JP2010205801A - Method of manufacturing wiring board - Google Patents

Method of manufacturing wiring board Download PDF

Info

Publication number
JP2010205801A
JP2010205801A JP2009047329A JP2009047329A JP2010205801A JP 2010205801 A JP2010205801 A JP 2010205801A JP 2009047329 A JP2009047329 A JP 2009047329A JP 2009047329 A JP2009047329 A JP 2009047329A JP 2010205801 A JP2010205801 A JP 2010205801A
Authority
JP
Japan
Prior art keywords
layer
via hole
insulating layer
wiring conductor
upper insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009047329A
Other languages
Japanese (ja)
Inventor
Hidemi Yamazaki
秀美 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera SLC Technologies Corp
Original Assignee
Kyocera SLC Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera SLC Technologies Corp filed Critical Kyocera SLC Technologies Corp
Priority to JP2009047329A priority Critical patent/JP2010205801A/en
Publication of JP2010205801A publication Critical patent/JP2010205801A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board having high electric connection reliability between a lower-layer wiring conductive layer and an upper-layer wiring conductive layer via a via hole. <P>SOLUTION: A method of manufacturing a wiring board includes processes for stacking an upper-layer insulating layer 3 on a lower-layer insulating layer 1 where a lower-layer wiring conductor 2 is formed, forming a via hole 4 on the upper-layer insulating layer 3, performing desmear treatment of the surface of the upper-layer insulating layer 3 including the inside of the via hole 4, performing soft etching to the surface of the lower-layer wiring conductor 2 exposed to a bottom surface of the via hole 4 so that a gap V is formed between the lower-layer wiring conductor 2 and a lower surface of the upper-layer insulating layer 3 on an upper layer around the via hole 4, performing cleaner conditioner treatment to the surface of the upper-layer insulating layer 3 and the inside of the via hole 4, adsorbing a catalyst for electroless plating onto the surface of the upper-layer insulating layer 3, depositing an electroless plating layer 5 on the surface of the upper-layer insulating layer 3, and depositing an electroless plating layer 7 onto the surface of the electroless plating layer 5. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、配線基板の製造方法に関するものである。   The present invention relates to a method for manufacturing a wiring board.

従来、半導体集積回路素子等の半導体素子を搭載するための有機材料系の多層配線基板としてビルドアップ法により形成された配線基板が知られている。この配線基板は、絶縁層と配線導体とを交互に多層に積層して成り、下層の絶縁層上に形成された下層の配線導体と、該下層の絶縁層上および下層の配線導体上に積層された上層の絶縁層上に形成された上層の配線導体とを、下層の配線導体を底面して上層の絶縁層に設けられたビアホール内に前記上層の配線導体の一部を被着させることにより接続してなる。   2. Description of the Related Art Conventionally, a wiring board formed by a build-up method is known as an organic material-based multilayer wiring board for mounting a semiconductor element such as a semiconductor integrated circuit element. This wiring board is formed by alternately laminating insulating layers and wiring conductors in multiple layers, and is laminated on the lower wiring conductor formed on the lower insulating layer and on the lower insulating layer and the lower wiring conductor. The upper wiring conductor formed on the upper insulating layer thus formed is attached to a via hole provided in the upper insulating layer with the lower wiring conductor bottom, and a part of the upper wiring conductor is deposited. It is connected by.

このような配線基板は、以下のようにして作製される。まず、下層の絶縁層上に下層の配線導体を所定のパターンに形成する。なお、下層の絶縁層としては、ガラス繊維基材に熱硬化性樹脂を含浸させて成るガラス繊維強化樹脂層や熱硬化性樹脂中にシリカ等の無機絶縁フィラーを分散させて成るフィラー含有樹脂層が好適に用いられる。また、下層の配線導体としては、銅箔や銅めっき層が好適に用いられる。 Such a wiring board is manufactured as follows. First, a lower wiring conductor is formed in a predetermined pattern on a lower insulating layer. As the lower insulating layer, a glass fiber reinforced resin layer obtained by impregnating a glass fiber base material with a thermosetting resin or a filler-containing resin layer obtained by dispersing an inorganic insulating filler such as silica in a thermosetting resin Are preferably used. Further, as the lower wiring conductor, a copper foil or a copper plating layer is preferably used.

