JP2010206320A - Communication body for signal transmission, and coupler - Google Patents

Communication body for signal transmission, and coupler Download PDF

Info

Publication number
JP2010206320A
JP2010206320A JP2009047235A JP2009047235A JP2010206320A JP 2010206320 A JP2010206320 A JP 2010206320A JP 2009047235 A JP2009047235 A JP 2009047235A JP 2009047235 A JP2009047235 A JP 2009047235A JP 2010206320 A JP2010206320 A JP 2010206320A
Authority
JP
Japan
Prior art keywords
signal transmission
conductor
dielectric layer
communication body
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009047235A
Other languages
Japanese (ja)
Other versions
JP5251603B2 (en
Inventor
Nobuyuki Amano
信之 天野
Masanori Tsuji
政則 辻
Kaoru Sudo
薫 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2009047235A priority Critical patent/JP5251603B2/en
Publication of JP2010206320A publication Critical patent/JP2010206320A/en
Application granted granted Critical
Publication of JP5251603B2 publication Critical patent/JP5251603B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a communication body for signal transmission and a coupler, which are suitable for performing the data transmission of a wide band and a large capacity in a high frequency band such as a millimeter wave band, have a long communicable distance and need no space on a communication surface. <P>SOLUTION: The communication body 201 for signal transmission includes a disk-like external conductor 11 provided with a rotated trapezoid shape cavity TCV in the inside. The respective central axes of a rotated trapezoid shape internal conductor 12 disposed inside the rotated trapezoid shape cavity TCV in the state of being insulated from the external conductor 11 and the rotated trapezoid shape cavity TCV coincide, and the lower bottom surface of the rotated trapezoid shape internal conductor 12 matches with the first main surface of the external conductor 11. An internal dielectric layer 13 is provided in a region other than the region occupied by the internal conductor 12 inside the rotated trapezoid shape cavity TCV of the external conductor 11. By disposing the communication bodies 201 for the signal transmission closely and oppositely, the coupler capable of communication between the both communication bodies is configured. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、近接状態で通信を行う信号伝達装置用の通信体及び近接状態で互いに結合するカプラに関するものである。   The present invention relates to a communication body for a signal transmission device that performs communication in a proximity state and a coupler that is coupled to each other in a proximity state.

この発明の背景技術として下記の先行技術文献を挙げる。
[特許文献1]
図1は特許文献1に示されている通信装置の斜視図である。絶縁体のスペーサ109の上下の各表面に結合用電極108と折り畳み状のスタブ103が形成され、結合用電極108はスペーサ109内のスルーホール110を介してスタブ103の中央部分に接続されている。プリント基板101上には、送受信回路モジュール105から引き出された信号線パターンと、プリント基板101内のスルーホール106を介してグランド導体102と接続した導体パターン112が形成されている。スペーサ109をプリント基板101上に実装すると、スタブ103の両端は信号線パターン111と導体パターン112にそれぞれ接続される。
The following prior art documents are listed as background art of the present invention.
[Patent Document 1]
FIG. 1 is a perspective view of a communication device disclosed in Patent Document 1. In FIG. The coupling electrode 108 and the folded stub 103 are formed on the upper and lower surfaces of the insulating spacer 109, and the coupling electrode 108 is connected to the central portion of the stub 103 through the through hole 110 in the spacer 109. . On the printed circuit board 101, a signal line pattern drawn from the transmission / reception circuit module 105 and a conductor pattern 112 connected to the ground conductor 102 through the through hole 106 in the printed circuit board 101 are formed. When the spacer 109 is mounted on the printed circuit board 101, both ends of the stub 103 are connected to the signal line pattern 111 and the conductor pattern 112, respectively.

特開2008−154267号公報JP 2008-154267 A

ところが、図1に示したような従来の通信装置においては次のような問題がある。
(a)通信範囲が中心周波数の約半波長程度しかなく、ミリ波等の高い周波数では通信可能距離が数mm程度に限定される。
However, the conventional communication apparatus as shown in FIG. 1 has the following problems.
(A) The communication range is only about a half wavelength of the center frequency, and the communicable distance is limited to about several millimeters at high frequencies such as millimeter waves.

(b)周波数調整のためにプリント基板上に折り畳み状のスタブを形成する必要があり、プリント基板上にその分のスペースが必要である。 (B) Folded stubs need to be formed on the printed circuit board for frequency adjustment, and that much space is required on the printed circuit board.

そこで、この発明の目的は、例えばミリ波帯といった高い周波数帯で広帯域・大容量のデータ伝送を行うのに適し、通信可能距離が大きく、また通信面上にスペースが不要な信号伝達用通信体及びカプラを提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a signal transmission communication body suitable for performing wideband and large-capacity data transmission in a high frequency band such as a millimeter wave band, having a large communicable distance and requiring no space on the communication surface. And providing a coupler.

この発明の信号伝達用通信体は、互いに平行な第1主面及び第2主面を有し、内部に空洞部を備えた外導体と、前記空洞部内に前記外導体とは絶縁状態で配置された内導体と、前記空洞部内で前記内導体が占める領域以外に満たされる内部誘電体層と、前記外導体の前記第1主面側に配置された外部誘電体層と、を備え、
前記空洞部は、前記第1主面に垂直な直線を回転中心軸とする回転面を側面(内面)とし、前記第1主面を下底面、前記第2主面を前記下底面より径の小さな上底面とする回転台形状であり、
前記内導体は、前記直線を回転中心軸とする回転面を側面(外面)とし、前記第1主面を下底面、前記第2主面を前記下底面より径の小さな上底面とする回転台形状であり、
前記外部誘電体層の外面を通信用電磁波の入出力面とし、前記内導体の上底面に相当する位置を信号入出力部とする。
The communication body for signal transmission according to the present invention has a first main surface and a second main surface that are parallel to each other, and is arranged with an outer conductor having a hollow portion therein and in an insulated state in the hollow portion. An inner dielectric layer filled outside the region occupied by the inner conductor in the cavity, and an outer dielectric layer disposed on the first main surface side of the outer conductor,
The hollow portion has a rotation surface with a straight line perpendicular to the first main surface as a rotation center axis as a side surface (inner surface), the first main surface is a lower bottom surface, and the second main surface is smaller in diameter than the lower bottom surface. It is a rotating trapezoid with a small top and bottom surface,
The inner conductor has a rotating surface with the straight line as the rotation center axis as a side surface (outer surface), the first main surface as a lower bottom surface, and the second main surface as an upper bottom surface having a smaller diameter than the lower bottom surface. Shape,
An outer surface of the outer dielectric layer is used as an input / output surface for communication electromagnetic waves, and a position corresponding to the upper bottom surface of the inner conductor is used as a signal input / output unit.

なお、前記「回転台形状」は、[回転台][形状]の意味ではなく、[回転][台形][状]の意味で用いている。   The “rotary trapezoidal shape” is not used in the meaning of [rotary table] and [shape] but in the meaning of [rotation] [trapezoid] and [shape].

前記内導体の高さに対する下底面の直径の比は4以下とする。または前記回転台形状空洞部の高さに対する前記回転台形状空洞部の下底面の直径の比は4以下とする。   The ratio of the diameter of the lower bottom surface to the height of the inner conductor is 4 or less. Alternatively, the ratio of the diameter of the lower bottom surface of the rotary trapezoidal cavity to the height of the rotary trapezoidal cavity is set to 4 or less.

前記外部誘電体層の厚みは、通信に用いる周波数で、例えば約0.2波長に相当する寸法より薄くする。   The thickness of the external dielectric layer is a frequency used for communication, for example, smaller than a dimension corresponding to about 0.2 wavelength.

前記内導体及び前記外導体は、例えば多層基板の複数の層に形成された導体で構成され、前記内部誘電体層は前記多層基板の誘電体層で構成されたものとする。   The inner conductor and the outer conductor are composed of conductors formed on a plurality of layers of a multilayer substrate, for example, and the inner dielectric layer is composed of a dielectric layer of the multilayer substrate.

