JP2010205655A - Method for manufacturing fuel cell, and fuel cell - Google Patents

Method for manufacturing fuel cell, and fuel cell Download PDF

Info

Publication number
JP2010205655A
JP2010205655A JP2009052031A JP2009052031A JP2010205655A JP 2010205655 A JP2010205655 A JP 2010205655A JP 2009052031 A JP2009052031 A JP 2009052031A JP 2009052031 A JP2009052031 A JP 2009052031A JP 2010205655 A JP2010205655 A JP 2010205655A
Authority
JP
Japan
Prior art keywords
catalyst layer
fuel cell
glass transition
transition temperature
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009052031A
Other languages
Japanese (ja)
Other versions
JP5375208B2 (en
Inventor
Tomoaki Uchiyama
智暁 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009052031A priority Critical patent/JP5375208B2/en
Publication of JP2010205655A publication Critical patent/JP2010205655A/en
Application granted granted Critical
Publication of JP5375208B2 publication Critical patent/JP5375208B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To restrain performance reduction of a fuel cell caused by a thermal cycle. <P>SOLUTION: In a method for manufacturing the fuel cell where an electrolyte film is sandwiched by two catalyst layers, one of the catalyst layers is the first catalyst layer including an electrolyte in which glass transition temperature becomes first glass transition temperature, the other of the catalyst layers is the second catalyst layer including an electrolyte in which the glass transition temperature becomes second glass transition temperature. The method for manufacturing the fuel cell has a step of heat-treating the first and second catalyst layers so as to make strength of the first catalyst layer higher than strength of the second catalyst layer by making use of the relationship between the first and second glass transition temperature of the first and second catalyst layers. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料電池に関する。   The present invention relates to a fuel cell.

燃料ガスと酸化ガスとの電気化学反応によって発電する燃料電池として、プロトン伝導性を有する電解質膜の両面に触媒層を接合した膜電極接合体(以下では、MEA(Membrane Electrode Assembly)と呼ぶ)を備えたものが知られている。従来、こうしたMEAの構造について、種々の技術が提案されている(例えば、下記特許文献1)。   As a fuel cell that generates electricity by an electrochemical reaction between a fuel gas and an oxidizing gas, a membrane electrode assembly (hereinafter referred to as MEA (Membrane Electrode Assembly)) in which a catalyst layer is bonded to both surfaces of an electrolyte membrane having proton conductivity. What you have is known. Conventionally, various techniques have been proposed for the structure of such an MEA (for example, Patent Document 1 below).

特開2006―236631号公報JP 2006-236631 A

上記技術は、カソード側の触媒層を2層構成とし、カーボン担体に対する電解質の比率を触媒層で高めることにより、電解質膜と触媒層との界面におけるカーボン担体の劣化を抑制し、界面からの電解質膜へ触媒が溶出するのを抑制している。   In the above technique, the cathode-side catalyst layer has a two-layer structure, and the ratio of the electrolyte to the carbon support is increased by the catalyst layer, thereby suppressing the deterioration of the carbon support at the interface between the electrolyte membrane and the catalyst layer. The catalyst is prevented from eluting to the membrane.

ところで、燃料電池において、電解質膜が冷熱サイクルにより伸縮すると、触媒層に大きな応力が生じ、触媒層において、電解質膜との界面付近が破壊されるおそれがあった。その結果、触媒層で電気化学反応の活性が低下し、燃料電池性能が低下するおそれがあった。   By the way, in the fuel cell, when the electrolyte membrane expands and contracts due to the thermal cycle, a large stress is generated in the catalyst layer, and there is a possibility that the vicinity of the interface with the electrolyte membrane is destroyed in the catalyst layer. As a result, the activity of the electrochemical reaction in the catalyst layer is lowered, and the fuel cell performance may be lowered.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]
電解質膜を2つの触媒層で挟持した燃料電池の製造方法であって、前記触媒層のうち一方はガラス転移温度が第1ガラス転移温度である電解質を含む第1触媒層であり、前記触媒層のうち他方はガラス転移温度が第2ガラス転移温度である電解質を含む第2触媒層であり、前記第1,第2触媒層の前記第1,第2ガラス転移温度の関係を利用して、前記第1触媒層の強度が前記第2触媒層の強度より高くなるように前記第1,第2触媒層を熱処理する工程を備える燃料電池の製造方法。
[Application Example 1]
A method of manufacturing a fuel cell in which an electrolyte membrane is sandwiched between two catalyst layers, wherein one of the catalyst layers is a first catalyst layer containing an electrolyte whose glass transition temperature is a first glass transition temperature, and the catalyst layer The other is a second catalyst layer containing an electrolyte having a glass transition temperature of the second glass transition temperature, and using the relationship between the first and second glass transition temperatures of the first and second catalyst layers, A method of manufacturing a fuel cell, comprising a step of heat-treating the first and second catalyst layers so that the strength of the first catalyst layer is higher than the strength of the second catalyst layer.

この燃料電池の製造方法によれば、第1触媒層が第2触媒層より強度が高くなるので、冷熱サイクルの環境下にその燃料電池がおかれた時に、電解質膜が伸縮し、第1,第2触媒層に応力がかかった際に、第2触媒層を第1触媒層よりも壊れやすくすることができる。第2触媒層が第1触媒層よりも壊れる確率を高くできるので、これを見込んで燃料電池を設計できるという利点が得られる。   According to this method of manufacturing a fuel cell, the first catalyst layer is stronger than the second catalyst layer. Therefore, when the fuel cell is placed in a cold cycle environment, the electrolyte membrane expands and contracts, When stress is applied to the second catalyst layer, the second catalyst layer can be more easily broken than the first catalyst layer. Since the second catalyst layer can be more likely to break than the first catalyst layer, there is an advantage that the fuel cell can be designed in anticipation of this.

[適用例2]
適用例1記載の燃料電池の製造方法であって、前記熱処理は前記第1触媒層に前記第1ガラス転移温度より高い温度で熱処理を行い、前記第2触媒層に前記第2ガラス転移温度より低い温度で熱処理を行う熱付与工程を備える燃料電池の製造方法。
[Application Example 2]
The method of manufacturing a fuel cell according to Application Example 1, wherein the heat treatment is performed on the first catalyst layer at a temperature higher than the first glass transition temperature, and the second catalyst layer is heated at a temperature higher than the second glass transition temperature. A method for producing a fuel cell, comprising a heat application step of performing a heat treatment at a low temperature.

この燃料電池の製造方法によれば、第1触媒層は第1ガラス転移温度より高い温度で熱処理を行い、第2触媒層は第2ガラス転移温度より低い温度で熱処理を行うことにより、第1触媒層の結晶性が第2触媒層の結晶性より高くなる。従って、第1触媒層の強度を第2触媒層の強度より高くすることができる。   According to this fuel cell manufacturing method, the first catalyst layer is heat-treated at a temperature higher than the first glass transition temperature, and the second catalyst layer is heat-treated at a temperature lower than the second glass transition temperature. The crystallinity of the catalyst layer becomes higher than the crystallinity of the second catalyst layer. Therefore, the strength of the first catalyst layer can be made higher than the strength of the second catalyst layer.

[適用例3]
適用例2記載の燃料電池の製造方法であって、前記熱付与工程は、前記第1触媒層と前記電解質膜とを当接した状態で前記第1ガラス転移温度より高い温度で熱処理を行う第1熱付与工程と、前記第1熱付与工程後に、前記第2触媒層と前記電解質膜とを当接してから前記第2ガラス転移温度より低い温度で熱処理を行う第2熱付与工程とを含む燃料電池の製造方法。
[Application Example 3]
The method of manufacturing a fuel cell according to Application Example 2, wherein the heat application step performs heat treatment at a temperature higher than the first glass transition temperature in a state where the first catalyst layer and the electrolyte membrane are in contact with each other. 1 heat provision process, and after the said 1st heat provision process, after making the said 2nd catalyst layer and said electrolyte membrane contact | abut, the 2nd heat provision process which heat-processes at a temperature lower than the said 2nd glass transition temperature is included. Manufacturing method of fuel cell.

この燃料電池の製造方法によれば、第1触媒層及び第2触媒層をそれぞれ電解質膜に当接してから熱を付与するので、第1触媒層と電解質膜との剥離強度を、第2触媒層と電解質膜との剥離強度より大きくすることができる。   According to this method of manufacturing a fuel cell, heat is applied after the first catalyst layer and the second catalyst layer are brought into contact with the electrolyte membrane, respectively, so that the peel strength between the first catalyst layer and the electrolyte membrane is set to the second catalyst layer. The peel strength between the layer and the electrolyte membrane can be made larger.

[適用例4]
適用例2記載の燃料電池の製造方法であって、前記第2ガラス転移温度が前記第1ガラス転移温度より高く、前記熱付与工程は、前記第1ガラス転移温度より高く前記第2ガラス転移温度より低い温度で熱処理を行う燃料電池の製造方法。
[Application Example 4]
The fuel cell manufacturing method according to Application Example 2, wherein the second glass transition temperature is higher than the first glass transition temperature, and the heat application step is higher than the first glass transition temperature and the second glass transition temperature. A method of manufacturing a fuel cell in which heat treatment is performed at a lower temperature.

この燃料電池の製造方法によれば、第1ガラス転移温度より高く第2ガラス転移温度より低い温度で、第1触媒層と第2触媒層とを熱処理するので、第1触媒層の強度を第2触媒層の強度より高くするための熱処理の工程数を少なくすることができる。   According to this fuel cell manufacturing method, the first catalyst layer and the second catalyst layer are heat-treated at a temperature higher than the first glass transition temperature and lower than the second glass transition temperature. The number of heat treatment steps for increasing the strength of the two catalyst layers can be reduced.

[適用例5]
適用例4記載の燃料電池の製造方法であって、前記電解質膜の両側に前記第1触媒層と前記第2触媒層とを積層する積層工程を備え、前記熱付与工程は、前記積層工程後、前記第1ガラス転移温度より高く前記第2ガラス転移温度より低い温度で、前記第1触媒層と前記第2触媒層とを、同時に熱処理をする工程を含む燃料電池の製造方法。
[Application Example 5]
It is a manufacturing method of the fuel cell of application example 4, Comprising: It has the lamination process which laminates | stacks the said 1st catalyst layer and the said 2nd catalyst layer on both sides of the said electrolyte membrane, The said heat provision process is after the said lamination process. A method for producing a fuel cell, comprising a step of simultaneously heat-treating the first catalyst layer and the second catalyst layer at a temperature higher than the first glass transition temperature and lower than the second glass transition temperature.