次に、下層の絶縁層および下層の配線層上に上層の絶縁層を積層する。上層の絶縁層としては、ガラス繊維基材に熱硬化性樹脂を含浸させて成るガラス繊維強化樹脂層や熱硬化性樹脂中にシリカ等の無機絶縁フィラーを分散させて成るフィラー含有樹脂層が好適に用いられる。   Next, an upper insulating layer is laminated on the lower insulating layer and the lower wiring layer. As the upper insulating layer, a glass fiber reinforced resin layer obtained by impregnating a glass fiber base material with a thermosetting resin or a filler-containing resin layer obtained by dispersing an inorganic insulating filler such as silica in a thermosetting resin is suitable. Used for.

次に、上層の絶縁層の所定位置に、下層の導体層を底面とするビアホールを形成する。ビアホールの形成には、炭酸ガスレーザやYAGレーザによるレーザ加工法が好適に用いられる。   Next, a via hole whose bottom surface is the lower conductor layer is formed at a predetermined position of the upper insulating layer. For the formation of the via hole, a laser processing method using a carbon dioxide laser or a YAG laser is preferably used.

次に、上層の樹脂層表面を粗化するとともにビアホール内に残った樹脂残渣を除去するためにデスミア処理を行なう。デスミア処理は膨潤処理後、過マンガン酸カリウム処理をし、最後に還元処理することにより行なわれる。   Next, a desmear process is performed in order to roughen the surface of the upper resin layer and remove the resin residue remaining in the via hole. The desmear treatment is performed by a potassium permanganate treatment after the swelling treatment and finally a reduction treatment.

次に、上層の絶縁層の表面およびビアホール内にクリーナーコンディショナー処理を行なう。これにより、上層の絶縁層の表面およびビアホール内の汚れが除去されるとともにビアホール内を含む上層の絶縁層の表面に対する無電解めっき用の触媒の吸着性が向上する。   Next, cleaner conditioner treatment is performed on the surface of the upper insulating layer and in the via hole. As a result, dirt on the surface of the upper insulating layer and the via hole is removed, and the adsorptivity of the electroless plating catalyst to the surface of the upper insulating layer including the inside of the via hole is improved.

次に、ビアホール底面に露出する下層の配線導体表面をソフトエッチングする。このソフトエッチングにより下層の配線導体表面の酸化被膜および樹脂残渣が完全に除去される。ソフトエッチングには、硫酸および過酸化水素水の混合液が用いられ、下層の配線導体の表面から1〜2μm程度の厚みがエッチングされる。   Next, the lower wiring conductor surface exposed on the bottom surface of the via hole is soft etched. By this soft etching, the oxide film and the resin residue on the surface of the lower wiring conductor are completely removed. For the soft etching, a mixed solution of sulfuric acid and hydrogen peroxide water is used, and a thickness of about 1 to 2 μm is etched from the surface of the lower wiring conductor.

次に、ビアホール底面に露出する下層の配線導体表面に前記ソフトエッチングにより形成されたスマットを酸洗浄により除去した後、アクチベーター処理してビアホール内を含む上層の樹脂層の表面に無電解めっきのためのSn−Pd触媒を吸着させる。   Next, after removing the smut formed by the soft etching on the surface of the lower wiring conductor exposed at the bottom of the via hole by acid cleaning, the surface of the upper resin layer including the inside of the via hole is electrolessly plated by activator treatment. Sn-Pd catalyst is adsorbed.

次に、アクセレレーター処理によりSn−Pd触媒におけるSnを除去した後、ビアホール内を含む上層の樹脂層の表面に厚みが0.2〜2μm程度の無電解銅めっき層を被着させる。   Next, after removing Sn in the Sn—Pd catalyst by the accelerator treatment, an electroless copper plating layer having a thickness of about 0.2 to 2 μm is deposited on the surface of the upper resin layer including the inside of the via hole.

次に、前記無電解銅めっき層上に、上層の配線導体に対応する形状の開口を有するめっきレジスト層を被着形成した後、めっきレジスト層の開口内の無電解銅めっき層上に上層の配線導体に応じた形状の電解銅めっき層を10〜20μm程度の厚みに被着させる。このとき、ビアホール内に電解銅めっき層が被着される。   Next, a plating resist layer having an opening corresponding to the upper wiring conductor is deposited on the electroless copper plating layer, and then an upper layer is formed on the electroless copper plating layer in the opening of the plating resist layer. An electrolytic copper plating layer having a shape corresponding to the wiring conductor is applied to a thickness of about 10 to 20 μm. At this time, an electrolytic copper plating layer is deposited in the via hole.

