JP2010213371A - Circuit for preventing malfunction of switching element - Google Patents

Circuit for preventing malfunction of switching element Download PDF

Info

Publication number
JP2010213371A
JP2010213371A JP2009053405A JP2009053405A JP2010213371A JP 2010213371 A JP2010213371 A JP 2010213371A JP 2009053405 A JP2009053405 A JP 2009053405A JP 2009053405 A JP2009053405 A JP 2009053405A JP 2010213371 A JP2010213371 A JP 2010213371A
Authority
JP
Japan
Prior art keywords
gate
mosfets
parallel
source
assembly point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009053405A
Other languages
Japanese (ja)
Inventor
Masatsuru Miyazaki
真鶴 宮崎
Norio Fukui
規生 福井
Masanori Kurita
昌憲 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2009053405A priority Critical patent/JP2010213371A/en
Publication of JP2010213371A publication Critical patent/JP2010213371A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)
  • Power Conversion In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circuit for preventing the malfunction of a switching element, which prevents parasitic oscillation and malfunction, and is available together with a conventional countermeasure technique in a simple structure or is singly applicable. <P>SOLUTION: Switching elements S1, S2, ..., are MOSFETs, and for the MOSFETs, their drains and sources are connected in parallel with one another, and their gates are connected likewise in parallel with one another, but gate resistors R are provided and connected severally in series between each gate and a gate assembly point g. A drain assembly point d is connected to one end on the primary side of a transformer T, and a source assembly point s is grounded, and the other end on the primary side of the transformer T is connected to a circuit power source Vcc, and the MOSFETs are turned on and off (parallel operation) by adding a gate control signal to the gate assembly point g. A capacitor C is laid over between the gate assembly point g leading to each gate and the source assembly point s leading to each source. When a potential ripple of short cycles is added to the gate, the capacitor C absorbs the ripple. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、複数を並列動作させるスイッチング素子の誤動作防止回路に関するもので、より具体的には、ターンオフ過渡期にみられる寄生発振の抑制の改良に関する。   The present invention relates to a malfunction prevention circuit for a plurality of switching elements that operate in parallel. More specifically, the present invention relates to an improvement in suppression of parasitic oscillation observed in a turn-off transition period.

よく知られるように、インバータやコンバータ等のスイッチング電源では、MOSFETをスイッチング素子に利用することが行われている。MOSFETは、電圧制御素子なので駆動電力が小さく、単一極性キャリアによる動作のためキャリア蓄積効果がなく高速スイッチングが行える等の特徴を有することから電力制御の用途に好まれている。   As is well known, MOSFETs are used as switching elements in switching power supplies such as inverters and converters. MOSFETs are preferred for power control applications because they are voltage control elements and have low drive power and the ability to perform high-speed switching without carrier accumulation effects due to operation with a single polarity carrier.

電力制御の用途では出力(電流容量)を大きく得たい要求があり、このためスイッチング素子を並列接続する構成を採ることがある。その点、MOSFETはオン抵抗が正の温度特性を持つため、並列接続において各素子に流れる電流に不平衡が生じたとしても、各素子での電流差をもとに戻す自己安定化作用があり、並列動作の利用に適している。例えば特許文献1には、多数を並列接続したMOSFETについて、何れか1つのMOSFETの故障に起因した並列他者の全体の故障を回避するようにした技術の提案がある。   In power control applications, there is a demand to obtain a large output (current capacity). For this reason, a configuration in which switching elements are connected in parallel may be employed. On the other hand, since the MOSFET has a temperature characteristic with positive on-resistance, even if an imbalance occurs in the current flowing through each element in parallel connection, there is a self-stabilizing action that restores the current difference in each element. Suitable for use in parallel operation. For example, Patent Document 1 proposes a technique for avoiding an overall failure of a parallel other party caused by a failure of one of the MOSFETs in which many MOSFETs are connected in parallel.

MOSFETの並列動作では、スイッチング動作の過渡期において電流不均衡が生じ、ゲートに寄生振動が発生する問題が知られている。これは寄生発振と呼ばれるが、対策には非特許文献1や特許文献1などに見られるように、各MOSFETの自ゲートにゲート抵抗を直列に接続してそれらゲート抵抗の他端を並列接続する構成とし、抵抗成分により共振条件のQを下げて共振を防止するようにしている。   In parallel operation of MOSFETs, there is a known problem that current imbalance occurs in the transition period of switching operation and parasitic oscillation occurs in the gate. This is called parasitic oscillation, but as seen in Non-Patent Document 1 and Patent Document 1, for example, a gate resistor is connected in series to each MOSFET's own gate and the other ends of these gate resistors are connected in parallel. The resonance is prevented by lowering the resonance condition Q by the resistance component.

