JP2010215773A - Fluorescent body and fluorescent lamp - Google Patents

Fluorescent body and fluorescent lamp Download PDF

Info

Publication number
JP2010215773A
JP2010215773A JP2009063610A JP2009063610A JP2010215773A JP 2010215773 A JP2010215773 A JP 2010215773A JP 2009063610 A JP2009063610 A JP 2009063610A JP 2009063610 A JP2009063610 A JP 2009063610A JP 2010215773 A JP2010215773 A JP 2010215773A
Authority
JP
Japan
Prior art keywords
phosphor
fluorescent lamp
light
fluorescent
transmitting tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009063610A
Other languages
Japanese (ja)
Other versions
JP5515142B2 (en
Inventor
Hisafumi Yoshida
尚史 吉田
Hisanori Yamane
久典 山根
Shunsuke Abe
俊輔 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Hotalux Ltd
Original Assignee
Tohoku University NUC
NEC Lighting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, NEC Lighting Ltd filed Critical Tohoku University NUC
Priority to JP2009063610A priority Critical patent/JP5515142B2/en
Publication of JP2010215773A publication Critical patent/JP2010215773A/en
Application granted granted Critical
Publication of JP5515142B2 publication Critical patent/JP5515142B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorescent body capable of generating fluorescence at high light-emission intensity without containing an expensive and rare earth element, and to provide a fluorescent lamp using the fluorescent body, both at low cost. <P>SOLUTION: The fluorescent body is represented by formula: M1<SB>x</SB>(Sn<SB>l-y</SB>Ti<SB>y</SB>)<SB>2</SB>M2<SB>z</SB>M3<SB>c</SB>O<SB>r</SB>(wherein M1 is either Ca or Na, M2 is either Al or Si, M3 is a transition element of any of Zr, Hf, Nb, and Ta, x is a number satisfying 1.5≤x≤2.5, y is a number satisfying 0.01<y<0.2, z is a number satisfying 1.5≤z≤2.5, r is a number satisfying 8≤x≤10, and c is a number satisfying 0≤c≤2). Further, the fluorescent lamp has a light transmission pipe, and an electrode for generating discharge and a fluorescent body layer inside the light transmission pipe. In the fluorescent lamp, mercury and a discharge medium are filled in the light transmission pipe. The fluorescent body layer contains the fluorescent body. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高発光強度を有しつつ低コストで製造され、一般の照明や液晶バックライト等に用いられる蛍光体、蛍光ランプに関する。   The present invention relates to a phosphor and a fluorescent lamp that are manufactured at a low cost while having high light emission intensity, and are used for general illumination, liquid crystal backlights, and the like.

一般に、液晶パネルのバックライトや一般照明等に用いられる光源等として、蛍光ランプが用いられている。これら蛍光ランプにおいては、多くの場合、特許文献1乃至3などに示すように、ユーロピウム、テルビウム、イットリウム及びランタン等の高価な希土類の元素を含む蛍光体が用いられているため、コスト面で非常に不利である。   In general, a fluorescent lamp is used as a light source used for a backlight of a liquid crystal panel, general illumination, or the like. In these fluorescent lamps, as shown in Patent Documents 1 to 3, in many cases, phosphors containing expensive rare earth elements such as europium, terbium, yttrium and lanthanum are used. Disadvantageous.

また、我が国は希土類金属元素の資源に乏しく、このため蛍光ランプ等に用いられた希土類元素の回収や再資源化利用技術等の研究も盛んに行われている。こうした状況において、環境・資源等の面からも、希土類元素を用いることなく、通常の蛍光ランプと同様に充分な発光強度等を有する、蛍光体や蛍光ランプが強く要望されている。   In addition, Japan is scarce in the resources of rare earth metal elements, and therefore, research on techniques for recovering and recycling rare earth elements used in fluorescent lamps and the like has been actively conducted. Under such circumstances, from the viewpoint of environment and resources, there is a strong demand for phosphors and fluorescent lamps that have sufficient emission intensity and the like as usual fluorescent lamps without using rare earth elements.

一方、希土類を含まない蛍光体として、錫(Sn)元素を含む蛍光体が知られている。例えば、特許文献4等には、錫(Sn)元素を含む蛍光体が開示されている。しかし、希土類元素を用いない場合には、発光強度の面で劣る場合も多く、希土類元素を含まずとも発光強度が高い蛍光体が望まれている。   On the other hand, a phosphor containing a tin (Sn) element is known as a phosphor containing no rare earth. For example, Patent Document 4 discloses a phosphor containing a tin (Sn) element. However, when a rare earth element is not used, there are many cases where the emission intensity is inferior, and a phosphor having a high emission intensity without containing a rare earth element is desired.

特開2004−189997号公報JP 2004-189997 A 特開2005−239985号公報JP 2005-239985 A 特開2005−298721号公報JP 2005-298721 A 特開2009−001760号公報JP 2009-001760 A

本発明は、前記実情に鑑みてなされたものであり、高価で希少な希土類元素を含むことなく、高発光強度で蛍光を発生可能な蛍光体、及び、これを用いた蛍光ランプを低コストで提供することを目的とする。   The present invention has been made in view of the above circumstances, and a phosphor capable of generating fluorescence with high emission intensity without containing an expensive and rare rare earth element, and a fluorescent lamp using the phosphor can be produced at low cost. The purpose is to provide.

前記目的を達成するため、本発明の第1の観点に係る蛍光体は、
一般式:M1(Snl−yTiM2M3
(式中、M1はCa及びNaのいずれかである。M2はAl及びSiのいずれかである。M3はZr、Hf、Nb及びTaの少なくともいずれかの遷移元素である。xは1.5≦x≦2.5、yは0.01<y<0.2、zは1.5≦z≦2.5、rは8≦x≦10、cは0≦c≦2を満たす数である。)で表されることを特徴とする。
In order to achieve the above object, the phosphor according to the first aspect of the present invention comprises:
General formula: M1 x (Sn l-y Ti y) 2 M2 z M3 c O r
(In the formula, M1 is either Ca or Na. M2 is either Al or Si. M3 is a transition element of at least one of Zr, Hf, Nb, and Ta. X is 1.5. ≦ x ≦ 2.5, y is 0.01 <y <0.2, z is 1.5 ≦ z ≦ 2.5, r is 8 ≦ x ≦ 10, and c is a number that satisfies 0 ≦ c ≦ 2. It is characterized by being expressed by

また、本発明の第2の観点に係る蛍光ランプは、透光管、該透光管内部に、放電を生じさせる電極及び蛍光体層を有し、更に、水銀及び放電媒体が前記透光管内に封入された蛍光ランプであって、前記蛍光体層が、前記第1の観点に係る蛍光体を含むことを特徴とする。   The fluorescent lamp according to the second aspect of the present invention includes a light-transmitting tube, an electrode for generating a discharge and a phosphor layer inside the light-transmitting tube, and mercury and a discharge medium in the light-transmitting tube. A fluorescent lamp enclosed in a fluorescent lamp, wherein the phosphor layer includes the phosphor according to the first aspect.