次に、めっきレジスト層をアルカリ系のレジスト剥離液で剥離して除去するとともに、前記電解銅めっき層が被着されていない部分の無電解銅めっき層をエッチング除去することにより上層の配線導体が形成される。以後、必要に応じてさらに上層の絶縁層および配線導体を上記と同様の方法で形成していき、最後に必要に応じて最表層にソルダーレジスト層を形成することにより配線基板が完成する。   Next, the plating resist layer is removed by removing with an alkaline resist stripping solution, and the upper wiring conductor is formed by etching away the electroless copper plating layer where the electrolytic copper plating layer is not deposited. It is formed. Thereafter, if necessary, further upper insulating layers and wiring conductors are formed by the same method as described above, and finally a solder resist layer is formed on the outermost layer as necessary to complete the wiring board.

特開2003−60330号公報JP 2003-60330 A

しかしながら、この従来の配線基板の製造方法によると、ビアホール底面に露出する下層の配線導体表面をソフトエッチングすると、このエッチングがビアホールの下端から上層の絶縁層の下面に沿って横方向に大きく進行し、その結果、下層の配線導体とビアホール周辺の上層の絶縁層下面との間に横方向にえぐられた小さな空隙部が形成される。そして、このような空隙部が形成された状態で、アクチベーター処理して無電解銅めっき層を被着させると、空隙部内の上層の絶縁層下面に無電解銅めっき層が良好に被着されず、その結果、ビアホール内に電解めっき層を被着させると、ビアホール内に電解銅めっき層が良好に被着されずにビアホールを介した下層の配線導体層と上層の配線導体層との電気的な接続信頼性が低い配線基板となってしまうという問題があった。   However, according to this conventional method of manufacturing a wiring board, when the lower surface of the wiring conductor exposed on the bottom surface of the via hole is soft etched, the etching greatly proceeds in the lateral direction from the lower end of the via hole to the lower surface of the upper insulating layer. As a result, a small void portion formed in the lateral direction is formed between the lower wiring conductor and the lower insulating layer lower surface around the via hole. Then, when the electroless copper plating layer is deposited by the activator process in such a state where the void is formed, the electroless copper plating layer is satisfactorily deposited on the lower surface of the upper insulating layer in the void. As a result, when an electrolytic plating layer is deposited in the via hole, the electrolytic copper plating layer is not deposited well in the via hole, and the electrical connection between the lower wiring conductor layer and the upper wiring conductor layer via the via hole does not occur. There is a problem in that the wiring board has low general connection reliability.

本発明はかかる従来の問題に鑑み案出されたものであり、上面に下層の配線導体が形成された下層の絶縁層上に、上層の絶縁層を積層する工程と、前記上層の絶縁層に前記下層の導体層を底面とするビアホールを形成する工程と、前記ビアホール内を含む前記上層の絶縁層表面をデスミア処理する工程と、前記ビアホール底面に露出する前記下層の配線導体の表面を、該下層の配線導体と前記ビアホール周辺の前記上層の絶縁層下面との間に横方向にえぐられた小さな空隙部が形成されるようにソフトエッチングする工程と、前記上層の絶縁層の表面および前記ビアホール内にクリーナーコンディショナー処理を行なう工程と、前記ビアホール内を含む前記上層の絶縁層の表面に無電解めっき用の触媒を吸着させる工程と、前記ビアホール内を含む前記上層の絶縁層の表面に無電解めっき層を被着させる工程と、前記ビアホール内を含む前記無電解めっき層の表面に電解めっき層を所定パターンに被着させる工程とを順次行なうことを特徴とするものである。   The present invention has been devised in view of such conventional problems, and includes a step of laminating an upper insulating layer on a lower insulating layer having a lower wiring conductor formed on the upper surface, and the upper insulating layer. A step of forming a via hole with the lower conductor layer as a bottom surface, a step of desmearing the surface of the upper insulating layer including the inside of the via hole, and a surface of the lower layer wiring conductor exposed on the bottom surface of the via hole, Performing a soft etching process so that a small void is formed between the lower wiring conductor and the lower surface of the upper insulating layer around the via hole; and the surface of the upper insulating layer and the via hole A cleaner conditioner treatment inside, a step of adsorbing a catalyst for electroless plating on the surface of the upper insulating layer including the inside of the via hole, and the inside of the via hole Including a step of depositing an electroless plating layer on the surface of the upper insulating layer including, and a step of depositing the electroplating layer on the surface of the electroless plating layer including the inside of the via hole in a predetermined pattern. It is a feature.