特開2004−72811号公報JP 2004-72811 A

長谷川彰著「改訂スイッチング・レギュレータ設計ノウハウ」 CQ出版社,213頁,図6−25,1993年刊行Akira Hasegawa “Revised Switching Regulator Design Know-how”, CQ Publisher, 213 pages, Fig. 6-25, published in 1993

並列接続したMOSFETでは、ただ一つの制御信号を全てのゲートへ加えるものの個体差や配線の不均一などのためオン・オフ動作にずれが生じる。オン・オフ動作にずれがあると、例えば最速動作の個体がターンオフした際は当該個体はドレインの電位が上がる。すると、ゲート,ドレイン間に容量(寄生容量)があるため、その上昇した電位はゲート−ドレイン容量Cgdを介して他の個体へ伝播し、電位変動が他のゲートへ加えられることになる。そして、ゲート制御信号とは違う電位変動が加わるため、意図しないタイミング動作を引き起こしてしまう。これはゲート寄生振動(寄生発振)などと呼ばれてよく知られており、寄生発振信号がゲートに加わるためターンオフが不安定になり動作不良を起こし、電力損失を増大し、誤動作によって素子が破壊するおそれがあるため対策が採られている。   In the MOSFETs connected in parallel, there is a difference in on / off operation due to individual differences or non-uniform wiring, although only one control signal is applied to all the gates. If there is a deviation in the on / off operation, for example, when the individual of the fastest operation turns off, the potential of the drain of the individual increases. Then, since there is a capacitance (parasitic capacitance) between the gate and the drain, the increased potential propagates to another individual through the gate-drain capacitance Cgd, and potential fluctuation is applied to the other gate. In addition, a potential variation different from that of the gate control signal is applied, which causes an unintended timing operation. This is well known as gate parasitic oscillation (parasitic oscillation), and since a parasitic oscillation signal is applied to the gate, the turn-off becomes unstable, causing malfunction, increasing power loss, and destroying the device due to malfunction. Measures have been taken because there is a risk of failure.

前述したように、ゲート寄生発振の対策には、各自ゲートにゲート抵抗を直列に設けることが有効であり、他には各自ゲートにフェライトビーズを直列に挿入すること、配線を太くして配線インダクタンスを低減すること、ドレイン・ソース配線長を等しい長さにしてツイストペアー配線を施すこと、などの対策方法が知られている。   As described above, it is effective to provide a gate resistance in series with each gate to prevent gate parasitic oscillation. Other than that, ferrite beads are inserted in series with each gate, and the wiring is thickened to increase the wiring inductance. There are known countermeasures such as reducing the length of the drain and source wirings and making twisted pair wirings with equal lengths.

しかし本発明者は、そうした従来の対策方法とは別の新たな他の対策技術を研究することとし、有効性が高い対策技術の確立をめざした。それは、有効性が高く簡素な構成の対策技術を確立できれば、従来の対策方法と併用により動作の安定化をより向上できるメリットが生じ、あるいは単独に適用することでより簡素化が行えることから新規技術の開発を進めることにした。   However, the present inventor decided to study another new countermeasure technique different from the conventional countermeasure method and aimed to establish a highly effective countermeasure technique. If a countermeasure technology with a highly effective and simple configuration can be established, there is a merit that operation stability can be further improved by using it together with the conventional countermeasure method, or it can be simplified by applying it alone. We decided to proceed with technology development.

上記の課題を解決するため、本発明は、(1)電流容量を増大するため複数を並列接続して同時にオン・オフ動作させるスイッチング素子の誤動作防止回路であって、スイッチング素子がMOSFETであり、それら複数のMOSFETは少なくともゲート,ソースをそれぞれ接続して並列接続とし、各ゲートへ連なるゲート集合点と各ソースへ連なるソース集合点との間にコンデンサを渡して設ける構成にする。   In order to solve the above-described problems, the present invention provides (1) a malfunction prevention circuit for a switching element in which a plurality of devices are connected in parallel to simultaneously increase / decrease current capacity, and the switching element is a MOSFET. The plurality of MOSFETs are configured such that at least a gate and a source are connected to each other in parallel connection, and a capacitor is provided between a gate set point connected to each gate and a source set point connected to each source.