本発明によれば、高価で希少な希土類元素を含まずに、発光強度が高くて低コストで製造可能な蛍光体、及び、これを用いることにより、充分な発光強度を有し、低コストで製造可能な蛍光ランプを提供することができる。   According to the present invention, a phosphor that does not contain an expensive and rare rare earth element and has high emission intensity and can be manufactured at low cost, and by using the phosphor, it has sufficient emission intensity and is low in cost. A manufacturable fluorescent lamp can be provided.

本実施形態における実施例1で作製した蛍光体の発光スペクトルを表す図である。It is a figure showing the emission spectrum of the fluorescent substance produced in Example 1 in this embodiment. 本実施形態で得られた蛍光体において、発光ピーク強度のチタン含有量依存性を表す図である。In the fluorescent substance obtained by this embodiment, it is a figure showing the titanium content dependence of the light emission peak intensity. 本実施形態における実施例で得られた蛍光体Ca(Sn,Ti)Alの粉末をX線回折で測定した測定結果を表す図である。Phosphor Ca 2 (Sn, Ti) obtained in Example of the present embodiment the powder 2 Al 2 O 9 is a diagram showing the result of measurement by X-ray diffraction.

以下、本発明を詳細に説明する。
[蛍光体]
本発明の蛍光体は、一般式がM1(Snl−yTiM2M3(式中、M1はCa及びNaのいずれかである。M2はAl及びSiのいずれかである。M3はZr、Hf、Nb及びTaのいずれかの遷移元素である。xは1.5≦x≦2.5、yは0.01<y<0.2、zは1.5≦z≦2.5、rは8≦x≦10、cは0≦c≦2を満たす数である。)で表される蛍光体である。
Hereinafter, the present invention will be described in detail.
[Phosphor]
The phosphor of the present invention has a general formula of M1 x (Sn 1-y Ti y ) 2 M2 z M3 c O r (wherein M1 is either Ca or Na. M2 is either Al or Si) M3 is a transition element of any one of Zr, Hf, Nb, and Ta, x is 1.5 ≦ x ≦ 2.5, y is 0.01 <y <0.2, and z is 1.5. ≦ z ≦ 2.5, r is a number satisfying 8 ≦ x ≦ 10, and c is a number satisfying 0 ≦ c ≦ 2.

このように、本発明の蛍光体は、高価な希土類元素を含まず、錫元素(Sn)及びチタン元素(Ti)を、前述の一般式で表される関係において含むため、コスト面でも有利であり、かつ、チタン元素(Ti)を所定量含有させたことにより、充分な発光強度を有する。   As described above, the phosphor of the present invention does not contain an expensive rare earth element, and contains tin element (Sn) and titanium element (Ti) in the relationship represented by the above-described general formula, so that it is advantageous in terms of cost. And a sufficient amount of light emission intensity is obtained by containing a predetermined amount of titanium element (Ti).

前記蛍光体の一般式においては、充分な発光強度が得られる点で、M1がCaであって、M2がAlであって、cが0であるのが好ましく、更に、x及びzが2であり、rが9であるのがより好ましい。   In the general formula of the phosphor, it is preferable that M1 is Ca, M2 is Al, and c is 0 in that sufficient emission intensity is obtained. More preferably, r is 9.

前記蛍光体の結晶構造は、斜方晶系の結晶系であって空間群がPbcnであるのが好ましい。このような結晶構造は、Sn/Tiの入るサイトがM2-O四面体鎖で仕切られた2次元的な結晶構造を有しており、発光原子間のエネルギー移動を好適に抑制できる等の効果がある。 The crystal structure of the phosphor is preferably an orthorhombic crystal system and the space group is Pbcn. Such a crystal structure has a two-dimensional crystal structure in which the sites where Sn / Ti enters are partitioned by M2-O 4 tetrahedral chains, and energy transfer between luminescent atoms can be suitably suppressed. effective.

前記蛍光体の製造方法としては、特に制限はないが、例えば、以下のような方法等が挙げられる。先ず原材料として、CaCO、SnO、SiO、TiO等を用い、SnO及びSiOを、所定温度(例えば、約1000℃)で所定時間(例えば、約6時間)焼成し、一方CaCO及びTiOを、所定温度(例えば、約200℃)で所定時間(例えば、約3時間)焼成し、元素が所定のモル比になるように秤量して、乾式混合後、所定圧力(例えば、約50MPa)でペレット状等に加圧成型する。その後、電気炉を用いて所定温度(例えば、約1300〜1400℃)で所定時間(例えば、12時間)焼成して粉砕することにより、粉末として蛍光体を得る。 Although there is no restriction | limiting in particular as a manufacturing method of the said fluorescent substance, For example, the following methods etc. are mentioned. First, CaCO 3 , SnO 2 , SiO 2 , TiO 2, etc. are used as raw materials, and SnO 2 and SiO 2 are fired at a predetermined temperature (for example, about 1000 ° C.) for a predetermined time (for example, about 6 hours), while CaCO 3 and TiO 2 are calcined at a predetermined temperature (for example, about 200 ° C.) for a predetermined time (for example, about 3 hours), weighed so that the elements have a predetermined molar ratio, and after dry mixing, a predetermined pressure (for example, , About 50 MPa) and pressure-molded into a pellet form. Thereafter, the phosphor is obtained as powder by firing and pulverizing at a predetermined temperature (for example, about 1300 to 1400 ° C.) for a predetermined time (for example, 12 hours) using an electric furnace.

前記蛍光体の粒径としては、特に制限はないが、粒径で1μm〜20μmが好ましく、2μm〜8μmがより好ましい。
前記粒径が、1μmより小さくなると発光強度が低くなったり、蛍光体の凝集体が形成されることがある一方、20μmを超えると、蛍光体における均一分散性が悪くなったり、他の種類の蛍光体と併用した際に色むらが生ずること等がある。
Although there is no restriction | limiting in particular as a particle size of the said fluorescent substance, 1 micrometer-20 micrometers are preferable at a particle size, and 2 micrometers-8 micrometers are more preferable.
When the particle size is smaller than 1 μm, the emission intensity may be reduced or aggregates of the phosphor may be formed. On the other hand, when the particle size exceeds 20 μm, the uniform dispersibility in the phosphor may be deteriorated, Color unevenness may occur when used in combination with a phosphor.

ここで前記粒径は、蛍光体の中心粒径(D50)であり、例えばレーザー回折式粒度分布測定装置等を用いてレーザー回折法により測定することができる。   Here, the particle diameter is the central particle diameter (D50) of the phosphor, and can be measured by a laser diffraction method using, for example, a laser diffraction particle size distribution measuring apparatus.

以上の本発明の蛍光体は、低コストで製造され、かつ発光強度が高い。よって、次に説明するように、本発明の蛍光ランプ等に使用することにより、通常の蛍光ランプと比べて、高い発光強度を発揮しつつも低コストでの製造が可能である。   The phosphor of the present invention described above is manufactured at low cost and has high emission intensity. Therefore, as described below, by using it for the fluorescent lamp of the present invention, it is possible to manufacture at a low cost while exhibiting high emission intensity as compared with a normal fluorescent lamp.