この燃料電池の製造方法によれば、電解質膜の両側に第1触媒層と第2触媒層とを積層してから、第1ガラス転移温度より高く前記第2ガラス転移温度より低い温度で、第1触媒層と第2触媒層とを同時に熱処理を行うので、第1触媒層と電解質膜との剥離強度を、第2触媒層と電解質膜との剥離強度より大きくするための熱処理の工程数を少なくすることができる。   According to this fuel cell manufacturing method, after laminating the first catalyst layer and the second catalyst layer on both sides of the electrolyte membrane, at a temperature higher than the first glass transition temperature and lower than the second glass transition temperature, Since the first catalyst layer and the second catalyst layer are heat-treated at the same time, the number of heat treatment steps for making the peel strength between the first catalyst layer and the electrolyte membrane larger than the peel strength between the second catalyst layer and the electrolyte membrane is increased. Can be reduced.

[適用例6]
適用例2ないし適用例5のいずれか記載の燃料電池の製造方法であって、前記熱付与工程は、前記第2触媒層に前記第2ガラス転移温度より低い温度で熱処理を行う場合において、前記第2触媒層の前記電解質膜に当接する当接面の温度が、前記当接面とは反対側の面の温度より高くなるように熱処理を行う燃料電池の製造方法。
[Application Example 6]
The method of manufacturing a fuel cell according to any one of Application Example 2 to Application Example 5, wherein the heat application step includes performing heat treatment on the second catalyst layer at a temperature lower than the second glass transition temperature. A method of manufacturing a fuel cell, wherein a heat treatment is performed so that a temperature of a contact surface of the second catalyst layer contacting the electrolyte membrane is higher than a temperature of a surface opposite to the contact surface.

この燃料電池の製造方法によれば、第2触媒層の電解質膜に当接する当接面の温度が、当接面とは反対側の面の温度より高くなるように熱処理を行うので、第2触媒層の電解質膜に当接する当接面の強度を、当接面とは反対側の面の強度より高くすることができる。   According to this method of manufacturing a fuel cell, the heat treatment is performed so that the temperature of the contact surface that contacts the electrolyte membrane of the second catalyst layer is higher than the temperature of the surface opposite to the contact surface. The strength of the contact surface that contacts the electrolyte membrane of the catalyst layer can be made higher than the strength of the surface opposite to the contact surface.

[適用例7]
前記第1触媒層はカソード触媒層であり、前記第2触媒層はアノード触媒層である適用例1ないし請求項6のいずれか記載の燃料電池の製造方法。
[Application Example 7]
The fuel cell manufacturing method according to any one of application examples 1 to 6, wherein the first catalyst layer is a cathode catalyst layer, and the second catalyst layer is an anode catalyst layer.

この燃料電池の製造方法によれば、カソード触媒層の強度がアノード触媒層の強度より高い燃料電池を製造することができる。   According to this fuel cell manufacturing method, it is possible to manufacture a fuel cell in which the strength of the cathode catalyst layer is higher than the strength of the anode catalyst layer.

[適用例8]
第1触媒層と第2触媒層との間に電解質膜を挟持した燃料電池であって、前記第1触媒層と前記電解質膜との剥離強度である第1剥離強度が、前記第2触媒層と前記電解質膜との剥離強度である第2剥離強度に比べて大きいことを特徴とする燃料電池。
[Application Example 8]
A fuel cell having an electrolyte membrane sandwiched between a first catalyst layer and a second catalyst layer, wherein a first peel strength that is a peel strength between the first catalyst layer and the electrolyte membrane is the second catalyst layer. And a second peel strength which is a peel strength between the electrolyte membrane and the electrolyte membrane.

この燃料電池によれば、第1剥離強度は第2剥離強度より大きいので、この燃料電池が冷熱サイクルにより伸縮した際に、第2触媒層と電解質との界面付近の破壊を、第1触媒層と電解質膜との界面付近の破壊より先に生じさせることができる。したがって、冷熱サイクルによる触媒層への大きな応力を、第2触媒層と電解質との界面付近における破壊によって緩和することにより、第1剥離強度と第2剥離強度が同じ燃料電池に比べ、第1触媒層と電解質膜との界面付近の破壊を抑制することができる。   According to this fuel cell, the first peel strength is greater than the second peel strength. Therefore, when the fuel cell expands and contracts due to the thermal cycle, the first catalyst layer breaks near the interface between the second catalyst layer and the electrolyte. Can occur before the breakage near the interface between the electrolyte membrane and the electrolyte membrane. Accordingly, the first catalyst is compared with the fuel cell having the same first peel strength and the second peel strength by relaxing the large stress on the catalyst layer due to the thermal cycle by breaking near the interface between the second catalyst layer and the electrolyte. Breakage in the vicinity of the interface between the layer and the electrolyte membrane can be suppressed.

[適用例9]
適用例8記載の燃料電池であって、前記第1触媒層は、第1電解質を含み、該第1電解質の第1ガラス転移温度より高い温度で熱処理されており、前記第2触媒層は、第2電解質を含み、該第2電解質の第2ガラス転移温度より低い温度で熱処理をされている燃料電池。
[Application Example 9]
The fuel cell according to Application Example 8, wherein the first catalyst layer includes a first electrolyte, and is heat-treated at a temperature higher than a first glass transition temperature of the first electrolyte, and the second catalyst layer includes: A fuel cell comprising a second electrolyte and heat-treated at a temperature lower than a second glass transition temperature of the second electrolyte.

この燃料電池によれば、第1触媒層は、第1電解質を含み、第1電解質の第1ガラス転移温度より高い温度で熱処理されており、第2触媒層は、第2電解質を含み、第2電解質の第2ガラス転移温度より低い温度で熱処理されているので、第1触媒層の強度を第2触媒層の強度より高くすることができる。   According to this fuel cell, the first catalyst layer includes the first electrolyte and is heat-treated at a temperature higher than the first glass transition temperature of the first electrolyte, the second catalyst layer includes the second electrolyte, Since the heat treatment is performed at a temperature lower than the second glass transition temperature of the two electrolytes, the strength of the first catalyst layer can be made higher than the strength of the second catalyst layer.

[適用例10]
前記第1触媒層はカソード触媒層であり、前記第2触媒層はアノード触媒層である適用例8または適用例9記載の燃料電池。
[Application Example 10]
10. The fuel cell according to Application Example 8 or Application Example 9, wherein the first catalyst layer is a cathode catalyst layer and the second catalyst layer is an anode catalyst layer.

この燃料電池によれば、第1触媒層はカソード触媒層であり、第2触媒層はアノード触媒層であるので、この燃料電池が冷熱サイクルにより伸縮した際に、アノード触媒層と電解質との界面付近の破壊を、カソード媒層と電解質膜との界面付近の破壊より先に生じさせることができる。したがって、冷熱サイクルによる触媒層への大きな応力を、アノード触媒層と電解質との界面付近における破壊によって緩和することにより、カソード触媒層と電解質膜との界面付近の破壊を抑制することができる。   According to this fuel cell, since the first catalyst layer is a cathode catalyst layer and the second catalyst layer is an anode catalyst layer, the interface between the anode catalyst layer and the electrolyte when the fuel cell expands and contracts by a thermal cycle. The nearby breakage can occur before the breakage near the interface between the cathode medium layer and the electrolyte membrane. Accordingly, the relaxation near the interface between the cathode catalyst layer and the electrolyte membrane can be suppressed by relieving the large stress on the catalyst layer due to the thermal cycle by the breakdown near the interface between the anode catalyst layer and the electrolyte.

第1実施例における燃料電池10の概観を示す説明図である。It is explanatory drawing which shows the general view of the fuel cell 10 in 1st Example. 燃料電池10における燃料電池セルCLの概略構成を表す分解斜視図である。2 is an exploded perspective view showing a schematic configuration of a fuel cell CL in the fuel cell 10. FIG. 燃料電池セルCLの断面を模式的に示した模式図である。It is the schematic diagram which showed typically the cross section of the fuel cell CL. 第1実施例におけるMEA5の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of MEA5 in 1st Example. 冷熱試験における実施例品1と比較例品の性能変化の様子を示す説明図である。It is explanatory drawing which shows the mode of the performance change of the Example goods 1 and comparative example goods in a cooling-heat test. 冷熱試験における実施例品1と比較例品の性能変化の様子を示すグラフである。It is a graph which shows the mode of the performance change of the Example goods 1 and comparative example goods in a cold-heat test. 実施例品1と比較例品のMEAの断面を走査型電子顕微鏡で観察した結果を示す模式図である。It is a schematic diagram which shows the result of having observed the cross section of MEA of Example goods 1 and a comparative example goods with the scanning electron microscope. 第1実施例における試験片と電解質膜との剥離強度の転写温度依存性を示すグラフである。It is a graph which shows the transfer temperature dependence of the peeling strength of the test piece and electrolyte membrane in 1st Example. 第1実施例における試験片と電解質膜との剥離強度を実施例品1と比較品の触媒層毎に示す説明図である。It is explanatory drawing which shows the peeling strength of the test piece and electrolyte membrane in 1st Example for every catalyst layer of Example goods 1 and a comparison goods. 第2実施例におけるMEAの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of MEA in 2nd Example. 冷熱試験における実施例品2と比較例品の性能変化の様子を示す説明図である。It is explanatory drawing which shows the mode of the performance change of the Example goods 2 and comparative example goods in a cold-heat test. 冷熱試験における実施例品2と比較例品の性能変化の様子を示すグラフである。It is a graph which shows the mode of the performance change of the Example goods 2 and comparative example goods in a cooling-heat test. 第2実施例における試験片と電解質膜との剥離強度の転写温度依存性を示すグラフである。It is a graph which shows the transfer temperature dependence of the peeling strength of the test piece and electrolyte membrane in 2nd Example. 第2実施例における試験片と電解質膜との剥離強度を実施例品2と比較品の触媒層毎に示す説明図である。It is explanatory drawing which shows the peeling strength of the test piece and electrolyte membrane in 2nd Example for every catalyst layer of Example goods 2 and a comparison goods. 変形例1における、MEAの厚み方向と、転写温度の関係を示す説明図である。FIG. 10 is an explanatory diagram showing the relationship between the MEA thickness direction and the transfer temperature in Modification 1;

