JPH1021934A - Electrode for fuel cell - Google Patents

Electrode for fuel cell

Info

Publication number
JPH1021934A
JPH1021934A JP8188081A JP18808196A JPH1021934A JP H1021934 A JPH1021934 A JP H1021934A JP 8188081 A JP8188081 A JP 8188081A JP 18808196 A JP18808196 A JP 18808196A JP H1021934 A JPH1021934 A JP H1021934A
Authority
JP
Japan
Prior art keywords
ysz
electrode
porous layer
dense
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8188081A
Other languages
Japanese (ja)
Inventor
Yasumasa Koshiro
育昌 小城
Hitoshi Miyamoto
均 宮本
Koichi Takenobu
弘一 武信
Fusayuki Nanjo
房幸 南條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8188081A priority Critical patent/JPH1021934A/en
Publication of JPH1021934A publication Critical patent/JPH1021934A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for fuel cells which hardly exfoliate even after electrolysis operation and power generation operation are repeated by making a gradation structure in which the Ni/YSZ ratio is gradually decreased from a porous layer of YSZ to a YSZ dense film. SOLUTION: An electrode for fuel cells is produced by applying a yttria- stabilized zirconia(YSZ) slurry to a dense YSZ film, firing the slurry to form a porous layer, impregnating the porous layer with Ni, and depositing Ni in the porous layer by electroless coating method, so that a gradation structure in which the Ni/YSZ ratio is decreased gradually toward the dense YSZ film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は燃料電池用電極に
関し、特に高温固体電解質型水蒸気電解用カソード電極
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell electrode, and more particularly to a cathode electrode for high temperature solid electrolyte type steam electrolysis.

【0002】[0002]

【従来の技術】周知の如く、高温固体電解質型水蒸気電
解装置(以下、SOEと呼ぶ)は、主としてイットリア
安定化ジルコニア(以下、YSZと呼ぶ)緻密膜を固体
電解質として用いる。そして、その固体電解質の片側に
カソード電極(以下、水素電極と呼ぶ)として重量比7
0/30〜60/40のニッケル−YSZ混合スラリー
を1300〜1500℃で焼成してコーティングし、も
う一方に白金ペーストあるいはLa1-x Srx MnO3
(x=0〜1)(以下、LSMと呼ぶ)等の電子電導性
ペロブスカイト型酸化物スラリーを1100〜1300
℃で焼成してアノード電極(以下、酸素電極と呼ぶ)と
し、これを900〜1000℃に保持してカソード側に
水蒸気を送り電解することによって水素を得る構成を有
する。
2. Description of the Related Art As is well known, a high temperature solid electrolyte type steam electrolyzer (hereinafter referred to as SOE) mainly uses a dense membrane of yttria-stabilized zirconia (hereinafter referred to as YSZ) as a solid electrolyte. Then, one side of the solid electrolyte is used as a cathode electrode (hereinafter referred to as a hydrogen electrode) at a weight ratio of 7%.
A nickel / YSZ mixed slurry of 0 / 30-60 / 40 is fired and coated at 1300-1500 ° C., and platinum paste or La 1-x Sr x MnO 3 is coated on the other.
(X = 0 to 1) (hereinafter, referred to as LSM) such as 1100 to 1300
The anode electrode (hereinafter, referred to as an oxygen electrode) is fired at a temperature of 900 ° C., which is maintained at 900 to 1000 ° C., and steam is sent to the cathode side to perform electrolysis, thereby obtaining hydrogen.

【0003】また、得られた水素を用いて電流を取り出
すことにより、燃料電池として機能する。こうした構成
の水蒸気電解装置により、夜間の電力を用いて水素を製
造して昼間の電力ピーク時にその水素を用いて発電する
ことにより、供給電力の平準化を図ることができる。
[0003] In addition, a current is taken out using the obtained hydrogen to function as a fuel cell. By using the steam electrolysis apparatus having such a configuration, hydrogen is produced using nighttime electric power, and power is generated using the hydrogen during the daytime electric power peak, thereby making it possible to level the supplied electric power.

