JP2010206132A - Semiconductor device, and method of manufacturing semiconductor device - Google Patents

Semiconductor device, and method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2010206132A
JP2010206132A JP2009053080A JP2009053080A JP2010206132A JP 2010206132 A JP2010206132 A JP 2010206132A JP 2009053080 A JP2009053080 A JP 2009053080A JP 2009053080 A JP2009053080 A JP 2009053080A JP 2010206132 A JP2010206132 A JP 2010206132A
Authority
JP
Japan
Prior art keywords
semiconductor element
substrate
semiconductor device
bonded
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009053080A
Other languages
Japanese (ja)
Other versions
JP5381175B2 (en
Inventor
Mitsuru Adachi
充 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2009053080A priority Critical patent/JP5381175B2/en
Publication of JP2010206132A publication Critical patent/JP2010206132A/en
Application granted granted Critical
Publication of JP5381175B2 publication Critical patent/JP5381175B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the variations in thickness of an adhesive layer that accompanies the warping of a semiconductor element, in a semiconductor device wherein a heat dissipation member is adhered to the semiconductor element mounted on a substrate to transfer the heat generated in the semiconductor element to the heat dissipation member to dissipate it. <P>SOLUTION: The semiconductor device 1 is equipped with a substrate 2, a semiconductor element 3 mounted on the substrate 2, with a first surface opposite to the substrate 2, and a heat dissipation member 4 adhered to a second surface of the semiconductor element 3 with an adhesive layer 8 in between. The heat dissipation member 4 has a to-be-adhered surface 10 to which the second surface of the semiconductor element 3 is to be adhered, and the to-be-adhered surface 10 is formed in a curved state in conformity with the warping of the semiconductor element 3. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体装置及び半導体装置の製造方法に関する。   The present invention relates to a semiconductor device and a method for manufacturing the semiconductor device.

近年のCPU(Central Processing Unit)やGPU(Graphics Processing Unit)に代表される半導体素子の高速化及び高機能化に伴い、半導体素子からの発熱量が増大している。そして、半導体素子の性能維持のために半導体パッケージにおける放熱設計の重要性が増してきている。そこで、半導体パッケージの組立工程又はシステム組立工程において、半導体素子に放熱部材を装着することで、放熱性を高める手法が採られている(例えば、特許文献1を参照)。   2. Description of the Related Art With the recent increase in speed and functionality of semiconductor elements typified by CPU (Central Processing Unit) and GPU (Graphics Processing Unit), the amount of heat generated from the semiconductor elements is increasing. In order to maintain the performance of semiconductor elements, the importance of heat radiation design in semiconductor packages is increasing. In view of this, in a semiconductor package assembling process or system assembling process, a method of improving the heat radiation property by attaching a heat radiating member to the semiconductor element is adopted (for example, see Patent Document 1).

図12は従来の半導体装置の構成を示す側断面図である。図示した半導体装置51は、大きくは、基板52と、半導体素子53と、放熱部材54とを備えた構成となっている。基板52は、両面プリント配線基板を用いて構成されている。半導体素子53は、例えばシリコンチップからなる半導体チップによって構成されている。半導体素子53の第1面には、図示しない半導体集積回路とともに、複数の接続端子55が設けられている。各々の接続端子55は、これを形成する導電材料として、例えばハンダ材料からなるハンダボールによって形成されている。半導体素子53は、回路形成面となる第1面(活性面)を下向きにした、いわゆるフェースダウン構造で、基板52の上面にフリップチップ方式で実装されている。   FIG. 12 is a side sectional view showing a configuration of a conventional semiconductor device. The illustrated semiconductor device 51 is largely configured to include a substrate 52, a semiconductor element 53, and a heat dissipation member 54. The board | substrate 52 is comprised using the double-sided printed wiring board. The semiconductor element 53 is constituted by a semiconductor chip made of, for example, a silicon chip. A plurality of connection terminals 55 are provided on the first surface of the semiconductor element 53 together with a semiconductor integrated circuit (not shown). Each connection terminal 55 is formed of, for example, a solder ball made of a solder material as a conductive material for forming the connection terminal 55. The semiconductor element 53 has a so-called face-down structure in which a first surface (active surface) serving as a circuit formation surface faces downward, and is mounted on the upper surface of the substrate 52 by a flip chip method.

基板52の上面には、半導体素子53の実装位置や接続端子55の配置に合わせて複数の電極部(不図示)が設けられている。また、基板52の下面には、複数の外部接続端子56が設けられている。半導体素子53の接続端子55は、基板52上の電極部に電気的かつ機械的に接続されている。基板52と半導体素子53との間(隙間部分)には封止樹脂57が充填されている。放熱部材54は、金属板によって構成されている。放熱部材54は、熱硬化性樹脂からなる接着層58を介して半導体素子53の第2面に接着されている。   A plurality of electrode portions (not shown) are provided on the upper surface of the substrate 52 in accordance with the mounting position of the semiconductor element 53 and the arrangement of the connection terminals 55. A plurality of external connection terminals 56 are provided on the lower surface of the substrate 52. The connection terminal 55 of the semiconductor element 53 is electrically and mechanically connected to the electrode portion on the substrate 52. A sealing resin 57 is filled between the substrate 52 and the semiconductor element 53 (gap portion). The heat radiating member 54 is formed of a metal plate. The heat radiating member 54 is bonded to the second surface of the semiconductor element 53 through an adhesive layer 58 made of a thermosetting resin.

上記構成からなる半導体装置51を製造する場合は、まず、基板52に半導体素子53を実装し、その後、半導体素子53に放熱部材54を接着している。   When manufacturing the semiconductor device 51 having the above-described configuration, first, the semiconductor element 53 is mounted on the substrate 52, and then the heat dissipation member 54 is bonded to the semiconductor element 53.