本発明の配線基板の製造方法によれば、上層の絶縁層に形成したビアホール底面に露出する下層の配線導体の表面を、該下層の配線導体と前記ビアホール周辺の前記上層の絶縁層下面との間に横方向にえぐられた小さな空隙部が形成されるようにソフトエッチングした後、前記上層の絶縁層の表面および前記ビアホール内にクリーナーコンディショナー処理を行なうことから、前記空隙部における上層の絶縁層の下面にもクリーナーコンディショナー処理により無電解めっき用の触媒の吸着性が向上した状態が形成される。したがって、ビアホール内を含む上層の絶縁層の表面に無電解めっき用の触媒を吸着させると、前記空隙部における上層の絶縁層の下面にも無電解めっき用の触媒が良好に吸着され、引き続きビアホール内を含む上層の絶縁層の表面に無電解めっき層を被着させると無電解めっきが良好に被着される。その結果、ビアホール内を含む無電解めっき層の表面に電解めっき層を良好に被着させることができ、ビアホールを介した下層の配線導体層と上層の配線導体層との電気的な接続信頼性が高い配線基板を提供することができる。   According to the method for manufacturing a wiring board of the present invention, the surface of the lower wiring conductor exposed on the bottom surface of the via hole formed in the upper insulating layer is formed between the lower wiring conductor and the lower surface of the upper insulating layer around the via hole. After performing soft etching so that a small void portion is formed in the lateral direction, a cleaner conditioner treatment is performed on the surface of the upper insulating layer and the via hole, so that the upper insulating layer in the void portion is formed. A state where the adsorptivity of the electroless plating catalyst is improved by the cleaner conditioner treatment is also formed on the lower surface of the substrate. Therefore, when the electroless plating catalyst is adsorbed on the surface of the upper insulating layer including the inside of the via hole, the electroless plating catalyst is also adsorbed well on the lower surface of the upper insulating layer in the gap, and the via hole continues. When an electroless plating layer is deposited on the surface of the upper insulating layer including the inside, the electroless plating is satisfactorily deposited. As a result, the electrolytic plating layer can be satisfactorily deposited on the surface of the electroless plating layer including the inside of the via hole, and the electrical connection reliability between the lower wiring conductor layer and the upper wiring conductor layer through the via hole A high wiring board can be provided.

図1は、本発明の配線基板の製造方法を説明するための要部断面図である。FIG. 1 is a fragmentary cross-sectional view for explaining a method of manufacturing a wiring board according to the present invention.

次に、本発明の配線基板の製造方法における実施の形態例について添付の図面を基に説明する。まず、図1(a)に示すように、下層の絶縁層1の上面に下層の配線導体2を形成する。下層の絶縁層1としては、ガラス繊維基材にエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂を含浸させて成るガラス繊維強化樹脂層やエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂中にシリカ等の無機絶縁フィラーを分散させて成るフィラー含有樹脂層が好適に用いられる。下層の配線導体2としては、銅箔や銅めっき層が好適用いられ、周知のサブトラクティブ法やセミアディティブ法等の配線形成技術を用いることにより所定のパターンに形成される。なお、下層の絶縁層1の厚みは20〜800mm程度であり、下層の配線導体2の厚みは10〜50μm程度である。   Next, embodiments of the method for manufacturing a wiring board according to the present invention will be described with reference to the accompanying drawings. First, as shown in FIG. 1A, a lower wiring conductor 2 is formed on the upper surface of the lower insulating layer 1. As the lower insulating layer 1, a glass fiber reinforced resin layer obtained by impregnating a glass fiber base material with a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin, or a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin. A filler-containing resin layer in which an inorganic insulating filler such as silica is dispersed is preferably used. As the lower wiring conductor 2, a copper foil or a copper plating layer is preferably used, and is formed in a predetermined pattern by using a wiring forming technique such as a well-known subtractive method or semi-additive method. The lower insulating layer 1 has a thickness of about 20 to 800 mm, and the lower wiring conductor 2 has a thickness of about 10 to 50 μm.