本発明の実施の形態を実施例に基づいて説明する。
A.第1実施例:
(A1)燃料電池の構成
図1は、本発明の一実施例に係る燃料電池10の概観を示す説明図である。本実施例の燃料電池10は、複数の燃料電池セルCLと、エンドプレートEPと、テンションプレートTSと、インシュレータISと、ターミナルTMとを備えている。複数の燃料電池セルCLは、インシュレータIS及びターミナルTMを挟んで、2枚のエンドプレートEPによって挟持される。すなわち、燃料電池10は、燃料電池セルCLが複数個積層されたスタック構造である。また、燃料電池10は、テンションプレートTSがボルトBTによって各エンドプレートEPに結合され、各燃料電池セルCLを、各部材の積層方向(以下では単に、「積層方向」とも呼ぶ)、つまり図1に示すX方向に所定の力で締結する構造になっている。なお、本実施例の燃料電池10では、酸化ガスとしては、空気を用い、燃料ガスとしては、水素を用いる。積層方向に直交する方向であって、燃料電池セルCLに沿った方向を面方向(図1のY方向)と呼ぶ。
Embodiments of the present invention will be described based on examples.
A. First embodiment:
(A1) Configuration of Fuel Cell FIG. 1 is an explanatory diagram showing an overview of a fuel cell 10 according to an embodiment of the present invention. The fuel cell 10 according to this embodiment includes a plurality of fuel cells CL, an end plate EP, a tension plate TS, an insulator IS, and a terminal TM. The plurality of fuel cells CL are sandwiched by two end plates EP with the insulator IS and the terminal TM interposed therebetween. That is, the fuel cell 10 has a stack structure in which a plurality of fuel cells CL are stacked. Further, in the fuel cell 10, the tension plate TS is coupled to each end plate EP by a bolt BT, and each fuel cell CL is connected to each member in the stacking direction (hereinafter also simply referred to as “stacking direction”), that is, FIG. The structure is fastened with a predetermined force in the X direction shown in FIG. In the fuel cell 10 of this embodiment, air is used as the oxidizing gas, and hydrogen is used as the fuel gas. A direction perpendicular to the stacking direction and along the fuel cell CL is referred to as a plane direction (Y direction in FIG. 1).

図2は、燃料電池10におけるひとつの燃料電池セルCLの概略構成を表す分解斜視図である。図3は、燃料電池セルCLの構成を模式的に示す模式図である。具体的には、図3は、図2の燃料電池セルCLにおけるA−A断面を模式的に示した模式図である。燃料電池セルCLは、膜電極接合体であるMEA5と、ガス拡散層14,15と、セパレータ6,7とを備える。燃料電池セルCLは、MEA5を、ガス拡散層14,15で挟持し、さらに、そのサンドイッチ構造を、セパレータ6,7で挟持して形成される。なお、図2では、ガス拡散層14は、MEA5の裏側に形成されているため、図示されていない。   FIG. 2 is an exploded perspective view showing a schematic configuration of one fuel cell CL in the fuel cell 10. FIG. 3 is a schematic diagram schematically showing the configuration of the fuel cell CL. Specifically, FIG. 3 is a schematic diagram schematically showing an AA cross section in the fuel cell CL of FIG. The fuel cell CL includes a MEA 5 that is a membrane electrode assembly, gas diffusion layers 14 and 15, and separators 6 and 7. The fuel cell CL is formed by sandwiching the MEA 5 between the gas diffusion layers 14 and 15 and sandwiching the sandwich structure between the separators 6 and 7. In FIG. 2, the gas diffusion layer 14 is not shown because it is formed on the back side of the MEA 5.

MEA5は、電解質膜11と、酸化ガスが供給される触媒層(以下ではカソード触媒層とも呼ぶ)12と、燃料ガスが供給される触媒層(以下では、アノード触媒層とも呼ぶ)13とを備え、電解質膜11をカソード触媒層12及びアノード触媒層13で挟持して構成される。言い換えれば、MEA5は、電解質膜11の一方の面にカソード触媒層12が配置され、他方の面にアノード触媒層13が配置されて成る。   The MEA 5 includes an electrolyte membrane 11, a catalyst layer (hereinafter also referred to as a cathode catalyst layer) 12 to which an oxidizing gas is supplied, and a catalyst layer (hereinafter also referred to as an anode catalyst layer) 13 to which a fuel gas is supplied. The electrolyte membrane 11 is sandwiched between the cathode catalyst layer 12 and the anode catalyst layer 13. In other words, the MEA 5 is configured such that the cathode catalyst layer 12 is disposed on one surface of the electrolyte membrane 11 and the anode catalyst layer 13 is disposed on the other surface.

電解質膜11は、固体高分子材料であるフッ素系電解質により形成されたプロトン伝導性のイオン交換膜であり、湿潤状態で良好なプロトン伝導性を示す。なお、電解質膜11は、フッ素系電解質膜に限らず、例えば、炭化水素系電解質膜であってもよい。本実施例ではNafion膜(Nafionは登録商標)を用いた。   The electrolyte membrane 11 is a proton conductive ion exchange membrane formed of a fluorine-based electrolyte that is a solid polymer material, and exhibits good proton conductivity in a wet state. The electrolyte membrane 11 is not limited to a fluorine-based electrolyte membrane, and may be a hydrocarbon-based electrolyte membrane, for example. In this example, a Nafion film (Nafion is a registered trademark) was used.

アノード触媒層13は、触媒金属である白金(Pt)を担持したカーボン(以下、白金担持カーボンとも呼ぶ)と、フッ素系電解質とを備えている。なお、アノード触媒層13において含有する電解質は、フッ素系電解質に限らず、炭化水素系電解質であってもよい。   The anode catalyst layer 13 includes carbon (hereinafter also referred to as platinum-supported carbon) supporting platinum (Pt), which is a catalyst metal, and a fluorine-based electrolyte. The electrolyte contained in the anode catalyst layer 13 is not limited to a fluorine-based electrolyte, and may be a hydrocarbon-based electrolyte.

カソード触媒層12は、白金担持カーボンと、フッ素系電解質とを備えている。なお、カソード触媒層12において、含有する電解質は、フッ素系電解質に限らず、炭化水素系電解質であってもよい。   The cathode catalyst layer 12 includes platinum-supported carbon and a fluorine-based electrolyte. Note that the electrolyte contained in the cathode catalyst layer 12 is not limited to a fluorine-based electrolyte, but may be a hydrocarbon-based electrolyte.

ガス拡散層14,15は、導電性を有する多孔質部材であり、例えば、カーボンクロス、カーボンペーパなどの炭素系多孔質体や、金属メッシュ、発泡金属などの金属多孔質体によって形成される。   The gas diffusion layers 14 and 15 are porous members having conductivity, and are formed of, for example, a carbon-based porous body such as carbon cloth or carbon paper, or a metal porous body such as a metal mesh or foam metal.

セパレータ6,7は、ガス不透過の導電性部材、例えば、カーボンを圧縮してガス不透過とした緻密質カーボンや、プレス成形した金属板によって形成することができる。セパレータ6は、図2および図3に示すように、片面において凸部6aと凹部6bとが交互に形成された凹凸形状を有している。そして、セパレータ6において、凸部6aは、ガス拡散層14(カソード触媒層12または電解質膜11)を押圧し、凹部6bは、ガス拡散層14との間にガス拡散層14(カソード触媒層12)に対して酸化ガスを給排するため酸化ガス給排流路20を形成する。また、セパレータ7において、凸部7aは、ガス拡散層15(アノード触媒層13または電解質膜11)を押圧し、凹部7bは、ガス拡散層15との間にガス拡散層15(アノード触媒層13)に対して燃料ガスを給排するため燃料ガス給排流路30を形成する。   The separators 6 and 7 can be formed of a gas-impermeable conductive member, for example, dense carbon that has been made to be gas-impermeable by compressing carbon, or a press-molded metal plate. As shown in FIGS. 2 and 3, the separator 6 has a concavo-convex shape in which convex portions 6 a and concave portions 6 b are alternately formed on one side. In the separator 6, the convex portion 6 a presses the gas diffusion layer 14 (the cathode catalyst layer 12 or the electrolyte membrane 11), and the concave portion 6 b is between the gas diffusion layer 14 and the gas diffusion layer 14 (cathode catalyst layer 12). ), An oxidizing gas supply / discharge passage 20 is formed to supply and discharge oxidizing gas. In the separator 7, the convex portion 7 a presses the gas diffusion layer 15 (the anode catalyst layer 13 or the electrolyte membrane 11), and the concave portion 7 b is between the gas diffusion layer 15 and the gas diffusion layer 15 (the anode catalyst layer 13). The fuel gas supply / discharge passage 30 is formed to supply and discharge the fuel gas.

図2に示すように、セパレータ6,7は、その外周近くの互いに対応する位置に、開口部53〜56を備えている。セパレータ6,7を、MEA5およびガス拡散層14,15と共に積層して燃料電池10を組み立てると、積層された各セパレータ6,7の対応する位置に設けられた開口部は、互いに重なり合って、積層方向に燃料電池10内部を貫通する流路を形成する。具体的には、開口部53は、酸化ガス供給マニホールドを形成し、開口部54は、酸化ガス排出マニホールドを形成し、開口部55は、燃料ガス供給マニホールドを形成し、開口部56は、燃料ガス排出マニホールドを形成する。酸化ガス供給マニホールドは、酸化ガス給排流路20に酸化ガスを導入するための流路であり、酸化ガス排出マニホールドは、酸化ガス給排流路20から酸化ガスを排出するための流路である。燃料ガス供給マニホールドは、燃料ガス給排流路30に燃料ガスを導入するための流路であり、燃料ガス排出マニホールドは、燃料ガス給排流路30から燃料ガスを排出すための流路である。   As shown in FIG. 2, the separators 6 and 7 are provided with openings 53 to 56 at positions corresponding to each other near the outer periphery thereof. When the fuel cell 10 is assembled by laminating the separators 6 and 7 together with the MEA 5 and the gas diffusion layers 14 and 15, the openings provided at the corresponding positions of the laminated separators 6 and 7 overlap each other. A flow path penetrating the inside of the fuel cell 10 is formed in the direction. Specifically, the opening 53 forms an oxidizing gas supply manifold, the opening 54 forms an oxidizing gas discharge manifold, the opening 55 forms a fuel gas supply manifold, and the opening 56 forms a fuel. A gas exhaust manifold is formed. The oxidizing gas supply manifold is a flow path for introducing oxidizing gas into the oxidizing gas supply / discharge flow path 20, and the oxidizing gas discharge manifold is a flow path for discharging oxidizing gas from the oxidizing gas supply / discharge flow path 20. is there. The fuel gas supply manifold is a flow path for introducing fuel gas into the fuel gas supply / discharge flow path 30, and the fuel gas discharge manifold is a flow path for discharging fuel gas from the fuel gas supply / discharge flow path 30. is there.