また、この発明のカプラは、前記信号伝達用通信体を送信側と受信側にそれぞれ少なくとも一つずつ備え、前記外導体及び前記内導体の下底面同士を対向させて構成する。   The coupler according to the present invention includes at least one signal transmission communication body on each of the transmission side and the reception side, and is configured such that the bottom surfaces of the outer conductor and the inner conductor face each other.

前記送信側または前記受信側の少なくとも一方の前記信号伝達用通信体は、ほぼ半波長以上のピッチで三つ以上配置されたものとする。   It is assumed that at least one of the signal transmission communication bodies on the transmitting side or the receiving side is arranged at a pitch of approximately half a wavelength or more.

この発明によれば、次のような効果を奏する。
(a)通信体の基本構造が信号線である内導体と接地導体である外導体が共に回転台形状であるので自己相似形を維持した同軸構造となり、単一モードの電磁波が伝搬されて広帯域特性を有するものとなる。
According to the present invention, the following effects can be obtained.
(A) Since the basic structure of the communication body is that the inner conductor as a signal line and the outer conductor as a ground conductor are both of a rotary trapezoid, the coaxial structure maintains a self-similar shape, and single-mode electromagnetic waves are propagated to wideband It has characteristics.

(b)通信体の基本構造が回転台形状内導体の中心軸に沿った回転対称構造であるため,前記中心軸に沿った回転自由度が確保される。 (B) Since the basic structure of the communication body is a rotationally symmetric structure along the central axis of the turntable-shaped inner conductor, a degree of freedom of rotation along the central axis is ensured.

(c)内導体と外導体との間に内部誘電体層、外導体の第1主面側に外部誘電体層がそれぞれ装荷された構造であるので、波長短縮効果による通信体形状の小型化が可能である。 (C) Since the inner dielectric layer is loaded between the inner conductor and the outer conductor, and the outer dielectric layer is loaded on the first main surface side of the outer conductor, the size of the communication body can be reduced by the wavelength shortening effect. Is possible.

(d)二つの信号伝達用通信体を略平行に配置すれば通信が行え、面内方向の配置の自由度が高まる。 (D) If two communication bodies for signal transmission are arranged substantially in parallel, communication can be performed and the degree of freedom of arrangement in the in-plane direction is increased.

(e)二つの通信体の平面方向及び間隔方向の結合範囲が所望の範囲となるように、信号伝達用通信体の各寸法を調整することで周辺の他システムへの電波干渉が軽減できる。 (E) Radio wave interference to other peripheral systems can be reduced by adjusting each dimension of the communication body for signal transmission so that the coupling range in the plane direction and the interval direction of the two communication bodies becomes a desired range.

特許文献1に示されている通信装置の斜視図である。1 is a perspective view of a communication device disclosed in Patent Document 1. FIG. 図2(A)は第1の実施形態に係る信号伝達用通信体の斜視図、図2(B)はその上面図、図2(C)は図2(B)におけるA−A部分の断面図、図2(D)は信号伝達用通信体201の下面図である。2A is a perspective view of the signal transmission communication body according to the first embodiment, FIG. 2B is a top view thereof, and FIG. 2C is a cross-sectional view taken along line AA in FIG. 2B. FIG. 2D is a bottom view of the signal transmission communication body 201. 図2(C)に示した信号伝達用通信体201の断面図における中央部の拡大図である。FIG. 3 is an enlarged view of a central portion in a cross-sectional view of the signal transmission communication body 201 illustrated in FIG. 第2の実施形態に係るカプラ301の斜視図である。It is a perspective view of the coupler 301 which concerns on 2nd Embodiment. 2つの信号伝達用通信体201,202の内導体12の下底面の直径φLbの大きさによる特性の違いを示す図である。It is a figure which shows the difference in the characteristic by the magnitude | size of the diameter (phi) Lb of the lower bottom face of the inner conductor 12 of the two communication bodies 201 and 202 for signal transmission. 2つの信号伝達用通信体201,202の回転台形状空洞部の下底面の直径φLaの大きさによる特性の違いを示す図である。It is a figure which shows the difference in the characteristic by the magnitude | size of diameter (phi) La of the lower bottom face of the rotary trapezoid-shaped cavity part of two communication bodies for signal transmission 201,202. 信号伝達用通信体201,202の外導体11の高さ(厚み)寸法cの大きさによる特性の違いを示す図である。It is a figure which shows the difference in the characteristic by the magnitude | size of the height (thickness) dimension c of the outer conductor 11 of the communication bodies 201 and 202 for signal transmission. 2つの信号伝達用通信体201,202の外部誘電体層14の厚み寸法dの変化による特性変化を示す図である。It is a figure which shows the characteristic change by the change of the thickness dimension d of the outer dielectric layer 14 of the two communication bodies 201 and 202 for signal transmission. 図4に示した2つの信号伝達用通信体201,202の相対的な位置関係による特性変化を示す図である。It is a figure which shows the characteristic change by the relative positional relationship of the two communication bodies 201 and 202 for signal transmission shown in FIG. 図10(A)は第3の実施形態に係る信号伝達用通信体203の断面図、図10(B)はその下面図である。FIG. 10A is a cross-sectional view of a signal transmission communication body 203 according to the third embodiment, and FIG. 10B is a bottom view thereof. 図11(A)は第4の実施形態に係る信号伝達用通信体204の透視斜視図、図11(B)はその上面図、図11(C)はその正面図である。11A is a perspective view of the signal transmission communication body 204 according to the fourth embodiment, FIG. 11B is a top view thereof, and FIG. 11C is a front view thereof. 第5の実施形態に係るカプラ302の斜視図である。It is a perspective view of the coupler 302 which concerns on 5th Embodiment. 第6の実施形態に係るカプラ303の斜視図である。It is a perspective view of coupler 303 concerning a 6th embodiment.

《第1の実施形態》
図2(A)は第1の実施形態に係る信号伝達用通信体の斜視図、図2(B)はその上面図、図2(C)は図2(B)におけるA−A部分の断面図、図2(D)は信号伝達用通信体201の下面図である。
<< First Embodiment >>
2A is a perspective view of the signal transmission communication body according to the first embodiment, FIG. 2B is a top view thereof, and FIG. 2C is a cross-sectional view taken along line AA in FIG. 2B. FIG. 2D is a bottom view of the signal transmission communication body 201.

この信号伝達用通信体201は、内部に回転台形状空洞部TCVを備えた円板状の外導体11を備えている。また信号伝達用通信体201は外導体11の回転台形状空洞部TCV内に外導体11とは絶縁状態で配置された回転台形状の内導体12を備えている。この回転台形状の内導体12と回転台形状空洞部TCVとはそれぞれの中心軸が一致している。この回転台形状の内導体12の下底面(面積の大きな側の平面)は外導体11の第1主面(図2(A)の向きで上面)と一致する。すなわち同一面を共有する。外導体11の回転台形状空洞部TCV内で内導体12が占める領域以外には内部誘電体層13が設けられている。すなわち、外導体11と内導体12との間は内部誘電体層13で充填されている。また、外導体11の第1主面側には外部誘電体層14が備えられている。   This signal transmission communication body 201 includes a disk-shaped outer conductor 11 having a rotary trapezoidal cavity TCV therein. The signal transmission communication body 201 includes a rotary trapezoidal inner conductor 12 disposed in an insulated state from the outer conductor 11 in the rotary trapezoidal cavity TCV of the outer conductor 11. The central axis of the rotary trapezoidal inner conductor 12 and the rotary trapezoidal cavity TCV coincide with each other. A lower bottom surface (a plane having a larger area) of the rotary trapezoidal inner conductor 12 coincides with a first main surface of the outer conductor 11 (upper surface in the direction of FIG. 2A). That is, they share the same surface. In addition to the region occupied by the inner conductor 12 in the rotary trapezoidal cavity TCV of the outer conductor 11, an inner dielectric layer 13 is provided. That is, the space between the outer conductor 11 and the inner conductor 12 is filled with the inner dielectric layer 13. An outer dielectric layer 14 is provided on the first main surface side of the outer conductor 11.