特開2007−134472号公報JP 2007-134472 A

しかしながら、半導体素子53に放熱部材54を接着する前の工程では、エポキシ樹脂等の熱硬化性樹脂からなる封止樹脂57を加熱により硬化させるときに、半導体素子53に反りが生じた状態になる。半導体素子53の反りは、半導体素子53と基板52との熱膨張係数差や、半導体素子53と封止樹脂57との熱膨張係数差などにより発生する。基板52を有機系材料で構成した場合は、半導体素子53の第2面(上面)が凸面状となるような反りが生じやすくなる。   However, in the step before bonding the heat dissipation member 54 to the semiconductor element 53, the semiconductor element 53 is warped when the sealing resin 57 made of a thermosetting resin such as an epoxy resin is cured by heating. . The warp of the semiconductor element 53 occurs due to a difference in thermal expansion coefficient between the semiconductor element 53 and the substrate 52, a difference in thermal expansion coefficient between the semiconductor element 53 and the sealing resin 57, or the like. When the substrate 52 is made of an organic material, warpage such that the second surface (upper surface) of the semiconductor element 53 becomes convex is likely to occur.

上述のように半導体素子53に反りが生じた状態で放熱部材54を接着すると、両者の間に介在する接着層58の厚みが部分的に異なるものとなる。具体的には、半導体素子53の中央部では接着層58の厚みが相対的に薄くなり、半導体素子53の端部(外周部)では接着層58の厚みが相対的に厚くなる。半導体素子53から放熱部材54への熱伝達率は、接着層58の厚みが増すほど低下する。このため、接着層58が厚くなる半導体素子53の端部側では熱伝導性が悪化し、このことが半導体装置51としての放熱性を阻害する1つの要因になっている。   When the heat dissipation member 54 is bonded in a state where the semiconductor element 53 is warped as described above, the thickness of the adhesive layer 58 interposed therebetween is partially different. Specifically, the thickness of the adhesive layer 58 is relatively thin at the central portion of the semiconductor element 53, and the thickness of the adhesive layer 58 is relatively thick at the end portion (outer peripheral portion) of the semiconductor element 53. The heat transfer rate from the semiconductor element 53 to the heat dissipation member 54 decreases as the thickness of the adhesive layer 58 increases. For this reason, the thermal conductivity deteriorates on the end portion side of the semiconductor element 53 where the adhesive layer 58 becomes thick, and this is one factor that hinders the heat dissipation as the semiconductor device 51.

本発明は、基板に実装された半導体素子に放熱部材を接着することにより、半導体素子で発生した熱を放熱部材に伝えて放熱する半導体装置において、半導体素子の反りに伴う接着層の厚みのバラツキを低減することができる技術を提供することを目的とする。   The present invention provides a semiconductor device that transfers heat generated by a semiconductor element to the heat dissipation member by adhering the heat dissipation member to the semiconductor element mounted on the substrate, thereby dissipating the thickness of the adhesive layer due to warping of the semiconductor element. An object of the present invention is to provide a technique capable of reducing the above.

本発明に係る半導体装置は、基板と、前記基板に第1面を対向させた状態で実装された半導体素子と、前記半導体素子の第2面に接着層を介して接着された放熱部材とを備え、前記放熱部材は、前記半導体素子の第2面が接着される被接着面を有し、かつ当該被接着面が前記半導体素子の反りに合わせて湾曲した状態で形成された構成となっている。   A semiconductor device according to the present invention includes a substrate, a semiconductor element mounted with the first surface facing the substrate, and a heat dissipation member bonded to the second surface of the semiconductor element via an adhesive layer. The heat dissipation member has a surface to be bonded to which the second surface of the semiconductor element is bonded, and the surface to be bonded is curved in accordance with the warp of the semiconductor element. Yes.

本発明に係る半導体装置においては、基板に実装された半導体素子の反りに合わせて放熱部材の被接着面を湾曲状態で形成し、この被接着面に接着層を介して半導体素子の第2面を接着することにより、接着層の厚みが均一化される。   In the semiconductor device according to the present invention, the adherend surface of the heat radiating member is formed in a curved state in accordance with the warp of the semiconductor element mounted on the substrate, and the second surface of the semiconductor element is formed on the adherend surface via an adhesive layer. By bonding, the thickness of the adhesive layer is made uniform.

本発明によれば、基板に実装される半導体素子に反りが生じていても、半導体素子と放熱部材との間に均一な厚みで接着層を形成することができる。このため、接着層の厚みのバラツキに伴う熱伝導性の悪化を防止して、半導体装置の放熱性を向上させることができる。   According to the present invention, even when the semiconductor element mounted on the substrate is warped, the adhesive layer can be formed with a uniform thickness between the semiconductor element and the heat dissipation member. For this reason, it is possible to prevent the heat conductivity from deteriorating due to the variation in the thickness of the adhesive layer, and to improve the heat dissipation of the semiconductor device.

本発明の第1の実施の形態に係る半導体装置の構成を示す側断面図である。1 is a side sectional view showing a configuration of a semiconductor device according to a first embodiment of the present invention. 本発明の第1の実施の形態に係る半導体装置の製造方法を説明する図(その1)である。It is FIG. (1) explaining the manufacturing method of the semiconductor device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る半導体装置の製造方法を説明する図(その2)である。It is FIG. (2) explaining the manufacturing method of the semiconductor device which concerns on the 1st Embodiment of this invention. 半導体素子の反りの状態例を示す図である。It is a figure which shows the example of the state of the curvature of a semiconductor element. 本発明の第1の実施の形態に係る半導体装置の製造方法を説明する図(その3)である。It is FIG. (3) explaining the manufacturing method of the semiconductor device which concerns on the 1st Embodiment of this invention. 半導体素子の反りの状態例を示す図である。It is a figure which shows the example of the state of the curvature of a semiconductor element. 本発明の第2の実施の形態に係る半導体装置の構成を示す側断面図である。It is a sectional side view which shows the structure of the semiconductor device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る半導体装置に用いられる放熱部材の構造を説明する図である。It is a figure explaining the structure of the heat radiating member used for the semiconductor device which concerns on the 2nd Embodiment of this invention. 半導体素子の反りの状態例を示す図である。It is a figure which shows the example of the state of the curvature of a semiconductor element. 本発明の第1変形例を説明する側断面図である。It is a sectional side view explaining the 1st modification of this invention. 本発明の第2変形例を説明する側断面図である。It is a sectional side view explaining the 2nd modification of the present invention. 従来の半導体装置の構成を示す側断面図である。It is a sectional side view which shows the structure of the conventional semiconductor device.