[蛍光ランプ]
本発明の蛍光ランプは、透光管と、該透光管内部に電極及び蛍光体層と、を有し、必要に応じてその他の構成を有する。該蛍光層は、前記本発明の蛍光体を含み、必要に応じてその他の成分を含む。また本発明の蛍光ランプにおいては、前記透光管内に、水銀及び放電媒体が封入されてなり、必要に応じてその他の成分が含まれてなる。
[Fluorescent lamp]
The fluorescent lamp of the present invention includes a light-transmitting tube, and an electrode and a phosphor layer inside the light-transmitting tube, and has other configurations as necessary. The phosphor layer contains the phosphor of the present invention and, if necessary, other components. In the fluorescent lamp of the present invention, mercury and a discharge medium are enclosed in the light-transmitting tube, and other components are included as necessary.

<透光管>
前記透光管を形成する層の材質としては、可視光を透過する材質であれば特に制限はなく、加工容易性等から、通常の蛍光ランプにおいて用いられているガラス等が好適に用いられる。ガラスの成分としては、特に制限はないが、可視光を吸収しない等の点からは、通常のガラス成分であるSiO、Al、B、などを主成分とするような一般的な成分であれば全て好ましい。その他にも、NaO、LiO、KO、MgO、CaO、SrO、BaO等の成分が、目的や用途等によって適宜含まれていてもよい。
<Translucent tube>
The material of the layer forming the light-transmitting tube is not particularly limited as long as it is a material that transmits visible light, and glass or the like used in a normal fluorescent lamp is preferably used from the viewpoint of ease of processing. The components of the glass is not particularly limited, such as in terms of, not absorb visible light, to SiO 2 is generally of the glass component, Al 2 O 3, B 2 O 3, and the like as a main component All common components are preferred. In addition, components such as Na 2 O, Li 2 O, K 2 O, MgO, CaO, SrO, and BaO may be appropriately included depending on the purpose and application.

前記透光管の形状としては、特に制限はなく、その断面が円形や楕円形の直管型形状のもののほか、湾曲型形状、環形形状、バルブ型形状など、いずれの形状であってもよい。   The shape of the light-transmitting tube is not particularly limited, and may be any shape such as a curved shape, an annular shape, and a bulb shape, in addition to a straight tube shape having a circular or elliptical cross section. .

<電極>
前記透光管の内部には、水銀原子から紫外線を放射させるための放電を発生させるため、一対の電極が設けられる。該電極としては、特に制限はなく、冷陰極、外部電極等のいずれのタイプの電極であってもよい。
<Electrode>
A pair of electrodes is provided inside the translucent tube to generate a discharge for radiating ultraviolet rays from mercury atoms. The electrode is not particularly limited, and may be any type of electrode such as a cold cathode or an external electrode.

前記電極が冷陰極の場合、例えば、ニッケル、モリブデン等により成形されたカップ状の電極等が用いられる。このようなカップ状の電極は、その開口部を対向させて、透光管の両端部に配置させて用いられるのが好ましい。
前記電極が外部型電極の場合、例えば、アルミニウム箔、鉄、ニッケルの合金等からなる電極等が用いられる。このような電極は、例えば、透光管の両末端部の外周面において、金属粒子等を含有するシリコン樹脂の導電性粘着剤や半田等を介して設けることができる。
When the electrode is a cold cathode, for example, a cup-shaped electrode formed of nickel, molybdenum or the like is used. Such cup-shaped electrodes are preferably used with their openings facing each other and arranged at both ends of the light-transmitting tube.
When the electrode is an external electrode, for example, an electrode made of an aluminum foil, iron, nickel alloy, or the like is used. Such electrodes can be provided, for example, on the outer peripheral surfaces of both end portions of the light-transmitting tube via a silicon resin conductive adhesive or solder containing metal particles or the like.

前記電極の表面又は近傍には、蛍光ランプの暗黒始動特性の向上を目的として、必要に応じて電子放出物質等を設けるのも好ましい。
前記電子放出物質は、イオン結晶物質で形成されたものが好ましい。イオン結晶物質は、陰イオン及び陽イオンが主として静電気引力により凝集してなる結晶からなるものである。該イオン結晶物質の陰イオンが、蛍光ランプ内で2次電子を放出することにより、蛍光ランプの始動特性が向上する。
For the purpose of improving the dark starting characteristics of the fluorescent lamp, it is preferable to provide an electron emitting substance or the like on the surface of the electrode or in the vicinity thereof as necessary.
The electron emitting material is preferably formed of an ionic crystal material. The ionic crystal substance is made of a crystal in which anions and cations are aggregated mainly by electrostatic attraction. The anion of the ionic crystal substance emits secondary electrons in the fluorescent lamp, so that the starting characteristics of the fluorescent lamp are improved.

前記イオン結晶物質としては、例えば、硫酸塩や、塩酸塩、フッ酸塩、臭酸塩、ヨウ酸塩等のハロゲン酸塩や、硝酸塩、炭酸塩等の無機酸塩や、カルボン酸等の有機酸塩等の陰イオンを含むイオン結晶物質等が挙げられる。より具体的には、硫酸カリウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸バリウム、硫酸鉄等の硫酸塩、フッ化カルシウム、フッ化マグネシウム、塩化カルシウム、塩化マグネシウム等のハロゲン化物、カルボン酸カルシウム塩、カルボン酸マグネシウム塩等のカルボン酸塩等のほか、酸化カルシウム、酸化マグネシウム、酸化バリウム、酸化ランタン、水酸化ランタン等が挙げられる。これらは、1種単独で使用してもよく2種以上が併用されてもよい。   Examples of the ionic crystal substances include sulfates, halogenates such as hydrochlorides, fluorides, odorates and iodides, inorganic acid salts such as nitrates and carbonates, and organic acids such as carboxylic acids. Examples thereof include ionic crystal substances containing anions such as acid salts. More specifically, sulfates such as potassium sulfate, sodium sulfate, calcium sulfate, magnesium sulfate, barium sulfate and iron sulfate, halides such as calcium fluoride, magnesium fluoride, calcium chloride and magnesium chloride, calcium carboxylate In addition to carboxylates such as magnesium carboxylate, calcium oxide, magnesium oxide, barium oxide, lanthanum oxide, lanthanum hydroxide and the like can be mentioned. These may be used alone or in combination of two or more.

前記イオン結晶物質で電子放出物質を形成するには、例えば、イオン結晶物質を含有する塗布液を調製し、これを電極近傍の透光管内面や、電極表面に塗工し、塗膜として設けることができる。   In order to form the electron emission material with the ionic crystal material, for example, a coating solution containing the ionic crystal material is prepared, and this is applied to the inner surface of the light-transmitting tube in the vicinity of the electrode or the electrode surface and provided as a coating film. be able to.

<蛍光体層>
前記蛍光体層は、前述のように、前記透光管内部に設けられる層であり、少なくとも前記本発明の蛍光体を含む。
<Phosphor layer>
As described above, the phosphor layer is a layer provided inside the translucent tube and includes at least the phosphor of the present invention.

前記蛍光体層は、前記透光管の層(ガラス層等)上に直接形成されていてもよく、後述するように、透光管の層(透光管内部)上に保護層(低屈折保護層等)を設け、その保護層の上に形成されてもよい。   The phosphor layer may be directly formed on the light-transmitting tube layer (glass layer or the like). As described later, the protective layer (low refractive index) is formed on the light-transmitting tube layer (inside the light-transmitting tube). A protective layer or the like) may be provided and formed on the protective layer.

前記蛍光層の厚みとしては、可視光の透過性等に支障がなければ特に制限はないが、例えば、3μm〜50μmが好ましく、5μm〜30μmがより好ましい。前記厚みが50μmを超えると、該蛍光体層の膜が剥がれ易くなることがある。一方、該厚みが3μmよりも薄いと、蛍光体層が透けてしまい、充分な発光が得られないことがある。   The thickness of the fluorescent layer is not particularly limited as long as the visible light transmittance is not affected, but is preferably 3 μm to 50 μm, and more preferably 5 μm to 30 μm. When the thickness exceeds 50 μm, the phosphor layer film may be easily peeled off. On the other hand, if the thickness is less than 3 μm, the phosphor layer is transparent, and sufficient light emission may not be obtained.

前記蛍光体層は、前述のように前記本発明の蛍光体を含み、必要に応じてその他の成分を含む。
-本発明の蛍光体-
前記蛍光体層は、低コストで製造され、かつ高発光強度で蛍光する下記一般式で表される本発明の蛍光体を含むため、本発明の蛍光ランプは、通常の蛍光ランプと比べ、高い発光強度を有しつつも低コストでの製造が可能である。
The phosphor layer includes the phosphor of the present invention as described above, and includes other components as necessary.
-Phosphor of the present invention-
Since the phosphor layer includes the phosphor of the present invention represented by the following general formula that is manufactured at low cost and fluoresces with high emission intensity, the fluorescent lamp of the present invention is higher than a normal fluorescent lamp. It can be manufactured at low cost while having emission intensity.

一般式:M1(Snl−yTiM2M3
(式中、M1はCa及びNaのいずれかである。M2はAl及びSiのいずれかである。M3はZr、Hf、Nb及びTaのいずれかの遷移元素である。xは1.5≦x≦2.5、yは0.01<y<0.2、zは1.5≦z≦2.5、rは8≦x≦10、cは0≦c≦2を満たす数である。)
General formula: M1 x (Sn l-y Ti y) 2 M2 z M3 c O r
(In the formula, M1 is either Ca or Na. M2 is either Al or Si. M3 is a transition element of any one of Zr, Hf, Nb, and Ta. X is 1.5 ≦. x ≦ 2.5, y is 0.01 <y <0.2, z is 1.5 ≦ z ≦ 2.5, r is 8 ≦ x ≦ 10, and c is a number that satisfies 0 ≦ c ≦ 2. .)

、本発明の蛍光ランプで用いる前記本発明の蛍光体としては、一般式中のM1、M2、M3、及び、x、y、z、r及びcの好ましい値や理由等は、前記本発明の[蛍光体]の説明において記載したのと全て同様である。 As the phosphor of the present invention used in the fluorescent lamp of the present invention, preferred values and reasons for M1, M2, M3, and x, y, z, r and c in the general formula are described above. This is all the same as described in the description of [phosphor].

-その他の成分-
前記蛍光体層に含まれるその他の成分としては、例えば、水銀原子から放射される253.7nm等の紫外線によって可視光を発光する、前記本発明の蛍光体以外の成分の蛍光体等が好適に挙げられる。このような蛍光体としては、熱に対する劣化が少なく、水銀の吸着が少ない蛍光体が好ましい。また、蛍光ランプの始動時には、水銀蒸気圧が高く継続してしまう場合があるが、そのような場合であっても、吸着する水銀による透光管の劣化を抑制できる蛍光体が好ましい。
-Other ingredients-
As the other components contained in the phosphor layer, for example, phosphors of components other than the phosphor of the present invention that emit visible light by ultraviolet rays such as 253.7 nm emitted from mercury atoms are suitable. Can be mentioned. As such a phosphor, a phosphor with little deterioration against heat and less mercury adsorption is preferable. Further, when the fluorescent lamp is started, the mercury vapor pressure may continue to be high. Even in such a case, a phosphor that can suppress deterioration of the light-transmitting tube due to adsorbed mercury is preferable.

前記蛍光体としては、目的により、例えば、Y23:Eu、YVO4:Eu、LaPO4:Ce,Tb、(Ba,Eu)MgAl1017、(Ba,Sr,Eu)(Mg,Mn)Al1017、Sr10(PO46l2:Eu、(Sr,Ca,Ba,Mg)10(PO46l2:Eu等が用いられる。これらは1種単独で使用してもよく、2種以上を併用してもよい。 Examples of the phosphor include Y 2 O 3 : Eu, YVO 4 : Eu, LaPO 4 : Ce, Tb, (Ba, Eu) MgAl 10 O 17 , (Ba, Sr, Eu) (Mg, depending on the purpose). Mn) Al 10 O 17 , Sr 10 (PO 4 ) 6 Cl 2 : Eu, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, or the like is used. These may be used alone or in combination of two or more.

特に、白色の色補正等を目的として、既知の青色蛍光体(BAM:Euなど)、緑色蛍光体(LAP:Ce,Tbなど)および赤色蛍光体(YOU:Euなど)等も好適に用いられる。   In particular, known blue phosphors (such as BAM: Eu), green phosphors (such as LAP: Ce, Tb), and red phosphors (such as YOU: Eu) are preferably used for the purpose of white color correction and the like. .

<その他の構成>
前記透光管内部に設けられる、その他の構成としては、例えば、透光管の材質の屈折率よりも低い屈折率を有する材質を含む、低屈折率保護層等が挙げられる。このような低屈折率保護層が設けられると、蛍光ランプの発光光束が向上するため好ましい。この場合、前記蛍光体層の屈折率は、この低屈折率保護層よりも更に低屈折率であるのが好ましい。更に所望により、この低屈折率保護層と前記蛍光体層との間に、高屈折率保護層を設けてもよい。
<Other configurations>
Other configurations provided inside the light-transmitting tube include, for example, a low-refractive index protective layer including a material having a refractive index lower than that of the material of the light-transmitting tube. Providing such a low refractive index protective layer is preferable because the luminous flux of the fluorescent lamp is improved. In this case, the refractive index of the phosphor layer is preferably lower than that of the low refractive index protective layer. If desired, a high refractive index protective layer may be provided between the low refractive index protective layer and the phosphor layer.

前記低屈折率保護層の材質としては、例えば、フッ化カルシウム(CaF)、フッ化セリウム・フッ化カルシウム(CeF+CaF)、フッ化マグネシウム(MgF)、フッ化ストロンチウム(SrF)、フッ化バリウム(BaF)、Gryolite(NaAlF)及びシリカ(SiO)等が挙げられる。これらは1種単独で用いられていてもよく、2種以上が併用されていてもよい。 Examples of the material for the low refractive index protective layer include calcium fluoride (CaF 2 ), cerium fluoride / calcium fluoride (CeF 3 + CaF 2 ), magnesium fluoride (MgF 2 ), and strontium fluoride (SrF 2 ). , Barium fluoride (BaF 2 ), Gryolite (Na 2 AlF 6 ), silica (SiO 2 ), and the like. These may be used individually by 1 type and 2 or more types may be used together.

