JP2010203437A - タービン・ブレード冷却 - Google Patents

タービン・ブレード冷却 Download PDF

Info

Publication number
JP2010203437A
JP2010203437A JP2010039505A JP2010039505A JP2010203437A JP 2010203437 A JP2010203437 A JP 2010203437A JP 2010039505 A JP2010039505 A JP 2010039505A JP 2010039505 A JP2010039505 A JP 2010039505A JP 2010203437 A JP2010203437 A JP 2010203437A
Authority
JP
Japan
Prior art keywords
insert
chamber
inserts
suction side
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010039505A
Other languages
English (en)
Other versions
JP5599624B2 (ja
Inventor
Dipankar Pal
ディパンカー・パル
James E Thompson
ジェームス・イー・トンプソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2010203437A publication Critical patent/JP2010203437A/ja
Application granted granted Critical
Publication of JP5599624B2 publication Critical patent/JP5599624B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • F01D5/188Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
    • F01D5/189Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall the insert having a tubular cross-section, e.g. airfoil shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

【課題】タービン翼を冷却する。
【解決手段】略中空の翼(110)を備えるタービン・ブレードであって、翼(110)の外壁(133)は、冷媒の流れを受け取る半径方向に延びるチャンバ(120)を画定し、翼(110)は、上流または前方方向に存在する前縁(112)と、下流または後部方向に存在する後縁(118)と、凸状の吸引側(114)と、凹状の圧力側(116)とを備え、タービン・ブレードは、チャンバ(120)内に配置される複数の挿入物(140−146)であって、最初に、チャンバ(120)に入る冷媒の少なくとも一部を受け取り、冷媒の相当な部分を複数の挿入物開口部50を通して外壁(133)の内面に向かって送るように構成される挿入物を備え、挿入物(140−146)は、内向き流出経路(150)と内向き流出経路(150)が流れ込む中央の収集部通路(152)とを形成するタービン・ブレード。
【選択図】図5

Description

本出願は一般的に、タービン・エンジンの効率および/または動作を向上させるための装置、方法、および/またはシステムに関する。より具体的には、しかし限定としてではなく、本出願は、内部冷却回路または通路を通る冷媒の回転および衝突を介してタービン翼を冷却するための装置、方法、および/またはシステムに関する。
ガス・タービン・エンジンは通常、圧縮機、燃焼器、およびタービンを備える(なお本発明を、主に典型的なパワー発生ガス・タービン・エンジンを参照して説明するが、本発明はそれに限定されず、この参照は単に一例として与えられるものである。当業者であれば分かるように、本発明の実施形態を、航空機エンジンおよび他のタイプのロータリー・エンジンにおいて用いても良い)。圧縮機およびタービンは一般的に、軸方向に段階的に積み重ねられたタービン・ブレードまたは翼の列を備える。各段は、周方向に離間に配置されたステータ・ブレード(固定されている)からなる交互の列と、周方向に離間に配置されたロータ・ブレード(中心軸またはシャフトの周りに回転する)からなる列とを備えている場合がある。動作時には、圧縮機内のロータ・ブレードはシャフトの周りに回転して、空気の流れを圧縮する。圧縮空気供給を次に、燃焼器内で用いて燃料供給を燃焼させる。燃焼から結果として生じる高温ガスの流れは次に、エンジンのタービン部分を通って膨張して、タービン・ロータ・ブレードを回転させる。ロータ・ブレードは中心シャフトに接続されているので、ロータ・ブレードが回転することによってシャフトが回転する。