次に、図1(b)に示すように、下層の絶縁層1および下層の配線導体2の上に、上層の絶縁層3を積層する。上層の絶縁層3としては、下層の絶縁層1と同様にガラス繊維基材にエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂を含浸させて成るガラス繊維強化樹脂層やエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂中にシリカ等の無機絶縁フィラーを分散させて成るフィラー含有樹脂層が好適に用いられる。なお、上層の絶縁層3の厚みとしては20〜50μm程度である。   Next, as shown in FIG. 1B, the upper insulating layer 3 is laminated on the lower insulating layer 1 and the lower wiring conductor 2. As the upper insulating layer 3, a glass fiber reinforced resin layer formed by impregnating a glass fiber base material with a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin, an epoxy resin or a bismaleimide as in the lower insulating layer 1. A filler-containing resin layer in which an inorganic insulating filler such as silica is dispersed in a thermosetting resin such as a triazine resin is preferably used. The thickness of the upper insulating layer 3 is about 20 to 50 μm.

次に、図1(c)に示すように、上層の絶縁層3に、下層の配線導体2を底面とする複数のビアホール4を形成する。ビアホール4の直径は30〜100μm程度である。ビアホール4の形成には、炭酸ガスレーザやYAGレーザによるレーザ加工法を用いる。このときビアホール4の内部および周辺にはレーザ加工により飛散した樹脂の屑等のスミアSが付着しているとともに、ビアホール4底面に露出する下層の配線導体2の表面には、レーザ加工により除去し切れなかった薄い樹脂残渣Rが残っている。   Next, as shown in FIG. 1C, a plurality of via holes 4 are formed in the upper insulating layer 3 with the lower wiring conductor 2 as the bottom surface. The diameter of the via hole 4 is about 30 to 100 μm. For the formation of the via hole 4, a laser processing method using a carbon dioxide gas laser or a YAG laser is used. At this time, smears S such as resin scraps scattered by laser processing adhere to the inside and the periphery of the via hole 4 and the surface of the lower wiring conductor 2 exposed on the bottom surface of the via hole 4 is removed by laser processing. A thin resin residue R that has not been cut remains.

次に、図1(d)に示すように、デスミア処理をすることにより、上層の絶縁層3の表面を粗化するとともに前記スミアSおよび樹脂残渣Rを除去する。デスミア処理は水酸化ナトリウム等を含むアルカリ性水溶液で膨潤処理後、過マンガン酸カリウム処理をし、最後に硫酸等を含む酸性水溶液で還元処理することにより行なわれる。   Next, as shown in FIG. 1D, the surface of the upper insulating layer 3 is roughened by performing a desmear process, and the smear S and the resin residue R are removed. The desmear treatment is performed by swelling treatment with an alkaline aqueous solution containing sodium hydroxide and the like, followed by potassium permanganate treatment, and finally reduction treatment with an acidic aqueous solution containing sulfuric acid and the like.

次に図1(e)に示すように、ビアホール4の底面に露出する下層の配線導体2の表面を0.2〜2μm程度の厚みソフトエッチングする。このとき、下層の配線導体2とビアホール4周辺の上層の絶縁層3下面との間に横方向にえぐられた小さな空隙部Vが形成される。なお、このソフトエッチングにより下層の配線導体2表面の酸化被膜および樹脂残渣Rが完全に除去される。ソフトエッチングには、硫酸と過酸化水素水との混合液から成るエッチング液が用いられる。   Next, as shown in FIG. 1E, the surface of the lower wiring conductor 2 exposed on the bottom surface of the via hole 4 is soft-etched to a thickness of about 0.2 to 2 μm. At this time, a small void V is formed between the lower wiring conductor 2 and the lower surface of the upper insulating layer 3 around the via hole 4. Note that the oxide film and the resin residue R on the surface of the lower wiring conductor 2 are completely removed by this soft etching. For the soft etching, an etching solution made of a mixed solution of sulfuric acid and hydrogen peroxide is used.