【0004】[0004]

【発明が解決しようとする課題】ところで、水蒸気電解
は吸熱反応であり、燃料電池として発電すると発熱反応
が生じる。本水蒸気電解装置を用いて電解操作と発電操
作の交互運転を繰り返すと、水素電極(電解操作時のカ
ソード電極)で吸熱・発熱が繰り返される。水素電極は
NiとYSZのサーメット(膜厚20〜60μm)であ
り、YSZより熱膨脹係数が大きく、水素極の吸熱・発
熱反応に伴い剥離応力が発生し、性能劣化ひいては水素
極/YSZ緻密膜界面で剥離に到るという問題点があっ
た。
Incidentally, steam electrolysis is an endothermic reaction, and an exothermic reaction occurs when power is generated as a fuel cell. When the alternating operation of the electrolysis operation and the power generation operation is repeated using the present steam electrolysis apparatus, heat absorption and heat generation are repeated at the hydrogen electrode (the cathode electrode during the electrolysis operation). The hydrogen electrode is a cermet of Ni and YSZ (film thickness: 20 to 60 μm), has a larger coefficient of thermal expansion than YSZ, generates peeling stress due to endothermic and exothermic reactions of the hydrogen electrode, and deteriorates the performance. This causes a problem of delamination.

【0005】図4は時間と抵抗との関係を特性図であ
り、3回目の交互運転後に剥離が生じてセル抵抗が上昇
した例を示す。具体的には、図4はSOE/SOFCリ
バーシブル運転(450mAcm-2)に伴うセル抵抗の
経時変化を示し、条件は温度:1000℃、水素流量:
150cc/min、酸素流量:75c/min、水蒸
気流量:0.13g/minである。
FIG. 4 is a characteristic diagram showing the relationship between time and resistance, and shows an example in which peeling has occurred after the third alternate operation and the cell resistance has increased. Specifically, FIG. 4 shows a change with time of the cell resistance due to the SOE / SOFC reversible operation (450 mAcm −2 ).
150 cc / min, oxygen flow rate: 75 c / min, steam flow rate: 0.13 g / min.

【0006】従来のNi/YSZサーメットは、NiO
とYSZの原料粉末を重量比にしてNiO/YSZ=5
/5以上7/3以下で混ぜ合わせたスラリーを焼成した
ものであり、Niが骨格を形成している。このため、Y
SZと熱膨脹率が大きく異なり、NiO/YSZの重量
比を5/5未満にすると電子導電性が失なわれる為、そ
の一致化は不可能であった。
A conventional Ni / YSZ cermet is NiO
And the raw material powder of YSZ is expressed by a weight ratio of NiO / YSZ = 5.
This is obtained by firing a slurry mixed at a ratio of / 5 or more to 7/3 or less, and Ni forms a skeleton. For this reason, Y
Since the thermal expansion coefficient is significantly different from that of SZ, and if the weight ratio of NiO / YSZ is less than 5/5, the electronic conductivity is lost, and it is impossible to make the same.

【0007】また、NiO/YSZが7/3を越える
と、高温(900〜1000℃)水素雰囲気でNiの凝
集が生じて性能劣化を生じるため、横流れ導電率の上限
は約2000Scm-1(at1000℃)であった。
On the other hand, if NiO / YSZ exceeds 7/3, the agglomeration of Ni occurs in a high-temperature (900 to 1000 ° C.) hydrogen atmosphere to deteriorate the performance. Therefore, the upper limit of the lateral flow conductivity is about 2000 Scm −1 (at 1000 ° C).

【0008】この発明はこうした事情を考慮してなされ
たもので、YSZからなる多孔質層からYSZ緻密膜に
向ってNi/YSZ比が減少する傾斜構造とすることに
より、電解操作と発電操作を繰り返しても、水素極/Y
SZ緻密膜界面で剥離の生じない燃料電池用電極を提供
することを目的とする。
The present invention has been made in view of such circumstances, and has a gradient structure in which the Ni / YSZ ratio decreases from a porous layer made of YSZ toward a dense YSZ film, so that the electrolytic operation and the power generation operation can be performed. Even if repeated, hydrogen electrode / Y
An object of the present invention is to provide an electrode for a fuel cell in which peeling does not occur at the interface of the SZ dense film.