燃料電池セルCLには、上記各マニホールド、酸化ガス給排流路20、および、燃料ガス給排流路30におけるガスシール性を確保するため、燃料電池セルCLの外周部、及び開口部53〜56の周縁部に、図示しないシール部材が配設されている。また、燃料電池10において、各燃料電池セルCL間に、燃料電池セルCLを冷却するための冷却水路(図示せず)が設けられている。   In the fuel cell CL, in order to ensure gas sealing performance in each of the manifold, the oxidant gas supply / discharge channel 20 and the fuel gas supply / discharge channel 30, the outer peripheral portion of the fuel cell CL and the openings 53 to A sealing member (not shown) is disposed on the peripheral portion of 56. In the fuel cell 10, a cooling water channel (not shown) for cooling the fuel cell CL is provided between the fuel cells CL.

(A2)燃料電池の製造方法:
以下に、本実施例の燃料電池10の製造方法を説明する。この燃料電池10の製造方法では、MEA5を製造し、それを用いて、燃料電池セルCLを製造し、そして、多数の燃料電池セルCLを積層して、燃料電池10を製造する。以下に、具体的に説明する。
(A2) Fuel cell manufacturing method:
Below, the manufacturing method of the fuel cell 10 of a present Example is demonstrated. In this method of manufacturing the fuel cell 10, the MEA 5 is manufactured, the fuel cell CL is manufactured using the MEA 5, and the fuel cell 10 is manufactured by stacking a large number of fuel cells CL. This will be specifically described below.

図4は、本実施例におけるMEA5の製造方法を示す工程図である。このMEA5の製造方法では、電解質膜11、および、2つのテフロン基材(テフロンは登録商標)を用意する(ステップS100)。   FIG. 4 is a process diagram showing a method for manufacturing the MEA 5 in this embodiment. In this MEA 5 manufacturing method, an electrolyte membrane 11 and two Teflon substrates (Teflon is a registered trademark) are prepared (step S100).

次に、白金担持カーボン、フッ素系電解質、溶媒(水またはエタノール)を用意し、カソード触媒層用の触媒インクを作成する(S110)。具体的には、白金担持カーボンと、フッ素系電解質とを、溶液に溶かし、超音波振動装置を用いて、ミキシングすることによりカソード用触媒インクを作成する。白金担持カーボンとフッ素系電解質を混合する際、カーボンに対するフッ素系電解質の重量比(以下、「I/C」と表記する)はI/C=0.75に調整して混合する。また、フッ素系電解質は、ガラス転移温度(Tgとする)がTg=115℃付近のものを使用する。   Next, platinum-supporting carbon, a fluorine-based electrolyte, and a solvent (water or ethanol) are prepared, and a catalyst ink for the cathode catalyst layer is prepared (S110). Specifically, platinum-supported carbon and a fluorine-based electrolyte are dissolved in a solution and mixed using an ultrasonic vibration device to prepare a cathode catalyst ink. When the platinum-supporting carbon and the fluorine-based electrolyte are mixed, the weight ratio of the fluorine-based electrolyte to the carbon (hereinafter referred to as “I / C”) is adjusted to I / C = 0.75. As the fluorine-based electrolyte, one having a glass transition temperature (Tg) of around Tg = 115 ° C. is used.

続いて、カソード用触媒インクを、テフロン基材に塗布し、所定時間乾燥させ、カソード触媒層を形成する。(ステップS120)。次に電解質膜11にカソード触媒層を転写する。具体的には、電解質膜11の一方の面に、形成したカソード触媒層を積層し、ホットプレス装置(図示せず)を用いて、カソード触媒層外面と電解質膜11外面とを挟持するようにして、転写温度を130℃とし、所定時間、所定圧力でホットプレスする(ステップS130)。ホットプレス後、テフロン基材をカソード触媒層から除去する。   Subsequently, a cathode catalyst ink is applied to a Teflon substrate and dried for a predetermined time to form a cathode catalyst layer. (Step S120). Next, the cathode catalyst layer is transferred to the electrolyte membrane 11. Specifically, the formed cathode catalyst layer is laminated on one surface of the electrolyte membrane 11, and the cathode catalyst layer outer surface and the electrolyte membrane 11 outer surface are sandwiched by using a hot press apparatus (not shown). Then, the transfer temperature is set to 130 ° C. and hot pressing is performed at a predetermined pressure for a predetermined time (step S130). After hot pressing, the Teflon substrate is removed from the cathode catalyst layer.

次に、ステップS110と同様の材料、方法を用いてアノード触媒層用の触媒インクを作成する。つまり、I/C=0.75とし、フッ素系電解質は、Tg=115℃付近のものを使用する(ステップS140)。続いて、ステップS120と同様に、アノード用触媒インクを、テフロン基材に塗布し、所定時間乾燥させ、アノード触媒層を形成する(ステップS150)。その後、電解質膜11において、カソード触媒層12を形成した面とは反対の面に、形成したアノード触媒層を積層し、ホットプレス装置(図示せず)を用いて、アノード触媒層13の外面とカソード触媒層12の外面とを転写温度を110℃とし、所定時間、所定圧力でホットプレスし(ステップS160)、MEA5の製造方法は終了する。なお、上記したMEA5の製造方法のうちステップS130、ステップS160が特許請求の範囲に記載の熱処理する工程に相当し、また個別にはステップS130が特許請求の範囲に記載の第1熱付与工程に相当し、ステップS160が特許請求の範囲に記載の第2熱付与工程に相当する。   Next, a catalyst ink for the anode catalyst layer is prepared using the same material and method as in step S110. That is, I / C = 0.75, and a fluorine-based electrolyte having a Tg of around 115 ° C. is used (step S140). Subsequently, similarly to step S120, the anode catalyst ink is applied to the Teflon substrate and dried for a predetermined time to form an anode catalyst layer (step S150). Thereafter, the formed anode catalyst layer is laminated on the surface of the electrolyte membrane 11 opposite to the surface on which the cathode catalyst layer 12 is formed, and the outer surface of the anode catalyst layer 13 is formed using a hot press apparatus (not shown). The transfer temperature is set to 110 ° C. with the outer surface of the cathode catalyst layer 12 and hot pressing is performed at a predetermined pressure for a predetermined time (step S160), and the method for manufacturing the MEA 5 is completed. In addition, step S130 and step S160 of the manufacturing method of the MEA 5 described above correspond to the heat treatment process described in the claims, and individually, step S130 corresponds to the first heat application process described in the claims. Correspondingly, step S160 corresponds to the second heat application step described in the claims.

このようにして製造したMEA5をガス拡散層14,15で挟持し、さらに、そのサンドイッチ構造を、セパレータ6,7で挟持することにより燃料電池セルCLを製造する。そして、このようにして燃料電池セルCLを複数製造し、これら複数の燃料電池セルCLを、インシュレータISおよびターミナルTMで挟持し、さらに、そのサンドイッチ構造を、2枚のエンドプレートEPによって挟持すると共に、テンションプレートTSをボルトBTでエンドプレートEPに結合することによって燃料電池10を製造することができる。   The MEA 5 thus manufactured is sandwiched between the gas diffusion layers 14 and 15, and the sandwich structure is sandwiched between the separators 6 and 7 to manufacture the fuel cell CL. In this way, a plurality of fuel cells CL are manufactured, the plurality of fuel cells CL are sandwiched between the insulator IS and the terminal TM, and the sandwich structure is sandwiched between the two end plates EP. The fuel cell 10 can be manufactured by connecting the tension plate TS to the end plate EP with the bolt BT.

こうした製造方法で得られた燃料電池10のMEA5は、カソード触媒層12は、含有する電解質のガラス転移温度(Tg=115℃)より高い温度(130℃)の熱を付与され電解質膜11に転写され、アノード触媒層13は、含有する電解質のガラス転移温度(Tg=115℃)より低い温度(110℃)の熱を付与され電解質膜11に転写されたことになる。よって、MEA5において、ガラス転移温度より低い温度の熱を付与されたアノード触媒層13は、ガラス転移温度より高い温度の熱を付与されたカソード触媒層12より結晶性が低くなる。その結果、アノード触媒層13と電解質膜11との界面での剥離強度は、カソード触媒層12と電解質膜11との界面の剥離強度より小さくなる。   In the MEA 5 of the fuel cell 10 obtained by such a manufacturing method, the cathode catalyst layer 12 is given heat at a temperature (130 ° C.) higher than the glass transition temperature (Tg = 115 ° C.) of the electrolyte contained therein and transferred to the electrolyte membrane 11. As a result, the anode catalyst layer 13 was transferred to the electrolyte membrane 11 by applying heat (110 ° C.) lower than the glass transition temperature (Tg = 115 ° C.) of the electrolyte contained therein. Therefore, in the MEA 5, the anode catalyst layer 13 to which heat at a temperature lower than the glass transition temperature is applied has lower crystallinity than the cathode catalyst layer 12 to which heat at a temperature higher than the glass transition temperature is applied. As a result, the peel strength at the interface between the anode catalyst layer 13 and the electrolyte membrane 11 is smaller than the peel strength at the interface between the cathode catalyst layer 12 and the electrolyte membrane 11.