(2)MOSFETそれぞれは各自ゲートとゲート集合点との間にゲート抵抗を設けない構成にするようにしてもよい。   (2) Each MOSFET may be configured such that no gate resistance is provided between the gate and the gate assembly point.

係る構成にすることにより本発明では、ゲート集合点とソース集合点との間にコンデンサを渡して設けるので、短い周期の電位変動が加わったときに吸収できる。このため、並列接続において個体間でターンオフにずれがあってもゲート−ドレイン容量Cgdを介して伝播する電位変動を吸収することができ、ゲート寄生発振を抑制できる。   By adopting such a configuration, in the present invention, a capacitor is provided between the gate aggregation point and the source aggregation point, so that it can be absorbed when a short-term potential fluctuation is applied. For this reason, even if there is a deviation in turn-off between individuals in parallel connection, potential fluctuations propagated through the gate-drain capacitance Cgd can be absorbed, and gate parasitic oscillation can be suppressed.

本発明では、ゲート集合点とソース集合点との間にコンデンサを渡して設けるので、短い周期の電位変動が加わったときに吸収でき、したがって、ゲート−ドレイン容量Cgdを介して伝播する電位変動を吸収することができ、ゲート寄生発振を抑制できる。   In the present invention, since a capacitor is provided between the gate aggregation point and the source aggregation point, the capacitor can be absorbed when a short-period potential variation is applied, and therefore the potential variation propagating through the gate-drain capacitance Cgd can be absorbed. It can be absorbed and gate parasitic oscillation can be suppressed.

すなわち、MOSFETの並列動作において、寄生発振を防止できて誤動作を防止することができる。ゲート・ソース間にコンデンサを設けるだけなので構成が簡素であり、これは従来の対策技術と併用でき、あるいは単独に適用することができる。   That is, in the parallel operation of MOSFETs, parasitic oscillation can be prevented and malfunction can be prevented. Since the capacitor is simply provided between the gate and the source, the configuration is simple, and this can be used together with the conventional countermeasure technique or can be applied alone.

本発明に係るスイッチング素子の誤動作防止回路の好適な一実施の形態を示す回路図である。1 is a circuit diagram showing a preferred embodiment of a switching element malfunction prevention circuit according to the present invention. FIG.

図1は本発明の好適な一実施の形態を示している。同図に示す回路はスイッチング電源の要部であり、複数のスイッチング素子S1,S2,…とトランスTとを備えてシングルエンディッドフォワード方式の構成になっている。   FIG. 1 shows a preferred embodiment of the present invention. The circuit shown in FIG. 1 is a main part of the switching power supply, and includes a plurality of switching elements S1, S2,...

スイッチング素子S1,S2,…はMOSFETであり、それら複数のMOSFET(S1,S2,…)はドレイン,ソースをそれぞれ接続して並列接続とし、ゲートも同様に並列接続するが各自ゲートとゲート集合点gとの間にゲート抵抗Rをそれぞれ直列に設けて接続している。ドレインを並列接続したドレイン集合点dはトランスTの1次側の一端へ接続し、ソースを並列接続したソース集合点sは接地し、そしてトランスTの1次側の他端は回路電源Vccへ接続させ、ゲート集合点gへゲート制御信号を加えることによりスイッチング素子S1,S2,…をオン・オフ動作(並列動作)させるようになっている。つまり、複数のスイッチング素子S1,S2,…は一つのスイッチング素子として機能し、並列接続により電流容量を増大した大電流動作が行える。   The switching elements S1, S2,... Are MOSFETs, and the plurality of MOSFETs (S1, S2,...) Are connected in parallel by connecting drains and sources, and the gates are also connected in parallel. A gate resistor R is provided in series with each other and connected to g. A drain set point d having drains connected in parallel is connected to one end on the primary side of the transformer T, a source set point s having sources connected in parallel is grounded, and the other end on the primary side of the transformer T is connected to the circuit power supply Vcc. The switching elements S1, S2,... Are turned on / off (parallel operation) by connecting them and applying a gate control signal to the gate aggregation point g. In other words, the plurality of switching elements S1, S2,... Function as one switching element, and can perform a large current operation with an increased current capacity by parallel connection.