【0009】[0009]

【課題を解決するための手段】この発明は、イットリア
安定化ジルコニア緻密膜とこの緻密膜上にイットリア安
定化ジルコニアスラリーの塗布,焼成によって形成され
た多孔質層からなり、Niが前記緻密膜及び多孔質層に
含浸析出され、前記多孔質層から緻密膜に向かってNi
/イットリア安定化ジルコニア比が減少する傾斜構造を
有することを特徴とする燃料電池用電極である。
SUMMARY OF THE INVENTION The present invention provides a dense yttria-stabilized zirconia film and a porous layer formed by applying and firing a yttria-stabilized zirconia slurry on the dense film. The porous layer is impregnated and deposited, and Ni is deposited from the porous layer toward the dense film.
An electrode for a fuel cell, characterized by having an inclined structure in which the ratio of zirconia / yttria stabilized decreases.

【0010】この発明に係る燃料電池用電極は、次のよ
うにして作られる。即ち、この発明に係る電極は、イッ
トリア安定化ジルコニア(YSZ)緻密膜上にYSZス
ラリーを塗布し、焼成することによって多孔質層を形成
した後、無電解メッキ法よりNiを多孔質層に含浸析出
させることにより、YSZ緻密膜に向ってNi/YSZ
が減少する傾斜構造を有するようにすることにより作
る。
The electrode for a fuel cell according to the present invention is manufactured as follows. That is, in the electrode according to the present invention, a porous layer is formed by applying a YSZ slurry on a dense yttria-stabilized zirconia (YSZ) film and firing it, and then impregnating the porous layer with Ni by electroless plating. By depositing, Ni / YSZ toward the YSZ dense film
Is made by having a sloped structure that reduces.

【0011】具体的には、例えば次のようにして作る。
まず、200〜500μmのYSZ緻密膜上に、粒径1
〜10μmのYSZを有機樹脂に混合分散させたものを
スクリーンプリントし、1100〜1400℃で1〜2
時間焼成して膜厚30〜50μmのYSZ多孔体をコー
ティングする。その後、SnCl2 溶液に数分間、Pd
Cl2 溶液に数分間つけて触媒化した後、メッキ浴(下
記A液とB液を混合したもの)に、95℃で10〜20
分間メッキ処理を行ない、YSZ多孔体中にNiを拡散
析出させる。
Specifically, for example, it is made as follows.
First, on a YSZ dense film of 200 to 500 μm, a particle size of 1
YSZ of 10 to 10 μm mixed and dispersed in an organic resin is screen-printed, and is printed at 1100 to 1400 ° C. for 1 to 2
After baking for a time, a YSZ porous body having a thickness of 30 to 50 μm is coated. Then, Pd was added to the SnCl 2 solution for several minutes.
After catalyzing by dipping in a Cl 2 solution for several minutes, the solution was placed in a plating bath (a mixture of the following solutions A and B) at 95 ° C. for 10 to 20 minutes.
Then, Ni is diffused and deposited in the YSZ porous body.

【0012】A液:HOCH2 COOH5g,NH2
2 ・H2 O100gを水に溶かし1リットルの水溶液
にしたものに8:2の割合でアンモニアを混合したも
の。
Solution A: HOCH 2 COOH 5 g, NH 2 N
A solution obtained by dissolving 100 g of H 2 · H 2 O in water to make a 1 liter aqueous solution and mixing ammonia at a ratio of 8: 2.

【0013】B液:NiSO4 ・6H2 O60g/リッ
トルの水溶液に8:2の割合でアンモニアを混合したも
の(2がアンモニア)。
Solution B: NiSO 4 .6H 2 O 60 g / liter aqueous solution mixed with ammonia at a ratio of 8: 2 (2 is ammonia).