外導体11、内導体12及び内部誘電体層13は同軸線路構造を保ったまま外導体の内径(回転台形状空洞部TCVの外径)及び内導体の外径が次第に変化する構造を成している。   The outer conductor 11, the inner conductor 12, and the inner dielectric layer 13 have a structure in which the inner diameter of the outer conductor (the outer diameter of the rotary trapezoidal cavity TCV) and the outer diameter of the inner conductor gradually change while maintaining the coaxial line structure. ing.

ここで回転台形状空洞部TCVの下底面の直径をφLa、回転台形状空洞部TCVの上底面(面積の小さな側の平面)の直径をφUa、内導体12の下底面の直径をφLb、内導体12の上底面の直径をφUb、外導体11及び内導体12の高さをcとすると、こられは次のような関係にある。   Here, the diameter of the lower bottom surface of the rotary trapezoidal cavity portion TCV is φLa, the diameter of the upper bottom surface (plane having a smaller area) of the rotary trapezoidal cavity portion TCV is φUa, the diameter of the lower bottom surface of the inner conductor 12 is φLb, When the diameter of the upper bottom surface of the conductor 12 is φUb and the heights of the outer conductor 11 and the inner conductor 12 are c, these have the following relationship.

φLa/φLb≧φUa/φUb
すなわち、外導体11に形成された回転台形状空洞部TCVと内導体12の共通の中心軸上に沿って見たとき、外導体11の内径と内導体12の外径との比は一定であるか、または回転台形状空洞部TCVの広がり方の変化の方が大きい。すなわち、外導体の回転台形状空洞部TCVと内導体12とは相似形または略相似形である。そのため、外導体の回転台形状空洞部TCVの下底面(図3における上方の面)の直径を大きく広げることができ、且つ同軸線路の特性インピーダンスが急激に変化しないので、広帯域に亘って透過特性及び反射特性の安定した特性を得ることができる。
φLa / φLb ≧ φUa / φUb
That is, when viewed along the common central axis of the rotary trapezoidal cavity TCV formed in the outer conductor 11 and the inner conductor 12, the ratio between the inner diameter of the outer conductor 11 and the outer diameter of the inner conductor 12 is constant. There is a greater change in the way the rotating trapezoidal cavity TCV spreads. That is, the rotary trapezoidal cavity portion TCV of the outer conductor and the inner conductor 12 are similar or substantially similar. For this reason, the diameter of the lower bottom surface (upper surface in FIG. 3) of the rotary trapezoidal cavity TCV of the outer conductor can be greatly increased, and the characteristic impedance of the coaxial line does not change abruptly. In addition, stable characteristics of reflection characteristics can be obtained.

また、次の関係もある。
φLb/c≦4
すなわち、内導体12の高さcに対する下底面の直径φLbの比(すなわち形状比)は約4以下である。この構造により、第2の実施形態で具体例を示すように、低反射で透過特性の良好な周波数帯域を定めることができる。
なお、φLa/c≦4、すなわち、外導体11の回転台形状空洞部TCVの高さcに対する下底面の直径φLaの比を約4以下としてもよい。その場合も低反射で透過特性の良好な周波数帯域を調整できる。
図3は、図2(C)に示した信号伝達用通信体201の断面図における中央部の拡大図である。図中の各部の寸法と例えば次のとおりである。
There is also the following relationship.
φLb / c ≦ 4
That is, the ratio (that is, the shape ratio) of the diameter φLb of the lower bottom surface to the height c of the inner conductor 12 is about 4 or less. With this structure, as shown in a specific example in the second embodiment, a frequency band with low reflection and good transmission characteristics can be defined.
Note that φLa / c ≦ 4, that is, the ratio of the diameter φLa of the bottom surface to the height c of the rotary trapezoidal cavity TCV of the outer conductor 11 may be about 4 or less. Even in such a case, it is possible to adjust a frequency band with low reflection and good transmission characteristics.
FIG. 3 is an enlarged view of a central portion in the cross-sectional view of the signal transmission communication body 201 shown in FIG. The dimensions of each part in the figure are as follows, for example.

φLa=5.0mm
φLb=2.0mm
φUa=1.1mm
φUb=0.5mm
d=0.3mm
c=1.0mm
e=0.1mm
また、内部誘電体層13及び外部誘電体層14はそれぞれ比誘電率が2.2の誘電体(例えばフッ素系樹脂材料やポリエチレン等によるもの)である。
φLa = 5.0mm
φLb = 2.0mm
φUa = 1.1mm
φUb = 0.5mm
d = 0.3mm
c = 1.0mm
e = 0.1mm
The inner dielectric layer 13 and the outer dielectric layer 14 are each a dielectric having a relative dielectric constant of 2.2 (for example, a fluorine resin material or polyethylene).

図3に表れているように、厚み寸法eで示す部分では回転台形状空洞部TCVの直径(外導体11の内径)及び内導体12の外径寸法が一定であり、同軸線路として作用する。外導体11の回転台形状空洞部TCVによる開口部は第2主面(図3の向きで下面)の位置で非常に鋭角となり、加工及びその後の扱いが困難になるので、このように外導体11の内径寸法及び内導体12の外径寸法が一定の部分を設けている。   As shown in FIG. 3, in the portion indicated by the thickness dimension e, the diameter of the rotary trapezoidal cavity TCV (the inner diameter of the outer conductor 11) and the outer diameter dimension of the inner conductor 12 are constant and act as a coaxial line. The opening formed by the rotary trapezoidal cavity TCV of the outer conductor 11 has a very acute angle at the position of the second main surface (the lower surface in the direction of FIG. 3), and processing and subsequent handling becomes difficult. 11 has a portion with a constant inner diameter and an outer diameter of the inner conductor 12.

前記外導体11の第2主面は同軸線路系の信号入出力部として用いられる。また外部誘電体層14の外面が通信用電磁波の入出力面として用いられる。   The second main surface of the outer conductor 11 is used as a signal input / output unit of a coaxial line system. The outer surface of the external dielectric layer 14 is used as an input / output surface for communication electromagnetic waves.

《第2の実施形態》
第2の実施形態に係る信号伝達用通信体及びカプラの構成を図4〜図9を参照して説明する。
図4は第2の実施形態に係るカプラ301の斜視図である。このカプラ301は、第1の信号伝達用通信体201及び第2の信号伝達用通信体202で構成されている。第1の信号伝達用通信体201及び第2の信号伝達用通信体202の構成は、第1の実施形態として図2・図3に示したものと同様である。但し、図4に示す例では、第2の信号伝達用通信体202の外導体11の外径が第2の信号伝達用通信体201の外導体11の外径より小さく構成されている。なお、第2の実施形態では各部の寸法を示す符号については図3を参照する。
<< Second Embodiment >>
The configurations of the signal transmission communication body and the coupler according to the second embodiment will be described with reference to FIGS.
FIG. 4 is a perspective view of a coupler 301 according to the second embodiment. The coupler 301 includes a first signal transmission communication body 201 and a second signal transmission communication body 202. The configurations of the first signal transmission communication body 201 and the second signal transmission communication body 202 are the same as those shown in FIGS. 2 and 3 as the first embodiment. However, in the example illustrated in FIG. 4, the outer diameter of the outer conductor 11 of the second signal transmission communication body 202 is configured to be smaller than the outer diameter of the outer conductor 11 of the second signal transmission communication body 201. In the second embodiment, reference is made to FIG. 3 for symbols indicating the dimensions of the respective parts.

第2の信号伝達用通信体202は、その外部誘電体層14が第1の信号伝達用通信体201の外部誘電体層14に対面するように、第1の信号伝達用通信体201に近接される。   The second signal transmission communication body 202 is close to the first signal transmission communication body 201 such that the outer dielectric layer 14 faces the outer dielectric layer 14 of the first signal transmission communication body 201. Is done.

図4では、第2の信号伝達用通信体202の中心軸が第1の信号伝達用通信体201のZ軸(中心軸)からX−Y平面に沿ってdrだけずれている。また第2の信号伝達用通信体202の外部誘電体層14の外面と第1の信号伝達用通信体201の外部誘電体層14の外面とは間隔dzだけ生じている。   In FIG. 4, the central axis of the second signal transmission communication body 202 is shifted from the Z axis (center axis) of the first signal transmission communication body 201 by dr along the XY plane. Further, the outer surface of the outer dielectric layer 14 of the second signal transmission communication body 202 and the outer surface of the outer dielectric layer 14 of the first signal transmission communication body 201 are generated by a distance dz.