前記低屈折率保護層の厚みとしては、特に制限はないが、0.05μm〜3μmが好ましく、0.1μm〜2μm以下がより好ましい。
低屈折率保護層の厚みが3μmより厚いと、低屈折率保護層に光が吸収され発光光束が低下する可能性があり、一方0.05μmよりも薄いと透光管の外部からの光を全反射することが困難なことがあるからである。
The thickness of the low refractive index protective layer is not particularly limited, but is preferably 0.05 μm to 3 μm, and more preferably 0.1 μm to 2 μm.
If the thickness of the low refractive index protective layer is greater than 3 μm, light may be absorbed by the low refractive index protective layer and the luminous flux may be reduced. On the other hand, if the thickness is less than 0.05 μm, light from the outside of the light transmission tube may be reduced. This is because it may be difficult to totally reflect.

以上、本発明の蛍光ランプに、前記低屈折率保護層を設けると、透光管と空気との界面で全反射した光を、透光管と低屈折率保護層との界面で、再度、全反射することにより、光を透光管の外へ出すことができるため発光光束が向上する。   As described above, when the low refractive index protective layer is provided in the fluorescent lamp of the present invention, the light totally reflected at the interface between the light transmitting tube and the air is again formed at the interface between the light transmitting tube and the low refractive index protective layer. By totally reflecting, light can be emitted out of the light-transmitting tube, so that the luminous flux is improved.

<透光管内の封入成分>
本発明の蛍光ランプにおいては、前記透光管内部に、水銀及び放電媒体が封入され、必要に応じてその他の成分が封入されている。
<Encapsulated components in light-transmitting tube>
In the fluorescent lamp of the present invention, mercury and a discharge medium are sealed inside the light-transmitting tube, and other components are sealed as necessary.

前記水銀は、電離した前記希ガスによって生成される2次電子により生じるグロー放電によって励起され、253.7nmを含む紫外線を発生する。透光管内部に封入する水銀の蒸気圧としては、蛍光ランプの点灯時において、例えば、1〜10Pa等が好ましい。   The mercury is excited by glow discharge generated by secondary electrons generated by the ionized noble gas, and generates ultraviolet rays including 253.7 nm. The vapor pressure of mercury sealed inside the light-transmitting tube is preferably, for example, 1 to 10 Pa when the fluorescent lamp is turned on.

前記放電媒体としては、希ガスが挙げられ、前記電極に始動電圧が印加されると、前記透光管内に僅かに存在する電子により電離されて、電極や前述の電子放出物質等に衝突して2次電子を放出する。該希ガスとしては、アルゴンやネオン等が挙げられる。透光管に封入する希ガスの量としては、例えば、30〜100torr等が好ましい。   Examples of the discharge medium include a rare gas. When a starting voltage is applied to the electrode, the discharge medium is ionized by a slight amount of electrons in the light-transmitting tube, and collides with the electrode or the electron-emitting material described above. Secondary electrons are emitted. Examples of the rare gas include argon and neon. The amount of rare gas sealed in the light-transmitting tube is preferably, for example, 30 to 100 torr.

(蛍光ランプの製造方法)
以上の本発明の蛍光ランプを製造する方法としては、通常の公知の方法であれば特に制限はないが、例えば、以下の方法を挙げることができる。
(Fluorescent lamp manufacturing method)
The method for producing the fluorescent lamp of the present invention is not particularly limited as long as it is an ordinary known method, and examples thereof include the following methods.

先ず透光管を用意し、所定の温度等で焼成して残存有機物等を分解することにより、透光管内面を洗浄する。   First, a light-transmitting tube is prepared, and the inner surface of the light-transmitting tube is cleaned by firing at a predetermined temperature or the like to decompose residual organic matter.

次に、蛍光層を形成するため、前記本発明の蛍光体を含む蛍光体含有液を調製する。ここで、溶媒としては、エチルアルコールや、水や、メチルアルコール、イソプロピルアルコール等の低級アルコール類や、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸イソプロピル、ギ酸ブチル、ギ酸イソブチル、ギ酸sec−ブチル等のギ酸エステル類、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸sec−ブチル等の酢酸エステル類や、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類や、トルエン、パラキシレン、オルトキシレン等の芳香族炭化水素類等を適宜用いることができる。これらは1種単独で使用してもよく2種以上を併用してもよい。   Next, in order to form a fluorescent layer, a phosphor-containing liquid containing the phosphor of the present invention is prepared. Here, examples of the solvent include ethyl alcohol, water, lower alcohols such as methyl alcohol and isopropyl alcohol, methyl formate, ethyl formate, propyl formate, isopropyl formate, butyl formate, isobutyl formate, sec-butyl formate, and the like. Formic acid esters, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, sec-butyl acetate and other acetate esters, acetone, methyl ethyl ketone, methyl isobutyl ketone and other ketones, toluene, paraxylene Aromatic hydrocarbons such as orthoxylene can be used as appropriate. These may be used alone or in combination of two or more.

前記蛍光体含有液には、バインダー成分が含有されていてもよい。
前記バインダー成分としては、例えば、フェノール樹脂、エポキシ樹脂、アクリル樹脂、セルロース樹脂(メチルセルロース、エチルセルロース、ニトロセルロースなど)、PVP(ポリビニルピロリドン)、ポリビニルアセタール、PVA(ポリビニルアルコール)、ブチラール樹脂、シリコン樹脂、等が挙げられる。これらは、1種単独で使用してもよく2種以上を併用してもよい。
The phosphor-containing liquid may contain a binder component.
Examples of the binder component include phenol resin, epoxy resin, acrylic resin, cellulose resin (methyl cellulose, ethyl cellulose, nitrocellulose, etc.), PVP (polyvinyl pyrrolidone), polyvinyl acetal, PVA (polyvinyl alcohol), butyral resin, silicone resin, Etc. These may be used alone or in combination of two or more.

前記バインダー成分は、蛍光ランプの製品中に残存すると不純物となることがあり、蛍光ランプの製品としての寿命(耐久性)や輝度(明るさ)、反射防止効果などに不具合をもたらす可能性があるため、次に説明する焼成で揮散させ、実質的に残らないようにするのが好ましい。   If the binder component remains in the fluorescent lamp product, it may become an impurity, which may cause problems in the life (durability), luminance (brightness), antireflection effect, etc. of the fluorescent lamp product. For this reason, it is preferable to volatilize by firing described below so as not to remain substantially.

次に、前記透光管の内面に、調製した前記蛍光体含有液を塗布し、焼成して蛍光体層を形成する。塗布の方法としては、特に制限はなく、噴霧法、ディップ法、吸い上げ法、液体を透光管内に流す方法等のいずれであってもよい。さらには、塗布の方法として、静電塗装法、金属アルコキシドを有機溶媒に溶解した液を用いるゾルゲル法等であってよい。   Next, the prepared phosphor-containing liquid is applied to the inner surface of the translucent tube and baked to form a phosphor layer. The application method is not particularly limited, and any of a spraying method, a dip method, a suction method, a method of flowing a liquid into a light transmitting tube, and the like may be used. Further, the coating method may be an electrostatic coating method, a sol-gel method using a solution obtained by dissolving a metal alkoxide in an organic solvent, or the like.