【0014】この発明によれば、本電極の骨格はYSZ
で形成されているため、電極/YSZ緻密膜の接着強度
が大きく、熱膨脹係数の差が小さい。また、Niの含有
量がYSZ緻密膜に向かってなだらかに減少しているた
め、熱膨脹係数の違いによる剥離応力が電極/YSZ緻
密膜界面に集中することなく、Ni粒子のYSZ骨格中
の微細構造の変化として応力が緩和される効果がある。
更に、電極最上部のNiの含有量は100%であるた
め、横流れ導電率も従来電極以上になる。これにより、
水蒸気電解装置を用いて電解操作と発電操作を繰り返し
ても、剥離の生じない水素電極とすることが可能とな
る。
According to the present invention, the skeleton of the present electrode is YSZ
, The adhesive strength of the electrode / YSZ dense film is high, and the difference in thermal expansion coefficient is small. Further, since the Ni content decreases gradually toward the YSZ dense film, the peeling stress due to the difference in thermal expansion coefficient does not concentrate on the interface between the electrode and the YSZ dense film, and the fine structure in the YSZ skeleton of the Ni particles is reduced. Has the effect of reducing stress.
Further, since the Ni content at the top of the electrode is 100%, the lateral flow conductivity is also higher than that of the conventional electrode. This allows
Even if the electrolysis operation and the power generation operation are repeated using a steam electrolysis apparatus, a hydrogen electrode free from peeling can be obtained.

【0015】[0015]

【発明の実施の形態】以下、この発明の一実施例に係る
燃料電池用カソード電極(水素電極)を製造方法を並記
して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for manufacturing a cathode electrode (hydrogen electrode) for a fuel cell according to an embodiment of the present invention will be described in parallel.

【0016】まず、500μmt,23mmφのYSZ
緻密膜の片面中央に、0.3μmのYSZ粉末を有機樹
脂に混合分散させたものを、10mmφにスクリーンプ
リントした後、1400℃,空気中で2Hr焼成して膜
厚50μmのYSZ多孔体をコーティングした。つづい
て、アセトン中で超音波洗浄により7分間脱脂し、47
%HF中で7分間エッチングし、水洗した。多孔体面以
外の部分をシリコンラバーでマスキングし、SnCl2
水溶液(SnCl2 ・2H2 O 0.03g/50m
l)に1分間つけた後水洗し、再びPdCl2 水溶液
(PdCl2 0.025g/50ml)に1分間つけ
た後水洗し、触媒化処理を行なった。最後に、メッキ浴
(前記A液40ml,前記B液30mlを混合したも
の)に95℃ウォーターバス上で15分間つけて、YS
Z多孔体中にNiを拡散析出させて本発明カソード電極
を作成した。
First, a YSZ of 500 μmt, 23 mmφ
In the center of one side of the dense film, 0.3μm YSZ powder mixed and dispersed in an organic resin is screen-printed to 10mmφ, then fired at 1400 ° C in air for 2 hours and coated with 50μm thick YSZ porous material. did. Then, degreased by ultrasonic cleaning in acetone for 7 minutes.
Etched in% HF for 7 minutes and washed with water. The portion other than the porous body surface is masked with silicon rubber, and SnCl 2
Aqueous solution (SnCl 2 .2H 2 O 0.03 g / 50 m
then washed with water dipped 1 minute l), then washed with water dipped 1 minute again PdCl 2 solution (PdCl 2 0.025g / 50ml), it was subjected to catalytic treatment. Finally, the plate was immersed in a plating bath (a mixture of 40 ml of the solution A and 30 ml of the solution B) on a 95 ° C. water bath for 15 minutes, and YS
Ni was diffused and deposited in the Z porous body to prepare the cathode electrode of the present invention.

【0017】このようにして得られた本発明の水素電極
の骨格はYSZで形成されているため、電極/YSZ緻
密膜の接着強度が大きく、熱膨脹係数の差が小さい。ま
た、Niの含有量がYSZ緻密膜に向かってなだらかに
減少しているため、熱膨脹係数の違いによる剥離応力が
電極/YSZ緻密膜界面に集中することなく、Ni粒子
のYSZ骨格中の微細構造の変化として応力が緩和され
る効果がある。更に、電極最上部のNiの含有量は10
0%であるため、横流れ導電率も従来電極以上になる。
これにより、水蒸気電解装置を用いて電解操作と発電操
作を繰り返しても、剥離の生じない水素電極とすること
が可能となる。
Since the skeleton of the hydrogen electrode of the present invention thus obtained is formed of YSZ, the electrode / YSZ dense film has a high adhesive strength and a small difference in thermal expansion coefficient. Further, since the Ni content decreases gradually toward the YSZ dense film, the peeling stress due to the difference in thermal expansion coefficient does not concentrate on the interface between the electrode and the YSZ dense film, and the fine structure in the YSZ skeleton of the Ni particles is reduced. Has the effect of reducing stress. Furthermore, the Ni content at the top of the electrode is 10
Since it is 0%, the lateral flow conductivity is also higher than that of the conventional electrode.
Thereby, even if the electrolysis operation and the power generation operation are repeated using the steam electrolysis apparatus, it is possible to obtain a hydrogen electrode that does not cause peeling.