第1の信号伝達用通信体201及び第2の信号伝達用通信体202には同軸ケーブルと同様にTEMモードの信号が伝搬する。一方、第1の信号伝達用通信体201と第2の信号伝達用通信体202とが対向することによって、それぞれの外導体11−11による平行平板構造が生じ、その平行平板構造部に平行平板モードの電磁界が伝搬する。従って、2つの信号伝達用通信体201,202によって、TEMモード→平行平板モード→TEMモードの順に信号の伝搬モードが変換されて信号が伝達される。これにより、近接状態で通信を行うカプラとして作用する。   A TEM mode signal propagates to the first signal transmission communication body 201 and the second signal transmission communication body 202 in the same manner as the coaxial cable. On the other hand, when the first signal transmission communication body 201 and the second signal transmission communication body 202 face each other, a parallel plate structure is formed by the respective outer conductors 11-11. Mode electromagnetic field propagates. Therefore, the signal transmission modes are converted by the two signal transmission communication bodies 201 and 202 in the order of TEM mode → parallel plate mode → TEM mode, and the signal is transmitted. This acts as a coupler that performs communication in the proximity state.

図5は2つの信号伝達用通信体201,202の内導体12の下底面の直径φLbの大きさによる特性の違いを示す図である。図5(A)は、前記直径φLbをパラメータとした使用周波数帯を含む周波数範囲(50GHz〜70GHz)での反射特性、図5(B)は、同じく前記直径φLbをパラメータとした使用周波数帯を含む周波数範囲(50GHz〜70GHz)での透過特性である。いずれも、前記回転台形状空洞部TCVの下底面の直径は、前記内導体の下底面の直径φLbに比例する値とし、その他の寸法は第1の実施形態で示した値である。また、図4に示した水平方向のずれdrは0、間隙dzは0である。   FIG. 5 is a diagram illustrating a difference in characteristics depending on the diameter φLb of the bottom surface of the inner conductor 12 of the two signal transmission communication bodies 201 and 202. FIG. 5A shows reflection characteristics in a frequency range (50 GHz to 70 GHz) including a use frequency band using the diameter φLb as a parameter. FIG. 5B shows a use frequency band using the diameter φLb as a parameter. It is a transmission characteristic in a frequency range (50 GHz to 70 GHz) including. In any case, the diameter of the bottom surface of the rotary trapezoidal cavity TCV is a value proportional to the diameter φLb of the bottom surface of the inner conductor, and the other dimensions are the values shown in the first embodiment. Further, the horizontal shift dr shown in FIG. 4 is 0, and the gap dz is 0.

図5(A)に示されるように、内導体12の下底面の直径φLbが小さくなるほど、最も低反射になる周波数が上昇する傾向があることが分かる。また図5(B)に示されるように、前記下底面の直径φLbが小さくなるほど透過特性のピークの周波数(最も低挿入損失となる周波数)が上昇することが分かる。従って、用いる周波数帯に応じて前記内導体12の下底面の直径φLbの寸法を定めればよい。   As shown in FIG. 5A, it can be seen that the frequency at which reflection is lowest tends to increase as the diameter φLb of the bottom surface of the inner conductor 12 decreases. Further, as shown in FIG. 5B, it can be seen that the peak frequency of transmission characteristics (the frequency with the lowest insertion loss) increases as the diameter φLb of the lower bottom surface decreases. Accordingly, the diameter φLb of the bottom surface of the inner conductor 12 may be determined according to the frequency band to be used.

図6は2つの信号伝達用通信体201,202の回転台形状空洞部TCVの下底面の直径φLaの大きさによる特性の違いを示す図である。図6(A)は、前記直径φLaをパラメータとした使用周波数帯を含む周波数範囲(50GHz〜70GHz)での反射特性、図6(B)は、同じく前記直径φLaをパラメータとした使用周波数帯を含む周波数範囲(50GHz〜70GHz)での透過特性である。いずれも、前記内導体12の下底面の直径は、前記回転台形状空洞部TCVの直径φLaに比例する値とし、その他の寸法は第1の実施形態で示した値である。また、図4に示した水平方向のずれdrは0、間隙dzは0である。   FIG. 6 is a diagram showing a difference in characteristics depending on the diameter φLa of the bottom surface of the rotary trapezoidal cavity TCV of the two signal transmission communication bodies 201 and 202. 6A shows reflection characteristics in a frequency range (50 GHz to 70 GHz) including a use frequency band using the diameter φLa as a parameter, and FIG. 6B shows a use frequency band using the diameter φLa as a parameter. It is a transmission characteristic in a frequency range (50 GHz to 70 GHz) including. In any case, the diameter of the lower bottom surface of the inner conductor 12 is a value proportional to the diameter φLa of the rotary trapezoidal cavity TCV, and the other dimensions are the values shown in the first embodiment. Further, the horizontal shift dr shown in FIG. 4 is 0, and the gap dz is 0.

図6(A)に示されるように、回転台形状空洞部TCVの下底面の直径φLaが小さくなるほど、最も低反射になる周波数が上昇する傾向があることが分かる。また図6(B)に示されるように、前記下底面の直径φLaが小さくなるほど透過特性のピークの周波数(最も低挿入損失となる周波数)が上昇することが分かる。従って、用いる周波数帯に応じて前記回転台形状空洞部TCVの下底面の直径φLaの寸法を定めればよい。   As shown in FIG. 6A, it can be seen that the frequency at which the reflection is lowest tends to increase as the diameter φLa of the lower bottom surface of the rotary trapezoidal cavity TCV decreases. Further, as shown in FIG. 6B, it can be seen that the peak frequency of transmission characteristics (the frequency with the lowest insertion loss) increases as the diameter φLa of the lower bottom surface decreases. Therefore, the diameter φLa of the bottom surface of the rotary trapezoidal cavity TCV may be determined according to the frequency band to be used.

図7は信号伝達用通信体201,202の外導体11の高さ(厚み)寸法cの大きさによる特性の違いを示す図である。図7(A)は、前記高さ寸法cをパラメータとした使用周波数帯を含む周波数範囲(50GHz〜70GHz)での反射特性、図7(B)は、同じく前記高さ寸法cをパラメータとした使用周波数帯を含む周波数範囲(50GHz〜70GHz)での透過特性である。いずれも図4に示した水平方向のずれdrは0、間隙dzは1mmである。   FIG. 7 is a diagram showing a difference in characteristics depending on the height (thickness) dimension c of the outer conductor 11 of the signal transmission communication bodies 201 and 202. FIG. 7A shows reflection characteristics in a frequency range (50 GHz to 70 GHz) including a used frequency band with the height dimension c as a parameter, and FIG. 7B similarly uses the height dimension c as a parameter. It is a transmission characteristic in a frequency range (50 GHz to 70 GHz) including a use frequency band. In both cases, the horizontal shift dr shown in FIG. 4 is 0, and the gap dz is 1 mm.

図7(A)に示されるように、前記高さ寸法cが高くなるほど、反射損失の最も低くなる周波数帯が低下することが分かる。また図7(B)に示されるように、前記高さ寸法cが高くなるほど透過損失が最も低くなる周波数が低下することが分かる。   As shown in FIG. 7A, it can be seen that the higher the height dimension c, the lower the frequency band where reflection loss is lowest. Further, as shown in FIG. 7B, it can be seen that the frequency at which the transmission loss becomes the lowest decreases as the height dimension c increases.

このようにして内導体12の下底面の直径及び外導体11の高さ寸法cを適宜設計することによって使用周波数帯で低反射特性、低挿入損失特性のカプラが構成できる。   In this way, by appropriately designing the diameter of the bottom surface of the inner conductor 12 and the height c of the outer conductor 11, a coupler having low reflection characteristics and low insertion loss characteristics can be configured in the operating frequency band.