次に、上層の絶縁層3の表面およびビアホール4内にクリーナーコンディショナー処理を行なう。このとき、上層の絶縁層3の表面およびビアホール4内の汚れが除去されるとともにビアホール4内を含む上層の絶縁層3の表面に対する無電解めっき用の触媒の吸着性が向上する。この場合、ソフトエッチングした後にクリーナーコンディショナー処理を行なうことから、空隙部Vにおける上層の絶縁層3の下面にもクリーナーコンディショナー処理により無電解めっき用の触媒の吸着性が向上した状態が形成される。なお、クリーナーコンディショナー処理は市販の処理液を用いて行なえばよい。   Next, cleaner conditioner treatment is performed on the surface of the upper insulating layer 3 and the via holes 4. At this time, dirt on the surface of the upper insulating layer 3 and the via hole 4 is removed, and the adsorptivity of the electroless plating catalyst to the surface of the upper insulating layer 3 including the via hole 4 is improved. In this case, since the cleaner conditioner treatment is performed after the soft etching, a state in which the adsorptivity of the catalyst for electroless plating is improved by the cleaner conditioner treatment is also formed on the lower surface of the upper insulating layer 3 in the gap V. In addition, what is necessary is just to perform a cleaner conditioner process using a commercially available process liquid.

次に、ビアホール4底面に露出する下層の配線導体2表面に前記ソフトエッチングにより形成されたスマットを酸洗浄により除去した後、アクチベーター処理してビアホール4内を含む上層の樹脂層3の表面に無電解めっきのためのSn−Pd触媒を吸着させる。このとき、空隙部Vにおける上層の絶縁層3の下面にもクリーナーコンディショナー処理により無電解めっき用の触媒の吸着性が向上した状態が形成されていることから、空隙部Vにおける上層の絶縁層3の下面にも無電解めっき用の触媒が良好に吸着される。   Next, after removing the smut formed by the soft etching on the surface of the lower wiring conductor 2 exposed on the bottom surface of the via hole 4 by acid cleaning, an activator treatment is performed on the surface of the upper resin layer 3 including the inside of the via hole 4. Sn-Pd catalyst for electroless plating is adsorbed. At this time, since the state in which the adsorptivity of the catalyst for electroless plating is improved by the cleaner conditioner treatment is also formed on the lower surface of the upper insulating layer 3 in the void portion V, the upper insulating layer 3 in the void portion V is formed. The catalyst for electroless plating is also adsorbed satisfactorily on the lower surface of the substrate.

次に、アクセレレーター処理によりSn−Pd触媒におけるSnを除去した後、図1(f)に示すように、ビアホール4内を含む上層の樹脂層3の表面に厚みが0.2〜2μm程度の無電解銅めっき層5を被着させる。このとき、空隙部Vにおける上層の絶縁層3の下面にも無電解めっき用の触媒が良好に吸着されているので、ビアホール4の空隙部V内を含む上層の絶縁層3の表面に無電解銅めっき層5が良好に被着される。なお、無電解銅めっき層5を被着させるには市販の無電解銅めっき液を用いればよい。   Next, after Sn in the Sn—Pd catalyst is removed by an accelerator treatment, the thickness of the upper resin layer 3 including the inside of the via hole 4 is about 0.2 to 2 μm as shown in FIG. The electroless copper plating layer 5 is applied. At this time, since the electroless plating catalyst is well adsorbed on the lower surface of the upper insulating layer 3 in the void portion V, the surface of the upper insulating layer 3 including the inside of the void portion V of the via hole 4 is electrolessly formed. The copper plating layer 5 is deposited satisfactorily. A commercially available electroless copper plating solution may be used to deposit the electroless copper plating layer 5.

次に、図1(g)に示すように、無電解銅めっき層5上に、上層の配線導体に対応する形状の開口Aを有するめっきレジスト層6を被着形成した後、めっきレジスト層6の開口A内の無電解銅めっき層5上に上層の配線導体に応じた形状の電解銅めっき層7を10〜20μm程度の厚みに被着させる。このとき、ビアホール4の空隙部V内を含む上層の絶縁層3の表面に無電解銅めっき層5が良好に被着されているので、ビアホール4内および上層の絶縁層3の表面に電解銅めっき層7が被着される。   Next, as shown in FIG. 1 (g), a plating resist layer 6 having an opening A having a shape corresponding to the upper wiring conductor is deposited on the electroless copper plating layer 5, and then the plating resist layer 6. On the electroless copper plating layer 5 in the opening A, an electrolytic copper plating layer 7 having a shape corresponding to the upper wiring conductor is deposited to a thickness of about 10 to 20 μm. At this time, since the electroless copper plating layer 5 is satisfactorily deposited on the surface of the upper insulating layer 3 including the inside of the void portion V of the via hole 4, electrolytic copper is deposited on the surface of the via hole 4 and the upper insulating layer 3. A plating layer 7 is applied.