以下、本発明の具体的な実施の形態について図面を参照しつつ詳細に説明する。なお、本発明の技術的範囲は以下に記述する実施の形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。   Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that the technical scope of the present invention is not limited to the embodiments described below, and various modifications and improvements have been made within the scope of deriving specific effects obtained by the constituent requirements of the invention and combinations thereof. Including form.

本発明の実施の形態については、以下の順序で説明する。
1.第1の実施の形態
2.第2の実施の形態
3.変形例
Embodiments of the present invention will be described in the following order.
1. 1. First embodiment 2. Second embodiment Modified example

<1.第1の実施の形態>
[半導体装置の構成]
図1は本発明の第1の実施の形態に係る半導体装置の構成を示す側断面図である。図示した半導体装置1は、大きくは、基板2と、半導体素子3と、放熱部材4とを備えた構成となっている。基板2は、例えばガラスエポキシなどの有機系材料を基材とした両面プリント配線基板を用いて構成されている。半導体素子3は、例えば平面視四角形のシリコンチップからなる半導体チップによって構成されている。半導体素子3の第1面(下面)には、図示しない半導体集積回路とともに、複数の接続端子5が設けられている。各々の接続端子5は、半導体素子3の第1面から突出する状態でボール状に形成されている。各々の接続端子5は、これを形成する導電材料として、例えばハンダ材料からなるハンダボールによって形成されている。ただし、これに限らず、例えば、ハンダ材料や他の導電材料からなる金属のバンプで接続端子5を突状に形成したものでもよい。また、接続端子5の形状は、ボール状に限らず、柱状であってもよい。半導体素子3は、回路形成面となる第1面(活性面)を下向きにした、いわゆるフェースダウン構造で、基板2の上面にフリップチップ方式で実装されている。
<1. First Embodiment>
[Configuration of semiconductor device]
FIG. 1 is a side sectional view showing the configuration of the semiconductor device according to the first embodiment of the present invention. The illustrated semiconductor device 1 generally includes a substrate 2, a semiconductor element 3, and a heat dissipation member 4. The board | substrate 2 is comprised using the double-sided printed wiring board which used organic type materials, such as glass epoxy, for example as a base material. The semiconductor element 3 is constituted by a semiconductor chip made of, for example, a silicon chip having a square shape in plan view. A plurality of connection terminals 5 are provided on the first surface (lower surface) of the semiconductor element 3 together with a semiconductor integrated circuit (not shown). Each connection terminal 5 is formed in a ball shape so as to protrude from the first surface of the semiconductor element 3. Each connection terminal 5 is formed of, for example, a solder ball made of a solder material as a conductive material for forming the connection terminal 5. However, the present invention is not limited to this. For example, the connection terminal 5 may be formed in a protruding shape with a metal bump made of a solder material or another conductive material. Further, the shape of the connection terminal 5 is not limited to the ball shape, and may be a column shape. The semiconductor element 3 has a so-called face-down structure in which a first surface (active surface) serving as a circuit formation surface faces downward, and is mounted on the upper surface of the substrate 2 by a flip chip method.

基板2の上面には、半導体素子3の実装位置や接続端子5の配置に合わせて複数の電極部(不図示)が設けられている。また、基板2の下面には、複数の外部接続端子6が設けられている。半導体素子3の接続端子5は、基板2上の電極部に電気的かつ機械的に接続されている。基板2と半導体素子3との間(隙間部分)には、複数の接続端子5の接続部分を覆うように封止樹脂7が充填されている。封止樹脂7は、アンダーフィル材と呼ばれるものである。封止樹脂7は、接続端子5の接続部分の応力緩和や補強などのために形成されるものである。放熱部材4は、例えばアルミニウム、銅等の金属板によって構成されている。放熱部材4は、接着層8を介して半導体素子3の第2面(上面)に接着されている。接着層8は、例えばシリコーン樹脂、エポキシ樹脂などの熱硬化性の有機系接着剤を用いて形成されている。なお、放熱部材4は、半導体素子3だけでなく、半導体装置1全体の剛性を高めるため、その一部(例えば、外周部)を基板2と接着してもよい。   A plurality of electrode portions (not shown) are provided on the upper surface of the substrate 2 according to the mounting position of the semiconductor element 3 and the arrangement of the connection terminals 5. A plurality of external connection terminals 6 are provided on the lower surface of the substrate 2. The connection terminal 5 of the semiconductor element 3 is electrically and mechanically connected to the electrode portion on the substrate 2. A sealing resin 7 is filled between the substrate 2 and the semiconductor element 3 (gap portion) so as to cover the connection portions of the plurality of connection terminals 5. The sealing resin 7 is called an underfill material. The sealing resin 7 is formed for stress relaxation and reinforcement of the connection portion of the connection terminal 5. The heat radiating member 4 is comprised, for example with metal plates, such as aluminum and copper. The heat dissipating member 4 is bonded to the second surface (upper surface) of the semiconductor element 3 through the adhesive layer 8. The adhesive layer 8 is formed using a thermosetting organic adhesive such as silicone resin or epoxy resin. Note that not only the semiconductor element 3 but also a part (for example, the outer peripheral portion) of the heat dissipation member 4 may be bonded to the substrate 2 in order to increase the rigidity of the entire semiconductor device 1.