そして、前記透光管の両端の内部に、リード線を接続した電極を設けて口金等で封止し、その後、放電媒体(希ガス)及び水銀を封入し、透光管の端部を封止する。   Then, an electrode connected with a lead wire is provided inside both ends of the translucent tube and sealed with a cap or the like, and then a discharge medium (rare gas) and mercury are sealed, and the end of the translucent tube is sealed. Stop.

上記方法においては、例えば、蛍光体含有液を塗布する前に、透光管の内面に、低屈折率保護層の分散液を塗布して乾燥させ、低屈折率保護層を形成する工程を設けてもよい。また、電極を透光管内に設ける前に、イオン結晶物質を含む塗布液を調製し、これを電極近傍の透光管内面や電極表面に塗工してもよい。   In the above method, for example, before applying the phosphor-containing liquid, a step of forming a low refractive index protective layer by applying a dispersion of the low refractive index protective layer on the inner surface of the light-transmitting tube and drying it is provided. May be. Moreover, before providing an electrode in a translucent tube, you may prepare the coating liquid containing an ionic crystal substance, and may apply this to the translucent tube inner surface and electrode surface near an electrode.

(蛍光ランプの発光動作)
以上の本発明の蛍光ランプにおいては、先ず、透光管内部に設けられた一対の電極に電圧が印加される。すると、透光管内に封入された放電媒体を介して双方の電極間に放電が生じる。その放電に伴い、放電媒体内部に封入された水銀が、励起放射によって紫外線(主波長254nm)を放射する。発生した紫外線は、周囲の蛍光体層に照射され、これによって、蛍光体層に含まれる蛍光体粒子が励起され、可視光(波長400nm程度以上)が発生する。そして、この可視光が、透光管を透過して外部に放射されることにより、本発明の蛍光ランプが発光する。
(Light emission operation of fluorescent lamp)
In the fluorescent lamp of the present invention described above, first, a voltage is applied to a pair of electrodes provided inside the light-transmitting tube. Then, discharge occurs between both electrodes through the discharge medium enclosed in the light-transmitting tube. Accompanying the discharge, mercury sealed in the discharge medium emits ultraviolet rays (main wavelength 254 nm) by excitation radiation. The generated ultraviolet rays are applied to the surrounding phosphor layers, thereby exciting the phosphor particles contained in the phosphor layers and generating visible light (wavelength of about 400 nm or more). Then, the visible light is transmitted to the outside through the light-transmitting tube, so that the fluorescent lamp of the present invention emits light.

以上の本発明の蛍光ランプは、冷陰極蛍光ランプや熱陰極蛍光ランプでもよく、用途や目的に応じて適宜設計される。ここで冷陰極蛍光ランプは、フィラメントで加熱して熱電子を放出させるタイプの蛍光ランプを指す。また熱陰極蛍光ランプは、放電を行う際にフィラメントで加熱して熱電子を放出させるタイプの蛍光ランプを指す。   The fluorescent lamp of the present invention described above may be a cold cathode fluorescent lamp or a hot cathode fluorescent lamp, and is appropriately designed according to the application and purpose. Here, the cold cathode fluorescent lamp refers to a type of fluorescent lamp that is heated by a filament to emit thermoelectrons. The hot cathode fluorescent lamp refers to a type of fluorescent lamp that emits thermal electrons by heating with a filament when discharging.

以上の本発明の蛍光ランプは、低コストで製造され、かつ発光強度の高い本発明の蛍光体を用いるため、高い発光強度を有しつつも低コストでの製造が可能である。   Since the fluorescent lamp of the present invention described above is manufactured at low cost and uses the phosphor of the present invention having high emission intensity, it can be manufactured at low cost while having high emission intensity.

以下、本発明の実施例について説明するが、本発明は下記実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples.

(実施例1)
<蛍光体の作製>
本発明のCa(Sn,Ti)Alの蛍光体を以下のようにして作製した。
先ず、原材料としてCaCO、SnO、SiO、TiOを用いた。この原料のうち、SnO及びSiOは、1000℃で約6時間焼成し、CaCO及びTiOは、200℃で約3時間焼成した後、元素が所定のモル比になるように秤量して、乾式混合後約50MPaで直径1cmのペレット状に加圧成型した。その後、電気炉を用いて1300〜1400℃で12時間焼成し粉砕し粉末を得た。焼成時の雰囲気は、大気もしくは酸素雰囲気で行った。得られた焼成体の粉末をX線回折で測定することにより、図3で示すように、組成式:Ca(Sn0.95,Ti0.05Alで表される蛍光体が得られたことが確認された。この結晶構造は、結晶系が斜方晶系であった。
Example 1
<Fabrication of phosphor>
The phosphor of Ca 2 (Sn, Ti) 2 Al 2 O 9 of the present invention was produced as follows.
First, CaCO 3 , SnO 2 , SiO 2 , and TiO 2 were used as raw materials. Of these raw materials, SnO 2 and SiO 2 are calcined at 1000 ° C. for about 6 hours, and CaCO 3 and TiO 2 are calcined at 200 ° C. for about 3 hours, and then weighed so that the elements have a predetermined molar ratio. Then, after dry mixing, it was pressure-molded into pellets having a diameter of 1 cm at about 50 MPa. Thereafter, using an electric furnace, it was fired at 1300 to 1400 ° C. for 12 hours and pulverized to obtain a powder. The atmosphere during firing was air or an oxygen atmosphere. By measuring the powder of the obtained fired body by X-ray diffraction, as shown in FIG. 3, the fluorescence represented by the composition formula: Ca 2 (Sn 0.95 , Ti 0.05 ) 2 Al 2 O 9 It was confirmed that a body was obtained. This crystal structure has an orthorhombic crystal system.

-スペクトル及び発光ピーク強度の測定-
得られた蛍光体(組成式:Ca(Sn0.95,Ti0.05Al)の発光スペクトルを図1に示す(励起光源の波長:254nm)。またこの時の発光ピーク強度を図2(b)に示す。
-Measurement of spectrum and emission peak intensity-
An emission spectrum of the obtained phosphor (composition formula: Ca 2 (Sn 0.95 , Ti 0.05 ) 2 Al 2 O 9 ) is shown in FIG. 1 (excitation light source wavelength: 254 nm). The emission peak intensity at this time is shown in FIG.

<蛍光ランプの作製>
以下のようにして、冷陰極蛍光ランプを作製した。
-蛍光体含有液の調製-
実施例1で得られた蛍光体(組成式:Ca(Sn0.95,Ti0.05Al)を70wt%、Y2O3:Euを18wt%、LaPO4:Tbを12wt%含む蛍光体含有液(溶媒:酢酸ブチル)を調製した。
<Production of fluorescent lamp>
A cold cathode fluorescent lamp was produced as follows.
-Preparation of phosphor-containing liquid-
70 wt% of the phosphor obtained in Example 1 (composition formula: Ca 2 (Sn 0.95 , Ti 0.05 ) 2 Al 2 O 9 ), 18 wt% of Y 2 O 3: Eu, and 12 wt% of LaPO 4: Tb A phosphor-containing liquid (solvent: butyl acetate) was prepared.