次に、図1(h)に示すように、めっきレジスト層6を水酸化ナトリウム等を含むアルカリ系の剥離液で剥離して除去するとともに、電解銅めっき層7が被着されていない部分の無電解銅めっき層5をエッチング除去することにより上層の配線導体8を形成する。このとき、上層の配線導体8を形成する無電解銅めっき層5および電解銅めっき層7は、ビアホール4の空隙部V内を含む上層の絶縁層3の表面に良好に被着されているので、ビアホール4を介した下層の配線導体層2と上層の配線導体層8との電気的な接続信頼性が高い配線基板を提供することができる。   Next, as shown in FIG. 1 (h), the plating resist layer 6 is peeled off with an alkaline stripping solution containing sodium hydroxide and removed, and the portion where the electrolytic copper plating layer 7 is not deposited is removed. The upper wiring conductor 8 is formed by removing the electroless copper plating layer 5 by etching. At this time, the electroless copper plating layer 5 and the electrolytic copper plating layer 7 forming the upper wiring conductor 8 are satisfactorily applied to the surface of the upper insulating layer 3 including the inside of the void portion V of the via hole 4. Thus, it is possible to provide a wiring board having high electrical connection reliability between the lower wiring conductor layer 2 and the upper wiring conductor layer 8 via the via hole 4.

なお、本発明の配線基板の製造方法は、上述の実施形態例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能であり、例えば上述の実施形態例における図1(d)を基にして説明したデスミア処理の後で、かつ図1(e)を基にして説明したソフトエッチングの前に、上層の絶縁層3の表面およびビアホール4内にクリーナーコンディショナー処理を追加で行なってもよい。   Note that the method for manufacturing a wiring board according to the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. For example, the above-described embodiment is possible. After the desmear process described with reference to FIG. 1D and before the soft etching described with reference to FIG. 1E, a cleaner conditioner is formed on the surface of the upper insulating layer 3 and in the via hole 4. Additional processing may be performed.

1 下層の絶縁層
2 下層の配線導体
3 上層の絶縁層
4 ビアホール
5 無電解めっき層
7 電解めっき層
8 上層の配線導体
DESCRIPTION OF SYMBOLS 1 Lower insulating layer 2 Lower wiring conductor 3 Upper insulating layer 4 Via hole 5 Electroless plating layer 7 Electrolytic plating layer 8 Upper wiring conductor

Claims (1)

上面に下層の配線導体が形成された下層の絶縁層上に、上層の絶縁層を積層する工程と、前記上層の絶縁層に前記下層の導体層を底面とするビアホールを形成する工程と、前記ビアホール内を含む前記上層の絶縁層表面をデスミア処理する工程と、前記ビアホール底面に露出する前記下層の配線導体の表面を、該下層の配線導体と前記ビアホール周辺の前記上層の絶縁層下面との間に横方向にえぐられた小さな空隙部が形成されるようにソフトエッチングする工程と、前記上層の絶縁層の表面および前記ビアホール内にクリーナーコンディショナー処理を行なう工程と、前記ビアホール内を含む前記上層の絶縁層の表面に無電解めっき用の触媒を吸着させる工程と、前記ビアホール内を含む前記上層の絶縁層の表面に無電解めっき層を被着させる工程と、前記ビアホール内を含む前記無電解めっき層の表面に電解めっき層を所定パターンに被着させる工程とを順次行なうことを特徴とする配線基板の製造方法。 A step of laminating an upper insulating layer on a lower insulating layer having a lower wiring conductor formed on the upper surface; a step of forming a via hole having the lower conductive layer as a bottom surface in the upper insulating layer; A step of desmearing the surface of the upper insulating layer including the inside of the via hole, and a surface of the lower wiring conductor exposed on the bottom surface of the via hole between the lower wiring conductor and the lower surface of the upper insulating layer around the via hole. A soft etching process so that a small void portion is formed in the lateral direction therebetween, a cleaner conditioner process is performed on the surface of the upper insulating layer and the via hole, and the upper layer including the inside of the via hole. Adsorbing a catalyst for electroless plating on the surface of the insulating layer, and depositing an electroless plated layer on the surface of the upper insulating layer including the inside of the via hole That step a method of manufacturing a wiring substrate, characterized by performing the electrolytic plating layer on the surface of the electroless plating layer comprising the via hole sequentially and a step of depositing a predetermined pattern.
JP2009047329A 2009-02-27 2009-02-27 Method of manufacturing wiring board Pending JP2010205801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009047329A JP2010205801A (en) 2009-02-27 2009-02-27 Method of manufacturing wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009047329A JP2010205801A (en) 2009-02-27 2009-02-27 Method of manufacturing wiring board