このようにして、燃料に含まれるエネルギーは、回転シャフトの機械的エネルギーに変換される。このエネルギーを用いて、圧縮機のロータ・ブレードを回転させて、燃焼に必要な圧縮空気供給を作り出す場合もあるし、発電機のコイルを回転させて電力を発生させる場合もある。動作中、高温ガス経路の極度の温度、作動流体の速度、およびエンジンの回転速度のために、タービン翼(前述したように、一般的に、回転するロータ・ブレードと、固定された周方向に離間に配置されるステータ・ブレードとを備える)には、極度の機械的負荷および熱負荷によって非常に応力が加わる。
より効率的なタービン・エンジンをデザインおよび構築するという目的は、特に化石燃料がますます不足してコストが増加していることを考慮すると、重要な目的である。タービン・エンジンの効率を増加させるために複数の方策が知られているが、依然として難しい目標のままである。なぜならば、知られている代替案(たとえば、エンジンのサイズを大きくすること、高温ガス経路内の温度を上げること、およびロータ・ブレードの回転速度を上げることなど)は一般的に、付加的な歪みが部品に加わる。たとえば、タービン翼(すでに非常に応力が加わっている)への付加的な歪みである。その結果、タービン翼に加わる動作上の応力を減らすかまたはタービン翼がこれらの応力にもっと良好に耐えられるようにする改善された装置、方法、および/またはシステムが強く求められている。
当業者であれば分かるように、熱応力を軽減するための1つの方策は、翼を冷却して、翼が受ける温度が高温ガス経路のそれよりも低くなるようにすることによってである。効果的に冷却することによって、たとえば、翼が、より高い燃焼温度に耐えること、高い動作温度においてより大きな機械的応力に耐えること、および/または翼の部品寿命を延ばすことが可能になる場合がある。これらはすべて、タービン・エンジンを、より費用対効果の高いものおよび効率的なものにすることができる場合がある。動作中に翼を冷却する1つの方法は、内部冷却通路または回路を用いることによってである。一般的に、これには、比較的冷たい圧縮空気供給(タービン・エンジンの圧縮機によって供給される場合がある)を、翼内の内部冷却回路に通すことが伴う。圧縮空気は、翼を通ると、翼を対流的に冷却する。その結果、部品は、本来は耐えられなかった燃焼温度に耐えられるようになる場合がある。
米国特許第5,363,654号明細書
場合によっては、圧縮空気供給は、翼の表面上の小さい孔を通して放出される。このように放出されることで、空気供給によって、比較的冷たい空気の薄層または膜が翼の表面に形成される。その結果、部品を冷却すること、および部品を包囲するより高い温度から部品を絶縁することの両方が行なわれる。しかしこのタイプの冷却(一般的に「膜冷却」と言われる)は、費用がかかる。このように翼の表面上に圧縮空気を放出すると、エンジンの空気効率(aero−efficiency)が下がる。翼を通る内部冷却を高めて、たとえば膜冷却を最小限にするかまたは低減することができるさらに良好な方策があれば、一般的に、タービン・エンジンの効率が上げるであろう。その結果、タービン翼に対する冷却方策の改善が現在求められている。
こうして、本出願では、略中空の翼を伴うタービン・ブレードであって、翼の外壁は、冷媒の流れを受け取るための少なくとも1つの半径方向に延びるチャンバを画定し、翼は、上流または前方方向に存在する前縁と、下流または後部(aft)方向に存在する後縁と、凸状の吸引側と、凹状の圧力側とを備え、タービン・ブレードは、チャンバ内に配置される複数の挿入物であって、最初に、チャンバに入る冷媒の少なくとも一部を受け取り、冷媒の相当な部分を複数の挿入物開口部を通して外壁の内面に向かって送るように構成される挿入物を備え、挿入物は、少なくとも1つの内向き流出経路と内向き流出経路が流れ込む中央の収集部通路とを形成するように構成されるタービン・ブレードについて説明する。
本出願のこれらの特徴および他の特徴は、以下の好ましい実施形態の詳細な説明を、図面および添付の請求項とともに検討することで明らかになる。
本発明のこれらおよび他の目的および優位性は、以下の本発明の代表的な実施形態のより詳細な説明を添付図面とともに注意深く検討することによって、より完全に理解および認識される。