-蛍光体層の形成-
次に、純水で内面を洗浄した後、500〜600℃で焼成した、口径2.4mm、0.2mm厚のホウケイ酸ガラス製の透光管を用意した。この透光管の内面に、前述で調製した蛍光体含有液を塗布し600℃で焼成することにより、厚さ20nmの蛍光体層を形成した。
-Formation of phosphor layer-
Next, after the inner surface was washed with pure water, a translucent tube made of borosilicate glass having a diameter of 2.4 mm and a thickness of 0.2 mm, which was fired at 500 to 600 ° C., was prepared. A phosphor layer having a thickness of 20 nm was formed by applying the phosphor-containing liquid prepared above on the inner surface of this light-transmitting tube and baking it at 600 ° C.

-蛍光ランプの作製-
その後、電極を配置し、バーナーで加熱して封止した。その後、アルゴンガス、ネオンガス、及び水銀を封入し、透光管の端部を封止することにより、冷陰極蛍光ランプを作製した。
-Production of fluorescent lamp-
Then, the electrode was arrange | positioned and it heated and sealed with the burner. Thereafter, argon gas, neon gas, and mercury were sealed, and the end portion of the light-transmitting tube was sealed to produce a cold cathode fluorescent lamp.

以上、図1及び図2からもわかるように、実施例1で得られた蛍光体は、蛍光ランプ内の水銀線(波長:254nm)励起において、充分に高い強度の発光を示すことがわかる。また青緑色がかった白色の蛍光が得られた。更に蛍光ランプに使った蛍光体として、前記本発明の蛍光体を用いたため、低コストで蛍光ランプが製造された。   As can be seen from FIGS. 1 and 2, it can be seen that the phosphor obtained in Example 1 emits light with sufficiently high intensity when excited with mercury rays (wavelength: 254 nm) in a fluorescent lamp. A blue-greenish white fluorescence was obtained. Furthermore, since the phosphor of the present invention was used as the phosphor used in the fluorescent lamp, the fluorescent lamp was manufactured at low cost.

(実施例2)
実施例1と同様の条件で蛍光体を作製し、組成式が、Ca(Sn0.975,Ti0.025Alの蛍光体を得、実施例1と同様にしてスペクトル及び発光ピーク強度の測定を行った。この発光ピーク強度の結果を図2(a)に示した。
(Example 2)
A phosphor was prepared under the same conditions as in Example 1, and a phosphor having a composition formula of Ca 2 (Sn 0.975 , Ti 0.025 ) 2 Al 2 O 9 was obtained. The emission peak intensity was measured. The result of the emission peak intensity is shown in FIG.

(実施例3)
実施例1と同様の条件で蛍光体を作製し、組成式が、Ca(Sn0.9,Ti0.1Alの蛍光体を得、実施例1と同様にしてスペクトル及び発光ピーク強度の測定を行った。この発光ピーク強度の結果を図2(c)に示した。
Example 3
A phosphor was produced under the same conditions as in Example 1, and a phosphor having a composition formula of Ca 2 (Sn 0.9 , Ti 0.1 ) 2 Al 2 O 9 was obtained. The emission peak intensity was measured. The result of the emission peak intensity is shown in FIG.

(実施例4)
実施例1と同様の条件で蛍光体を作製し、組成式が、Ca(Sn0.8,Ti0.2Alの蛍光体を得、実施例1と同様にしてスペクトル及び発光ピーク強度の測定を行った。この発光ピーク強度の結果を図2(d)で示した。
Example 4
A phosphor was prepared under the same conditions as in Example 1, and a phosphor having a composition formula of Ca 2 (Sn 0.8 , Ti 0.2 ) 2 Al 2 O 9 was obtained. The emission peak intensity was measured. The result of the emission peak intensity is shown in FIG.

以上、図2からわかるように、実施例1〜4で得られた蛍光体における発光ピーク強度は、各蛍光体組成におけるチタン含有量(組成)に依存することがわかった。   As described above, as can be seen from FIG. 2, it was found that the emission peak intensity in the phosphors obtained in Examples 1 to 4 depends on the titanium content (composition) in each phosphor composition.

Claims (7)

一般式:M1(Snl−yTiM2M3
(式中、M1はCa及びNaのいずれかである。M2はAl及びSiのいずれかである。M3はZr、Hf、Nb及びTaのいずれかの遷移元素である。xは1.5≦x≦2.5、yは0.01<y<0.2、zは1.5≦z≦2.5、rは8≦x≦10、cは0≦c≦2を満たす数である。)で表されることを特徴とする、蛍光体。
General formula: M1 x (Sn l-y Ti y) 2 M2 z M3 c O r
(In the formula, M1 is either Ca or Na. M2 is either Al or Si. M3 is a transition element of any one of Zr, Hf, Nb, and Ta. X is 1.5 ≦. x ≦ 2.5, y is 0.01 <y <0.2, z is 1.5 ≦ z ≦ 2.5, r is 8 ≦ x ≦ 10, and c is a number that satisfies 0 ≦ c ≦ 2. )), A phosphor.
前記一般式において、M1がCaであり、M2がAlであり、cが0である、請求項1に記載の蛍光体。   The phosphor according to claim 1, wherein, in the general formula, M1 is Ca, M2 is Al, and c is 0. 前記一般式において、x及びzが2であり、rが9である、請求項1又は2に記載の蛍光体。   3. The phosphor according to claim 1, wherein x and z are 2 and r is 9 in the general formula. 結晶構造が、斜方晶系の結晶系であって空間群がPbcnである請求項1乃至3の少なくともいずれか1項に記載の蛍光体。   4. The phosphor according to claim 1, wherein the crystal structure is an orthorhombic crystal system and the space group is Pbcn. 透光管、該透光管内部に、放電を生じさせる電極及び蛍光体層を有し、更に、水銀及び放電媒体が前記透光管内に封入された蛍光ランプであって、前記蛍光体層が、請求項1乃至4の少なくともいずれか1項に記載の蛍光体を含むことを特徴とする蛍光ランプ。   A fluorescent lamp having a translucent tube, an electrode for generating a discharge and a phosphor layer inside the translucent tube, and further mercury and a discharge medium enclosed in the translucent tube, wherein the phosphor layer is A fluorescent lamp comprising the phosphor according to any one of claims 1 to 4. 熱陰極蛍光ランプである請求項5に記載の蛍光ランプ。   The fluorescent lamp according to claim 5, which is a hot cathode fluorescent lamp. 冷陰極蛍光ランプである請求項5に記載の蛍光ランプ。   The fluorescent lamp according to claim 5, which is a cold cathode fluorescent lamp.
JP2009063610A 2009-03-16 2009-03-16 Phosphor and fluorescent lamp Active JP5515142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009063610A JP5515142B2 (en) 2009-03-16 2009-03-16 Phosphor and fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009063610A JP5515142B2 (en) 2009-03-16 2009-03-16 Phosphor and fluorescent lamp

Publications (2)

Publication Number Publication Date
JP2010215773A true JP2010215773A (en) 2010-09-30
JP5515142B2 JP5515142B2 (en) 2014-06-11

Family

ID=42974944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009063610A Active JP5515142B2 (en) 2009-03-16 2009-03-16 Phosphor and fluorescent lamp

Country Status (1)

Country Link
JP (1) JP5515142B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215772A (en) * 2009-03-16 2010-09-30 Nec Lighting Ltd Fluorescent body and fluorescent lamp

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182523A (en) * 1991-12-26 1993-07-23 Taiyo Yuden Co Ltd Dielectric porcelain composition
JPH06346052A (en) * 1993-05-24 1994-12-20 Eastman Kodak Co Tin-activated hafnia phosphor composition and x-ray intensifying screen
JPH0987618A (en) * 1995-09-25 1997-03-31 Futaba Corp Fluorescent substance and fluorescent display device
JP2002293616A (en) * 2001-03-28 2002-10-09 Japan Fine Ceramics Center Ceramic composition
JP2004189997A (en) * 2002-10-16 2004-07-08 Nichia Chem Ind Ltd Light-emitting device using oxynitride fluorescent material
JP2005041727A (en) * 2003-07-25 2005-02-17 Murata Mfg Co Ltd Dielectric ceramic composition for high frequency, dielectric resonator, dielectric filter, dielectric duplexer, and communication apparatus
JP2005117057A (en) * 2004-11-11 2005-04-28 Nichia Chem Ind Ltd Light emitting device
JP2005239985A (en) * 2004-02-27 2005-09-08 Dowa Mining Co Ltd Phosphor, light source and led
JP2005248184A (en) * 2002-10-16 2005-09-15 Nichia Chem Ind Ltd Oxynitride phosphor
JP2005298721A (en) * 2004-04-14 2005-10-27 Nichia Chem Ind Ltd Oxynitride phosphor and light emitting device using the same
JP2006137946A (en) * 2004-10-15 2006-06-01 Mitsubishi Chemicals Corp Phosphor, light emitting device using the same, and image display and lighting equipment
JP2007500776A (en) * 2003-05-17 2007-01-18 フォスファーテック コーポレーション Light emitting device having a silicate fluorescent phosphor
JP2007077307A (en) * 2005-09-15 2007-03-29 Niigata Univ Phosphor
JP2008063550A (en) * 2006-08-10 2008-03-21 Sumitomo Chemical Co Ltd Phosphor
JP2009001760A (en) * 2007-06-25 2009-01-08 Nec Lighting Ltd Green light-emitting oxynitride phosphor, method of manufacturing the same and light emitting device using the same
JP2010215772A (en) * 2009-03-16 2010-09-30 Nec Lighting Ltd Fluorescent body and fluorescent lamp

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182523A (en) * 1991-12-26 1993-07-23 Taiyo Yuden Co Ltd Dielectric porcelain composition
JPH06346052A (en) * 1993-05-24 1994-12-20 Eastman Kodak Co Tin-activated hafnia phosphor composition and x-ray intensifying screen
JPH0987618A (en) * 1995-09-25 1997-03-31 Futaba Corp Fluorescent substance and fluorescent display device
JP2002293616A (en) * 2001-03-28 2002-10-09 Japan Fine Ceramics Center Ceramic composition
JP2005248184A (en) * 2002-10-16 2005-09-15 Nichia Chem Ind Ltd Oxynitride phosphor
JP2004189997A (en) * 2002-10-16 2004-07-08 Nichia Chem Ind Ltd Light-emitting device using oxynitride fluorescent material
JP2007500776A (en) * 2003-05-17 2007-01-18 フォスファーテック コーポレーション Light emitting device having a silicate fluorescent phosphor
JP2005041727A (en) * 2003-07-25 2005-02-17 Murata Mfg Co Ltd Dielectric ceramic composition for high frequency, dielectric resonator, dielectric filter, dielectric duplexer, and communication apparatus
JP2005239985A (en) * 2004-02-27 2005-09-08 Dowa Mining Co Ltd Phosphor, light source and led
JP2005298721A (en) * 2004-04-14 2005-10-27 Nichia Chem Ind Ltd Oxynitride phosphor and light emitting device using the same
JP2006137946A (en) * 2004-10-15 2006-06-01 Mitsubishi Chemicals Corp Phosphor, light emitting device using the same, and image display and lighting equipment
JP2005117057A (en) * 2004-11-11 2005-04-28 Nichia Chem Ind Ltd Light emitting device
JP2007077307A (en) * 2005-09-15 2007-03-29 Niigata Univ Phosphor
JP2008063550A (en) * 2006-08-10 2008-03-21 Sumitomo Chemical Co Ltd Phosphor
JP2009001760A (en) * 2007-06-25 2009-01-08 Nec Lighting Ltd Green light-emitting oxynitride phosphor, method of manufacturing the same and light emitting device using the same
JP2010215772A (en) * 2009-03-16 2010-09-30 Nec Lighting Ltd Fluorescent body and fluorescent lamp

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MATERIALS RESEARCH BULLETIN,, vol. Vol.45,No.4,, JPN6013010534, pages 367 - 372, ISSN: 0002747952 *
日本金属学会講演概要 COLLECTED ABSTRACTS OF THE 2010 SPRING MEETING OF THE JAPAN INSTITUTE METALS,, JPN6013010536, pages 100, ISSN: 0002747953 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215772A (en) * 2009-03-16 2010-09-30 Nec Lighting Ltd Fluorescent body and fluorescent lamp

Also Published As

Publication number Publication date
JP5515142B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
US6921730B2 (en) Glass composition, protective-layer composition, binder composition, and lamp
JP2004531033A (en) Low pressure gas discharge lamp with mercury-free filling gas
US6906475B2 (en) Fluorescent lamp and high intensity discharge lamp with improved luminous efficiency
JP4421672B2 (en) Fluorescent lamp, manufacturing method thereof, and lighting device
JP2002020745A (en) Fluoride fluorescent substance and fluorescent lamp using the same
CN101103433A (en) Dielectric barrier discharge lamp with protective coating
JP2005529461A (en) Fluorescent lamp and manufacturing method thereof
WO2012026247A1 (en) Fluorescent lamp
JP4044946B2 (en) Fluorescent lamp, backlight device, and method of manufacturing fluorescent lamp
JP5515142B2 (en) Phosphor and fluorescent lamp
JP2003051284A (en) Fluorescence lamp and illumination instrument
JP5515141B2 (en) Phosphor and fluorescent lamp
JP2001319619A (en) Fluorescent lamp
KR20080099155A (en) Fluorescent lamp
JP2008059943A (en) Coating for forming phosphor layer, and phosphor layer and fluorescent lamp using it,
JP2007091533A (en) Glass composition for fluorescent lamp and fluorescent lamp
JP3678203B2 (en) Glass composition, protective layer composition, binder composition, glass tube for fluorescent lamp, fluorescent lamp, outer tube for high-intensity discharge lamp, and high-intensity discharge lamp
JP4472716B2 (en) Fluorescent lamp and manufacturing method thereof
JP2004006185A (en) Fluorescent lamp and lighting device
JP3768976B2 (en) Fluorescent lamp
JP2003286046A (en) Glass composition for lamp and glass part for lamp, and lamp
JP2003234089A (en) Cold cathode discharge tube and unit for lighting the same
JP2003016999A (en) Fluorescent lamp and compact self-ballasted fluorescent lamp
JP2008277015A (en) Fluorescent lamp
JP2002083569A (en) Fluorescent lamp and high-intensity discharge lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140313

R150 Certificate of patent or registration of utility model

Ref document number: 5515142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250