Publications (1)

Publication Number Publication Date
JP2010205801A true JP2010205801A (en) 2010-09-16

Family

ID=42967047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009047329A Pending JP2010205801A (en) 2009-02-27 2009-02-27 Method of manufacturing wiring board

Country Status (1)

Country Link
JP (1) JP2010205801A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9402317B2 (en) 2013-06-10 2016-07-26 Ushio Denki Kabushiki Kaisha Ashing apparatus
US9859131B2 (en) 2014-06-13 2018-01-02 Ushio Denki Kabushiki Kaisha Desmear treatment device and desmear treatment method
WO2020241645A1 (en) * 2019-05-31 2020-12-03 凸版印刷株式会社 Multilayer circuit board and method for manufacturing same
JP2021005624A (en) * 2019-06-26 2021-01-14 新光電気工業株式会社 Wiring board and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9402317B2 (en) 2013-06-10 2016-07-26 Ushio Denki Kabushiki Kaisha Ashing apparatus
US9859131B2 (en) 2014-06-13 2018-01-02 Ushio Denki Kabushiki Kaisha Desmear treatment device and desmear treatment method
WO2020241645A1 (en) * 2019-05-31 2020-12-03 凸版印刷株式会社 Multilayer circuit board and method for manufacturing same
JP2021005624A (en) * 2019-06-26 2021-01-14 新光電気工業株式会社 Wiring board and method of manufacturing the same
US11574866B2 (en) 2019-06-26 2023-02-07 Shinko Electric Industries Co., Ltd. Wiring substrate and manufacturing method thereof
JP7430990B2 (en) 2019-06-26 2024-02-14 新光電気工業株式会社 Manufacturing method of wiring board

Similar Documents

Publication Publication Date Title
KR20060114010A (en) Method of electroplating on aluminum
JP2009260204A (en) Printed circuit board and method of manufacturing the same
JP4624217B2 (en) Circuit board manufacturing method
US11690178B2 (en) Multilayer printed wiring board and method of manufacturing the same
KR20160099631A (en) Methods of forming segmented vias for printed circuit boards
JP2009283671A (en) Method of manufacturing printed-wiring board
JP2010205801A (en) Method of manufacturing wiring board
JP4488187B2 (en) Method for manufacturing substrate having via hole
TWI392419B (en) Manufacturing method of circuit structure
US8273651B2 (en) Method for fabricating wiring structure of wiring board
JP4862682B2 (en) Printed wiring board and manufacturing method thereof
JP2004235202A (en) Via forming method in wiring board
JP2009081212A (en) Method for manufacturing printed wiring board
JP2010087285A (en) Method for manufacturing multilayer circuit board
JP2004319994A (en) Method for manufacturing printed wiring board
JP2017005096A (en) Method for manufacturing wiring board
JP4328195B2 (en) WIRING BOARD, MANUFACTURING METHOD THEREOF, AND ELECTRIC DEVICE
KR101009118B1 (en) A method for manufacturing of landless printed circuit board
JP4328196B2 (en) WIRING BOARD, MANUFACTURING METHOD THEREOF, AND ELECTRIC DEVICE
JP2000049459A (en) Manufacture of multilayer printed wiring board
JP2004146533A (en) Desmear method of printed circuit board
KR100771352B1 (en) Fabricating method of printed circuit board
JP2011071358A (en) Method of manufacturing wiring board
JPH1168291A (en) Printed wiring board and production thereof
JP2002299386A (en) Double-sided wiring film carrier and manufacturing method therefor