放熱部材4は、全体的に平板状に形成されている。放熱部材4の下面の中央部には段付き構造で突出部9が形成されている。突出部9は、平板状をなす放熱部材4の一部(下面の中央部)を厚み方向に突出させた状態で形成されている。放熱部材4の厚み方向から見たときの突出部9の外形は、半導体素子3の外形に合わせて四角形に形成されている。また、突出部9の外形寸法は、半導体素子3の外形寸法とほぼ同じ寸法に設定されている。突出部9の表面(半導体素子3と対向する面)は被接着面10となっており、当該被接着面10に接着層8を介して半導体素子3の第2面(裏面)が接着されている。   The heat radiating member 4 is formed in a flat plate shape as a whole. A protrusion 9 is formed at the center of the lower surface of the heat radiating member 4 with a stepped structure. The protruding portion 9 is formed in a state in which a part of the flat plate-like heat radiating member 4 (the center portion of the lower surface) protrudes in the thickness direction. The outer shape of the protruding portion 9 when viewed from the thickness direction of the heat radiating member 4 is formed in a quadrangle in accordance with the outer shape of the semiconductor element 3. Further, the outer dimension of the protruding portion 9 is set to be approximately the same as the outer dimension of the semiconductor element 3. The surface of the protruding portion 9 (the surface facing the semiconductor element 3) is a bonded surface 10, and the second surface (back surface) of the semiconductor element 3 is bonded to the bonded surface 10 via the adhesive layer 8. Yes.

ここで、基板2に実装された半導体素子3は断面弧状に反っている。具体的には、半導体素子3の第2面が凸面状となるような反りが半導体素子3に生じている。半導体素子3の反りは、半導体素子3と基板2との熱膨張係数差や、半導体素子3と封止樹脂7との熱膨張係数差などにより発生するものである。これに対して、放熱部材4の被接着面10は、半導体素子3の反りに合わせて湾曲した状態で形成されている。即ち、放熱部材4の被接着面10は、半導体素子3の第2面と平行に配置されるように、当該半導体素子3の第2面の凸面形状に合わせて凹面状に湾曲した状態で形成されている。   Here, the semiconductor element 3 mounted on the substrate 2 warps in a cross-sectional arc shape. Specifically, the semiconductor element 3 is warped such that the second surface of the semiconductor element 3 is convex. The warpage of the semiconductor element 3 is caused by a difference in thermal expansion coefficient between the semiconductor element 3 and the substrate 2, a difference in thermal expansion coefficient between the semiconductor element 3 and the sealing resin 7, or the like. On the other hand, the adherend surface 10 of the heat radiating member 4 is formed in a curved state in accordance with the warp of the semiconductor element 3. That is, the adherend surface 10 of the heat radiating member 4 is formed in a concavely curved state in accordance with the convex shape of the second surface of the semiconductor element 3 so as to be arranged in parallel with the second surface of the semiconductor element 3. Has been.

[半導体装置の製造方法]
(第1の工程)
第1の工程では、まず、図2(A)に示すように、基板2の上面に複数の接続端子5を介して半導体素子3をフリップチップ方式で実装する。次に、図2(B)に示すように、基板2と半導体素子3との間に液状の封止樹脂(熱硬化性樹脂)7を注入する。その後、封止樹脂7を加熱処理で硬化させる。このとき、半導体素子3と基板2との熱膨張係数差や、半導体素子3と封止樹脂7との熱膨張係数差などにより、図2(C)に示すように、半導体素子3に反りが生じる。特に、基板2をガラスエポキシなどで構成し、半導体素子3をシリコンなどで構成した場合は、封止樹脂7を硬化させるときに、基板2や封止樹脂7の熱収縮量が半導体素子3の熱収縮量よりも多くなる。このため、半導体素子3の第2面が凸面状となるような反りが生じる。
[Method for Manufacturing Semiconductor Device]
(First step)
In the first step, first, as shown in FIG. 2A, the semiconductor element 3 is mounted on the upper surface of the substrate 2 via a plurality of connection terminals 5 by a flip chip method. Next, as shown in FIG. 2B, a liquid sealing resin (thermosetting resin) 7 is injected between the substrate 2 and the semiconductor element 3. Thereafter, the sealing resin 7 is cured by heat treatment. At this time, due to the difference in thermal expansion coefficient between the semiconductor element 3 and the substrate 2, or the difference in thermal expansion coefficient between the semiconductor element 3 and the sealing resin 7, the semiconductor element 3 is warped as shown in FIG. Arise. In particular, when the substrate 2 is made of glass epoxy or the like and the semiconductor element 3 is made of silicon or the like, when the sealing resin 7 is cured, the thermal shrinkage amount of the substrate 2 or the sealing resin 7 is less than that of the semiconductor element 3. More than heat shrinkage. For this reason, a warp occurs such that the second surface of the semiconductor element 3 becomes convex.

(第2の工程)
第2の工程では、図3に示すように、半導体素子3の第2面が接着される被接着面10を有する放熱部材4を作製する。この場合、放熱部材4の一部(下面の中央部)を厚み方向に突出させて突出部9とし、この突出部9に被接着面10を形成することにより、被接着面10の加工が容易になる。被接着面10は、上述した半導体素子3の反り(第2面の凸面形状)に合わせて凹面状に湾曲するように形成する。具体的な加工方法としては、例えば、プレス加工、圧延加工、絞り加工、切削加工などを用いることができる。こうした加工方法は、金属板を加工するにあたって、特殊な方法ではなく、一般的な方法である。このため、特に製造コストをアップさせることなく、所望の形状の放熱部材4を得ることができる。また、例えばプレス加工、絞り加工などでは、加工用の金型に被接着面10の面形状に合わせた湾曲を形成しておき、この金型を用いて金属板を加工することにより、被接着面10を有する放熱部材4を容易に得ることができる。
(Second step)
In the second step, as shown in FIG. 3, the heat dissipating member 4 having the adherend surface 10 to which the second surface of the semiconductor element 3 is bonded is produced. In this case, a part of the heat radiating member 4 (the center part of the lower surface) is protruded in the thickness direction to form a protruding part 9, and the bonded surface 10 is formed on the protruding part 9, thereby easily processing the bonded surface 10. become. The adherend surface 10 is formed so as to be curved in a concave shape in accordance with the warp (convex shape of the second surface) of the semiconductor element 3 described above. As a specific processing method, for example, press processing, rolling processing, drawing processing, cutting processing, or the like can be used. Such a processing method is not a special method but a general method when processing a metal plate. For this reason, the heat radiating member 4 having a desired shape can be obtained without increasing the manufacturing cost. Also, for example, in press working, drawing, etc., a curved shape that matches the surface shape of the surface to be bonded 10 is formed in a processing mold, and a metal plate is processed using this mold, thereby The heat radiating member 4 having the surface 10 can be easily obtained.