図8は、2つの信号伝達用通信体201,202の外部誘電体層14の厚み寸法dの変化による特性変化を示す図である。図8(A)は、前記厚み寸法dをパラメータとした使用周波数帯を含む周波数範囲(50GHz〜70GHz)での反射特性、図8(B)は、同じく前記厚み寸法dをパラメータとした使用周波数帯を含む周波数範囲(50GHz〜70GHz)での透過特性である。   FIG. 8 is a diagram showing a change in characteristics due to a change in the thickness dimension d of the outer dielectric layer 14 of the two signal transmission communication bodies 201 and 202. FIG. 8A shows reflection characteristics in a frequency range (50 GHz to 70 GHz) including a use frequency band with the thickness dimension d as a parameter, and FIG. 8B shows a use frequency with the thickness dimension d as a parameter. It is a transmission characteristic in a frequency range (50 GHz to 70 GHz) including a band.

図8(A)に表れているように、外部誘電体層14の厚み寸法dを厚くするほど低反射特性が得られる周波数が低下する。但し、厚くしすぎると(この例ではd=0.7mm)外部誘電体層14部分に表面波が生じるので反射特性は乱れることになる。   As shown in FIG. 8A, the frequency at which the low reflection characteristic is obtained decreases as the thickness dimension d of the outer dielectric layer 14 increases. However, if it is too thick (in this example, d = 0.7 mm), a surface wave is generated in the outer dielectric layer 14 portion, so that the reflection characteristics are disturbed.

図8(B)に表れているように、前記厚み寸法dを厚くするほど透過損失が最も低くなる周波数が低下することが分かる。   As shown in FIG. 8B, it can be seen that the frequency at which the transmission loss is lowest decreases as the thickness d is increased.

したがって外部誘電体層14に表面波が生じない範囲で外部誘電体層14の厚み寸法dを適宜定めることによって、使用周波数で低反射特性、低挿入損失特性のカプラが構成できる。図8(A)(B)に示した例では、使用周波数は60GHzであり、その波長は外部誘電体層14内で2〜3.5mmであって、d=0.5mm以下で低反射特性、低挿入損失特性が得られている。したがって、前記外部誘電体層14の厚みdは、通信に用いる周波数で、前記外部誘電体層内での波長で、約0.2波長に相当する寸法より薄くすればよい。   Therefore, by appropriately determining the thickness dimension d of the external dielectric layer 14 within a range where no surface wave is generated in the external dielectric layer 14, a coupler having low reflection characteristics and low insertion loss characteristics can be configured at the operating frequency. In the example shown in FIGS. 8A and 8B, the operating frequency is 60 GHz, the wavelength is 2 to 3.5 mm in the outer dielectric layer 14, and d = 0.5 mm or less and low reflection characteristics. Low insertion loss characteristics are obtained. Accordingly, the thickness d of the external dielectric layer 14 may be a frequency used for communication, which is a wavelength within the external dielectric layer and thinner than a dimension corresponding to about 0.2 wavelength.

図9は、図4に示した2つの信号伝達用通信体201,202の相対的な位置関係による特性変化を示す図である。図9(A)は、2つの信号伝達用通信体201−202間の間隙寸法dzをパラメータとした透過特性を示す図である。また図9(B)は2つの信号伝達用通信体201−202間の中心軸間の水平方向のずれdrをパラメータとした透過特性を示す図である。   FIG. 9 is a diagram illustrating a characteristic change due to a relative positional relationship between the two signal transmission communication bodies 201 and 202 illustrated in FIG. 4. FIG. 9A is a diagram showing the transmission characteristics using the gap dimension dz between the two signal transmission communication bodies 201-202 as a parameter. FIG. 9B is a diagram showing transmission characteristics using the horizontal shift dr between the central axes between the two signal transmission communication bodies 201-202 as a parameter.

なお、図9(A)は信号伝達用通信体201−202の中心軸間の水平方向のずれdrを0とした場合の特性、図9(B)は2つの信号伝達用通信体201−202間の間隙寸法dzを1mmとした場合の特性である。   9A shows characteristics when the horizontal shift dr between the central axes of the signal transmission communication bodies 201-202 is 0, and FIG. 9B shows two signal transmission communication bodies 201-202. This is the characteristic when the gap dimension dz is 1 mm.

図9(A)に示されるように、間隙dzが0mmまたは1mmのとき、広い周波数帯(50〜70GHz)に亘って−5dBの透過特性が得られることが分かる。また、間隙dzが2mmを超えると透過特性は急激に悪化することが分かる。この例では1mm以内に近接する2つの信号伝達用通信体同士で通信可能なカプラが構成される。また、5mm以上に離れると信号伝達用通信体同士は互いに影響を与えない。   As shown in FIG. 9A, it can be seen that when the gap dz is 0 mm or 1 mm, a transmission characteristic of −5 dB can be obtained over a wide frequency band (50 to 70 GHz). It can also be seen that if the gap dz exceeds 2 mm, the transmission characteristics deteriorate rapidly. In this example, a coupler capable of communicating between two signal transmission communicators close to each other within 1 mm is configured. When the distance is 5 mm or more, the signal transmission communication bodies do not affect each other.

図9(B)に示されるように、半径方向のずれdrが増大するほど透過特性は全体に低下する。この例では、drが2つの信号伝達用通信体201,202の外導体に形成されている回転台形状空洞部TCVの下底面の直径に等しい10mmで透過特性は−20dBである。しかし、このように大きくずれても広い周波数帯に亘って平坦な特性が維持される。従って2つの信号伝達用通信体201,202の外導体に形成されている回転台形状空洞部TCVの下底面同士が僅かでも対向する位置関係にあれば通信が可能であることが分かる。   As shown in FIG. 9B, the transmission characteristics decrease as the radial shift dr increases. In this example, dr is 10 mm equal to the diameter of the lower bottom surface of the rotary trapezoidal cavity TCV formed on the outer conductors of the two signal transmission communication bodies 201 and 202, and the transmission characteristic is −20 dB. However, even if such a large deviation occurs, flat characteristics are maintained over a wide frequency band. Therefore, it can be seen that communication is possible if the bottom surfaces of the rotary trapezoidal cavity TCV formed in the outer conductors of the two signal transmission communication bodies 201 and 202 are even slightly opposed to each other.

《第3の実施形態》
図10(A)は第3の実施形態に係る信号伝達用通信体203の断面図である。図10(B)はその下面図である。
この信号伝達用通信体203は、図2・図3に示した信号伝達用通信体201に対して信号入出力部を備えたものである。信号伝達用通信体203の主要部には、外導体11、内導体12、内部誘電体層13及び外部誘電体層14が設けられている。これらの部分は図2に示した信号伝達用通信体201で示したものと同じである。
<< Third Embodiment >>
FIG. 10A is a cross-sectional view of a signal transmission communication body 203 according to the third embodiment. FIG. 10B is a bottom view thereof.
The signal transmission communication body 203 is provided with a signal input / output unit with respect to the signal transmission communication body 201 shown in FIGS. An outer conductor 11, an inner conductor 12, an inner dielectric layer 13, and an outer dielectric layer 14 are provided in the main part of the signal transmission communication body 203. These portions are the same as those shown in the signal transmission communication body 201 shown in FIG.

板状の外導体11の下面には誘電体基板20を備えている。この誘電体基板20の図における上面(外導体11に接する側)には外導体11と接する部分に上面グランド導体21が形成されている。誘電体基板20の図における下面には図10(B)に表れているように中心導体22及び下面グランド導体23が形成されている。   A dielectric substrate 20 is provided on the lower surface of the plate-like outer conductor 11. On the upper surface (the side in contact with the outer conductor 11) of the dielectric substrate 20, an upper surface ground conductor 21 is formed in a portion in contact with the outer conductor 11. A center conductor 22 and a lower surface ground conductor 23 are formed on the lower surface of the dielectric substrate 20 as shown in FIG.