【0018】事実、上記実施例に基づき作成した本発明
水素電極の金属組織を表わす断面をSEM(scanning e
lectron microscope)写真と、ZrとNi元素のEDX
線分析を調べたところ、図1に示す通りとなった。図1
より、Niの含有量がYSZ緻密膜に向かってなだらか
に減少していることが確認できた。これより、容易に推
定できる効果として、YSZ緻密膜との熱膨脹係数の違
いによる剥離応力が電極/YSZ緻密膜界面に集中する
ことがなくなり、熱による応力が緩和されることが期待
される。一方、従来の水素電極についても金属組織を表
わす断面をSEM(scanning electron microscope)写
真と、ZrとNi元素のEDX線分析を調べたところ、
図5に示す通りである。
In fact, a cross section showing the metallographic structure of the hydrogen electrode of the present invention prepared based on the above embodiment is shown by SEM (scanning e
(electron microscope) Photo and EDX of Zr and Ni elements
When the line analysis was examined, it was as shown in FIG. FIG.
From the results, it was confirmed that the Ni content was gradually decreased toward the YSZ dense film. Thus, as an effect that can be easily estimated, it is expected that the peeling stress due to the difference in the thermal expansion coefficient from the YSZ dense film does not concentrate on the electrode / YSZ dense film interface, and the stress due to heat is reduced. On the other hand, a section of the conventional hydrogen electrode showing the metal structure was examined by SEM (scanning electron microscope) photograph and EDX analysis of Zr and Ni elements.
As shown in FIG.

【0019】上記実施例に基づき作成した本発明カソー
ド電極から図2(A)〜(C)に示すように加工してリ
ードを取り出し(但し、Vは電圧端子,Iは電流端
子)、直流4端子法(電圧端子間距離1.6mm,電極
断面積0.00335cm2 )により横流れ導電率を測
定した。なお、図2において、符番1は23φセル、符
番2はI,Vの端子を示す。測定は4%H2 (N2 バラ
ンス),50ml/minで流通しながら200℃/H
rで1000℃まで昇温し、100%H2 を100ml
/minで流通して行なった。なお、測定時に電極に流
す電流値は10mAとした。測定結果を図3に示す。
2 (A) to 2 (C), the lead is taken out from the cathode electrode of the present invention prepared based on the above embodiment (V is a voltage terminal, I is a current terminal), and DC 4 The lateral flow conductivity was measured by a terminal method (distance between voltage terminals 1.6 mm, electrode cross-sectional area 0.00335 cm 2 ). In FIG. 2, reference numeral 1 indicates a 23φ cell, and reference numeral 2 indicates I and V terminals. The measurement was performed at 200 ° C./H while flowing at 4% H 2 (N 2 balance) at 50 ml / min.
The temperature was raised to 1000 ° C. with 100% H 2 100 ml
/ Min. The value of the current flowing through the electrode during the measurement was 10 mA. FIG. 3 shows the measurement results.

【0020】図3の横流れ導電率と通電時間との特性図
より、従来電極が1500Scm-1程度であるのに対
し、本発明電極は約2400Scm-1を示した。これ
は、電極最上部のNi含有量が100%近くなっている
ため、Ni/YSZ=70/30サーメット電極以上の
値を示したと考えられる。
The transverse flow conductivity of Figure 3 with the characteristic diagram of the conduction time, whereas conventional electrodes is about 1500Scm -1, the invention electrodes was about 2400Scm -1. This is presumably because the Ni content at the uppermost portion of the electrode was close to 100%, so that the Ni / YSZ = 70/30 cermet electrode or higher was exhibited.