本形態においてスイッチング素子S1,S2,…の誤動作防止回路は、各ゲートへ連なるゲート集合点gと各ソースへ連なるソース集合点sとの間にコンデンサCを渡して設ける構成になっている。コンデンサCは小容量のものを各スイッチング素子それぞれに配置する構成を採ることもできる。つまり、各MOSFET(S1,S2,…)においてゲート抵抗Rとソースとの間に小容量コンデンサをそれぞれ接続して設け、それぞれのゲート電位変動に対して機能させる構成にすることも好ましい。   In this embodiment, the malfunction prevention circuit of the switching elements S1, S2,... Has a configuration in which a capacitor C is provided between a gate set point g connected to each gate and a source set point s connected to each source. The capacitor C can also be configured to have a small capacity for each switching element. That is, it is also preferable to provide a structure in which a small capacitor is connected between the gate resistance R and the source in each MOSFET (S1, S2,...) So as to function with respect to each gate potential fluctuation.

また、コンデンサCはゲート集合点gに接続するのでゲート制御信号に影響し、一つには周波数応答が変わるため信号ピークの低減があり、高周波では本来のゲート制御信号を吸収・低減する弊害作用を考慮した設定を行うことが好ましい。そして、コンデンサCによって信号波形に変化がありスイッチングの周波数特性に影響が現れるので、スイッチング損失を増加させてしまう弊害を起こすおそれがある。このため、コンデンサCの容量はスイッチング動作の周波数に応じて適宜に設定することが好ましく、信号ピークの低減および信号波形の変化を考慮した適正値に設定する。   In addition, since the capacitor C is connected to the gate aggregation point g, it affects the gate control signal. One of them is a reduction in signal peak due to a change in frequency response, and an adverse effect of absorbing and reducing the original gate control signal at high frequencies. It is preferable to perform setting in consideration of the above. Since the signal waveform is changed by the capacitor C and the switching frequency characteristic is affected, there is a possibility that a switching loss is increased. For this reason, the capacitance of the capacitor C is preferably set as appropriate according to the frequency of the switching operation, and is set to an appropriate value in consideration of signal peak reduction and signal waveform change.

この場合、ゲート集合点gとソース集合点sとの間にコンデンサCを渡して設けるので、短い周期の電位変動が加わったときに吸収できる。このため、並列接続において個体間でターンオフにずれがあってもゲート−ドレイン容量Cgdを介して伝播する電位変動を吸収することができ、ゲート寄生発振を抑制でき、その防止が行える。すなわち、MOSFET(S1,S2,…)の並列動作において、寄生発振を防止できて誤動作を防止することができる。   In this case, since the capacitor C is provided between the gate aggregation point g and the source aggregation point s, it can be absorbed when a short-term potential fluctuation is applied. For this reason, even if there is a deviation in turn-off between individuals in parallel connection, potential fluctuations propagated through the gate-drain capacitance Cgd can be absorbed, and gate parasitic oscillation can be suppressed and prevented. That is, in the parallel operation of the MOSFETs (S1, S2,...), Parasitic oscillation can be prevented and malfunction can be prevented.

本発明に係る構成は、ゲート集合点gとソース集合点sとの間にコンデンサCを渡して設けるだけであって簡素であり、図1に示すようにゲート抵抗Rを設ける従来の対策技術と併用することは何ら問題なく、両者の相乗作用を期待でき、動作の安定化をより向上できる。   The configuration according to the present invention is simple by merely providing a capacitor C between the gate aggregation point g and the source aggregation point s, and a conventional countermeasure technique for providing a gate resistance R as shown in FIG. There is no problem with the combined use, and synergy between the two can be expected, and the stabilization of the operation can be further improved.

さらに、MOSFET(S1,S2,…)それぞれは各自ゲートとゲート集合点gとの間にゲート抵抗Rを設けない構成にしてもよい。すなわち、本発明は従来の対策技術を省いて単独に適用することができ、コンデンサCを設けるだけなのでより簡素化が行えるという作用効果を奏する。   Further, the MOSFETs (S1, S2,...) May be configured such that the gate resistance R is not provided between each gate and the gate aggregation point g. In other words, the present invention can be applied independently without the conventional countermeasure technique, and since only the capacitor C is provided, there is an effect that simplification can be performed.

S1,S2 スイッチング素子(MOSFET)
R ゲート抵抗
C コンデンサ
T トランス
S1, S2 Switching element (MOSFET)
R Gate resistance C Capacitor T Transformer

Claims (2)

電流容量を増大するため複数を並列接続して同時にオン・オフ動作させるスイッチング素子の誤動作防止回路であって、
前記スイッチング素子がMOSFETであり、それら複数のMOSFETは少なくともゲート,ソースをそれぞれ接続して並列接続とし、前記各ゲートへ連なるゲート集合点と前記各ソースへ連なるソース集合点との間にコンデンサを渡して設けることを特徴とするスイッチング素子の誤動作防止回路。
In order to increase the current capacity, it is a malfunction prevention circuit for switching elements that are connected in parallel and operated simultaneously on and off,
The switching element is a MOSFET, and the plurality of MOSFETs are connected in parallel by connecting at least a gate and a source, and a capacitor is passed between a gate set point connected to each gate and a source set point connected to each source. A switching element malfunction prevention circuit characterized by comprising:
前記MOSFETそれぞれは各自ゲートと前記ゲート集合点との間にゲート抵抗を設けないことを特徴とする請求項1に記載のスイッチング素子の誤動作防止回路。   2. The malfunction prevention circuit for a switching element according to claim 1, wherein each of the MOSFETs does not have a gate resistance between its own gate and the gate aggregation point.
JP2009053405A 2009-03-06 2009-03-06 Circuit for preventing malfunction of switching element Withdrawn JP2010213371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009053405A JP2010213371A (en) 2009-03-06 2009-03-06 Circuit for preventing malfunction of switching element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009053405A JP2010213371A (en) 2009-03-06 2009-03-06 Circuit for preventing malfunction of switching element

Publications (1)

Publication Number Publication Date
JP2010213371A true JP2010213371A (en) 2010-09-24

Family

ID=42972951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009053405A Withdrawn JP2010213371A (en) 2009-03-06 2009-03-06 Circuit for preventing malfunction of switching element

Country Status (1)

Country Link
JP (1) JP2010213371A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119270A (en) * 2011-12-06 2013-06-17 Omron Automotive Electronics Co Ltd Signal output circuit
US9685945B2 (en) 2015-07-28 2017-06-20 Toyota Jidosha Kabushiki Kaisha Electric circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119270A (en) * 2011-12-06 2013-06-17 Omron Automotive Electronics Co Ltd Signal output circuit
US9685945B2 (en) 2015-07-28 2017-06-20 Toyota Jidosha Kabushiki Kaisha Electric circuit

Similar Documents

Publication Publication Date Title
US10284072B2 (en) Voltage regulators with multiple transistors
US10686361B2 (en) Synchronous rectifier gate driver with active clamp
WO2014196136A1 (en) Gate driver and power module provided with same
WO2014171190A1 (en) Level shift circuit
JP5433880B2 (en) DC-DC converter
JPWO2014199816A1 (en) Overcurrent detection circuit
ITUB20154121A1 (en) PROCEDURE FOR THE DRIVING OF A RESONANT CONVERTER, ITS RELATIVE DEVICE AND IT PRODUCT
JP2010213371A (en) Circuit for preventing malfunction of switching element
JP5474488B2 (en) DC-DC converter
JP3990421B2 (en) Inrush current reduction circuit and electrical equipment
US11196413B2 (en) Driving circuit for switching element, and switching circuit
TWI543504B (en) Electrostatic discharge protection circuit
JP2014085745A (en) Reference voltage generation circuit
CN216819700U (en) Clamp protection circuit
JP5689778B2 (en) Input circuit
JP2010263100A (en) Semiconductor device
JP7528456B2 (en) Semiconductor Circuits
JP6889047B2 (en) Switching control circuit
JP2010220325A (en) Transistor drive circuit, semiconductor circuit breaker, and transistor driving method
JP2011101209A (en) Level shifter malfunction prevention circuit
JP2007259628A (en) Power supply circuit
JP6546955B2 (en) Switching power supply circuit
JP6959093B2 (en) Output circuit and semiconductor device
US20210367499A1 (en) Driving circuit for switching element and switching circuit
TWI501554B (en) Pulse generation circuit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605