(A3)MEAの性能評価:
上記のようにして得られた燃料電池10のMEA5の性能評価について説明する。MEA5(以下、「実施例品1」とも呼ぶ)の性能は、比較例品のMEAと対比することによって評価する。先に比較例品の説明をする。比較例品は、電解質膜をカソード触媒層とアノード触媒層とで挟持した構造をしており、実施例品1であるMEA5と同じ構造をしている。比較例品の両触媒層の材料、及び材料混合比率は実施例品1の両触媒層と同一である。つまり、I/C=0.75であり、フッ素系電解質は、Tg=115℃付近のものを使用する。電解質膜も実施例品1と同一のものを使用する。比較例品の製造方法は、2枚のテフロン基材に、カソード触媒層用及びアノード触媒層用として、触媒インクを塗布し、所定時間乾燥させ、カソード触媒層及びアノード触媒層を形成する。形成した両触媒層を、電解質膜を挟持するように積層し、ホットプレス装置を用いて、カソード触媒層の外面とアノード触媒層の外面とを転写温度を130℃とし、所定時間、所定圧力でホットプレスし製造する。実施例品1と比較例品との違いは、実施例品はアノード触媒層13がカソード触媒層12に比べて結晶性が低いのに対して、比較例品は両触媒層が、実施例品のカソード触媒層12と同等の結晶性を有している点である。
(A3) MEA performance evaluation:
The performance evaluation of the MEA 5 of the fuel cell 10 obtained as described above will be described. The performance of the MEA 5 (hereinafter also referred to as “Example Product 1”) is evaluated by comparing with the MEA of the Comparative Product. First, the comparative example product will be described. The comparative example product has a structure in which the electrolyte membrane is sandwiched between the cathode catalyst layer and the anode catalyst layer, and has the same structure as the MEA 5 which is the example product 1. The material of both catalyst layers of the comparative example product and the material mixing ratio are the same as both catalyst layers of Example product 1. That is, I / C = 0.75, and a fluorine-based electrolyte having a Tg of around 115 ° C. is used. The same electrolyte membrane as that of Example Product 1 is used. In the manufacturing method for the comparative product, the catalyst ink is applied to two Teflon substrates for the cathode catalyst layer and the anode catalyst layer, and dried for a predetermined time to form the cathode catalyst layer and the anode catalyst layer. The formed catalyst layers are laminated so as to sandwich the electrolyte membrane, and using a hot press device, the transfer temperature between the outer surface of the cathode catalyst layer and the outer surface of the anode catalyst layer is set to 130 ° C. at a predetermined pressure for a predetermined time. Hot press to manufacture. The difference between the example product 1 and the comparative example product is that the anode catalyst layer 13 of the example product has lower crystallinity than the cathode catalyst layer 12, whereas the comparative example product has both catalyst layers as the example product. It has the same crystallinity as the cathode catalyst layer 12.

上記の比較例品を用いて、実施例品1の冷熱サイクルにおける性能評価を行った。実施例品1及び比較例品を各々セパレータ等で挟持して、図2に示した燃料電池セルCLの構成にした後、それぞれの燃料電池セルCLを80℃と−20℃の環境下に置く冷熱試験に供した。この冷熱試験は、〈1〉燃料電池セルCLのカソード触媒層及びアノード触媒層に80℃で加湿した窒素(加湿窒素)を0.5L/minの流量で10分間供給する加湿サイクルと、〈2〉ガス供給を停止した上で燃料電池セルCLを−20℃に1時間に亘って冷却する冷却サイクルとを繰り返し燃料電池セルCLに処し、この冷熱サイクルを100回繰り返した。図5は冷熱試験前と試験後における実施例品1と比較例品の性能変化の様子を示す説明図、図6は図5に示した数値をグラフにした。電池性能は、電流・電圧特性で行うこととし、上記の冷熱試験前と試験後とにおいて、単位面積当たりのセル電流を0.8A/cm2とした場合のセル電圧を測定してその測定電圧を電池性能評価に用いた。   Using the above comparative example product, the performance evaluation of the example product 1 in the cooling cycle was performed. The example product 1 and the comparative example product are each sandwiched by a separator or the like to form the fuel cell CL shown in FIG. 2, and then each fuel cell CL is placed in an environment of 80 ° C. and −20 ° C. It used for the cold test. This cooling test includes <1> a humidification cycle in which nitrogen (humidified nitrogen) humidified at 80 ° C. is supplied to the cathode catalyst layer and the anode catalyst layer of the fuel cell CL at a flow rate of 0.5 L / min for 10 minutes, and <2 The fuel cell CL was repeatedly subjected to a cooling cycle in which the fuel cell CL was cooled to −20 ° C. over 1 hour after the gas supply was stopped, and this cooling / heating cycle was repeated 100 times. FIG. 5 is an explanatory diagram showing changes in performance of the example product 1 and the comparative example product before and after the cooling test, and FIG. 6 is a graph of the numerical values shown in FIG. The battery performance is determined by current / voltage characteristics. Before and after the above cooling test, the cell voltage per unit area is measured at 0.8 A / cm2, and the measured voltage is measured. Used for battery performance evaluation.

図示するように、実施例品1と比較例品のいずれについても、冷熱試験後では電池の出力エネルギーの低下が起き、出力電圧の低下(以下、「性能低下」とも呼ぶ)として観測されている。実施例品1は、性能低下の程度が低く、10%ほどしか性能低下が見られなかった。これに対し、比較例品では、30%ほどの性能低下が見られた。こうした冷熱試験結果から、本実施例の燃料電池10のMEA5は冷熱サイクルに対して高い耐久性を発揮すると言える。   As shown in the figure, in both the example product 1 and the comparative product, after the cooling test, the output energy of the battery decreases, and is observed as a decrease in output voltage (hereinafter also referred to as “performance decrease”). . In Example Product 1, the degree of performance degradation was low, and only about 10% performance degradation was observed. In contrast, the performance of the comparative example product was reduced by about 30%. From such a cooling test result, it can be said that the MEA 5 of the fuel cell 10 of this example exhibits high durability against the cooling cycle.

上記した冷熱試験における冷熱サイクルの繰り返しの際には、実施例品1と比較例品とに対して、温度変化に伴う応力が作用し、この応力により触媒層の劣化が起き、この劣化により上記した電池性能の低下が起きると考えられる。この触媒層の劣化の有無を実施例品と比較例品1とで調べた。図7は実施例品1と比較例品のMEAの断面を走査型電子顕微鏡で観察した結果を模式的に示す説明図である。この図7に示すように、実施例品1においては、アノード触媒層に破壊を確認した。比較例品ではアノードでの破壊はほとんど見られずカソード触媒層で破壊を確認した。   When the cooling cycle in the above-described cooling test is repeated, a stress accompanying a temperature change acts on the example product 1 and the comparative example product, and this stress causes deterioration of the catalyst layer. The battery performance is expected to deteriorate. The presence or absence of deterioration of the catalyst layer was examined for the example product and the comparative example product 1. FIG. 7 is an explanatory view schematically showing the results of observation of the cross sections of the MEAs of Example Product 1 and Comparative Product with a scanning electron microscope. As shown in FIG. 7, in the example product 1, the anode catalyst layer was confirmed to be broken. In the comparative product, almost no destruction was observed at the anode, and the destruction was confirmed at the cathode catalyst layer.

こうした触媒層の破壊と電池性能の低下の関係について考察する。上記結果より、アノード触媒層の破壊による劣化が電池性能に与える影響は、カソード触媒層の破壊による劣化が電池性能に与える影響より小さいことがわかる。これは、カソード触媒層での酸素の還元反応に比べ、アノード触媒層での水素の酸化反応の方が反応しやすいため、アノード触媒層で破壊が起こっても電池性能の低下に与える影響が少ないからである。   The relationship between the destruction of the catalyst layer and the decrease in battery performance will be considered. From the above results, it can be seen that the influence of deterioration due to destruction of the anode catalyst layer on the battery performance is smaller than the influence of deterioration due to destruction of the cathode catalyst layer on the battery performance. This is because the hydrogen oxidation reaction at the anode catalyst layer is more reactive than the oxygen reduction reaction at the cathode catalyst layer, so that even if breakdown occurs in the anode catalyst layer, it has less effect on battery performance degradation. Because.

次に、実施例品1及び比較例品の各々の触媒層と電解質膜との界面における剥離強度の観点から性能評価を説明する。図8は、実施例品1及び比較例品が有する触媒インク(I/C=0.75、Tg=115℃)で形成した試験片と電解質膜との剥離強度の転写温度依存性を示したグラフである。グラフは、110℃、130℃、150℃の3つの転写温度における剥離強度をプロットした。剥離強度はJISK6854−2(接着剤の剥離強度試験)に準じて計測した。図8より、転写温度が高いほど剥離強度が大きくなっていることが分かる。つまり、転写温度が高いほど、触媒層に含まれるフッ素系電解質の結晶性が高くなり剥離強度が増すことを示している。   Next, performance evaluation will be described from the viewpoint of peel strength at the interface between the catalyst layer and the electrolyte membrane of each of Example Product 1 and Comparative Product. FIG. 8 shows the transfer temperature dependence of the peel strength between the test piece formed of the catalyst ink (I / C = 0.75, Tg = 115 ° C.) of Example Product 1 and Comparative Product and the electrolyte membrane. It is a graph. The graph plots the peel strength at three transfer temperatures of 110 ° C., 130 ° C., and 150 ° C. The peel strength was measured in accordance with JISK 6854-2 (adhesive peel strength test). FIG. 8 shows that the peel strength increases as the transfer temperature increases. That is, the higher the transfer temperature, the higher the crystallinity of the fluorine-based electrolyte contained in the catalyst layer and the higher the peel strength.

図9は、図8の剥離強度を実施例品1と比較品の触媒層毎に示した説明図である。図9より、実施例品1の剥離強度差が0.02N以上の時、アノード触媒層で破壊が生じやすくなっていることが理解できる。   FIG. 9 is an explanatory diagram showing the peel strength of FIG. 8 for each catalyst layer of Example Product 1 and Comparative Product. From FIG. 9, it can be understood that when the difference in peel strength of Example Product 1 is 0.02 N or more, the anode catalyst layer is easily broken.

以上説明したように、カソード触媒層を、カソード触媒層が含有するフッ素系電解質のガラス転移温度より高い温度で電解質膜に転写し、アノード触媒層を、アノード触媒層が含有するフッ素系電解質のガラス転移温度より低い温度で電解質膜に転写することによって、アノード触媒層の結晶性をカソード触媒層より低くすることができる。従って、アノード触媒層の結晶性をカソード触媒層より低くすることで、アノード触媒層の剥離強度がカソード触媒層の剥離強度より小さくなり、冷熱サイクルによって触媒層に応力が働くと、剥離強度の小さいアノード触媒層がカソード触媒層より先に破壊されるようにすることができる。その結果、両触媒層の剥離強度が同じMEAに比べ、燃料電池としての性能低下を抑制することができる。   As described above, the cathode catalyst layer is transferred to the electrolyte membrane at a temperature higher than the glass transition temperature of the fluorine electrolyte contained in the cathode catalyst layer, and the anode catalyst layer is transferred to the fluorine electrolyte glass contained in the anode catalyst layer. By transferring to the electrolyte membrane at a temperature lower than the transition temperature, the crystallinity of the anode catalyst layer can be made lower than that of the cathode catalyst layer. Therefore, by making the crystallinity of the anode catalyst layer lower than that of the cathode catalyst layer, the peel strength of the anode catalyst layer becomes smaller than the peel strength of the cathode catalyst layer, and when the stress is applied to the catalyst layer by the thermal cycle, the peel strength is low. The anode catalyst layer can be destroyed before the cathode catalyst layer. As a result, it is possible to suppress a decrease in performance as a fuel cell, as compared with MEA in which both catalyst layers have the same peel strength.

B.第2実施例:
(B1)燃料電池の製造方法:
第2実施例における燃料電池の構成は第1実施例の燃料電池10と同じであるので説明を省略する。第2実施例と第1実施例との異なる点は、燃料電池のMEAの製造方法である。以下、第2実施例におけるMEAの製造方法を説明する。
B. Second embodiment:
(B1) Manufacturing method of fuel cell:
Since the configuration of the fuel cell in the second embodiment is the same as that of the fuel cell 10 in the first embodiment, the description thereof is omitted. The difference between the second embodiment and the first embodiment is a method for manufacturing an MEA for a fuel cell. Hereinafter, a method for manufacturing the MEA in the second embodiment will be described.

図10は、第2実施例のMEAの製造方法のフローチャートである。このMEAの製造方法では、第1実施例と同様に、電解質膜、及び2つのテフロン基材を用意する(ステップS200)。   FIG. 10 is a flowchart of the MEA manufacturing method of the second embodiment. In this MEA manufacturing method, an electrolyte membrane and two Teflon substrates are prepared as in the first embodiment (step S200).

次に第1実施例のステップS110と同様に、カソード触媒層用に触媒インクを作成する(ステップS210)。触媒インクの材料及び材料比もステップS110と同一(I/C=0.75、Tg=115℃)である。ステップS210で作成したカソード触媒層用の触媒インクをテフロン基材に塗布し、所定時間乾燥させて、カソード触媒層を形成する。(ステップS220)。   Next, similarly to step S110 of the first embodiment, a catalyst ink is prepared for the cathode catalyst layer (step S210). The material and material ratio of the catalyst ink are also the same as in step S110 (I / C = 0.75, Tg = 115 ° C.). The cathode catalyst layer catalyst ink prepared in step S210 is applied to a Teflon substrate and dried for a predetermined time to form a cathode catalyst layer. (Step S220).

次に、アノード触媒層用の触媒インクを作成する(ステップS230)。アノード触媒層に用いる電解質は、ガラス転移温度が150℃のフッ素系電解質を用いる。その他に用いる材料及び材料比はカソード触媒電極と同じである。このアノード用の触媒インクをテフロン基材に塗布し、所定時間乾燥させて、アノード触媒層を形成する。(ステップS240)。   Next, a catalyst ink for the anode catalyst layer is created (step S230). As the electrolyte used for the anode catalyst layer, a fluorine-based electrolyte having a glass transition temperature of 150 ° C. is used. Other materials and material ratios used are the same as those of the cathode catalyst electrode. The anode catalyst ink is applied to a Teflon substrate and dried for a predetermined time to form an anode catalyst layer. (Step S240).

上記の工程により、形成したカソード触媒層とアノード触媒層とを、電解質膜を挟持して積層し、ホットプレス装置を用いて、カソード触媒層外面とアノード触媒層外面とを、転写温度を130℃とし、所定時間、所定圧力でホットプレスする(ステップS250)。以上で、第2実施例の燃料電池におけるMEAの製造方法は終了する。このようにして作成したMEAを用いて、第1実施例と同様の方法を用いて燃料電池を製造する。   The cathode catalyst layer and the anode catalyst layer formed by the above steps are laminated with the electrolyte membrane interposed therebetween, and the transfer temperature is set to 130 ° C. between the outer surface of the cathode catalyst layer and the outer surface of the anode catalyst layer using a hot press apparatus. And hot pressing at a predetermined pressure for a predetermined time (step S250). This is the end of the MEA manufacturing method in the fuel cell of the second embodiment. Using the MEA thus created, a fuel cell is manufactured using the same method as in the first embodiment.

第2実施例におけるMEAは、アノード触媒層に用いるフッ素系電解質を、ガラス転移温度が150℃のものを用い、転写温度130℃で一度に、カソード触媒層とアノード触媒層とを電解質膜に転写している。この点が第1実施例におけるMEA5の製造方法と異なる。ガラス転移温度が150℃のものをアノード触媒層に用いることで、130℃で転写すると、カソード触媒層は、カソード触媒層が含有するフッ化系電解質のガラス転移温度(Tg=115℃)より高い温度で転写され、一方、アノード触媒層は、アノード触媒層が含有するフッ化系電解質のガラス転移温度(Tg=150℃)より低い温度で転写される。   The MEA in the second embodiment uses a fluorine-based electrolyte used for the anode catalyst layer having a glass transition temperature of 150 ° C., and transfers the cathode catalyst layer and the anode catalyst layer to the electrolyte membrane at a transfer temperature of 130 ° C. at a time. is doing. This point is different from the manufacturing method of the MEA 5 in the first embodiment. When a glass transition temperature of 150 ° C. is used for the anode catalyst layer and transferred at 130 ° C., the cathode catalyst layer is higher than the glass transition temperature (Tg = 115 ° C.) of the fluorinated electrolyte contained in the cathode catalyst layer. On the other hand, the anode catalyst layer is transferred at a temperature lower than the glass transition temperature (Tg = 150 ° C.) of the fluorinated electrolyte contained in the anode catalyst layer.

(B2)MEAの性能評価
上記のようにして得られた燃料電池のMEAの性能評価について説明する。MEA(以下、「実施例品2」とも呼ぶ)の性能の評価方法として、比較例品のMEAと対比する。比較例品は、第1実施例の性能評価で用いたものと同じものを用いる。
(B2) MEA Performance Evaluation The fuel cell MEA performance evaluation obtained as described above will be described. As a method for evaluating the performance of the MEA (hereinafter also referred to as “Example Product 2”), it is compared with the MEA of the Comparative Product. The comparative product is the same as that used in the performance evaluation of the first embodiment.

実施例品2及び比較例品を用いて、冷熱サイクルにおける性能評価を行った。評価方法は、第1実施例と同じ冷熱試験を用いた。図11は冷熱試験前と試験後における実施例品2と比較例品の性能変化の様子を示す説明図、図12は性能変化の様子を示すグラフである。電池性能は、電流・電圧特性で行うこととし、上記の冷熱試験前と試験後とにおいて、単位面積当たりのセル電流を0.8A/cm2とした場合のセル電圧を測定してその測定電圧を電池性能評価に用いた。 Using the example product 2 and the comparative example product, performance evaluation in a cooling cycle was performed. As the evaluation method, the same cooling test as in the first example was used. FIG. 11 is an explanatory view showing the state of performance change of the example product 2 and the comparative example product before and after the cooling test, and FIG. 12 is a graph showing the state of performance change. The battery performance is determined by the current / voltage characteristics. The cell voltage when the cell current per unit area is 0.8 A / cm 2 is measured before and after the above cooling test, and the measured voltage is measured. Was used for battery performance evaluation.

図示するように、実施例品2と比較例品のいずれについても、冷熱試験後では電池性能の低下が起きているが、実施例品2は、性能低下の程度が低く、22%の性能低下にとどまっている。これに対し、比較例品では、28%の性能低下が見られた。こうした冷熱試験結果から、本実施例の燃料電池のMEAは冷熱サイクルに対して高い耐久性を発揮すると言える。   As shown in the figure, both the example product 2 and the comparative example product show a decrease in the battery performance after the cooling test, but the example product 2 has a low degree of performance decrease and a 22% performance decrease. Stays on. On the other hand, the performance of the comparative product was 28%. From these results of the cold test, it can be said that the MEA of the fuel cell of this example exhibits high durability against the cold cycle.

冷熱試験後の実施例品2及び比較例品のMEAの断面を走査型電子顕微鏡で観察した結果、第1実施例と同様に、実施例品2においては、アノード触媒層に破壊を確認した。比較例品ではアノードでの破壊はほとんど見られずカソード触媒層で破壊を確認した(図示は省略)。   As a result of observing the cross sections of the MEAs of Example Product 2 and Comparative Example Product after the cooling test with a scanning electron microscope, in Example Product 2, the anode catalyst layer was confirmed to be broken as in the first example. In the comparative product, almost no destruction was observed at the anode, and the destruction was confirmed at the cathode catalyst layer (not shown).

次に、実施例品2及び比較例品の各々の触媒層と電解質膜との界面における剥離強度の観点から性能評価を説明する。図13は、実施例品のアノード触媒層用の触媒インク(I/C=0.75、Tg=150℃)で形成した試験片、及び、実施例品2のカソード触媒層及び比較例品の両電極層に用いられている触媒インク(I/C=0.75、Tg=115℃)で形成した試験片の、電解質膜との剥離強度の転写温度依存性を示したグラフである。剥離強度の計測方法は第1実施例と同様である。また図14は、図13の剥離強度を実施例品2と比較品の触媒層毎に示した説明図である。図14より実施例品2の剥離強度差が0.02N以上の時、アノード触媒層で破壊が生じやすくなっていることが理解できる。   Next, performance evaluation will be described from the viewpoint of peel strength at the interface between the catalyst layer and the electrolyte membrane of each of Example Product 2 and Comparative Example Product. FIG. 13 shows a test piece formed with the catalyst ink for the anode catalyst layer of the example product (I / C = 0.75, Tg = 150 ° C.), and the cathode catalyst layer of the example product 2 and the comparative example product. It is the graph which showed the transfer temperature dependence of the peeling strength with an electrolyte membrane of the test piece formed with the catalyst ink (I / C = 0.75, Tg = 115 degreeC) used for both electrode layers. The peel strength measurement method is the same as in the first embodiment. FIG. 14 is an explanatory diagram showing the peel strength of FIG. 13 for each catalyst layer of Example Product 2 and Comparative Product. It can be understood from FIG. 14 that when the difference in peel strength of Example Product 2 is 0.02 N or more, the anode catalyst layer is easily broken.

以上説明したように、第2実施例の燃料電池の製造方法においても、第1実施例と同様にアノード触媒層の剥離強度をカソード触媒層の剥離強度より小さくすることができ、冷熱サイクルによる触媒層への応力に対して、剥離強度の小さいアノード触媒層を選択的に破壊することができる。   As described above, in the fuel cell manufacturing method of the second embodiment, the peel strength of the anode catalyst layer can be made smaller than the peel strength of the cathode catalyst layer as in the first embodiment. The anode catalyst layer having a small peel strength can be selectively broken against the stress on the layer.

C.変形例:
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
C. Variation:
The present invention is not limited to the above-described examples and embodiments, and can be implemented in various modes without departing from the gist thereof. For example, the following modifications are possible.

(C1)変形例1:
第1実施例では、MEA5において、カソード触媒層の転写温度をガラス転移温度より高くし、アノード触媒層の転写温度をガラス転移温度より低くすることにより、カソード触媒層よりアノード触媒層の剥離強度を小さくし、冷熱サイクルに対して、選択的にアノード触媒層を破壊するようにしたが、さらに、カソード触媒層、アノード触媒層共にガラス転移温度がTg1のフッ素系電解質を用い、図15に示すように、アノード触媒層外面に対して温度Tx(Tx<Tg1)で、カソード触媒層外面に対して温度Ty(Ty>Tg1)でホットプレスするようにしてもよい。このようにすれば、アノード触媒層の厚み方向において、アノード触媒層と電解質膜との界面から離れた外面側の結晶性が、界面側の結晶性に比べて低くなり、アノード触媒層がカソード触媒層より剥離強度が小さく、さらにアノード触媒層の外面側の強度を、界面側に比べて小さくすることができる。その結果、電気化学反応の活性が比較的高い界面付近の破壊を抑制し、外面側を優先的に破壊することができ、燃料電池の性能低下を抑制することができる。
(C1) Modification 1:
In the first embodiment, in the MEA 5, the transfer temperature of the cathode catalyst layer is made higher than the glass transition temperature, and the transfer temperature of the anode catalyst layer is made lower than the glass transition temperature. The anode catalyst layer was selectively destroyed with respect to the thermal cycle, but the cathode catalyst layer and the anode catalyst layer were both made of a fluorine-based electrolyte having a glass transition temperature of Tg1, as shown in FIG. Alternatively, hot pressing may be performed on the outer surface of the anode catalyst layer at a temperature Tx (Tx <Tg1) and on the outer surface of the cathode catalyst layer at a temperature Ty (Ty> Tg1). In this way, in the thickness direction of the anode catalyst layer, the crystallinity on the outer surface side away from the interface between the anode catalyst layer and the electrolyte membrane becomes lower than the crystallinity on the interface side, and the anode catalyst layer becomes the cathode catalyst layer. The peel strength is smaller than that of the layer, and the strength on the outer surface side of the anode catalyst layer can be made smaller than that on the interface side. As a result, it is possible to suppress destruction near the interface where the activity of the electrochemical reaction is relatively high, preferentially destroy the outer surface side, and suppress deterioration in performance of the fuel cell.

また、第2実施例のごとくアノード触媒層のガラス転移温度(「Tga」とする)とカソード触媒層のガラス転移温度(「Tgc」とする)が異なる場合でも、温度の相関関係がTx<Tga<Tgc<Tyや、Tx<Tgc<Tga<Tyとなるようにホットプレスすればよい。このようにすれば、アノード触媒層の厚み方向において、アノード触媒層と電解質膜との界面から離れた外面側の結晶性が、界面側の結晶性に比べて低くなり、アノード触媒層がカソード触媒層より剥離強度が小さく、さらにアノード触媒層の外面側の強度を、界面側に比べて小さくすることができる。その結果、電気化学反応の活性が比較的高い界面付近の破壊を抑制し、外面側を優先的に破壊することができ、燃料電池の性能低下を抑制することができる。   Further, even when the glass transition temperature of the anode catalyst layer (referred to as “Tga”) and the glass transition temperature of the cathode catalyst layer (referred to as “Tgc”) are different as in the second embodiment, the temperature correlation is Tx <Tga. What is necessary is just to hot-press so that it may become <Tgc <Ty or Tx <Tgc <Tga <Ty. In this way, in the thickness direction of the anode catalyst layer, the crystallinity on the outer surface side away from the interface between the anode catalyst layer and the electrolyte membrane becomes lower than the crystallinity on the interface side, and the anode catalyst layer becomes the cathode catalyst layer. The peel strength is smaller than that of the layer, and the strength on the outer surface side of the anode catalyst layer can be made smaller than that on the interface side. As a result, it is possible to suppress destruction near the interface where the activity of the electrochemical reaction is relatively high, preferentially destroy the outer surface side, and suppress deterioration in performance of the fuel cell.

(C2)変形例2:
上記実施例では、両触媒層を電解質膜に転写する際に、カソード触媒層はガラス転移温度よりも高い熱を付与し、アノード触媒層はガラス転移温度よりも低い熱を付与したが、触媒層を電解質膜に転写する工程より前に、カソード触媒層にガラス転移温度よりも高い熱を、アノード触媒層にガラス転移温度よりも低い熱を、各々に付与してから、電解質膜に転写するとしてもよい。また、アノード触媒層に熱を付与する際に、電解質膜との当接面側より、当接面と反対側の温度を低くするよう熱を付与してもよい。
(C2) Modification 2:
In the above embodiment, when transferring both catalyst layers to the electrolyte membrane, the cathode catalyst layer applied heat higher than the glass transition temperature, and the anode catalyst layer applied heat lower than the glass transition temperature. Before the step of transferring the catalyst to the electrolyte membrane, heat higher than the glass transition temperature is applied to the cathode catalyst layer, and heat lower than the glass transition temperature is applied to the anode catalyst layer, and then transferred to the electrolyte membrane. Also good. Further, when heat is applied to the anode catalyst layer, heat may be applied so that the temperature on the side opposite to the contact surface is lower than the contact surface side with the electrolyte membrane.

(C3)変形例3:
上記実施例では、MEAにおいて、冷熱サイクルの際にアノード触媒層側を選択的に破壊するように製造したが、カソード触媒層にガラス転移温度よりも低い熱を付与し、アノード触媒層にガラス転移温度よりも高い熱を付与することにより、カソード触媒層を選択的に破壊するようにすることもできる。
(C3) Modification 3:
In the above embodiment, the MEA was manufactured so as to selectively destroy the anode catalyst layer side during the cooling cycle, but the cathode catalyst layer was given heat lower than the glass transition temperature, and the anode catalyst layer was subjected to glass transition. By applying heat higher than the temperature, the cathode catalyst layer can be selectively destroyed.

5…MEA
6…セパレータ
6a…凸部
6b…凹部
7…セパレータ
7a…凸部
7b…凹部
10…燃料電池
11…電解質膜
12…カソード触媒層
13…アノード触媒層
14…ガス拡散層
15…ガス拡散層
20…酸化ガス給排流路
30…燃料ガス給排流路
53〜56…開口部
CL…燃料電池セル
TM…ターミナル
EP…エンドプレート
TS…テンションプレート
IS…インシュレータ
BT…ボルト
5 ... MEA
6 ... Separator 6a ... Convex part 6b ... Concave part 7 ... Separator 7a ... Convex part 7b ... Concave part 10 ... Fuel cell 11 ... Electrolyte membrane 12 ... Cathode catalyst layer 13 ... Anode catalyst layer 14 ... Gas diffusion layer 15 ... Gas diffusion layer 20 ... Oxidizing gas supply / discharge flow path 30 ... Fuel gas supply / discharge flow path 53 to 56 ... Opening CL ... Fuel cell TM ... Terminal EP ... End plate TS ... Tension plate IS ... Insulator BT ... Bolt

Claims (10)

電解質膜を2つの触媒層で挟持した燃料電池の製造方法であって、
前記触媒層のうち一方はガラス転移温度が第1ガラス転移温度である電解質を含む第1触媒層であり、前記触媒層のうち他方はガラス転移温度が第2ガラス転移温度である電解質を含む第2触媒層であり、
前記第1,第2触媒層の前記第1,第2ガラス転移温度の関係を利用して、前記第1触媒層の強度が前記第2触媒層の強度より高くなるように前記第1,第2触媒層を熱処理する工程を備える
燃料電池の製造方法。
A method of manufacturing a fuel cell in which an electrolyte membrane is sandwiched between two catalyst layers,
One of the catalyst layers is a first catalyst layer including an electrolyte whose glass transition temperature is a first glass transition temperature, and the other of the catalyst layers is a first catalyst including an electrolyte whose glass transition temperature is a second glass transition temperature. Two catalyst layers,
Utilizing the relationship between the first and second glass transition temperatures of the first and second catalyst layers, the first and first catalyst layers have a strength higher than that of the second catalyst layer. The manufacturing method of a fuel cell provided with the process of heat-processing 2 catalyst layers.
請求項1記載の燃料電池の製造方法であって、
前記熱処理は、
前記第1触媒層に前記第1ガラス転移温度より高い温度で熱処理を行い、前記第2触媒層に前記第2ガラス転移温度より低い温度で熱処理を行う熱付与工程を備える
燃料電池の製造方法。
A method of manufacturing a fuel cell according to claim 1,
The heat treatment
A method for producing a fuel cell, comprising: a heat application step in which heat treatment is performed on the first catalyst layer at a temperature higher than the first glass transition temperature, and heat treatment is performed on the second catalyst layer at a temperature lower than the second glass transition temperature.
請求項2記載の燃料電池の製造方法であって、
前記熱付与工程は、前記第1触媒層と前記電解質膜とを当接した状態で前記第1ガラス転移温度より高い温度で熱処理を行う第1熱付与工程と、前記第1熱付与工程後に、前記第2触媒層と前記電解質膜とを当接してから前記第2ガラス転移温度より低い温度で熱処理を行う第2熱付与工程とを含む
燃料電池の製造方法。
A method of manufacturing a fuel cell according to claim 2,
The heat application step includes a first heat application step of performing a heat treatment at a temperature higher than the first glass transition temperature in a state where the first catalyst layer and the electrolyte membrane are in contact with each other, and after the first heat application step, A method for producing a fuel cell, comprising: a second heat application step in which heat treatment is performed at a temperature lower than the second glass transition temperature after contacting the second catalyst layer and the electrolyte membrane.
請求項2記載の燃料電池の製造方法であって、
前記第2ガラス転移温度が前記第1ガラス転移温度より高く、
前記熱付与工程は、前記第1ガラス転移温度より高く前記第2ガラス転移温度より低い温度で熱処理を行う
燃料電池の製造方法。
A method of manufacturing a fuel cell according to claim 2,
The second glass transition temperature is higher than the first glass transition temperature;
The method of manufacturing a fuel cell, wherein the heat application step performs heat treatment at a temperature higher than the first glass transition temperature and lower than the second glass transition temperature.
請求項4記載の燃料電池の製造方法であって、
前記電解質膜の両側に前記第1触媒層と前記第2触媒層とを積層する積層工程を備え、
前記熱付与工程は、前記積層工程後、前記第1ガラス転移温度より高く前記第2ガラス転移温度より低い温度で、前記第1触媒層と前記第2触媒層とを、同時に熱処理をする工程を含む
燃料電池の製造方法。
A method of manufacturing a fuel cell according to claim 4,
A lamination step of laminating the first catalyst layer and the second catalyst layer on both sides of the electrolyte membrane;
The heat application step includes a step of heat-treating the first catalyst layer and the second catalyst layer simultaneously at a temperature higher than the first glass transition temperature and lower than the second glass transition temperature after the lamination step. A method for manufacturing a fuel cell.
請求項2ないし請求項5のいずれか記載の燃料電池の製造方法であって、
前記熱付与工程は、
前記第2触媒層に前記第2ガラス転移温度より低い温度で熱処理を行う場合において、
前記第2触媒層の前記電解質膜に当接する当接面の温度が、前記当接面とは反対側の面の温度より高くなるように熱処理を行う
燃料電池の製造方法。
A method of manufacturing a fuel cell according to any one of claims 2 to 5,
The heat application step includes
In the case where the second catalyst layer is heat-treated at a temperature lower than the second glass transition temperature,
A method for manufacturing a fuel cell, wherein heat treatment is performed such that a temperature of a contact surface of the second catalyst layer that contacts the electrolyte membrane is higher than a temperature of a surface opposite to the contact surface.
前記第1触媒層はカソード触媒層であり、前記第2触媒層はアノード触媒層である
請求項1ないし請求項6のいずれか記載の燃料電池の製造方法。
The method for producing a fuel cell according to any one of claims 1 to 6, wherein the first catalyst layer is a cathode catalyst layer, and the second catalyst layer is an anode catalyst layer.
第1触媒層と第2触媒層との間に電解質膜を挟持した燃料電池であって、
前記第1触媒層と前記電解質膜との剥離強度である第1剥離強度が、
前記第2触媒層と前記電解質膜との剥離強度である第2剥離強度に比べて大きいことを特徴とする燃料電池。
A fuel cell in which an electrolyte membrane is sandwiched between a first catalyst layer and a second catalyst layer,
A first peel strength, which is a peel strength between the first catalyst layer and the electrolyte membrane,
A fuel cell, wherein the fuel cell is larger than a second peel strength that is a peel strength between the second catalyst layer and the electrolyte membrane.
請求項8記載の燃料電池であって、
前記第1触媒層は、
第1電解質を含み、該第1電解質の第1ガラス転移温度より高い温度で熱処理されており、
前記第2触媒層は、
第2電解質を含み、該第2電解質の第2ガラス転移温度より低い温度で熱処理をされている
燃料電池。
The fuel cell according to claim 8, wherein
The first catalyst layer includes
Including a first electrolyte, heat-treated at a temperature higher than the first glass transition temperature of the first electrolyte,
The second catalyst layer includes
A fuel cell comprising a second electrolyte and heat-treated at a temperature lower than a second glass transition temperature of the second electrolyte.
前記第1触媒層はカソード触媒層であり、前記第2触媒層はアノード触媒層である
請求項8または請求項9記載の燃料電池。
The fuel cell according to claim 8 or 9, wherein the first catalyst layer is a cathode catalyst layer, and the second catalyst layer is an anode catalyst layer.
JP2009052031A 2009-03-05 2009-03-05 Fuel cell manufacturing method, fuel cell Expired - Fee Related JP5375208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009052031A JP5375208B2 (en) 2009-03-05 2009-03-05 Fuel cell manufacturing method, fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009052031A JP5375208B2 (en) 2009-03-05 2009-03-05 Fuel cell manufacturing method, fuel cell

Publications (2)

Publication Number Publication Date
JP2010205655A true JP2010205655A (en) 2010-09-16
JP5375208B2 JP5375208B2 (en) 2013-12-25

Family

ID=42966935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009052031A Expired - Fee Related JP5375208B2 (en) 2009-03-05 2009-03-05 Fuel cell manufacturing method, fuel cell

Country Status (1)

Country Link
JP (1) JP5375208B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020816A (en) * 2011-07-11 2013-01-31 Jx Nippon Oil & Energy Corp Membrane electrode assembly and manufacturing method therefor, and fuel cell
JP2016110855A (en) * 2014-12-08 2016-06-20 トヨタ自動車株式会社 Method of manufacturing membrane electrode assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021934A (en) * 1996-07-01 1998-01-23 Mitsubishi Heavy Ind Ltd Electrode for fuel cell
WO2004051776A1 (en) * 2002-12-02 2004-06-17 Sanyo Electric Co.,Ltd. Solid polymer electrolytic film, solid polymer fuel cell employing it, and process for producing the same
JP2004185930A (en) * 2002-12-02 2004-07-02 Sanyo Electric Co Ltd Method of manufacture for solid polymer fuel cell
JP2007095582A (en) * 2005-09-29 2007-04-12 Nissan Motor Co Ltd Manufacturing method of membrane electrode assembly
JP2007234473A (en) * 2006-03-02 2007-09-13 Toyota Motor Corp Catalyst electrode layer for fuel cell and its process of manufacture
JP2007273144A (en) * 2006-03-30 2007-10-18 Shinko Electric Ind Co Ltd Solid electrolyte fuel cell and manufacturing method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021934A (en) * 1996-07-01 1998-01-23 Mitsubishi Heavy Ind Ltd Electrode for fuel cell
WO2004051776A1 (en) * 2002-12-02 2004-06-17 Sanyo Electric Co.,Ltd. Solid polymer electrolytic film, solid polymer fuel cell employing it, and process for producing the same
JP2004185930A (en) * 2002-12-02 2004-07-02 Sanyo Electric Co Ltd Method of manufacture for solid polymer fuel cell
JP2007095582A (en) * 2005-09-29 2007-04-12 Nissan Motor Co Ltd Manufacturing method of membrane electrode assembly
JP2007234473A (en) * 2006-03-02 2007-09-13 Toyota Motor Corp Catalyst electrode layer for fuel cell and its process of manufacture
JP2007273144A (en) * 2006-03-30 2007-10-18 Shinko Electric Ind Co Ltd Solid electrolyte fuel cell and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020816A (en) * 2011-07-11 2013-01-31 Jx Nippon Oil & Energy Corp Membrane electrode assembly and manufacturing method therefor, and fuel cell
JP2016110855A (en) * 2014-12-08 2016-06-20 トヨタ自動車株式会社 Method of manufacturing membrane electrode assembly

Also Published As

Publication number Publication date
JP5375208B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
JP5298469B2 (en) Gas diffusion electrode for fuel cell
KR102084568B1 (en) Component for fuel cell including graphene foam and functioning as flow field and gas diffusion layer
WO2003081707A1 (en) Electrolyte membrane/electrode union for fuel cell and process for producing the same
JP5365290B2 (en) Fuel cell and fuel cell manufacturing method
JP5181678B2 (en) Membrane electrode assembly for fuel cell and method for producing the same
JP5375208B2 (en) Fuel cell manufacturing method, fuel cell
JP2003303596A (en) Polymer electrolyte type fuel cell and manufacturing method thereof
JP2007193948A (en) Fuel cell
JP4163029B2 (en) Method for producing membrane electrode assembly of polymer electrolyte fuel cell
JP3619737B2 (en) Fuel cell and fuel cell
JP2002343377A (en) Electrolyte film-electrode joined body for fuel cell, and manufacturing method of the same
JP5245440B2 (en) Manufacturing method of membrane-electrode assembly for fuel cell
JP2010003470A (en) Fuel cell
JP5272571B2 (en) FUEL CELL MANUFACTURING METHOD AND FUEL CELL
JP5614468B2 (en) Manufacturing method of gas diffusion electrode for fuel cell
JPH1116584A (en) Cell for solid high polymer type fuel cell and its manufacture
JP2010170895A (en) Method and device for manufacturing membrane electrode assembly
JP4046706B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, method for producing the same and polymer electrolyte fuel cell
JP4314696B2 (en) Polymer electrolyte fuel cell stack
US20080090126A1 (en) Preservation Method Of Polymer Electrolyte Membrane Electrode Assembly Technical Field
JPH06333581A (en) Solid poly electrolyte fuel cell
JP2002184412A (en) Gas diffusion layer, electrolyte film/electrode joint using the same and polyelectrolyte fuel cell
JP5889720B2 (en) Electrolyte membrane / electrode structure and manufacturing method thereof
JP5112581B2 (en) Method for manufacturing electrolyte membrane / electrode assembly
JP3730242B2 (en) Fuel cell and fuel cell manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

LAPS Cancellation because of no payment of annual fees