誘電体基板20の内部には、内導体12の端部と中心導体22の端部との間を導通させる内導体用ビア26が形成されている。また中心導体22を取り囲むように下面グランド導体23と上面グランド導体21との間を導通させる外導体用ビア25が配列形成されている。誘電体基板20の内部に構成される内導体用ビア26及び外導体用ビア25によって等価的な同軸線路が構成される。   Inside the dielectric substrate 20, an inner conductor via 26 is formed to conduct between the end of the inner conductor 12 and the end of the center conductor 22. Further, outer conductor vias 25 are formed so as to energize between the lower surface ground conductor 23 and the upper surface ground conductor 21 so as to surround the center conductor 22. An equivalent coaxial line is constituted by the inner conductor via 26 and the outer conductor via 25 which are formed inside the dielectric substrate 20.

また中心導体22、下面グランド導体23及び上面グランド導体21によってグランデッドコプレーナ線路が構成されている。従って誘電体基板20に形成された前記各種導体パターンによってグランデッドコプレーナ線路と同軸線路との線路変換が行われ、この信号伝達用通信体203を用いる電子機器の高周波回路との間はグランデッドコプレーナ線路で接続することができる。   The center conductor 22, the lower surface ground conductor 23, and the upper surface ground conductor 21 constitute a grounded coplanar line. Therefore, line conversion between a grounded coplanar line and a coaxial line is performed by the various conductor patterns formed on the dielectric substrate 20, and a grounded coplanar between the high frequency circuit of an electronic device using the signal transmission communication body 203 is used. It can be connected by a track.

なお、下面グランド導体23を設けなければ、図10における上面グランド導体21と中心導体22とによってマイクロストリップラインが構成される。したがって、前記高周波回路との間はマイクロストリップラインで接続することも可能である。   If the lower surface ground conductor 23 is not provided, the upper surface ground conductor 21 and the center conductor 22 in FIG. 10 constitute a microstrip line. Therefore, it is possible to connect the high frequency circuit with a microstrip line.

このようにして、外導体11、内導体12、内部誘電体層13、及び外部誘電体層14で構成された信号伝達用通信体の主要部とともに誘電体基板も薄型に構成できるので、全体に平板状の信号伝達用通信体203が構成できる。   In this way, the dielectric substrate can be made thin together with the main part of the signal transmission communication body constituted by the outer conductor 11, the inner conductor 12, the inner dielectric layer 13, and the outer dielectric layer 14, so that A flat signal transmission communication body 203 can be configured.

《第4の実施形態》
図11(A)は第4の実施形態に係る信号伝達用通信体204の透視斜視図、図11(B)はその上面図、図11(C)はその正面図である。
第4の実施形態に係る信号伝達用通信体は多層基板によって構成されたものである。多層基板30は所定パターンの導体及びビアが形成された複数のセラミックグリーンシートが積層されて焼成されたものである。各層には、それぞれ円形の領域を除いて外導体31が形成されている。但し、何層目であるかの位置に応じて前記円形部分の直径は異なる。なお、セラミックグリーンシートの誘電体部分に開口があるのではなく、外導体31が円形の開口を備えている。また、厚み方向に隣接する外導体31同士を導通させる外導体用ビア35が形成されている。この構造により、全体として「回転台形状空洞部」を備えた外導体が構成されている。
<< Fourth Embodiment >>
11A is a perspective view of the signal transmission communication body 204 according to the fourth embodiment, FIG. 11B is a top view thereof, and FIG. 11C is a front view thereof.
The signal transmission communication body according to the fourth embodiment is constituted by a multilayer substrate. The multilayer substrate 30 is obtained by laminating and firing a plurality of ceramic green sheets on which conductors and vias having a predetermined pattern are formed. Each layer is formed with an outer conductor 31 except for a circular region. However, the diameter of the circular portion varies depending on the position of the number of layers. It should be noted that the outer conductor 31 is provided with a circular opening rather than having an opening in the dielectric portion of the ceramic green sheet. In addition, an outer conductor via 35 is formed to connect the outer conductors 31 adjacent to each other in the thickness direction. With this structure, an outer conductor having a “rotary trapezoidal cavity” as a whole is configured.

同様に多層基板30の複数の層にはそれぞれ円形パターンの内導体32が形成されていて、厚み方向に隣接する内導体32同士を導通させる内導体用ビア36が形成されている。この構造により、回転台形状の内導体が構成されている。   Similarly, inner conductors 32 having a circular pattern are formed in each of the plurality of layers of the multilayer substrate 30, and inner conductor vias 36 are formed to connect the inner conductors 32 adjacent in the thickness direction. With this structure, a rotary trapezoidal inner conductor is formed.

図11(C)において、多層基板30の層領域DWに前記「回転台形状空洞部」及び前記回転台形状の内導体が構成されている。また、図11(C)に現れているように、多層基板30の表面付近には、所定厚みの誘電体層のみの層領域EDで外部誘電体層が構成されている。さらに、図11(C)に現れているように、多層基板30の下面付近の層領域CWには、前記「回転台形状空洞部」の最も狭い内径に等しい内径の内導体と、前記回転台形状の内導体の最も狭い外径に等しい外径の外導体とが構成されている。この層領域CWは同軸線路として作用する。   In FIG. 11C, the “rotating trapezoidal cavity” and the rotating trapezoidal inner conductor are formed in the layer region DW of the multilayer substrate 30. Further, as shown in FIG. 11C, an external dielectric layer is formed in the vicinity of the surface of the multilayer substrate 30 with a layer region ED of only a dielectric layer having a predetermined thickness. Furthermore, as shown in FIG. 11C, the layer region CW near the lower surface of the multilayer substrate 30 includes an inner conductor having an inner diameter equal to the narrowest inner diameter of the “rotary trapezoidal cavity”, and the rotary table. An outer conductor having an outer diameter equal to the narrowest outer diameter of the shaped inner conductor is formed. This layer region CW acts as a coaxial line.

前記層領域CWに構成された同軸線路部に対して信号を入出力するマイクロストリップラインやグランデッドコプレーナ線路を多層基板30内に構成してもよい。   A microstrip line or a grounded coplanar line for inputting / outputting signals to / from the coaxial line portion formed in the layer region CW may be formed in the multilayer substrate 30.

《第5の実施形態》
図12は第5の実施形態に係るカプラ302の斜視図である。このカプラ302は信号伝達用通信体の集合体210と信号伝達用通信体201とで構成されている。信号伝達用通信体の集合体210には信号伝達用通信体211,212,213,214が構成されている。
<< Fifth Embodiment >>
FIG. 12 is a perspective view of a coupler 302 according to the fifth embodiment. The coupler 302 includes a signal transmission communication body 210 and a signal transmission communication body 201. A signal transmission communication body 211, 212, 213, 214 is configured in the signal transmission communication body 210.

信号伝達用通信体の集合体210は、概略的には板状の外導体11と誘電体基板20とが積層されて構成されている。また、信号伝達用通信体211〜214の各々の構成は図10に示した信号伝達用通信体203と同様である。   An assembly 210 of signal transmission communication bodies is generally configured by laminating a plate-like outer conductor 11 and a dielectric substrate 20. The configuration of each of the signal transmission communication bodies 211 to 214 is the same as that of the signal transmission communication body 203 shown in FIG.

誘電体基板20の図における上面(外導体11に接する側)には外導体11と接する部分に上面グランド導体が形成されている。誘電体基板20の図における下面には線路導体24が形成され、この線路導体24と前記上面グランド導体とによってマイクロストリップラインが構成されている。   An upper surface ground conductor is formed in a portion in contact with the outer conductor 11 on the upper surface (the side in contact with the outer conductor 11) of the dielectric substrate 20. A line conductor 24 is formed on the lower surface of the dielectric substrate 20 in the figure, and the line conductor 24 and the upper surface ground conductor constitute a microstrip line.

前記線路導体24は図12に示されているように分岐されて、信号伝達用通信体211〜214の各々の内導体に導通する。これにより、信号伝達用通信体211〜214の各々に給電される。   The line conductor 24 is branched as shown in FIG. 12 and is electrically connected to the inner conductors of the signal transmission communication bodies 211 to 214. Thereby, power is supplied to each of the communication bodies 211 to 214 for signal transmission.