【0021】図4に本発明電極を施工した23mmφの
YSZ緻密膜の裏側に10mmφの酸素極(La0.6
0.4 MnO3 :YSZ=60:40の多孔質電極)を
1300℃で焼結させたセルを用いて、450mA/c
2 で交互運転を行なった時のセル抵抗の経時変化を示
す。従来電極では3サイクル以上で水素極の剥離が生
じ、セル抵抗の上昇が認められたのに対して、本発明電
極では5サイクル交互運転を行なってもセル抵抗の上昇
は認められず、剥離も認められなかった。
FIG. 4 shows a 10 mmφ oxygen electrode (La 0.6 S) on the back side of a 23 mmφ YSZ dense film on which the electrode of the present invention is applied.
Using a cell obtained by sintering r 0.4 MnO 3 : YSZ = 60: 40 (porous electrode) at 1300 ° C., 450 mA / c
The change with time of the cell resistance when alternate operation is performed at m 2 is shown. In the conventional electrode, peeling of the hydrogen electrode occurred in 3 cycles or more, and an increase in cell resistance was observed. On the other hand, in the electrode of the present invention, the cell resistance did not increase even after 5 cycles of alternate operation, and peeling was not observed. I was not able to admit.

【0022】本発明より、電解操作(SOE)と発電操
作(SOFC)を繰り返しても、剥離の生じない水素電
極とすることが可能となった。
According to the present invention, it has become possible to obtain a hydrogen electrode which does not peel off even if the electrolysis operation (SOE) and the power generation operation (SOFC) are repeated.

【0023】なお、上記実施例では、カソード電極(水
素電極)に適用した場合について述べたが、これに限定
されず、アノード電極(酸素電極)に適用しても同様な
効果が期待できる。
In the above embodiment, the case where the present invention is applied to the cathode electrode (hydrogen electrode) is described. However, the present invention is not limited to this, and the same effect can be expected when applied to the anode electrode (oxygen electrode).

【0024】[0024]

【発明の効果】以上詳述したように本発明によれば、Y
SZからなる多孔質層からYSZ緻密膜に向ってNi/
YSZ比が減少する傾斜構造とすることにより、電解操
作と発電操作を繰り返しても、剥離の生じない燃料電池
用電極を提供できる。
As described in detail above, according to the present invention, Y
From a porous layer made of SZ to a YSZ dense film, Ni /
By adopting the inclined structure in which the YSZ ratio is reduced, it is possible to provide an electrode for a fuel cell which does not peel off even when the electrolytic operation and the power generation operation are repeated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例に係る水素電極の金属組織
を表わすSEM写真。
FIG. 1 is an SEM photograph showing a metal structure of a hydrogen electrode according to one embodiment of the present invention.

【図2】横流れ導電率測定のための端子取り出しを説明
するための図。
FIG. 2 is a diagram for explaining how to take out a terminal for measuring the lateral flow conductivity.

【図3】従来水素電極及び本発明水素電極における横流
れ導電率と通電時間との関係を示す特性図。
FIG. 3 is a characteristic diagram showing a relationship between a lateral flow conductivity and a conduction time in a conventional hydrogen electrode and a hydrogen electrode of the present invention.

【図4】従来水素電極及び本発明水素電極におけるSO
E/SOFCリバーシブル運転に伴うセル抵抗の経時変
化を示す特性図。
FIG. 4 shows SO in conventional hydrogen electrode and hydrogen electrode of the present invention.
FIG. 4 is a characteristic diagram showing a change with time in cell resistance due to E / SOFC reversible operation.

【図5】従来の水素電極の金属組織を表わすSEM写
真。
FIG. 5 is an SEM photograph showing a metal structure of a conventional hydrogen electrode.

【符号の説明】[Explanation of symbols]

1…セル、 2…端子。 1 ... cell, 2 ... terminal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 南條 房幸 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Fukuyuki Nanjo 1-1-1 Wadazakicho, Hyogo-ku, Kobe City, Hyogo Prefecture Inside Mitsubishi Heavy Industries, Ltd. Kobe Shipyard

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 イットリア安定化ジルコニア緻密膜とこ
の緻密膜上にイットリア安定化ジルコニアスラリーの塗
布,焼成によって形成された多孔質層からなり、Niが
前記緻密膜及び多孔質層に含浸析出され、前記多孔質層
から緻密膜に向かってNi/イットリア安定化ジルコニ
ア比が減少する傾斜構造を有することを特徴とする燃料
電池用電極。
1. A dense yttria-stabilized zirconia film and a porous layer formed by applying and firing a yttria-stabilized zirconia slurry on the dense film, and Ni is impregnated and deposited on the dense film and the porous layer. An electrode for a fuel cell, characterized by having a gradient structure in which the ratio of Ni / yttria-stabilized zirconia decreases from the porous layer toward the dense membrane.
JP8188081A 1996-07-01 1996-07-01 Electrode for fuel cell Withdrawn JPH1021934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8188081A JPH1021934A (en) 1996-07-01 1996-07-01 Electrode for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8188081A JPH1021934A (en) 1996-07-01 1996-07-01 Electrode for fuel cell

Publications (1)

Publication Number Publication Date
JPH1021934A true JPH1021934A (en) 1998-01-23

Family

ID=16217377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8188081A Withdrawn JPH1021934A (en) 1996-07-01 1996-07-01 Electrode for fuel cell

Country Status (1)

Country Link
JP (1) JPH1021934A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092912A1 (en) * 2005-02-28 2006-09-08 The Tokyo Electric Power Company, Incorporated Solid oxide type fuel battery cell and process for producing the same
JP2010511282A (en) * 2006-11-29 2010-04-08 コーニング インコーポレイテッド Activation of solid oxide fuel cell electrode surface
JP2010205655A (en) * 2009-03-05 2010-09-16 Toyota Motor Corp Method for manufacturing fuel cell, and fuel cell
WO2020196236A1 (en) * 2019-03-27 2020-10-01 国立大学法人山梨大学 Solid oxide electrolysis cell, and method and system for operating same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092912A1 (en) * 2005-02-28 2006-09-08 The Tokyo Electric Power Company, Incorporated Solid oxide type fuel battery cell and process for producing the same
JP2010511282A (en) * 2006-11-29 2010-04-08 コーニング インコーポレイテッド Activation of solid oxide fuel cell electrode surface
JP2010205655A (en) * 2009-03-05 2010-09-16 Toyota Motor Corp Method for manufacturing fuel cell, and fuel cell
WO2020196236A1 (en) * 2019-03-27 2020-10-01 国立大学法人山梨大学 Solid oxide electrolysis cell, and method and system for operating same

Similar Documents

Publication Publication Date Title
KR100964131B1 (en) Bipolar plate for fuel cell and method for production thereof
JP6080088B2 (en) Porous current collector and fuel cell using the same
US20060234855A1 (en) Preparation of solid oxide fuel cell electrodes by electrodeposition
EP1492186A1 (en) Cell unit of solid polymeric electrolyte type fuel cell
JP2695641B2 (en) Method for manufacturing solid electrolyte fuel cell
US20130143148A1 (en) Fuel Cell with an Improved Electrode
Tung et al. Electrochemical growth of gold nanostructures on carbon paper for alkaline direct glucose fuel cell
CA1270896A (en) Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell
CN105734606A (en) Structure of ultrathin membrane electrode for SPE water electrolysis and preparation and application of structure
KR20160132387A (en) Porous current collector, fuel cell and method for producing porous current collector
US3274031A (en) Fuel cell electrode and methods of preparation
US6258239B1 (en) Process for the manufacture of an electrode for a solid polymer fuel cell
JP2001351642A (en) Separator for fuel cell
US7314678B2 (en) Solid oxide fuel cell device with a component having a protective coatings and a method for making such
CA1309969C (en) Electrolyzing potassium hydroxide solutions using anodes containing nico o _catalyst
US4748091A (en) Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell
EP1295968A1 (en) Gas diffusion electrode, method for manufacturing the same and fuel cell using it
JP2001357859A (en) Separator for fuel cell
JPH1021934A (en) Electrode for fuel cell
JP2008138282A (en) Anode for alkaline electrolysis
Tomida et al. Spongy Raney nickel hydrogen electrodes for alkaline fuel cells
Dyer Improved nickel anodes for industrial water electrolyzers
WO2020217668A1 (en) Metal porous body, electrode for electrolysis, hydrogen production device, fuel cell, and method for producing metal porous body
US3522094A (en) Electrode including hydrophobic polymer,method of preparation and fuel cell therewith
Zhao et al. Electrocatalytic evolution of oxygen on NiCu particles modifying conductive alumina/nano-carbon network composite electrode

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030902