本出願の実施形態を用いても良い典型的なタービン・エンジンの概略図である。 本出願の実施形態を用いても良いガス・タービン・エンジンにおける圧縮機の断面図である。 本出願の実施形態を用いても良いガス・タービン・エンジンにおけるタービンの断面図である。 従来の空冷式の翼の断面図である。 本出願の代表的な実施形態による内部冷却回路および挿入物を例示する翼の断面図である。 本出願の代表的な実施形態による内部冷却回路および挿入物を例示する翼の断面図である。 本出願の代替的な実施形態による内部冷却回路および挿入物を例示する翼の断面図である。
次に図を参照して、図1に、ガス・タービン・エンジン10の概略図を例示する。一般的に、ガス・タービン・エンジンの動作は、圧縮空気のストリーム中で燃料を燃焼させることで生成される高温ガスの加圧流体からエネルギーを取り出すことによって行なわれる。図1に例示したように、ガス・タービン・エンジン10は、軸流式圧縮機17(他のタイプの圧縮機も可能である)によって構成しても良い。圧縮機17は、共通のシャフトまたはロータによって、下流のタービン部分またはタービン18、および圧縮機19とタービン18との間に位置する燃焼器19に、機械的に結合されている。なお以下の発明では、すべてのタイプのタービン・エンジンを用いても良い。たとえば、ガス・タービン・エンジン、蒸気タービン・エンジン、航空機エンジンなどである。以下、本発明をガス・タービン・エンジンに関連して説明する。この説明は、単に典型的なものであり、限定は決して意図していない。
図2に、ガス・タービン・エンジン10において用いても良い典型的な多段化された軸流式圧縮機17の図を例示する。図示するように、圧縮機17は複数の段を備えていても良い。各段は、圧縮機ロータ・ブレード20の列と、それに続いて圧縮機ステータ・ブレード22の列とを備えていても良い。したがって、第1段は、圧縮機ロータ・ブレード20(中心シャフトの周りに回転する)の列と、それに続いて圧縮機ステータ・ブレード22(動作中に静止したままである)の列とを備えていても良い。圧縮機ステータ・ブレード22は一般的に、周方向に互いに離間に配置され、回転軸の周りに固定されている。圧縮機ロータ・ブレード20は、周方向に離間に配置されて、シャフトに取り付けられており、動作中にシャフトが回転すると、圧縮機ロータ・ブレード20はシャフトの周囲に回転するようになっている。当業者であれば分かるように、圧縮機ロータ・ブレード20は、シャフトの周りに回転したときに、運動エネルギーを、圧縮機17を通って流れる空気または作動流体に与えるように構成されている。圧縮機17には、図2に例示した段を越える多くの他の段があっても良い。付加的な段にも、複数の周方向の離間に配置された圧縮機ロータ・ブレード20と、それに続いて複数の周方向に離間に配置された圧縮機ステータ・ブレード22とが含まれていても良い。
図3に、ガス・タービン・エンジン10において用いても良い典型的なタービン部分またはタービン18の部分図を例示する。タービン18は複数の段を備えていても良い。3つの典型的な段を例示しているが、もっと多いかまたは少ない段がタービン18内に存在していても良い。各段は、複数のタービン・バケットまたはタービン・ロータ・ブレード26(動作中にシャフトの周りに回転する)と、複数のノズルまたはタービン・ステータ・ブレード28(動作中に静止したままである)とを備えていても良い。タービン・ステータ・ブレード28は一般的に、周方向に互いに離間に配置され、回転軸の周りに固定されている。タービン・ロータ・ブレード26をタービン・ホイール(図示せず)上に取り付けて、シャフト(図示せず)の周りの回転を図っても良い。当然のことながら、タービン・ステータ・ブレード28とタービン・ロータ・ブレード26とは、タービン18の高温ガス経路内に配置されている。高温ガス経路を通る高温ガスの流れの方向を、矢印によって示す。
なお、本明細書で用いる場合、「ロータ・ブレード」に言及すること(それ以上に特定することなく)は、圧縮機17またはタービン18のいずれかの回転ブレードに言及することであり、圧縮機ロータ・ブレード20およびタービン・ロータ・ブレード26の両方を含んでいる。「ステータ・ブレード」に言及すること(それ以上に特定することなく)は、圧縮機17またはタービン18のいずれかの固定ブレードに言及することであり、圧縮機ステータ・ブレード22およびタービン・ステータ・ブレード28の両方を含んでいる。用語「ブレード」は、本明細書では、両方のタイプのブレードを指すために用いる。したがって、それ以上に特定することなく、用語「ブレード」は、すべてのタイプのタービン・エンジン・ブレード(たとえば、圧縮機ロータ・ブレード20、圧縮機ステータ・ブレード22、タービン・ロータ・ブレード26、およびタービン・ステータ・ブレード28)を包含する。