一方、信号伝達用通信体201の構造は図2・図3に示した信号伝達用通信体と同じである。この信号伝達用通信体201が信号伝達用通信体の集合体210に対面状態で近接することによって、両者間で通信がなされる。信号伝達用通信体の集合体210に対する信号伝達用通信体201のX−Y面に平行な水平面方向の位置に応じて、両者間の結合度が変化し、透過量・反射量が変化するが、どの位置にあっても、所定の透過量・反射量の範囲内に収まるように、信号伝達用通信体211〜214の配置ピッチを定めておく。   On the other hand, the structure of the signal transmission communication body 201 is the same as that of the signal transmission communication body shown in FIGS. When the signal transmission communicator 201 comes close to the signal transmission communicator aggregate 210 in a face-to-face state, communication is performed between the two. Depending on the position in the horizontal plane parallel to the XY plane of the signal transmission communicator 201 with respect to the signal transmission communicator aggregate 210, the degree of coupling between them changes, and the amount of transmission and reflection changes. The arrangement pitch of the communication bodies for signal transmission 211 to 214 is determined so as to be within a predetermined range of transmission and reflection at any position.

《第6の実施形態》
図13は第6の実施形態に係るカプラ303の斜視図である。このカプラ303は信号伝達用通信体の集合体220と信号伝達用通信体201とで構成されている。信号伝達用通信体の集合体220には信号伝達用通信体221,222,223,224が構成されている。
<< Sixth Embodiment >>
FIG. 13 is a perspective view of a coupler 303 according to the sixth embodiment. The coupler 303 includes an assembly 220 of signal transmission communication bodies and a signal transmission communication body 201. The signal transmission communication bodies 221, 222, 223, and 224 are configured in the signal transmission communication body 220.

信号伝達用通信体の集合体220は、概略的には板状の外導体11と誘電体基板20とが積層されて構成されている。信号伝達用通信体221〜224の各々の構成は図10に示した信号伝達用通信体203と同様である。また、図12に示した例とは信号伝達用通信体221〜224の配置パターンが異なる。   The assembly 220 of signal transmission communication bodies is generally configured by laminating a plate-like outer conductor 11 and a dielectric substrate 20. The configuration of each of the signal transmission communication bodies 221 to 224 is the same as that of the signal transmission communication body 203 shown in FIG. Also, the arrangement pattern of the signal transmission communication bodies 221 to 224 is different from the example shown in FIG.

誘電体基板20の図における上面(外導体11に接する側)には外導体11と接する部分に上面グランド導体が形成されている。誘電体基板20の図における下面には線路導体24が形成され、この線路導体24と前記上面グランド導体とによってマイクロストリップラインが構成されている。   An upper surface ground conductor is formed in a portion in contact with the outer conductor 11 on the upper surface (the side in contact with the outer conductor 11) of the dielectric substrate 20. A line conductor 24 is formed on the lower surface of the dielectric substrate 20 in the figure, and the line conductor 24 and the upper surface ground conductor constitute a microstrip line.

前記線路導体24は図13に示されているように分岐されて、信号伝達用通信体221〜224の各々の内導体に導通する。これにより、信号伝達用通信体221〜224の各々に給電される。   The line conductor 24 is branched as shown in FIG. 13 and is conducted to the inner conductors of the signal transmission communication bodies 221 to 224. Accordingly, power is supplied to each of the signal transmission communication bodies 221 to 224.

信号伝達用通信体201の構造は図2・図3に示した信号伝達用通信体と同じである。この信号伝達用通信体201が信号伝達用通信体の集合体220に対面状態で近接することによって、両者間で通信がなされる。図12に示したカプラの場合と同様に、信号伝達用通信体の集合体220に対する信号伝達用通信体201のX−Y面に平行な水平面方向の位置に応じて、両者間の結合度が変化し、透過量・反射量が変化する。したがって、どの位置にあっても、所定の透過量・反射量の範囲内に収まるように、信号伝達用通信体221〜224の配置ピッチを予め定めておく。   The structure of the signal transmission communication body 201 is the same as that of the signal transmission communication body shown in FIGS. When the signal transmission communication body 201 comes close to the signal transmission communication body 220 in a face-to-face state, communication is performed between the two. As in the case of the coupler shown in FIG. 12, the degree of coupling between the two is dependent on the position in the horizontal plane parallel to the XY plane of the signal transmission communication body 201 with respect to the signal transmission communication body 220. The amount of transmission and reflection changes. Accordingly, the arrangement pitch of the communication bodies for signal transmission 221 to 224 is determined in advance so as to be within a predetermined range of transmission amount / reflection amount at any position.

なお、第5の実施形態及び第6の実施形態のいずれも場合も、隣接する二つの信号伝達用通信体の配置ピッチが半波長であると、その二つの信号伝達用通信体の中間位置に相手側の信号伝達用通信体が対向したとき、結合量が0になってしまうので、前記信号伝達用通信体211〜214の配置ピッチは半波長以上のピッチで配置すればよい。   In both cases of the fifth embodiment and the sixth embodiment, if the arrangement pitch of two adjacent signal transmission communication bodies is a half wavelength, the signal transmission communication body is positioned at an intermediate position between the two signal transmission communication bodies. When the signal transmission communication body on the other side faces, the coupling amount becomes 0. Therefore, the arrangement pitch of the signal transmission communication bodies 211 to 214 may be arranged at a half wavelength or more.

第5の実施形態及び第6の実施形態のいずれも場合も、互いに対向する信号伝達用通信体の一方が送信側である場合に他方は受信側となるが、この送信側と受信側の両方の信号伝達用通信体が、複数の信号伝達用通信体の集合体であってもよい。   In both cases of the fifth embodiment and the sixth embodiment, when one of the signal transmission communication bodies facing each other is the transmission side, the other is the reception side. Both the transmission side and the reception side The signal transmission communication body may be an aggregate of a plurality of signal transmission communication bodies.

また、以上に示した各実施形態では、回転台形状内導体及び回転台形状空洞部が共に円錐台状である例を示したが、第1主面に垂直な直線を回転中心軸とする回転面は必ずしも円錐の側面である必要はない。   Further, in each of the embodiments described above, the example in which both the rotary trapezoidal inner conductor and the rotary trapezoidal cavity are frustoconical has been shown. However, the rotation with the straight line perpendicular to the first main surface as the rotation center axis is shown. The surface does not necessarily have to be a conical side.

すなわち、同軸入出力部と回転台形状の下底面の間でインピーダンスマッチングがとれるように回転台形状の内導体12と回転台形状空洞部TCVの断面形状の変化でインピーダンスが徐々に変換されればよいので、回転面は必ずしも円錐の側面である必要はなく、例えば湾曲したホーン状等であってもよい。   That is, if the impedance is gradually converted by changing the cross-sectional shape of the rotary trapezoidal inner conductor 12 and the rotary trapezoidal cavity TCV so that impedance matching can be achieved between the coaxial input / output portion and the bottom bottom of the rotary trapezoid. Therefore, the rotation surface does not necessarily have to be a conical side surface, and may be, for example, a curved horn shape.