ここで、上記第1の工程で半導体素子3に生じる反りの状態は、半導体装置1の構成(全体の構造、各部の形成材料、半導体素子のサイズなど)によって変わる。また、1mm角程度の半導体素子3に生じる反りの量は、一般的に5〜100μm程度である。ただし、同一の構成の半導体装置1であれば、反りの形状が近似したものとなり、反りの量も±5μm程度の範囲に収まる。このため、放熱部材4の被接着面10をどのような形状で湾曲させるかに関しては、基板2に半導体素子3を実装したときに生じる半導体素子3の反りの状態(反りの量、形状など)をシミュレーションや実験で予め求め、その結果に基づいて半導体装置1ごとに決定すればよい。例えば、半導体素子3の反りの状態をシミュレーション又は実験的に求めたところ、図4に示すような結果が得られた場合は、半導体素子3の中央部から端部にかけての反りの形状と量に合わせて被接着面10の湾曲状態を決定すればよい。この場合、半導体素子3の反り量は、半導体素子3の第2面の端部を基準にして、そこからの第2面の中央部の突出量をもって規定されるものとなる。   Here, the state of warpage generated in the semiconductor element 3 in the first step varies depending on the configuration of the semiconductor device 1 (the overall structure, the formation material of each part, the size of the semiconductor element, etc.). Further, the amount of warpage generated in the semiconductor element 3 of about 1 mm square is generally about 5 to 100 μm. However, in the case of the semiconductor device 1 having the same configuration, the shape of warpage is approximate, and the amount of warpage is within a range of about ± 5 μm. For this reason, with respect to the shape in which the adherend surface 10 of the heat radiating member 4 is curved, the state of warping of the semiconductor element 3 (such as the amount and shape of warping) that occurs when the semiconductor element 3 is mounted on the substrate 2. May be obtained in advance by simulation or experiment and determined for each semiconductor device 1 based on the result. For example, when the state of warping of the semiconductor element 3 is obtained by simulation or experiment, when the result shown in FIG. 4 is obtained, the shape and amount of warping from the center to the end of the semiconductor element 3 are obtained. In addition, the curved state of the adherend surface 10 may be determined. In this case, the amount of warpage of the semiconductor element 3 is defined by the amount of protrusion of the central portion of the second surface from the end of the second surface of the semiconductor element 3.

また、放熱部材4をアルミニウム、銅などの金属板を用いて形成する場合は、金属板の表面に酸化等の劣化を防ぐための表面処理(例えば、ニッケル等の電気めっき処理)を行なってもよい。この表面処理に際しては、放熱部材4の一部にこれと一体に突出部9を形成し、当該突出部9に被接着面10を凹面状に湾曲した状態で形成しているため、表面処理後も被接着面10の湾曲形状がそのまま維持される。したがって、金属板の加工後に表面処理を行なっても何ら問題はない。また、第1の工程と第2の工程は、どちらを先に行なってもよいし、両方を並行して行なってもよい。   Further, when the heat radiating member 4 is formed using a metal plate such as aluminum or copper, the surface of the metal plate may be subjected to a surface treatment for preventing deterioration such as oxidation (for example, electroplating treatment such as nickel). Good. In this surface treatment, the protrusion 9 is formed integrally with a part of the heat radiating member 4, and the surface to be bonded 10 is formed in a concavely curved state on the protrusion 9, so that after the surface treatment In addition, the curved shape of the adherend surface 10 is maintained as it is. Therefore, there is no problem even if the surface treatment is performed after processing the metal plate. In addition, either the first step or the second step may be performed first, or both may be performed in parallel.

(第3の工程)
第3の工程では、図5に示すように、上記第1の工程で基板2に実装された半導体素子3の第2面に接着層8を介して放熱部材4を接着する。接着層8は、予め接着剤を塗布することにより、図例のように半導体素子3の第2面に形成しておいてもよいし、図示はしないが、放熱部材4の被接着面10に形成しておいてもよいし、その両方に形成しておいてもよい。また、熱硬化性樹脂を接着剤に用いて接着層8を形成した場合は、半導体素子3に放熱部材4を圧着した後で樹脂を硬化させる。
(Third step)
In the third step, as shown in FIG. 5, the heat dissipation member 4 is bonded to the second surface of the semiconductor element 3 mounted on the substrate 2 in the first step via an adhesive layer 8. The adhesive layer 8 may be formed on the second surface of the semiconductor element 3 by applying an adhesive in advance as shown in the figure, and although not shown, the adhesive layer 8 is applied to the adherend surface 10 of the heat radiation member 4. It may be formed or may be formed on both. Further, when the adhesive layer 8 is formed using a thermosetting resin as an adhesive, the resin is cured after the heat dissipation member 4 is pressure-bonded to the semiconductor element 3.

(第4の工程)
第4の工程では、上記図1に示すように、基板2の下面に複数の外部接続端子6を形成する。各々の外部接続端子6は、例えば、基板2の下面に設けられた電極部(不図示)にフラックスを塗布してハンダボールを搭載するか、適量のハンダ材料を印刷法等により供給した状態で、リフローすることにより、突状に形成される。以上の製造工程を経て、上記図1に示す構成の半導体装置1が得られる。
(Fourth process)
In the fourth step, a plurality of external connection terminals 6 are formed on the lower surface of the substrate 2 as shown in FIG. Each of the external connection terminals 6 is, for example, in a state where a solder ball is mounted by applying a flux to an electrode portion (not shown) provided on the lower surface of the substrate 2 or an appropriate amount of solder material is supplied by a printing method or the like. By reflowing, it is formed in a protruding shape. Through the above manufacturing process, the semiconductor device 1 having the configuration shown in FIG. 1 is obtained.

本発明の第1の実施の形態に係る半導体装置1においては、基板2に実装された半導体素子3の反りに合わせて放熱部材4の突出部9に被接着面10を湾曲状態で形成し、この被接着面10に接着層8を介して半導体素子3の第2面を接着した構成を採用している。このため、半導体素子3の第2面と放熱部材4の被接着面10が互いに平行に配置され、その間に介在する接着層8の厚みが均一になる。したがって、半導体素子3の第2面に放熱部材4を平面で接着する場合に比較して、接着層8の厚みを均一化することができる。また、半導体素子3の中央部と端部で接着層8の厚みを均一にすることができる。その結果、接着層8の厚みのバラツキに伴う熱伝導性の悪化を防止して、半導体装置1の放熱性を向上させることが可能となる。   In the semiconductor device 1 according to the first embodiment of the present invention, the adherend surface 10 is formed in a curved state on the protruding portion 9 of the heat dissipation member 4 in accordance with the warp of the semiconductor element 3 mounted on the substrate 2. A configuration in which the second surface of the semiconductor element 3 is bonded to the bonded surface 10 via the bonding layer 8 is adopted. For this reason, the 2nd surface of the semiconductor element 3 and the to-be-adhered surface 10 of the heat radiating member 4 are mutually arrange | positioned in parallel, and the thickness of the contact bonding layer 8 interposed between them becomes uniform. Therefore, the thickness of the adhesive layer 8 can be made uniform as compared with the case where the heat radiating member 4 is adhered to the second surface of the semiconductor element 3 in a plane. In addition, the thickness of the adhesive layer 8 can be made uniform at the center and the end of the semiconductor element 3. As a result, it is possible to prevent the heat conductivity from deteriorating due to the variation in the thickness of the adhesive layer 8 and improve the heat dissipation of the semiconductor device 1.

なお、上記第1の工程で半導体素子3に生じる反りの状態は、前述したとおり半導体装置1の構成によって変わる。このため、半導体素子3の反りの状態をシミュレーション又は実験的に求めたときに、例えば図6に示すような結果が得られた場合は、それに合わせて被接着面10の湾曲状態を決定することになる。この場合、半導体素子3の反り量は、半導体素子3の第2面の端部を基準にして、そこからの第2面の中央部の凹み量をもって規定されるものとなる。また、半導体装置1の構成によっては、半導体素子3の反りの状態をシミュレーション又は実験的に求めたときに、半導体素子3の第2面が凸面状ではなく凹面状となるような反りが生じる場合もあり得る。具体的には、例えば基板2をセラミック基板で構成した場合に、半導体素子3の第2面が凹面状になるような反りが発生する場合があり得る。そのような場合に適用される本発明の実施の形態を次に説明する。   Note that the state of warpage occurring in the semiconductor element 3 in the first step varies depending on the configuration of the semiconductor device 1 as described above. For this reason, when the warp state of the semiconductor element 3 is obtained by simulation or experimentally, for example, when a result as shown in FIG. 6 is obtained, the curved state of the adherend surface 10 is determined accordingly. become. In this case, the amount of warpage of the semiconductor element 3 is defined by the amount of depression at the center of the second surface from the end of the second surface of the semiconductor element 3. Further, depending on the configuration of the semiconductor device 1, when the warp state of the semiconductor element 3 is obtained by simulation or experiment, a warp that causes the second surface of the semiconductor element 3 to be concave instead of convex is generated. There is also a possibility. Specifically, for example, when the substrate 2 is formed of a ceramic substrate, there may be a warp such that the second surface of the semiconductor element 3 becomes concave. Next, an embodiment of the present invention applied to such a case will be described.

<2.第2の実施の形態>
図7は本発明の第2の実施の形態に係る半導体装置の構成を示す側断面図である。図示した半導体装置1において、放熱部材4は、全体的に平板状に形成され、その一部(下面の中央部)が厚み方向に突出する突出部9となっている。放熱部材4の厚み方向から見たときの突出部9の外形は、半導体素子3の外形に合わせて四角形に形成されている。また、突出部9の外形寸法は、半導体素子3の外形寸法とほぼ同じ寸法に設定されている。突出部9の表面(半導体素子3と対向する面)は被接着面10となっており、当該被接着面10に接着層8を介して半導体素子3の第2面が接着されている。
<2. Second Embodiment>
FIG. 7 is a side sectional view showing the configuration of the semiconductor device according to the second embodiment of the present invention. In the illustrated semiconductor device 1, the heat dissipation member 4 is formed in a flat plate shape as a whole, and a part (the center portion of the lower surface) is a protruding portion 9 protruding in the thickness direction. The outer shape of the protruding portion 9 when viewed from the thickness direction of the heat radiating member 4 is formed in a quadrangle in accordance with the outer shape of the semiconductor element 3. Further, the outer dimension of the protruding portion 9 is set to be approximately the same as the outer dimension of the semiconductor element 3. The surface of the protruding portion 9 (the surface facing the semiconductor element 3) is a bonded surface 10, and the second surface of the semiconductor element 3 is bonded to the bonded surface 10 via the bonding layer 8.

また、基板2に実装された半導体素子3は断面弧状に反っている。具体的には、半導体素子3の第2面が凹面状となるような反りが半導体素子3に生じている。これに対して、放熱部材4の被接着面10は、半導体素子3の反りに合わせて湾曲した状態で形成されている。即ち、放熱部材4の被接着面10は、半導体素子3の第2面と平行に配置されるように、当該半導体素子3の第2面の凹面形状に合わせて凸面状に湾曲した状態で形成されている。   Further, the semiconductor element 3 mounted on the substrate 2 is warped in a cross-sectional arc shape. Specifically, the semiconductor element 3 is warped such that the second surface of the semiconductor element 3 is concave. On the other hand, the adherend surface 10 of the heat radiating member 4 is formed in a curved state in accordance with the warp of the semiconductor element 3. In other words, the adherend surface 10 of the heat radiating member 4 is formed in a convex curved shape in accordance with the concave shape of the second surface of the semiconductor element 3 so as to be arranged in parallel with the second surface of the semiconductor element 3. Has been.

本発明の第2の実施の形態に係る半導体装置1は、上述した第2の工程で放熱部材4を作製するときに、放熱部材4の被接着面10を図8に示すように凸面状に形成することことにより得られる。その場合も、基板2に半導体素子3を実装したときに生じる半導体素子3の反りの状態(反りの量、形状など)をシミュレーションや実験で予め求め、その結果に基づいて半導体装置1ごとに決定すればよい。例えば、半導体素子3の反りの状態をシミュレーション又は実験的に求めたところ、図9に示すような結果が得られた場合は、半導体素子3の中央部から端部にかけての反りの形状と量に合わせて被接着面10の湾曲状態を決定すればよい。   In the semiconductor device 1 according to the second embodiment of the present invention, when the heat radiating member 4 is produced in the second step described above, the adherend surface 10 of the heat radiating member 4 is convex as shown in FIG. It is obtained by forming. Also in this case, the state of warping (the amount of warping, the shape, etc.) of the semiconductor element 3 that occurs when the semiconductor element 3 is mounted on the substrate 2 is obtained in advance by simulation or experiment, and is determined for each semiconductor device 1 based on the result. do it. For example, when the warping state of the semiconductor element 3 is obtained by simulation or experiment, when the result shown in FIG. 9 is obtained, the shape and amount of warping from the center to the end of the semiconductor element 3 are obtained. In addition, the curved state of the adherend surface 10 may be determined.

本発明の第2の実施の形態に係る半導体装置1においては、上記第1の実施の形態と同様に、基板2に実装された半導体素子3の反りに合わせて放熱部材4の突出部9に被接着面10を湾曲状態で形成し、この被接着面10に接着層8を介して半導体素子3の第2面を接着した構成を採用している。このため、半導体素子3と放熱部材4との間に介在する接着層8の厚みを均一化することができる。したがって、接着層8の厚みのバラツキに伴う熱伝導性の悪化を防止して、半導体装置1の放熱性を向上させることが可能となる。   In the semiconductor device 1 according to the second embodiment of the present invention, the protrusion 9 of the heat radiating member 4 is formed in accordance with the warp of the semiconductor element 3 mounted on the substrate 2 as in the first embodiment. A configuration is adopted in which the adherend surface 10 is formed in a curved state, and the second surface of the semiconductor element 3 is adhered to the adherend surface 10 via the adhesive layer 8. For this reason, the thickness of the adhesive layer 8 interposed between the semiconductor element 3 and the heat dissipation member 4 can be made uniform. Therefore, it is possible to prevent the heat conductivity from deteriorating due to the variation in the thickness of the adhesive layer 8 and to improve the heat dissipation of the semiconductor device 1.

<3.変形例>
[第1変形例]
第1変形例に係る半導体装置1においては、図10に示すように、半導体素子3の第2面に接着層8を介して接着される放熱部材4を放熱フィンで構成している。そして、放熱部材4の下面(フィン構造と反対側の面)の中央部に突出部9を有し、この突出部9に被接着面10を湾曲状態で形成している。
<3. Modification>
[First Modification]
In the semiconductor device 1 according to the first modified example, as shown in FIG. 10, the heat radiating member 4 bonded to the second surface of the semiconductor element 3 via the adhesive layer 8 is constituted by a heat radiating fin. And it has the protrusion part 9 in the center part of the lower surface (surface on the opposite side to a fin structure) of the thermal radiation member 4, and the to-be-adhered surface 10 is formed in this protrusion part 9 in the curved state.

[第2変形例]
第2変形例に係る半導体装置1においては、図11に示すように、半導体素子3の第2面に接着層8を介して接着される放熱部材4を金属板(ヒートスプレッダ)で構成し、その上に放熱フィン11を搭載している。そして、放熱部材4の下面(フィン搭載面と反対側の面)の中央部に突出部9を有し、この突出部9に被接着面10を湾曲状態で形成している。
[Second Modification]
In the semiconductor device 1 according to the second modification, as shown in FIG. 11, the heat dissipating member 4 bonded to the second surface of the semiconductor element 3 via the adhesive layer 8 is configured by a metal plate (heat spreader), The radiation fin 11 is mounted on the top. And it has the protrusion part 9 in the center part of the lower surface (surface on the opposite side to a fin mounting surface) of the heat radiating member 4, and the to-be-adhered surface 10 is formed in this protrusion part 9 in the curved state.

1…半導体装置、2…基板、3…半導体素子、4…放熱部材、8…接着層、9…突出部、10…被接着面   DESCRIPTION OF SYMBOLS 1 ... Semiconductor device, 2 ... Board | substrate, 3 ... Semiconductor element, 4 ... Heat dissipation member, 8 ... Adhesive layer, 9 ... Projection part, 10 ... Adhered surface

Claims (5)

基板と、
前記基板に第1面を対向させた状態で実装された半導体素子と、
前記半導体素子の第2面に接着層を介して接着された放熱部材とを備え、
前記放熱部材は、前記半導体素子の第2面が接着される被接着面を有し、かつ当該被接着面が前記半導体素子の反りに合わせて湾曲した状態で形成されている
半導体装置。
A substrate,
A semiconductor element mounted with the first surface facing the substrate;
A heat radiating member bonded to the second surface of the semiconductor element via an adhesive layer;
The heat dissipation member has a surface to be bonded to which a second surface of the semiconductor element is bonded, and the surface to be bonded is formed in a state of being curved in accordance with the warp of the semiconductor element.
前記放熱部材の被接着面は凹面状に湾曲した状態で形成されている
請求項1記載の半導体装置。
The semiconductor device according to claim 1, wherein the adherend surface of the heat radiating member is formed in a concavely curved state.
前記放熱部材の被接着面は凸面状に湾曲した状態で形成されている
請求項1記載の半導体装置。
The semiconductor device according to claim 1, wherein the adherend surface of the heat radiating member is formed in a curved state in a convex shape.
前記放熱部材は、全体的に平板状に形成されるとともに、当該平板状の一部を厚み方向に突出させた突出部を有し、当該突出部に前記被接着面が形成されている
請求項1、2又は3記載の半導体装置。
The heat dissipating member is formed in a flat plate shape as a whole, and has a protruding portion in which a part of the flat plate shape protrudes in the thickness direction, and the adherend surface is formed in the protruding portion. The semiconductor device according to 1, 2, or 3.
基板に第1面を対向させた状態で半導体素子を実装する第1の工程と、
前記半導体素子の第2面が接着される被接着面を有する放熱部材を作製する第2の工程と、
前記基板に実装された前記半導体素子の第2面に接着層を介して前記放熱部材を接着する第3の工程とを有し、
前記第2の工程では、前記第1の工程で前記基板に前記半導体素子を実装した場合に当該半導体素子に生じる反りに合わせて、前記放熱部材の被接着面を湾曲した状態で形成する
半導体装置の製造方法。
A first step of mounting the semiconductor element with the first surface facing the substrate;
A second step of producing a heat dissipating member having a surface to be bonded to which the second surface of the semiconductor element is bonded;
A third step of bonding the heat dissipation member to the second surface of the semiconductor element mounted on the substrate via an adhesive layer;
In the second step, when the semiconductor element is mounted on the substrate in the first step, the adherend surface of the heat radiating member is formed in a curved state in accordance with the warp generated in the semiconductor element. Semiconductor device Manufacturing method.
JP2009053080A 2009-03-06 2009-03-06 Semiconductor device and manufacturing method of semiconductor device Expired - Fee Related JP5381175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009053080A JP5381175B2 (en) 2009-03-06 2009-03-06 Semiconductor device and manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009053080A JP5381175B2 (en) 2009-03-06 2009-03-06 Semiconductor device and manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2010206132A true JP2010206132A (en) 2010-09-16
JP5381175B2 JP5381175B2 (en) 2014-01-08

Family

ID=42967295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009053080A Expired - Fee Related JP5381175B2 (en) 2009-03-06 2009-03-06 Semiconductor device and manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP5381175B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104550A (en) * 2010-11-08 2012-05-31 Nec Computertechno Ltd Device of cooling semiconductor package
US20130306296A1 (en) * 2011-02-08 2013-11-21 Fuji Electric Co., Ltd. Semiconductor module radiator plate fabrication method, radiator plate, and semiconductor module using the same
JP2015511070A (en) * 2012-03-30 2015-04-13 レイセオン カンパニー Conductive cooling of multi-channel flip chip based panel array circuits
KR20170060438A (en) * 2015-11-24 2017-06-01 에스케이하이닉스 주식회사 Stretchable semiconductor package and semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163231A (en) * 1997-11-25 1999-06-18 Mitsubishi Electric Corp Semiconductor device with heat sink
JP2003188320A (en) * 2001-12-17 2003-07-04 Matsushita Electric Ind Co Ltd Heat sink for electronic component and its manufacturing method
US20060268521A1 (en) * 2005-05-26 2006-11-30 International Business Machines Corporation Optimized thermally conductive plate and attachment method for enhanced thermal performance and reliability of flip chip organic packages
JP2010135459A (en) * 2008-12-03 2010-06-17 Nikon Corp Semiconductor package and heat radiator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163231A (en) * 1997-11-25 1999-06-18 Mitsubishi Electric Corp Semiconductor device with heat sink
JP2003188320A (en) * 2001-12-17 2003-07-04 Matsushita Electric Ind Co Ltd Heat sink for electronic component and its manufacturing method
US20060268521A1 (en) * 2005-05-26 2006-11-30 International Business Machines Corporation Optimized thermally conductive plate and attachment method for enhanced thermal performance and reliability of flip chip organic packages
JP2010135459A (en) * 2008-12-03 2010-06-17 Nikon Corp Semiconductor package and heat radiator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104550A (en) * 2010-11-08 2012-05-31 Nec Computertechno Ltd Device of cooling semiconductor package
US20130306296A1 (en) * 2011-02-08 2013-11-21 Fuji Electric Co., Ltd. Semiconductor module radiator plate fabrication method, radiator plate, and semiconductor module using the same
US10262874B2 (en) 2011-02-08 2019-04-16 Fuji Electric Co., Ltd. Semiconductor module radiator plate fabrication method, radiator plate, and semiconductor module using the same
JP2015511070A (en) * 2012-03-30 2015-04-13 レイセオン カンパニー Conductive cooling of multi-channel flip chip based panel array circuits
KR20170060438A (en) * 2015-11-24 2017-06-01 에스케이하이닉스 주식회사 Stretchable semiconductor package and semiconductor device
KR102455398B1 (en) * 2015-11-24 2022-10-17 에스케이하이닉스 주식회사 Stretchable semiconductor package and semiconductor device

Also Published As

Publication number Publication date
JP5381175B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
US6650006B2 (en) Semiconductor package with stacked chips
JP6605382B2 (en) Semiconductor device and manufacturing method of semiconductor device
US20140217620A1 (en) Semiconductor device and method for manufacturing the same
US20060249852A1 (en) Flip-chip semiconductor device
KR20170106260A (en) Semiconductor device package with warpage control structure
CN108573930B (en) Film flip package and manufacturing method thereof
JPWO2011042982A1 (en) Manufacturing method of semiconductor device
US20140151891A1 (en) Semiconductor package
JP2016092300A (en) Semiconductor device and semiconductor device manufacturing method
JP6048238B2 (en) Electronic equipment
JP2006216776A (en) Resin sealed semiconductor device
JP5381175B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2006261519A (en) Semiconductor device and its manufacturing method
JP2008085002A (en) Semiconductor device and its manufacturing method
JP5621712B2 (en) Semiconductor chip
JP5601282B2 (en) Semiconductor device
JP4647673B2 (en) Heat dissipation type multi-hole semiconductor package
KR102050130B1 (en) Semiconductor package and a method of manufacturing the same
JP2011061055A (en) Method of manufacturing semiconductor device
JP2010010568A (en) Circuit device
JP2009252956A (en) Mounting frame, semiconductor device, and method of manufacturing the same
JP2015056540A (en) Semiconductor device and manufacturing method of the same
JP2007188930A (en) Semiconductor device and method of manufacturing the same
KR102365004B1 (en) Semiconductor package and a method of manufacturing the same
KR102340866B1 (en) Semiconductor package and a method of manufacturing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120910

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

LAPS Cancellation because of no payment of annual fees