使用中に、軸流式圧縮機17内の圧縮機ロータ・ブレード120が回転することによって、空気の流れを圧縮する場合がある。燃焼器19では、圧縮空気を燃料と混合して点火したときに、エネルギーが放出される場合がある。燃焼器19から結果として生じる高温ガスの流れを次に、タービン・ロータ・ブレード26上に送っても良い。その結果、シャフトの周りにタービン・ロータ・ブレード26が回転する場合があり、その結果、高温のガス流のエネルギーが回転ブレードおよび(シャフトにおいてロータ・ブレード間が接続されているので)回転シャフトの機械的エネルギーに変換される。次にシャフトの機械的エネルギーを用いて、圧縮機ロータ・ブレード20の回転を駆動して必要な圧縮空気供給を作り出しても良く、またたとえば、発電機の回転を駆動して電気を生成しても良い。
当業者であれば分かるように、多くの場合にタービン・ブレード(すなわち、タービン・ロータ・ブレードおよびタービン・ステータ・ブレードの両方)の冷却を、圧縮機から流出される圧縮空気を、ブレード内に形成される中空の通路を通して循環させることによって行なう(なお、図4〜7に示す以下の例では、翼構成がタービン・ロータ・ブレードにおいて用いられているかのように説明するときがある。当業者であれば分かるように、これは単に典型的なものであり、同じ一般的な構成の中空の翼を、タービン・ステータ・ブレードまたは他のタイプのブレードにおいて用いても良い)。タービン・ロータ・ブレードは一般的に、基部または根本部分から半径方向に延びる翼を備える。翼は一般的に、凹状の圧力側壁または圧力側と、周方向または横方向に対向する凸状の吸引側壁または吸引側とを備える。圧力側および吸引側は両方とも、前縁と後縁との間で軸方向に延びている。圧力側および吸引側はさらに、半径方向に内側の根本と半径方向に外側のブレード先端との間で半径方向に延び、それらの間で中空のチャンバを画定している。中空のチャンバを通して圧縮空気冷媒を循環しても良い。
図を再び参照して、図4に、複数のタイプのタービン・ブレードにおいて用いても良い従来の空冷式の翼30の断面図を例示する。図示するように、翼30は、全体として翼形状を備え、鼻部または前縁32、圧力側34、吸引側36、および後縁38を有している。翼30は一般的に中空であり、多くの場合に複数のチャンバに分割されている。チャンバは、図示するように、2つの半径方向に延びる内部チャンバ40、42を含んでいても良く、これらは、中間の隔壁44によって分割され、外壁53によって画定されていても良い。一般的に、各内部チャンバ40、42には、中空の半径方向に延びる挿入物46、48が封入されている。挿入物46、48の構成は、対応するチャンバの内部の輪郭に従うが、チャンバの内部に対して離間に配置される関係にある。挿入物46、48は、予め選択された場所に挿入物開口部50を備えている。タービン圧縮機から出た高圧力の冷却用空気を、従来の手段によって翼の基部または根本を通して挿入物内に送り、このような開口部を通して排出して、チャンバ40、42の内壁に当たる空気の噴流を形成して衝突冷却を図る(矢印で示すように)。挿入物開口部50を、たとえば、挿入物46、48上の内側の半径方向位置から挿入物46、48上の外側の半径方向位置まで延びる複数の列に沿って配置しても良い。この技術の中心的な考え方は、高速度の冷媒を高温の金属表面上に別個に噴流衝突させることによって生じる高い熱伝達係数(HTC)を用いて、対流によって熱を標的表面から取り去ることである。
より詳細には、前縁チャンバ40における挿入物46の挿入物開口部50は、挿入物46と対向する外壁53の内面に衝突するように配置されている。冷却用空気は、前縁チャンバ40内に強制的に入れられて挿入物46から出た後、翼の外壁53を貫通する半径方向に離間に配置された膜冷却開口部52の列を通って排出される。この排出された冷却用空気は、翼の外部表面に隣接する境界空気の層となって、作動流体から翼への熱伝達を抑制する働きをする。冷却用空気は、後縁挿入物48内に強制的に入れられて挿入物開口部50を通って出る。この挿入物開口部50も、挿入物48と対向する外壁53の内面に衝突するように配置される。その後に、冷媒は、後縁チャンバ42から、膜冷却開口部52を通ってかまたは後縁冷却開口部64を通って排出される。後縁冷却開口部64は、後縁チャンバ42から翼の後縁38まで延びている。図示するように、翼によっては、複数の略円柱型のピン66の列が、後縁チャンバ42と後縁冷却開口部64との間に存在する間隔に渡って延びていても良い。
冷媒をこのように用いると、すなわち、流れを、外壁53の内面と衝突挿入物46、48とによって閉ざされた限定された経路内に噴射すると、その有効性が低下する。このように低下する原因は、翼の空洞内の有利な圧力勾配の方向に運ばれる衝突後流体の横断流である。すなわち、従来の衝突冷却翼デザインは、衝突後の横断流による低下の効果があるために不利である。
たとえば、後縁チャンバ42における挿入物開口部50を出た冷却液は、最初に外壁53の内面によって偏向される。流れの対流によって、熱が外壁53から取り去られる。流れのほとんどは次に、有利な圧力勾配に向かって進む。これは一般的に、流れが翼30の後縁38まで進んで、後縁冷却開口部64を通って出ることを意味する。一般的に、流れのごく一部が膜冷却開口部52まで進んでそこから排出される。図4に示すように、従来の中空翼の一般的な流れパターンを考えると、流れが出口点に向かって動くときに、冷媒流のかなりの部分が他の挿入物開口部50の前で(すなわち、挿入物開口部50と外壁53の対向する部分との間で)横断する。外壁53からすでに熱を吸収しているため、衝突後の横断流は一般的に、温度が衝突前冷媒(すなわち、外壁53に対して衝突し送られる前の冷媒)よりも高い。当業者であれば分かるように、衝突後の横断流が、新鮮な冷媒と混合することによって、外壁53の冷却を妨げ、その結果、外壁53とそれに接触する流れとの間の温度差が小さくなる。加えて、噴流ベクトルが変わるために低下が起こる。すなわち、横断流によって、衝突した冷媒の方向が挿入物開口部から変わるため、噴流が標的表面に垂直には当たらず、その結果、その冷却の有効性が低下する。
他方で、衝突後の流れが、挿入物46、48と外壁53とによって画定される経路内で小さくなることで、新鮮な冷媒が外壁53に接触して直接流れることが妨げられなかったら、流体冷媒と外壁53との間の熱交換は向上したであろう。当業者であれば分かるように、このように冷却の有効性が向上すれば、翼を適切なまたは所望の温度に維持するのに必要な冷媒の量は減るであろう。冷媒空気を用いると効率に悪影響が出るので、その使用量が減れば、タービン・エンジンの効率は上がるであろう。
次に図5を参照して、本出願の代表的な実施形態による内部冷却回路/挿入物を例示する翼110の断面図を示す。前述したように、本発明に対応する構成を有する中空の翼を、ステータ・ブレードまたはロータ・ブレードのいずれかにおいて用いても良い。明瞭および簡潔さを目的として、図5〜7の実施形態を、ロータ・ブレードにおいて使用することに適用可能な詳細説明とともに示す。当業者であれば分かるように、これは単に典型的なものであり、限定は決して意図していない。翼110は一般的に、翼形状の構成を有する。この構成は、前方端または前縁112、圧力側114、吸引側116、および後部縁または後縁118を有する。翼は、半径方向に延びる中央のチャンバ120を有する。チャンバ120は一般的に、翼の形状を有し、比較的薄い外壁133によって画定されている(なお、図5に示すように、図4の例が前縁チャンバ40と後縁チャンバ42とに分割されていたようには、中央のチャンバ120は複数のチャンバには分割されてはいない。これは、本出願の好ましい実施形態の典型である。他の実施形態においては、中央のチャンバ120を複数のチャンバに分割しても良く、本明細書に記載したものと一致する挿入物を、これらのチャンバの1つまたはすべてにおいて用いても良い)。図4にすでに示した従来技術の例と同様に、膜冷却開口部が外壁133を通って存在していても良いが、簡単にするために、図5〜7ではこれらを図示していない。翼110はさらに、前述した同じ特徴と同様の後縁冷却開口部134およびピン136を備えていても良い(これらの特徴は重要ではないが)。
図5に示すように、複数の半径方向に延びる挿入物140、141、142、143、144、145、146を、本出願の代表的な実施形態に含めても良い。本明細書で用いる場合、「挿入物」は、中空の翼内に取り付けられた隔壁であって(すなわち、一般的に挿入物は翼と単一部品としては一体形成されてはいない)、ブレードの一端に導入される冷媒の流れを送り、流れに衝突してこれを翼の外壁の内面に対して向けられる複数の冷却噴流にする隔壁を指す。一般的に、挿入物は、薄肉の半径方向に延びる隔壁であって、一般的にチャンバ内に分室を形成し、金属薄板、鋳造金属、セラミック材料、または他の好適な材料で形成されていても良い隔壁である。適切に取り付けられれば、挿入物は一般的に、流体冷媒が入る入口をブレードの一端に位置させ、冷媒の流れを半径方向に送る中空の空洞を画定する。挿入物は一般的に、一様に分散された複数の挿入物開口部を有し、この開口部から冷媒が翼の外壁に対して放出される。挿入物開口部のサイズは、挿入物開口部が冷媒の流れに衝突することによって冷媒の冷却有効性を向上させるように形成されている。図5の代表的な実施形態の挿入物は、以下のものを備えている。鼻部挿入物140(吸引側挿入物および/または圧力側挿入物と考えても良い)、複数の圧力側挿入物141、142、143(前部圧力側挿入物141、中央部圧力側挿入物142、および後部圧力側挿入物143を含んでいても良い)、ならびに複数の吸引側挿入物144、145、146(前部吸引側挿入物144、中央部吸引側挿入物145、および後部吸引側挿入物146を含んでいても良い)。図5の複数の挿入物を、以下に詳細に説明するように、内向き流出経路150と中央の収集部通路152とを画定するように構成および配置しても良い。各挿入物は一般的に、外面または壁が外壁133の内面に対向しており、この外面または壁を通して挿入物開口部が形成され、外壁133に対して冷媒を送る働きをする。この挿入物の壁は一般的に、外壁133の対応する部分の内部の輪郭に従うが、内部に対して離間に配置される関係にある。なお、図4の従来技術の例とは異なり、図5〜7に示す例の挿入物開口部の位置決めを、挿入物の壁を通って延びる複数の矢印で示す。
内向き流出経路150は、隣接する挿入物間の間隔およびそれらの形状によって画定される経路である。一般的に、内向き流出経路150は、中央のチャンバ120の外部から中央のチャンバ120の中央領域まで延びて、そこで中央の収集部通路152に接続している。好ましい実施形態においては、内向き流出経路150は、翼の中央翼弦線(mid−chordline)に大まかに垂直な方向に配向されている。当業者であれば分かるように、中央翼弦線は、前縁112から後縁118まで延びる基準線(図示せず)であって、圧力側114と吸引側116との間のほぼ中間点を接続するものである。さらに、好ましい実施形態においては、内向き流出経路150は、中央の収集部通路152に大まかに垂直な方向に配向されている。内向き流出経路150は一般的に、外壁133付近の位置から始まり、中央翼弦線付近の位置で終了する。
内向き流出経路150は、図5の典型的な好ましい実施形態において例示するように、鼻部挿入物140と前部圧力側挿入物141との間、前部圧力側挿入物141と中央部圧力側挿入物142との間、中央部圧力側挿入物142と後部圧力側挿入物143との間、鼻部挿入物140と前部吸引側挿入物144との間、前部吸引側挿入物144と中央部吸引側挿入物145との間、および中央部吸引側挿入物145と後部吸引側挿入物146との間に配置しても良い。好ましい実施形態においては、一般的に、少なくとも2つの挿入物が中央のチャンバ120の圧力側114に存在して、少なくとも1つの内向き流出経路150を画定し、少なくとも2つの挿入物が中央のチャンバ120の吸引側116に存在して、少なくとも1つの内向き流出経路150を画定し、圧力側挿入物141、142、143と吸引側挿入物144、145、146との間に保持される間隔によって、中央の収集部通路152が形成されている。
隣接する挿入物の対向する壁は、ほぼ平行であっても良く、挿入物の間に形成される経路の幅によって分離されていても良い。したがって、好ましい実施形態においては、圧力側挿入物141、142、143の各対の対向する壁は、ほぼ平行であっても良く、圧力側挿入物の間に形成される内向き流出経路150の所望の幅だけずれていても良い。こうして、たとえば、前部圧力側挿入物141の後部壁は、中央部圧力側挿入物142の前部壁に対してほぼ平行であっても良い。吸引側挿入物144、145、146の各対の対向する壁は、同様に、ほぼ平行であっても良く、吸引側挿入物の間に形成される内向き流出経路150の所望の幅だけずれていても良い。こうして、たとえば、前部吸引側挿入物144の後部壁は、中央部吸引側挿入物145の前部壁に対してほぼ平行であっても良い。同様の関係が、鼻部挿入物140と前部圧力側挿入物141との間の対向する側面、および鼻部挿入物140と前部吸引側挿入物144との間の対向する側面の間に、設けられていても良い。
中央の収集部通路152は一般的に、中央のチャンバ120の内部に沿って、前方位置から後部位置まで延びている。特に、図示するように、中央の収集部通路152は、鼻部挿入物140から始まり、冷却ピン136のすぐ前方の位置まで延びて、翼110のほぼ中央翼弦線に沿って経路を形成する。その結果、一般的に、翼110の全体的な湾曲に従うわずかに曲線状の経路になる。さらに、好ましい実施形態においては、挿入物の各対のうち中央の収集部通路152をはさんで互いに対向するもの(たとえば、中央部圧力側挿入物142と中央部吸引側挿入物145)の間の対向する壁は、互いにほぼ平行であっても良く、挿入物の間に形成される中央の収集部通路152の幅だけずれていても良い。