11…外導体
12…内導体
13…内部誘電体層
14…外部誘電体層
20…誘電体基板
21…上面グランド導体
22…中心導体
23…下面グランド導体
24…線路導体
25…外導体用ビア
26…内導体用ビア
30…多層基板
31…外導体
32…内導体
35…外導体用ビア
36…内導体用ビア
201,202,203,204…信号伝達用通信体
210,220…信号伝達用通信体の集合体
211,212,213,214…信号伝達用通信体
221,222,223,224…信号伝達用通信体
301,302,303…カプラ
TCV…回転台形状空洞部
DESCRIPTION OF SYMBOLS 11 ... Outer conductor 12 ... Inner conductor 13 ... Inner dielectric layer 14 ... Outer dielectric layer 20 ... Dielectric substrate 21 ... Upper surface ground conductor 22 ... Center conductor 23 ... Lower surface ground conductor 24 ... Line conductor 25 ... Outer conductor via 26 ... inner conductor via 30 ... multilayer substrate 31 ... outer conductor 32 ... inner conductor 35 ... outer conductor via 36 ... inner conductor vias 201, 202, 203, 204 ... signal transmission communication body 210,220 ... signal transmission communication Aggregation of bodies 211, 212, 213, 214 ... Communications for signal transmission 221,222,223,224 ... Communications for signal transmission 301,302,303 ... Coupler TCV ... Turn trapezoidal cavity

Claims (6)

互いに平行な第1主面及び第2主面を有し、内部に空洞部を備えた外導体と、前記空洞部内に前記外導体とは絶縁状態で配置された内導体と、前記空洞部内で前記内導体が占める領域以外に満たされる内部誘電体層と、前記外導体の前記第1主面側に配置された外部誘電体層と、を備え、
前記空洞部は、前記第1主面に垂直な直線を回転中心軸とする回転面を側面とし、前記第1主面を下底面、前記第2主面を前記下底面より径の小さな上底面とする回転台形状であり、
前記内導体は、前記直線を回転中心軸とする回転面を側面とし、前記第1主面を下底面、前記第2主面を前記下底面より径の小さな上底面とする回転台形状であり、
前記外部誘電体層の外面を通信用電磁波の入出力面とし、前記内導体の上底面に相当する位置を信号入出力部とする信号伝達用通信体。
An outer conductor having a first main surface and a second main surface parallel to each other and having a cavity therein; an inner conductor disposed in an insulated state in the cavity; and in the cavity An inner dielectric layer filled in a region other than the region occupied by the inner conductor, and an outer dielectric layer disposed on the first main surface side of the outer conductor,
The hollow portion has a rotation surface with a straight line perpendicular to the first main surface as a rotation center axis as a side surface, the first main surface as a lower bottom surface, and the second main surface as an upper bottom surface having a smaller diameter than the lower bottom surface. And a rotating trapezoid shape
The inner conductor has a rotary trapezoidal shape in which a rotation surface having the straight line as a rotation center axis is a side surface, the first main surface is a lower bottom surface, and the second main surface is an upper bottom surface having a smaller diameter than the lower bottom surface. ,
A signal transmission communication body in which an outer surface of the outer dielectric layer is an input / output surface for electromagnetic waves for communication, and a position corresponding to the upper and lower surfaces of the inner conductor is a signal input / output unit.
前記内導体の高さに対する下底面の直径の比が4以下である、または前記回転台形状空洞部の高さに対する前記回転台形状空洞部の下底面の直径の比が4以下である、請求項1に記載の信号伝達用通信体。   The ratio of the diameter of the bottom surface to the height of the inner conductor is 4 or less, or the ratio of the diameter of the bottom surface of the rotating trapezoidal cavity to the height of the rotating trapezoidal cavity is 4 or less. Item 4. The communication body for signal transmission according to Item 1. 前記外部誘電体層の厚みは、通信に用いる周波数で、約0.2波長に相当する寸法より薄い、請求項1または2に記載の信号伝達用通信体。   3. The signal transmission communication body according to claim 1, wherein a thickness of the external dielectric layer is a frequency used for communication and is thinner than a dimension corresponding to about 0.2 wavelength. 4. 前記内導体及び前記外導体は多層基板の複数の層に形成された導体で構成され、前記内部誘電体層は前記多層基板の誘電体層で構成された、請求項1〜3のいずれかに記載の信号伝達用通信体。   The inner conductor and the outer conductor are composed of conductors formed on a plurality of layers of a multilayer substrate, and the inner dielectric layer is composed of a dielectric layer of the multilayer substrate. The communication body for signal transmission described. 請求項1〜4のいずれかに記載の前記信号伝達用通信体を送信側と受信側にそれぞれ少なくとも一つずつ備え、前記外導体及び前記内導体の下底面同士を対向させたカプラ。   5. A coupler comprising at least one communication body for signal transmission according to claim 1 on each of a transmission side and a reception side, wherein the bottom surfaces of the outer conductor and the inner conductor face each other. 前記送信側または前記受信側の少なくとも一方の前記信号伝達用通信体は、ほぼ半波長以上のピッチで三つ以上配置された、請求項5に記載のカプラ。   The coupler according to claim 5, wherein at least one of the signal transmission communication bodies on the transmission side or the reception side is arranged at three or more at a pitch of approximately half wavelength or more.
JP2009047235A 2009-02-27 2009-02-27 Communication body and coupler for signal transmission Expired - Fee Related JP5251603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009047235A JP5251603B2 (en) 2009-02-27 2009-02-27 Communication body and coupler for signal transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009047235A JP5251603B2 (en) 2009-02-27 2009-02-27 Communication body and coupler for signal transmission

Publications (2)

Publication Number Publication Date
JP2010206320A true JP2010206320A (en) 2010-09-16
JP5251603B2 JP5251603B2 (en) 2013-07-31

Family

ID=42967396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009047235A Expired - Fee Related JP5251603B2 (en) 2009-02-27 2009-02-27 Communication body and coupler for signal transmission

Country Status (1)

Country Link
JP (1) JP5251603B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8674791B2 (en) 2010-09-21 2014-03-18 Tdk Corporation Signal transmission device, filter, and inter-substrate communication device
US8810338B2 (en) 2010-08-31 2014-08-19 Tdk Corporation Signal transmission device, filter, and inter-substrate communication device
US8823216B2 (en) 2010-08-31 2014-09-02 Tdk Corporation Signal transmission device, filter, and inter-substrate communication device
US8866568B2 (en) 2010-08-31 2014-10-21 Tdk Corporation Signal transmission device, filter, and inter-substrate communication device
US9054428B2 (en) 2010-12-28 2015-06-09 Tdk Corporation Antenna and wireless communication unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110707A (en) * 2007-10-26 2009-05-21 Olympus Corp Connector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110707A (en) * 2007-10-26 2009-05-21 Olympus Corp Connector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8810338B2 (en) 2010-08-31 2014-08-19 Tdk Corporation Signal transmission device, filter, and inter-substrate communication device
US8823216B2 (en) 2010-08-31 2014-09-02 Tdk Corporation Signal transmission device, filter, and inter-substrate communication device
US8866568B2 (en) 2010-08-31 2014-10-21 Tdk Corporation Signal transmission device, filter, and inter-substrate communication device
US9166265B2 (en) 2010-08-31 2015-10-20 Tdk Corporation Signal transmission device, filter, and inter-substrate communication device
US8674791B2 (en) 2010-09-21 2014-03-18 Tdk Corporation Signal transmission device, filter, and inter-substrate communication device
US9054428B2 (en) 2010-12-28 2015-06-09 Tdk Corporation Antenna and wireless communication unit

Also Published As

Publication number Publication date
JP5251603B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
EP3888186B1 (en) Ridge gap waveguide and multilayer antenna array including the same
JP5072968B2 (en) Waveguide connection structure
JP5688977B2 (en) Input / output connection structure of dielectric waveguide
WO2011092918A1 (en) Broadband antenna
JP2006024618A (en) Wiring board
JP5251603B2 (en) Communication body and coupler for signal transmission
US20050030124A1 (en) Transmission line transition
JP6907918B2 (en) Connector and connector flat line connection structure
JP2005051331A (en) Coupling structure between microstrip line and dielectric waveguide
JP3517143B2 (en) Connection structure between dielectric waveguide line and high-frequency line conductor
JPH11308001A (en) Connection structure for dielectric waveguide line
JP2010074794A (en) Coupler and communication device
JP3517148B2 (en) Connection structure between dielectric waveguide line and high-frequency line conductor
KR20100005616A (en) Rf transmission line for preventing loss
JP2007329908A (en) Dielectric substrate, waveguide tube, and transmission line transition device
JPH11308025A (en) Directional coupler
JP3522120B2 (en) Connection structure of dielectric waveguide line
JP3439973B2 (en) Branch structure of dielectric waveguide
JP3517140B2 (en) Connection structure between dielectric waveguide line and high frequency line
JP2005109933A (en) Conversion circuit
JP2006245863A (en) Flexible stripline
JP2000174515A (en) Coplanar waveguide - waveguide converter
JP3517097B2 (en) Branch structure of dielectric waveguide
CN114284672B (en) Waveguide conversion device, circuit module, and electromagnetic wave conversion method
WO2023119706A1 (en) Transmission line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Ref document number: 5251603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees