apparatus shown in FIG. ノズルから噴射された水流内での気泡の形態を模式的に示す図。The figure which shows typically the form of the bubble in the water flow injected from the nozzle.

本発明の特徴は、WJPで気泡が崩壊する際に、気泡内部からOHラジカルやO原子等の水分子(H2O)の分解物が放出されるノズルから水中に噴射された噴流に含まれた気泡が崩壊して発生する衝撃波により、噴流に含まれる水溶液中のプラスイオンがラジカルや水分解物の作用により、施工対象表面である金属表面で生ずる酸化皮膜形成反応を促進させ、かつ、高耐食性皮膜とすることにある。 A feature of the present invention is included in a jet jetted into water from a nozzle from which a decomposition product of water molecules (H 2 O) such as OH radicals and O atoms is released from the inside of the bubble when the bubble collapses in WJP. Due to the shock wave generated by the collapse of the bubbles, the positive ions in the aqueous solution contained in the jet promote the oxide film formation reaction that occurs on the metal surface, which is the construction target surface, due to the action of radicals and water decomposition products. It is to make it a corrosion-resistant film.

また、WJP施工に関する装置については、この溶液中プラスイオンの酸化皮膜形成作用を噴射ノズルに設置した電磁界を付与する装置で制御することを構成要素に加える。このことにより、WJP施工による酸化皮膜形成による耐食性付与の効率を向上させ、腐食を抑制する表面処理に適したWJP装置を構成することができる。   Moreover, about the apparatus regarding WJP construction, it adds to the component that it controls with the apparatus which provides the electromagnetic field which installed the oxide film of the positive ion in a solution in the injection nozzle. As a result, the efficiency of imparting corrosion resistance by forming an oxide film by WJP construction can be improved, and a WJP apparatus suitable for surface treatment that suppresses corrosion can be configured.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

WJPでは水中に存在する施工対象物に向けて高圧噴流水を噴射する。水中に噴流を噴射したときに、気泡が発生・崩壊するキャビテーションと呼ばれる現象が起こる。気泡崩壊の直前で気泡が収縮したときに、気泡内部は高温高圧となる。このため、気泡が崩壊した瞬間に衝撃波が発生すると同時に、高温高圧環境下で生成したOHラジカルやO原子等の水分子の分解生成物が水中および施工対象物表面に向けて放出される。噴流が施工対象物を直射するときの加振力だけでなく衝撃波の加振力によっても残留応力が改善できると同時に、水の分解生成物の酸化力によって施工対象物表面の耐食性を改善する効果も期待できる。   In WJP, high-pressure jet water is jetted toward a construction object existing in water. When a jet is jetted into water, a phenomenon called cavitation occurs where bubbles are generated and collapsed. When the bubble contracts immediately before the bubble collapses, the inside of the bubble becomes a high temperature and a high pressure. For this reason, a shock wave is generated at the moment when the bubbles collapse, and at the same time, decomposition products of water molecules such as OH radicals and O atoms generated in a high-temperature and high-pressure environment are released toward water and the surface of the work object. Residual stress can be improved not only by the excitation force when the jet directly hits the work object, but also by the shock wave force, and at the same time the effect of improving the corrosion resistance of the surface of the work object by the oxidizing power of the water decomposition products Can also be expected.

噴射された噴流内で気泡が発生してから潰れるまでの状態を、図11に模式的に示している。水3内に配置されたノズル6にポンプ(図示せず)から高圧水38が供給される。
高圧水38がノズル6の噴射口37から水中に噴射されたとき、水中に微小な気泡が多数発生して塊状となったキャビテーションクラウド39が発生する。発生した複数のキャビテーションクラウド39内で、一つ、または、数個の気泡が崩壊するとき、衝撃波と水の分解生成物が放出される。気泡が崩壊して衝撃波が発生するとき、その気泡の周囲に存在する多数の気泡が衝撃波によって押し流される。このため、押し流される気泡群が連なっている渦糸キャビテーション40が形成される。さらには、気泡が押し流されてしまったために気泡が消滅したかのように見えるスポット41が観察される。図11において、42は小さな気泡が合体して径が大きくなった気泡である。なお、図11においては、図中に施工対象物が存在せず、水中に自由噴流を噴出した状況を示している。噴流が施工対象物にぶつかる場合には、キャビテーションクラウド39等は噴流中心から離れる方向に広がるので、気泡崩壊発生位置の分布は、施工対象物表面と平行方向へ広がる可能性がある。
FIG. 11 schematically shows a state from when bubbles are generated in the jet that has been ejected until they are crushed. High pressure water 38 is supplied from a pump (not shown) to the nozzle 6 disposed in the water 3.
When the high-pressure water 38 is jetted into the water from the jet port 37 of the nozzle 6, a cavitation cloud 39 is generated in which a large number of minute bubbles are generated in the water to form a lump. When one or several bubbles collapse in the generated cavitation clouds 39, a shock wave and water decomposition products are released. When a bubble collapses and a shock wave is generated, a large number of bubbles present around the bubble are swept away by the shock wave. For this reason, the vortex cavitation 40 in which the group of bubbles to be washed away is continuous is formed. Furthermore, a spot 41 that looks as if the bubble has disappeared because the bubble has been swept away is observed. In FIG. 11, reference numeral 42 denotes a bubble whose diameter is increased by combining small bubbles. In addition, in FIG. 11, the construction target object does not exist in the figure and the condition which ejected the free jet in water is shown. When the jet collides with the construction object, the cavitation cloud 39 and the like spread in a direction away from the center of the jet, so that the distribution of the bubble collapse occurrence position may spread in a direction parallel to the construction object surface.

施工対象物への応力改善効果や耐食性向上効果は、噴流中に気泡が存在することではなく、気泡が崩壊することによってもたらされ、気泡崩壊位置と施工対象物表面の距離が近いほど効果が大きい。   The stress improvement effect and corrosion resistance improvement effect on the construction object are not caused by the presence of bubbles in the jet, but are caused by the collapse of the bubbles.The closer the distance between the bubble collapse position and the surface of the construction object, the greater the effect. large.

本発明者らは、これらのWJP施工効果が、噴流中の気泡の数によってではなく、単位時間当たりの気泡の崩壊数(気泡の崩壊頻度)、すなわち、単位時間当たりの衝撃波の発生数(衝撃波の発生頻度)によって確認できることを見出した。また、本発明者らは、施工対象物表面でWJP施工効果が得られる有効範囲と、気泡崩壊発生範囲(=衝撃波発生範囲)が概ね一致するので、施工対象物表面と平行方向の位置(噴流中心からの距離)毎の衝撃波の発生によって、施工対象物表面における酸化反応が進行し、噴流基法に内在しているOHラジカル及び水分解励起分子が施工対象表面金属と反応して酸化物あるいは水酸化物となることを見出した。また、この際、噴流中にPdやPtのような貴金属イオンが存在する場合には、酸化反応にこれらの貴金属イオンが加わり、形成される酸化物あるいは水酸化物に複合化合物として施工対象表面金属と同様に皮膜反応を担うことを見出した。本発明は、これらの知見に基づいて成されたものである。   The present inventors do not depend on the number of bubbles in the jet, but the number of bubble collapses per unit time (bubble collapse frequency), that is, the number of shock waves generated per unit time (shock waves). It was found that it can be confirmed by the occurrence frequency of In addition, since the effective range in which the WJP construction effect can be obtained on the surface of the construction object and the bubble collapse occurrence range (= shock wave generation range) substantially coincide with each other, the inventors of the present invention have a position parallel to the construction object surface (jet flow Oxidation reaction on the surface of the work object progresses due to the generation of shock waves at every distance from the center), and OH radicals and water decomposition excited molecules inherent in the jet group method react with the surface metal of the work object to generate oxide or It was found to be a hydroxide. At this time, if noble metal ions such as Pd and Pt are present in the jet, these noble metal ions are added to the oxidation reaction, and the surface metal to be constructed as a composite compound in the oxide or hydroxide formed. It was found to be responsible for the film reaction as well. The present invention has been made based on these findings.

これらの知見に基づいて成された本発明の概念を、図1に示す一つの具体例を用いて説明する。ノズル6及び支持部材17がノズル走査装置10に取り付けられ、2個のイオンセンサ(電荷検出装置)14A,14Bが施工対象物2の表面と平行方向に間隔を置いて設置される。ノズル6及びイオンセンサ14A,14Bが水中に配置され、WJP施工対象物2も水中に配置される。ノズル6が施工対象物2の、WJPを施工する表面に対向している。イオンセンサ14A,14Bが施工対象物2の表面近くで、ノズル6から噴射する噴流中心から少し離れた位置に配置される。イオンセンサ14A,14Bはそれぞれ支持材16A,16Bに取り付けられており、ノズル6の走査に追随して移動する構成としている。イオン検出装置としては、イオンセンサ以外にpHセンサ,電位センサ,吸光度センサを用いてもよい。   The concept of the present invention based on these findings will be described using one specific example shown in FIG. The nozzle 6 and the support member 17 are attached to the nozzle scanning device 10, and two ion sensors (charge detection devices) 14 </ b> A and 14 </ b> B are installed at intervals in the direction parallel to the surface of the construction object 2. The nozzle 6 and the ion sensors 14A and 14B are disposed in the water, and the WJP construction target object 2 is also disposed in the water. The nozzle 6 faces the surface of the construction object 2 on which WJP is constructed. The ion sensors 14 </ b> A and 14 </ b> B are arranged near the surface of the construction object 2 and at a position slightly away from the jet center ejected from the nozzle 6. The ion sensors 14A and 14B are attached to the support members 16A and 16B, respectively, and are configured to move following the scanning of the nozzle 6. As the ion detector, a pH sensor, a potential sensor, or an absorbance sensor may be used in addition to the ion sensor.

ノズル6から噴射された高圧の水流34に含まれた気泡が潰れたとき、イオン含有水溶液が発生する。このイオン含有水溶液は、イオンセンサ14A,14Bでそれぞれイオンを検出してイオン検出信号を出力する。   When bubbles contained in the high-pressure water stream 34 ejected from the nozzle 6 are crushed, an ion-containing aqueous solution is generated. This ion-containing aqueous solution detects ions by the ion sensors 14A and 14B and outputs an ion detection signal.

イオン含有水溶液の水中でのイオン濃度をV(ml/cm3)、イオン生成の位置(気泡が潰れた位置、すなわち、イオン含有水溶液の発生位置)に近い位置に存在するセンサ(例えば、イオンセンサ14B)のY軸方向の座標値をy1(m)、音源の位置から遠い位置に存在するセンサ(例えば、AEセンサ14A)のY軸方向の座標値をy2(m)、近い位置に存在するイオンセンサへのラジカルの作用時間をt(s)、遠い位置に存在するイオンセンサにおけるイオン濃度の検出時間と近い位置に存在するイオンセンサにおけるイオン濃度の検出時間の時間差をT1(s)とする。Y軸方向におけるラジカルによる反応性イオン到達経路の1次元近似モデルは、イオン生成位置から各イオン濃度検出装置、例えば、イオンセンサ16B,16Aまでのイオンの到達時間は(1)式及び(2)式で表される。
V×t=(y1−y0) …(1)
V×(t+T1)=(y0−y2) …(2)
The ion concentration in the water of the ion-containing aqueous solution is V (ml / cm 3 ), and a sensor (for example, an ion sensor) that is close to the position of ion generation (the position where bubbles are crushed, that is, the position where the ion-containing aqueous solution is generated). 14B), the coordinate value in the Y-axis direction is y1 (m), the coordinate value in the Y-axis direction of the sensor (for example, the AE sensor 14A) located far from the position of the sound source is y2 (m), and the coordinate value exists in the near position. The radical action time on the ion sensor is t (s), and the time difference of the ion concentration detection time in the ion sensor existing in a position close to the ion sensor detection time in the far position is T1 (s). . In the one-dimensional approximation model of the reactive ion arrival path by radicals in the Y-axis direction, the arrival time of ions from the ion generation position to each ion concentration detection device, for example, the ion sensors 16B and 16A, is expressed by Equations (1) and (2). It is expressed by a formula.
V * t = (y1-y0) (1)
V × (t + T1) = (y0−y2) (2)

t(s)は実際には測定することができず、測定できるのは時間差T1(s)である。
水中でのイオンの拡散到達速度V(m/s)が既知である(例えば、水中音速1500(m/s))場合には、イオン生成位置のY軸方向の座標値(イオン生成位置のY軸方向位置)y0(m)は、反応性イオンの発生位置であり、(3)式により算出できる。
y0=(y1+y2)/2−V×T1/2 ……(3)
t (s) cannot actually be measured, and the time difference T1 (s) can be measured.
When the diffusion diffusion speed V (m / s) of ions in water is known (for example, underwater sound speed 1500 (m / s)), the coordinate value of the ion generation position in the Y-axis direction (Y of the ion generation position) (Axial position) y0 (m) is a reactive ion generation position, and can be calculated by the equation (3).
y0 = (y1 + y2) / 2−V × T1 / 2 (3)

WJPでは水中に存在する施工対象物に向けて高圧噴流水を噴射する。水中に噴流を噴射したときに、気泡が発生・崩壊するキャビテーションが起こる。気泡崩壊の直前で気泡が収縮したときに、気泡内部は高温高圧となり、気泡が崩壊した瞬間に衝撃波が発生すると同時に、高温高圧環境下で生成したOHラジカルやO原子等の水分子の分解生成物が水中および施工対象物表面に向けて放出される。噴流が施工対象物を直射するときの加振力だけでなく衝撃波の加振力によっても残留応力が改善できると同時に、水の分解生成物の酸化力によって施工対象物表面の耐食性を改善する効果も期待できる。この際、噴流中に予め貴金属の硝酸塩等を溶解させ、貴金属イオンを含む水溶液にすることで、施工対象金属表面に形成される皮膜の性質が変化する。すなわち、施工対象金属のカチオンのイオン価がより酸化されるために増加し、貴金属イオンもより酸化されたイオン価数となり、酸化物あるいは水酸化物となることがわかった。これはOHラジカルと水分解物の酸化作用が金属表面で強力に作用したためと考えられる。   In WJP, high-pressure jet water is jetted toward a construction object existing in water. When jets are injected into the water, cavitation occurs where bubbles are generated and collapsed. When the bubble contracts immediately before the bubble collapses, the inside of the bubble becomes high temperature and high pressure, and a shock wave is generated at the moment when the bubble collapses, and at the same time, decomposition and generation of water molecules such as OH radicals and O atoms generated in a high temperature and high pressure environment. Objects are released toward the surface of the work and underwater. Residual stress can be improved not only by the excitation force when the jet directly hits the work object, but also by the shock wave force, and at the same time the effect of improving the corrosion resistance of the surface of the work object by the oxidizing power of the water decomposition products Can also be expected. Under the present circumstances, the property of the film | membrane formed on the construction object metal surface changes by melt | dissolving the noble metal nitrate etc. previously in a jet, and making it the aqueous solution containing a noble metal ion. That is, it was found that the cation valence of the metal of the construction target metal increases because it is more oxidized, and the noble metal ion also becomes the more oxidized valence and becomes an oxide or hydroxide. This is presumably because the oxidizing action of OH radicals and water decomposition products acted strongly on the metal surface.

以下に、本発明の実施例を説明する。   Examples of the present invention will be described below.

本発明の好適な一実施例である実施例1のウォータージェットピーニング方法を、図1,図7を用いて説明する。   A water jet peening method according to a first embodiment which is a preferred embodiment of the present invention will be described with reference to FIGS.

本実施例のウォータージェットピーニング方法を説明する前に、本実施例に用いるウォータージェットピーニング装置(以下、WJP装置という)1を、図1を用いて説明する。WJP装置1は、ノズル6,高圧ポンプ5,ノズル走査装置10,AEセンサ(衝撃波検出装置)14A,14B,信号処理装置20,ノズル走査制御装置31及びポンプ制御装置30を備えている。   Before describing the water jet peening method of this embodiment, a water jet peening apparatus (hereinafter referred to as a WJP apparatus) 1 used in this embodiment will be described with reference to FIG. The WJP device 1 includes a nozzle 6, a high-pressure pump 5, a nozzle scanning device 10, an AE sensor (shock wave detection device) 14A and 14B, a signal processing device 20, a nozzle scanning control device 31, and a pump control device 30.

ノズル走査装置10は、X軸走査機構11,Y軸走査機構12,Z軸方走査機構13を有し、噴射ノズル6を把持し、水槽4内の水3の中でノズル6を走査する。また、給水ホース7が水槽4の底部付近に取り付けられ、高圧ポンプ5に接続される。高圧ホース9が、高圧ポンプ5及びノズル6に接続される。水槽4には、薬液注入装置50を備えており、供給水に水以外の添加物を加えて攪拌できるようになっている。   The nozzle scanning device 10 includes an X-axis scanning mechanism 11, a Y-axis scanning mechanism 12, and a Z-axis direction scanning mechanism 13, holds the injection nozzle 6, and scans the nozzle 6 in the water 3 in the water tank 4. A water supply hose 7 is attached near the bottom of the water tank 4 and connected to the high-pressure pump 5. A high pressure hose 9 is connected to the high pressure pump 5 and the nozzle 6. The water tank 4 is provided with a chemical solution injector 50 so that an additive other than water can be added to the supply water and stirred.

信号処理装置20は、A/D変換器21,イオン抽出部22,イオン濃度算出部23,反応イオン算出部24,皮膜形成算出部25,腐食速度算出部26,耐食性指数算出部27及び記録・表示情報作成部28を有する。イオン抽出部22がA/D変換器21に接続される。イオン濃度算出部23、および、反応イオン算出部24と皮膜形成算出部25と腐食速度算出部26と耐食性指数算出部27からなる一連の演算部がA/D変換器21に接続される。記録・表示情報作成部28には、A/D変換器21,イオン抽出部22,耐食性指数算出部27及び表示装置29が接続される。   The signal processing device 20 includes an A / D converter 21, an ion extraction unit 22, an ion concentration calculation unit 23, a reaction ion calculation unit 24, a film formation calculation unit 25, a corrosion rate calculation unit 26, a corrosion resistance index calculation unit 27, and a recording / recording unit. A display information creation unit 28 is included. The ion extraction unit 22 is connected to the A / D converter 21. The A / D converter 21 is connected to an ion concentration calculation unit 23 and a series of calculation units including a reaction ion calculation unit 24, a film formation calculation unit 25, a corrosion rate calculation unit 26, and a corrosion resistance index calculation unit 27. An A / D converter 21, an ion extraction unit 22, a corrosion resistance index calculation unit 27, and a display device 29 are connected to the recording / display information creation unit 28.

イオン検出装置であるイオンセンサ14A,14Bが、ノズル走査装置10に取り付けられて水槽4内の水3の中に設置されている。イオンセンサ14A,14Bは、施工対象物2の表面近傍で、Y軸と平行で噴流中心を通る直線状に取り付けられる。濃度計15A,増幅器15Bがノズル走査装置10に取り付けられている。イオンセンサ14Aが増幅器15Bに接続され、イオンセンサ14Bが濃度計15Aに接続される。増幅器15B,イオンセンサ15BがA/D変換器21に接続される。   Ion sensors 14 </ b> A and 14 </ b> B, which are ion detection devices, are attached to the nozzle scanning device 10 and installed in the water 3 in the water tank 4. The ion sensors 14 </ b> A and 14 </ b> B are attached in a straight line shape near the surface of the construction object 2 and parallel to the Y axis and passing through the jet center. A densitometer 15A and an amplifier 15B are attached to the nozzle scanning device 10. The ion sensor 14A is connected to the amplifier 15B, and the ion sensor 14B is connected to the densitometer 15A. An amplifier 15B and an ion sensor 15B are connected to the A / D converter 21.

ノズル走査制御装置31がノズル走査装置10に接続され、X軸走査機構11,Y軸走査機構12,Z軸方走査機構13を制御する。ポンプ制御装置30が高圧ポンプ5に接続される。高圧ホース9に取り付けられた圧力計33及び流量計32がポンプ制御装置30に接続される。ポンプ制御装置30及びノズル走査制御装置31が信号処理装置20に接続される。   A nozzle scanning control device 31 is connected to the nozzle scanning device 10 and controls the X-axis scanning mechanism 11, the Y-axis scanning mechanism 12, and the Z-axis direction scanning mechanism 13. A pump control device 30 is connected to the high pressure pump 5. A pressure gauge 33 and a flow meter 32 attached to the high pressure hose 9 are connected to the pump control device 30. A pump control device 30 and a nozzle scanning control device 31 are connected to the signal processing device 20.

WJP装置1を用いて行う本実施例のウォータージェットピーニング方法を説明する。
本実施例のウォータージェットピーニング方法では、以下の操作または処理が行われる。
The water jet peening method of the present embodiment performed using the WJP apparatus 1 will be described.
In the water jet peening method of the present embodiment, the following operations or processes are performed.

水槽4内に水3が充填され、WJP施工対象物2が、水槽4内の水3の中に設置される。この施工対象物2は、プラント、例えば、建設される原子力プラントに設置される構成部材である。あるいは、施工対象物2は運転を経験した原子力プラントの構成部材であって、プラントの管理区域内に位置する、水が満たされた原子炉圧力容器またはプール内に、図1の設備を構成してWJP施工してもよい。図1では、施工対象物2は模式的に簡略化した形状で示されている。   Water 3 is filled in the water tank 4, and the WJP construction object 2 is installed in the water 3 in the water tank 4. This construction object 2 is a structural member installed in a plant, for example, a nuclear plant to be constructed. Alternatively, the construction object 2 is a component of a nuclear power plant that has undergone operation, and the equipment of FIG. 1 is configured in a reactor pressure vessel or pool filled with water located in the management area of the plant. WJP may be applied. In FIG. 1, the construction object 2 is schematically shown in a simplified shape.

WJP施工をする際には、まず、ノズル6をX軸・Y軸について固定した状態の定点打ちで適切な噴射条件を探索し、噴射条件が定まってからノズル6をX軸方向とY軸方向に矩形走査する。   When carrying out WJP construction, first, search for appropriate injection conditions by fixed hitting with the nozzle 6 fixed with respect to the X-axis and Y-axis. After the injection conditions are determined, the nozzle 6 is moved in the X-axis and Y-axis directions. A rectangular scan.

ノズル6をX軸・Y軸方向の走査開始位置に移動し、スタンドオフは探索条件の上限値となるように設定する。高圧ポンプ5の起動によって水槽4内の水3が給水ホース7を通して高圧ポンプ5に導かれる。ポンプ制御装置30は、圧力計33の計測値に基づいて、高圧ポンプ5から吐出される水の圧力を制御する。また、供給水の圧力を定めれば、高圧ホース9やノズル6に応じた適正範囲の値をとるはずであるが、流量計32の計測値が適正範囲から逸脱していた場合には、WJP装置1内のどこかに不具合があるはずなので、一旦、噴射を停止して装置をチェックする。   The nozzle 6 is moved to the scanning start position in the X-axis / Y-axis directions, and the standoff is set to be the upper limit value of the search condition. When the high-pressure pump 5 is activated, the water 3 in the water tank 4 is guided to the high-pressure pump 5 through the water supply hose 7. The pump control device 30 controls the pressure of water discharged from the high-pressure pump 5 based on the measurement value of the pressure gauge 33. Also, if the pressure of the feed water is determined, it should take a value in an appropriate range according to the high pressure hose 9 and the nozzle 6, but if the measured value of the flow meter 32 deviates from the appropriate range, WJP Since there should be a defect somewhere in the device 1, the injection is stopped and the device is checked.

図7に示すように、高圧ポンプ5から吐出された水3は、初期値の圧力及び流量で、高圧ホース9を通してノズル6に供給され、ノズル6から高圧の水流34となって水槽4内の水中に噴射される。噴射された水流34内の気泡36が水中で潰れることにより衝撃波35が発生する。   As shown in FIG. 7, the water 3 discharged from the high-pressure pump 5 is supplied to the nozzle 6 through the high-pressure hose 9 with the initial pressure and flow rate, and becomes a high-pressure water stream 34 from the nozzle 6. Injected into the water. A shock wave 35 is generated when the air bubbles 36 in the jetted water stream 34 are crushed in water.

ここで、水流34内の気泡36が水中で破壊する際に、衝撃波35との作用で水中に貴金属イオンが存在する場合は、酸化力が増加した状態で施工対象金属表面へと達する。   Here, when the bubbles 36 in the water stream 34 break down in the water, when noble metal ions are present in the water due to the action of the shock wave 35, the surface reaches the construction target metal surface in an increased oxidizing power.

貴金属イオンがPdの場合、噴射水中の濃度を100ppmとして炭素鋼,SUS316Lステンレス鋼,182ニッケル基合金に噴射した後、人工海水中に100時間まで浸漬して腐食生成物を除去後、重量減少を計測した結果を図2〜図6に示す。   When the precious metal ion is Pd, the concentration in the jet water is set to 100 ppm, and after spraying to carbon steel, SUS316L stainless steel, 182 nickel base alloy, it is immersed in artificial seawater for up to 100 hours to remove the corrosion products, and then the weight is reduced. The measurement results are shown in FIGS.

図2は、図1に示すWJP装置を用いて炭素鋼表面にWJP処理を施した後に、人工海水中で計測した腐食量を比較した例である。AはWJPを施さない未処理、Bは純水によるWJP処理、CはWJP噴流水にPdを100ppm含有させた場合の腐食量を示す。DはWJP噴流水にPdを10ppm含有させた場合の腐食量を示す。EはWJP噴流水にPtを10ppm含有させた場合の腐食量を示す。FはWJP噴流水にRhを10ppm含有させた場合の腐食量を示す。   FIG. 2 is an example in which the amount of corrosion measured in artificial seawater is compared after the WJP treatment is performed on the carbon steel surface using the WJP apparatus shown in FIG. A is untreated without WJP, B is WJP treatment with pure water, and C is the amount of corrosion when 100 ppm of Pd is contained in the WJP jet water. D shows the amount of corrosion when 10 ppm of Pd is contained in the WJP jet water. E shows the amount of corrosion when 10 ppm of Pt is contained in the WJP jet water. F shows the amount of corrosion when 10 ppm of Rh is contained in the WJP jet water.

図3は、図1に示すWJP装置を用いてステンレス鋼(SUS316L)表面にWJP処理を施した後に、人工海水中で計測した腐食量を比較した例である。AはWJPを施さない未処理、Bは純水によるWJP処理、CはWJP噴流水にPdを100ppm含有させた場合の腐食量を示す。DはWJP噴流水にPdを10ppm含有させた場合の腐食量を示す。EはWJP噴流水にPtを10ppm含有させた場合の腐食量を示す。FはWJP噴流水にRhを10ppm含有させた場合の腐食量を示す。   FIG. 3 is an example in which the amount of corrosion measured in artificial seawater is compared after the WJP treatment is applied to the surface of stainless steel (SUS316L) using the WJP apparatus shown in FIG. A is untreated without WJP, B is WJP treatment with pure water, and C is the amount of corrosion when 100 ppm of Pd is contained in the WJP jet water. D shows the amount of corrosion when 10 ppm of Pd is contained in the WJP jet water. E shows the amount of corrosion when 10 ppm of Pt is contained in the WJP jet water. F shows the amount of corrosion when 10 ppm of Rh is contained in the WJP jet water.

図4は、図1に示すWJP装置を用いてニッケル基合金であるアロイ182表面にWJP処理を施した後に、人工海水中で計測した腐食量を比較した例である。AはWJPを施さない未処理、Bは純水によるWJP処理、CはWJP噴流水にPdを100ppm含有させた場合の腐食量を示す。DはWJP噴流水にPdを10ppm含有させた場合の腐食量を示す。EはWJP噴流水にPtを10ppm含有させた場合の腐食量を示す。FはWJP噴流水にRhを10ppm含有させた場合の腐食量を示す。   FIG. 4 is an example in which the corrosion amount measured in artificial seawater is compared after the WJP treatment is performed on the surface of the alloy 182 which is a nickel-based alloy using the WJP apparatus shown in FIG. A is untreated without WJP, B is WJP treatment with pure water, and C is the amount of corrosion when 100 ppm of Pd is contained in the WJP jet water. D shows the amount of corrosion when 10 ppm of Pd is contained in the WJP jet water. E shows the amount of corrosion when 10 ppm of Pt is contained in the WJP jet water. F shows the amount of corrosion when 10 ppm of Rh is contained in the WJP jet water.

図5は、図1に示すWJP装置により、316Lステンレス鋼表面を処理し、3.5%の人工海水中に1000時間まで浸漬した際の腐食量の経時間変化を示している。AはWJPを施さない未処理、Bは純水によるWJP処理、CはWJP噴流水にPdを10ppm含有させた場合、DはWJP噴流水にPtを10ppm含有させた場合の腐食量を示す。   FIG. 5 shows changes over time in the amount of corrosion when a 316L stainless steel surface is treated by the WJP apparatus shown in FIG. 1 and immersed in 3.5% artificial seawater for up to 1000 hours. A is untreated without WJP, B is WJP treatment with pure water, C is the amount of corrosion when 10 ppm of Pd is contained in the WJP jet water, and D is the amount of corrosion when 10 ppm of Pt is contained in the WJP jet water.

図6は、図1に示すWJP装置により、ニッケル基合金182表面を処理し、原子炉水環境である溶存酸素濃度(DO)200ppb、温度288度の高温純水中に1000時間まで浸漬した際の腐食量の経時間変化を示している。AはWJPを施さない未処理、Bは純水によるWJP処理、CはWJP噴流水にPdを10ppm含有させた場合の腐食量を示す。   FIG. 6 shows a case where the surface of the nickel-based alloy 182 is processed by the WJP apparatus shown in FIG. 1 and immersed in high-temperature pure water having a dissolved oxygen concentration (DO) of 200 ppb and a temperature of 288 degrees, which is a reactor water environment, for up to 1000 hours. This shows the change over time in the amount of corrosion. A is untreated without WJP, B is WJP treatment with pure water, and C is the amount of corrosion when 10 ppm of Pd is contained in the WJP jet water.

いずれもWJP施工がない場合(A)ではWJP処理後や貴金属イオン噴射でのWJP処理後と比較すると腐食量が増加し、特に貴金属噴射でのWJPと比較すると、2倍以上となった。   In both cases where there was no WJP construction (A), the amount of corrosion increased after WJP treatment or after WJP treatment with noble metal ion injection, and more than twice as much as WJP with noble metal injection.

このことは、WJP及び貴金属イオン注入WJPによりWJP施工表面金属上にWJPによる酸化皮膜形成が進行し、その皮膜が耐食性を有することを示している。Pdイオンは酸化皮膜中に10%以上カチオン分率として含有されるとともに、Pdのイオン価数は通常の2から4へと増加していた。このPdのイオン価数の増加は、XPS(X-ray photoelectron spectroscopy;X線光電子分光)で確認することができる。このことは、ソノケミストリ効果による酸化作用の増進に関わり、WJPの作用がない場合より著しく酸化作用が生ずるために施工金属表面に形成される酸化皮膜がその後の環境の腐食作用の大きな障壁となることを示している。Rhを用いた場合も、良好な耐食性が得られる。   This indicates that the formation of an oxide film by WJP proceeds on the WJP construction surface metal by WJP and noble metal ion implantation WJP, and the film has corrosion resistance. Pd ions were contained in the oxide film as a cation fraction of 10% or more, and the ionic valence of Pd was increased from 2 to 4 as usual. This increase in the valence of Pd can be confirmed by XPS (X-ray photoelectron spectroscopy). This is related to the enhancement of the oxidation effect due to the sonochemistry effect, and the oxidation film formed on the surface of the construction metal becomes a large barrier to the subsequent corrosive action of the environment because the oxidation effect is remarkably generated compared with the case where there is no WJP effect. It is shown that. Even when Rh is used, good corrosion resistance can be obtained.

なお、施工対象物が配置された水中に貴金属イオンを溶解しておき、純水によるWJP施工することもできる。これにより、噴射水に貴金属イオンを溶解させた場合と同等の腐食抑制効果が得られる。   In addition, the noble metal ion can be melt | dissolved in the water by which the construction target object is arrange | positioned, and the WJP construction by a pure water can also be performed. Thereby, the corrosion inhibitory effect equivalent to the case where a noble metal ion is dissolved in jet water is acquired.

本発明の他の実施例である実施例2のウォータージェットピーニング方法を、図8を用いて説明する。本実施例のWJP方法は、例えば、沸騰水型原子力プラントの原子炉圧力容器内に設置された炉内構造物を対象に実施される。この炉内構造物は、例えば、炉心シュラウドである。   A water jet peening method according to embodiment 2, which is another embodiment of the present invention, will be described with reference to FIG. The WJP method of the present embodiment is performed on, for example, an in-reactor structure installed in a reactor pressure vessel of a boiling water nuclear plant. This in-furnace structure is, for example, a core shroud.

沸騰水型原子力プラントの原子炉付近の構造を、図8を用いて説明する。沸騰水型原子力プラントの原子炉75は、原子炉圧力容器(以下、RPVという)76,炉心シュラウド77,炉心支持板79,上部格子板80及びジェットポンプ81を備えている。炉心シュラウド77,炉心支持板79,上部格子板80及びジェットポンプ81は、RPV76内に設置される。炉心を取り囲む炉心シュラウド77内には、炉心の下端に位置する炉心支持板79が設置され、炉心の上端に位置する上部格子板80が設置される。複数のジェットポンプ81が、RPV76と炉心シュラウド77の間に形成される環状のダウンカマ82内に配置される。   The structure near the nuclear reactor of the boiling water nuclear power plant will be described with reference to FIG. A nuclear reactor 75 of a boiling water nuclear power plant includes a reactor pressure vessel (hereinafter referred to as RPV) 76, a core shroud 77, a core support plate 79, an upper lattice plate 80, and a jet pump 81. The core shroud 77, the core support plate 79, the upper lattice plate 80, and the jet pump 81 are installed in the RPV 76. In the core shroud 77 surrounding the core, a core support plate 79 located at the lower end of the core is installed, and an upper lattice plate 80 located at the upper end of the core is installed. A plurality of jet pumps 81 are disposed in an annular downcomer 82 formed between the RPV 76 and the core shroud 77.

本実施例のウォータージェットピーニング方法に用いられるWJP装置1Bは、実施例1で用いられるWJP装置1においてノズル走査装置10をノズル走査装置10Aに替えた構成を有する。WJP装置1Bの他の構成はWJP装置1と同じである。   The WJP apparatus 1B used in the water jet peening method of the present embodiment has a configuration in which the nozzle scanning apparatus 10 in the WJP apparatus 1 used in the first embodiment is replaced with a nozzle scanning apparatus 10A. Other configurations of the WJP apparatus 1B are the same as those of the WJP apparatus 1.

ノズル走査装置10Aについて説明する。ノズル走査装置10Aは、図8〜図10に示すように、移動装置58A,58B,ポスト部材62,昇降体63及びターンテーブル65を有する。ターンテーブル65が、炉心シュラウド77の上部フランジ78の上面に設置された環状のガイドレール66に旋回可能に設置される。ターンテーブル65には、ガイドレール66の上面に接触する図示されていない複数の車輪が設けられる。少なくとも1つの車輪(図示せず)を回転させるモータ(図示せず)がターンテーブル65に設けられる。移動装置58A,58Bがターンテーブル65上に設置される。   The nozzle scanning device 10A will be described. As shown in FIGS. 8 to 10, the nozzle scanning device 10 </ b> A includes moving devices 58 </ b> A and 58 </ b> B, a post member 62, an elevating body 63, and a turntable 65. The turntable 65 is rotatably installed on an annular guide rail 66 installed on the upper surface of the upper flange 78 of the core shroud 77. The turntable 65 is provided with a plurality of wheels (not shown) that come into contact with the upper surface of the guide rail 66. A motor (not shown) that rotates at least one wheel (not shown) is provided on the turntable 65. Moving devices 58A and 58B are installed on the turntable 65.

同じ構成を有する移動装置58A,58Bを、移動装置58Aを例にとって説明する。
移動装置58Aは、図10に示すように、装置本体59,2本のアーム60及びボールネジ72を有する。2本のアーム60が、装置本体59のケーシングを貫通しており、スライド可能にそのケーシングに取り付けられる。2本のアーム60の両端部が連結部材61A,61Bによって連結されている。装置本体59のケーシングを貫通するボールネジ72が、回転可能に連結部材61A,61Bに取り付けられる。装置本体59のケーシング内には、図示されていないが、モータが設置され、このモータの回転軸に取り付けられた歯車(図示せず)が、ボールネジ72に噛み合う歯車(図示せず)と噛み合っている。このモータの駆動によってそれらの歯車が回転し、ボールネジ72がRPV76の半径方向に移動する。RPV76の軸方向に伸びるポスト部材62が、連結部材61Bに取り付けられる。昇降体63が、ポスト部材62に沿って移動できるように、ポスト部材62に取り付けられる。昇降体63を上下動させるモータ64がポスト部材62の上端部に設けられる。
The moving devices 58A and 58B having the same configuration will be described by taking the moving device 58A as an example.
As shown in FIG. 10, the moving device 58 </ b> A has a device main body 59, two arms 60, and a ball screw 72. Two arms 60 pass through the casing of the apparatus main body 59 and are slidably attached to the casing. Both ends of the two arms 60 are connected by connecting members 61A and 61B. A ball screw 72 passing through the casing of the apparatus main body 59 is rotatably attached to the connecting members 61A and 61B. Although not shown, a motor is installed in the casing of the apparatus main body 59, and a gear (not shown) attached to the rotation shaft of the motor meshes with a gear (not shown) that meshes with the ball screw 72. Yes. The gears are rotated by driving the motor, and the ball screw 72 is moved in the radial direction of the RPV 76. A post member 62 extending in the axial direction of the RPV 76 is attached to the connecting member 61B. The elevating body 63 is attached to the post member 62 so that it can move along the post member 62. A motor 64 that moves the elevating body 63 up and down is provided at the upper end of the post member 62.

ノズル6,AEセンサ14A,14B及び監視カメラ67が昇降体63に設置される。   The nozzle 6, the AE sensors 14A and 14B, and the monitoring camera 67 are installed on the lifting body 63.

本実施例では、炉心シュラウド77の上端部の外面に対してWJPが施工される。本実施例では、炉心シュラウド77がWJP施工対象物である。沸騰水型原子力プラントの運転が停止された後、RPV76の上蓋が取り外され、RPV76内に設置されている蒸気乾燥器及び気水分離器が取り外されてRPV76の外に搬出される。これらの搬出は、RPV76が設置されている原子炉建屋内の天井クレーン(図示せず)を用いて行われる。
これらの取り外し及び搬出作業を行うとき、RPV76の真上に位置する原子炉ウエル68内に、水3が充填されている。
In this embodiment, WJP is applied to the outer surface of the upper end portion of the core shroud 77. In this embodiment, the core shroud 77 is a WJP construction target object. After the operation of the boiling water nuclear power plant is stopped, the upper lid of the RPV 76 is removed, and the steam dryer and the steam separator installed in the RPV 76 are removed and carried out of the RPV 76. These are carried out using an overhead crane (not shown) in the reactor building where the RPV 76 is installed.
When performing these removal and unloading operations, water 3 is filled in the reactor well 68 located immediately above the RPV 76.

ガイドレール66が、その天井クレーンを用いて上部フランジ78上まで移送され、上部フランジ78に設置される。移動装置58A,58Bが設置されたターンテーブル65が、天井クレーンによって搬送され、ガイドレール66上に設置される。昇降体63が取り付けられたポスト部材62が、ターンテーブル65の搬送前に、移動装置58A,58Bのそれぞれに設置されている。ターンテーブル65がガイドレール66に設置されたとき、移動装置58A,58Bのそれぞれに設けられたポスト部材62が、ダウンカマ82内に配置される。   The guide rail 66 is transferred onto the upper flange 78 using the overhead crane and installed on the upper flange 78. The turntable 65 on which the moving devices 58 </ b> A and 58 </ b> B are installed is transported by the overhead crane and installed on the guide rail 66. The post member 62 to which the elevating body 63 is attached is installed in each of the moving devices 58A and 58B before the turntable 65 is conveyed. When the turntable 65 is installed on the guide rail 66, the post member 62 provided on each of the moving devices 58 </ b> A and 58 </ b> B is disposed in the downcomer 82.

高圧ポンプ5が原子炉建屋内の運転床69の上に置かれ、信号処理装置20,ノズル走査制御装置31,ポンプ制御装置30が設けられる。運転床69は原子炉ウエル68を取り囲んでいる。高圧ポンプ5に接続された2本の高圧ホース9が、移動装置58A,58Bにそれぞれ取り付けられ、移動装置58Aに設けられたノズル6及び移動装置58Bに設けられたノズル6に別々に接続されている。   The high-pressure pump 5 is placed on the operation floor 69 in the reactor building, and the signal processing device 20, the nozzle scanning control device 31, and the pump control device 30 are provided. The operation floor 69 surrounds the reactor well 68. Two high-pressure hoses 9 connected to the high-pressure pump 5 are respectively attached to the moving devices 58A and 58B, and are separately connected to the nozzle 6 provided in the moving device 58A and the nozzle 6 provided in the moving device 58B. Yes.

ノズル走査制御装置31に接続される制御信号線71が、移動装置58A,58Bのそれぞれに設けられたモータ64,装置本体59のケーシング内に設けられたモータ、及びターンテーブル65に設けられてターンテーブル65の車輪を回転させるモータにそれぞれ接続される。それぞれのモータにはエンコーダ(図示せず)が設けられ、各エンコーダは、モータによって移動される部材の移動距離、すなわち、その部材の移動後の位置を検出する。   A control signal line 71 connected to the nozzle scanning control device 31 is provided with a motor 64 provided in each of the moving devices 58A and 58B, a motor provided in the casing of the device main body 59, and a turntable 65. Each is connected to a motor that rotates the wheels of the table 65. Each motor is provided with an encoder (not shown), and each encoder detects a moving distance of a member moved by the motor, that is, a position after the member moves.

本実施例も、実施例1で生じた各効果を得ることができる。   Also in this embodiment, each effect produced in the first embodiment can be obtained.

本発明は、施工対象物の残留応力を改善し、耐食性を向上することができる。   The present invention can improve the residual stress of the construction object and improve the corrosion resistance.

1,1A,1B WJP装置
4 水槽
5 高圧ポンプ
6 ノズル
9 高圧ホース
10 ノズル走査装置
14A,14B イオンセンサ
20 信号処理装置
22 衝撃波信号抽出部
23 全衝撃波の発生頻度算出部
24 反応イオン算出部
25 発生位置算出部
26 頻度分布算出部
27 有効幅算出部
28 記録・表示情報作成部
29 表示装置
30 ポンプ制御装置
31 ノズル走査制御装置
50 薬液注入装置
60 アーム
62 ポスト部材
63 昇降体
65 ターンテーブル
76 原子炉圧力容器
77 炉心シュラウド
1, 1A, 1B WJP device 4 Water tank 5 High pressure pump 6 Nozzle 9 High pressure hose 10 Nozzle scanning device 14A, 14B Ion sensor 20 Signal processing device 22 Shock wave signal extraction unit 23 Total shock wave generation frequency calculation unit 24 Reactive ion calculation unit 25 Generation Position calculation unit 26 Frequency distribution calculation unit 27 Effective width calculation unit 28 Recording / display information creation unit 29 Display device 30 Pump control device 31 Nozzle scanning control device 50 Chemical solution injection device 60 Arm 62 Post member 63 Lifting body 65 Turntable 76 Reactor Pressure vessel 77 core shroud

Claims (8)

ノズルが存在する水中に、ポンプから供給された水を前記ノズルから噴射し、前記水を噴射している前記ノズルを、前記水中に存在するウォータージェットピーニング施工対象物に沿って走査し、前記ノズルから前記水中に噴射された前記水に含まれた気泡が潰れて発生する酸化性イオンを、前記ウォータージェットピーニング施工対象物にあてて、施工対象物の表面に酸化皮膜を形成することを特徴とするウォータージェットピーニング方法。   Water that is supplied from a pump is jetted from the nozzle into the water in which the nozzle is present, the nozzle that is jetting the water is scanned along the water jet peening object to be present in the water, and the nozzle From which the bubbles contained in the water jetted into the water are crushed and applied to the water jet peening work object to form an oxide film on the surface of the work object. Water jet peening method. 請求項1において、イオンセンサを用いて前記酸化性イオンを検出することを特徴とするウォータージェットピーニング方法。   The water jet peening method according to claim 1, wherein the oxidizing ions are detected using an ion sensor. 請求項1において、噴射水に、予め貴金属イオンを溶解させておくことを特徴とするウォータージェットピーニング方法。   2. The water jet peening method according to claim 1, wherein noble metal ions are previously dissolved in the jet water. 請求項3において、前記貴金属イオンが、Pt,Pd,Ru,Ir,Rh及びOsから選ばれる少なくとも1種のイオンであることを特徴とするウォータージェットピーニング方法。   4. The water jet peening method according to claim 3, wherein the noble metal ion is at least one ion selected from Pt, Pd, Ru, Ir, Rh and Os. 請求項3または4において、前記貴金属イオンの濃度範囲が、5ppm以上100ppm以下であることを特徴とするウォータージェットピーニング方法。   5. The water jet peening method according to claim 3, wherein the concentration range of the noble metal ions is 5 ppm or more and 100 ppm or less. 請求項1において、前記ウォータージェットピーニング施工対象物が、原子炉容器内の炉内構造物であることを特徴とするウォータージェットピーニング方法。   2. The water jet peening method according to claim 1, wherein the water jet peening object is a reactor internal structure in a reactor vessel. 水中に存在して水を噴射するノズルと、ノズルに水を供給するポンプと、ノズルを水中で保持、走査する走査装置とを備えたウォータージェットピーニング装置において、
前記走査装置は、薬液注入装置を備えることを特徴とするウォータージェットピーニング装置。
In a water jet peening apparatus comprising a nozzle that is present in water and jets water, a pump that supplies water to the nozzle, and a scanning device that holds and scans the nozzle in water,
The scanning device includes a chemical injection device, and is a water jet peening device.
請求項7において、前記噴射ノズルの周囲に電磁気発生器を設置し、噴射水に電磁界を印加し、制御することを特徴とするウォータージェットピーニング装置。   8. The water jet peening apparatus according to claim 7, wherein an electromagnetic generator is installed around the jet nozzle, and an electromagnetic field is applied to the jet water for control.
JP2011133799A 2011-06-16 2011-06-16 Water jet peening method and apparatus Active JP5572592B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011133799A JP5572592B2 (en) 2011-06-16 2011-06-16 Water jet peening method and apparatus
PCT/JP2012/065122 WO2012173140A1 (en) 2011-06-16 2012-06-13 Water jet peening method and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011133799A JP5572592B2 (en) 2011-06-16 2011-06-16 Water jet peening method and apparatus

Publications (2)

Publication Number Publication Date
JP2013000832A true JP2013000832A (en) 2013-01-07
JP5572592B2 JP5572592B2 (en) 2014-08-13

Family

ID=47357126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011133799A Active JP5572592B2 (en) 2011-06-16 2011-06-16 Water jet peening method and apparatus

Country Status (2)

Country Link
JP (1) JP5572592B2 (en)
WO (1) WO2012173140A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022042334A (en) * 2020-09-02 2022-03-14 株式会社スギノマシン Polishing peening device and polishing peening method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10406583B2 (en) 2015-12-10 2019-09-10 The Boeing Company Apparatus, system, and method for forming metal parts

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4451429A (en) * 1982-07-08 1984-05-29 General Motors Corporation Pulverizing sputtered deposits to make powdered metal
JPH0578738A (en) * 1991-09-20 1993-03-30 Hitachi Ltd Water jet peening device for improving residual stress internal structure in nuclear reactor and instrument for measuring residual stress
JPH07198893A (en) * 1993-10-29 1995-08-01 General Electric Co <Ge> Method for decreasing corrosion of stainless steel constituting section or related constituting section in water-cooled nuclear reactor
JPH10293191A (en) * 1997-02-24 1998-11-04 Hitachi Ltd Preventive maintenance device for structural member in reactor pressure vessel
JP2001091688A (en) * 1999-09-27 2001-04-06 Toshiba Corp Nuclear power plant
JP2006297569A (en) * 2005-04-25 2006-11-02 Hitachi Ltd Material surface treatment method, and device therefor
WO2008090662A1 (en) * 2007-01-26 2008-07-31 Ltt Bio-Pharma Co., Ltd. Metal surface treatment method
JP2009036558A (en) * 2007-07-31 2009-02-19 Hitachi-Ge Nuclear Energy Ltd Method of monitoring stress corrosion crack, and management method of plant
JP2009210285A (en) * 2008-02-29 2009-09-17 Toshiba Corp Reactor apparatus and its surface modification method
JP2010190589A (en) * 2009-02-16 2010-09-02 Hitachi-Ge Nuclear Energy Ltd Stress corrosion cracking suppressing method of component member of nuclear power plant

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4451429A (en) * 1982-07-08 1984-05-29 General Motors Corporation Pulverizing sputtered deposits to make powdered metal
JPH0578738A (en) * 1991-09-20 1993-03-30 Hitachi Ltd Water jet peening device for improving residual stress internal structure in nuclear reactor and instrument for measuring residual stress
JPH07198893A (en) * 1993-10-29 1995-08-01 General Electric Co <Ge> Method for decreasing corrosion of stainless steel constituting section or related constituting section in water-cooled nuclear reactor
JPH10293191A (en) * 1997-02-24 1998-11-04 Hitachi Ltd Preventive maintenance device for structural member in reactor pressure vessel
JP2001091688A (en) * 1999-09-27 2001-04-06 Toshiba Corp Nuclear power plant
JP2006297569A (en) * 2005-04-25 2006-11-02 Hitachi Ltd Material surface treatment method, and device therefor
WO2008090662A1 (en) * 2007-01-26 2008-07-31 Ltt Bio-Pharma Co., Ltd. Metal surface treatment method
JP2009036558A (en) * 2007-07-31 2009-02-19 Hitachi-Ge Nuclear Energy Ltd Method of monitoring stress corrosion crack, and management method of plant
JP2009210285A (en) * 2008-02-29 2009-09-17 Toshiba Corp Reactor apparatus and its surface modification method
JP2010190589A (en) * 2009-02-16 2010-09-02 Hitachi-Ge Nuclear Energy Ltd Stress corrosion cracking suppressing method of component member of nuclear power plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022042334A (en) * 2020-09-02 2022-03-14 株式会社スギノマシン Polishing peening device and polishing peening method
JP7222958B2 (en) 2020-09-02 2023-02-15 株式会社スギノマシン Abrasive peening device and abrasive peening method

Also Published As

Publication number Publication date
WO2012173140A1 (en) 2012-12-20
JP5572592B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
Zhao et al. Erosion–corrosion behavior and corrosion resistance of AISI 316 stainless steel in flow jet impingement
US7264770B2 (en) Mitigation of stress corrosion cracking of structural materials exposed to a high temperature water
JP4965867B2 (en) Underwater mobile repair inspection device and underwater mobile repair inspection method
US8387427B2 (en) Water jet peening method and apparatus thereof
US8440876B2 (en) Chemical decontamination apparatus and decontamination method therein
JP5572592B2 (en) Water jet peening method and apparatus
Hihn et al. Sonoelectrochemistry: both a tool for investigating mechanisms and for accelerating processes
JP2001091688A (en) Nuclear power plant
JP2012148374A (en) Water jet peening method and device
JP2002012990A (en) Method for inhibitting corrosion on metal workpiece surface by cavitation and for reducing cavitation corrosion, and product treated to improve corrosion resistance and prevention property for cavitation corrosion
JP2010276490A (en) Method and device for forming ferrite coating on member which constitutes nuclear power plant
JP2010127788A (en) Ferrite film formation method on surface of plant component, ferrite film formation device, and quartz oscillator electrode device
JPH08105994A (en) Surface treated nuclear react0r pressure vessel and in-core structure
JP6046547B2 (en) Passivation method for stainless steel parts
JP2017138139A (en) Chemical decontamination method, chemical decontamination device, and nuclear power plant using them
JP6868545B2 (en) Corrosion control method for carbon steel parts of plants
JP5956360B2 (en) Water jet peening method
JP5208070B2 (en) Water jet peening method and apparatus
JP4491381B2 (en) Structure cutting method and apparatus
JP2007125617A (en) Method and device for descaling metal wire rod
JP4343092B2 (en) Reactor material surface modification method and apparatus
JP5467137B2 (en) Method and apparatus for forming ferrite film on the surface of plant component
JP2010190589A (en) Stress corrosion cracking suppressing method of component member of nuclear power plant
KR101130270B1 (en) Appratus of metal decontamination with recovering decontamination agent simultaneously, and the method of decontamination thereby
García-García et al. Cavitation—Corrosion Studies on Welded and Nonwelded Duplex Stainless Steel in Aqueous Lithium Bromide Solutions

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

R150 Certificate of patent or registration of utility model

Ref document number: 5572592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150