一部の好ましい実施形態においては、図5に示すように、2つの後部挿入物(すなわち、後部圧力側挿入物143および後部吸引側挿入物146)の一方または両方が、後部挿入物延長部分158を有していても良い。後部挿入物延長部分158は一般的に、後部挿入物143、146の後部端部から下流方向(すなわち、翼110の後縁118に向かって)延び、中央のチャンバ120の後縁のすぐ前方の位置で外壁133に接続している。このように配置することで、後部挿入物延長部分158は、冷媒の下流の流れを遮る場合があり、冷媒がその代わりに内向き流出経路150の1つを選ばざるを得ないようにする。
動作時には、冷媒を、複数の挿入物140、141、142、143、144、145、146を通して送り、挿入物冷却開口部によって衝突させても良い。結果として生じる衝突噴流を、外壁133の内面に向けて送って、対流によって熱を外壁133から比較的高速で取り去るようにしても良い。衝突後の流れの相当な部分が次に、内向き流出経路150内に流れ込む。中央の収集部通路152が次に、衝突後の流れを内向き流出経路150から集めても良く、流れが出口点に向かって移動しても良い。出口点は、流れの相当な量に対して、後縁冷却開口部134である。このように、当業者であれば分かるように、衝突後の流れにより冷却に及ぼされる低下の効果が軽減される場合がある。
図6は、本発明の代替的な好ましい実施形態である翼160の説明図である。一般的に、翼160は、図5の翼110に対して前述したものと同じ特徴および構成を有するとともに、分割壁挿入物162が付加されていても良い。分割壁挿入物162は、半径方向に延びる隔壁であって、中央のチャンバ120を、ブレードの基部またはその付近における内側の半径方向位置からブレードの先端付近の外側の半径方向位置まで、実質的に分割する隔壁である。軸方向に、分割壁挿入物162は、中央翼弦線に沿って前方位置から後部位置まで延びて、中空の翼チャンバを圧力側チャンバと吸引側チャンバとに実質的に分割する。
一部の好ましい実施形態においては、分割壁挿入物162は、翼チャンバの前方領域における外壁に対して形成された接続部から始まっても良い。図6に示すように、接続部は、翼チャンバの吸引側の前縁112のすぐ後部に形成しても良い。この場合、分割壁挿入物162は翼160の中央翼弦線に向かって延びて、ほぼ翼の中央翼弦線の領域に達したら、分割壁挿入物162は方向を変えて、翼160の後縁118に向かって延びても良い。図示した代表的な実施形態においては、この方向変更の角度は約60〜90度の間であっても良い。方向を変更したら、挿入物分割壁は、大まかに中央翼弦線に沿って後部方向に延びても良い。後縁118に向かって延びたら、分割壁挿入物162は、中央のチャンバ120の後部端部付近の位置で終了しても良い。分割壁挿入物162の終端のすぐ後部において、分割壁挿入物162が分割した2つのチャンバは単一のチャンバになっても良い。
動作時には、翼160の構成によって、圧力側挿入物140、141、142、143を通る冷媒の流れと、吸引側挿入物144、145、146を通る冷媒の流れとが、実質的に隔離されても良い。当業者であれば分かるように、翼を通って流れる冷媒の圧力は、翼内への作動流体の逆流を防止するのに十分な圧力に保持しなければならない。より具体的には、翼内の冷媒の圧力がタービンを通る作動流体の圧力よりも低い場合、作動流体の翼内への逆流が、たとえば、翼160の圧力側114および吸引側116の表面に沿って存在する場合がある膜冷却孔を通って起こる場合がある。作動流体が極度の温度であるために、このような逆流が起こるとすぐに、著しくかつ費用のかかる損傷が翼に対して生じる場合がある。
当業者であれば分かるように、2つの主な翼外面の形状と作動流体がそれぞれに当たる仕方とのせいで、外壁133の外面における作動流体の圧力は、翼160の吸引側116に沿って生じる値よりも圧力側114に沿って生じる値の方がかなり高い。もしそうだとすれば、翼160の内圧を異なるレベルに維持することによって効率が達成される場合がある。したがって、圧力側挿入物140、141、142、143内の圧力を、吸引側挿入物144、145、146内の圧力よりも高いレベルに維持して、各圧力を、存在し得る膜冷却開口部または他の開口部(たとえば割れ)のいずれかを通って逆流が起こることを好適に防ぐレベルに維持しても良い。当業者であれば分かるように、分割壁挿入物162と、冷媒の流れを各チャンバおよびその内部の挿入物に対しておよびそれらを通して送出し計量する従来の方法とを用いて、これらの異なるレベルの圧力を、中央のチャンバ120の2つの隔離されたチャンバ内において維持しても良い。
隔離されたチャンバにおいて、最適化された逆流マージンを実現することによって、より効果的な冷却が可能になる。すなわち、図6の場合、中央のチャンバ120の分離された吸引側を、より低い圧力レベルに安全に維持しても良い。こうして、分割壁挿入物162によって一般的に、圧力側冷媒供給源と吸引側冷媒供給源とを分離することができ、最適な圧力および流量を、翼表面上での局所的な熱負荷に基づいて実現することができるようになる。全体としての冷却有効性を向上させることによって、翼上の同じ全体的な熱負荷に対して必要となる冷媒流が少なくなるであろう。その結果、損失の低減および出力の増加を通して、タービン・エンジン性能が向上する。
図7は、本発明の代替的な好ましい実施形態である翼170の説明図である。一般的に、翼170の特徴および構成は、図6の翼160に対して前述したものと同じである。図7の実施形態は、挿入物の複数が、半径方向に離間に配置された複数のコネクタ172を介して接続される実施形態の例である。一般的に、コネクタ172は、軸方向および/または周方向に延びるコネクタであって、挿入物140、141、142、143、144、145、146および/または分割壁挿入物162のいずれかの間を延びるものである。挿入物および/または分割壁挿入物のうちの2つを接続する複数のコネクタ162が、半径方向の異なる高さに存在していても良い。好ましい実施形態においては、コネクタ172は、内側の半径方向位置(すなわち、ブレードの基部付近の位置)と、外側の半径方向位置(すなわち、ブレードの外側の半径方向先端付近の位置)との間において、規則的な半径方向の間隔で存在する。図7において点線で示すように、内向き流出経路150がコネクタ172間で存在していても良く、前述したものと同様に機能しても良い(複数コネクタが形成されることによって、ある程度の体積が取り除かれるが)。
複数の挿入物を、複数のコネクタ172を介して互いに接続しても良い(なお、この状況では、接続された挿入物を、単一の部品もしくは単一の挿入物を形成すると言っても良いし、前述で挿入物に言及した仕方と同様に、やはり、接続された複数の挿入物であると言っても良い)。図7に示すように、いくつかの実施形態においては、圧力側挿入物140、141、142、143をコネクタ172によって接続しても良い。鼻部挿入物140を、コネクタ172を介して、前部圧力側挿入物141に接続しても良い。前部圧力側挿入物141を、同様に中央部圧力側挿入物142に接続しても良い。中央部圧力側挿入物142を、同様に後部圧力側挿入物143に接続しても良い。また、いくつかの実施形態においては、吸引側挿入物144、145、146をコネクタ172によって接続しても良い。この場合、前部吸引側挿入物144を、コネクタ172を介して、中央部吸引側挿入物145に接続しても良く、中央部吸引側挿入物145を、同様に後部吸引側挿入物146に接続しても良い。
図7に関連して前述した構成は典型的なものである。当業者であれば分かるように、図7に示していない他の組み合わせも可能である。たとえば、鼻部挿入物140を、コネクタ172を介して、前部圧力側挿入物141に接続しても良く、前部圧力側挿入物141を、中央部圧力側挿入物142に接続していないままであっても良い。その代わりに、中央部側挿入物142を後部圧力側挿入物143にのみ接続しても良い。加えて、図7には例示していないが、分割壁挿入物162を、複数のコネクタ172を介して、挿入物140、141、142、143、144、145、146の1つまたはすべてに接続しても良く、これらの挿入物を互いに接続しても良いし接続しなくても良い。図6に例示した実施形態は、挿入物140、141、142、143、144、145、146および分割壁挿入物162をすべて、隣接する挿入物構造に接続していないままの場合である。当業者であれば分かるように、図7に例示するコネクタ172によって、挿入物構造140、141、142、143、144、145、146、162をすべて接続する可能性が可能になる。すなわち、コネクタ172を用いてすべての挿入物140、141、142、143、144、145、146および分割壁挿入物162を接続して、単一の接続構造にしても良い。
使用中、翼170は、他の典型的な翼(すなわち、翼110および翼160)に対して前述したものと同様に動作する場合がある。当業者であれば分かるように、コネクタ172は、製造および動作に対して肯定的結果および否定的な結果の両方を有する場合がある。これらを検討して、コネクタ172が特定の応用例に適しているかどうかを判定しても良い。たとえば、前述したように、コネクタ172によって一般的に、内向き流出経路150から体積が取り除かれ、および/または分割壁挿入物162が、隣接する挿入物の1つに接続される場合には、中央の収集部通路152から体積が取り除かれる。一般的に、この体積の減少は比較的小さいものであるが、その減少によって、内向き流出経路150内に流れる衝突後の流れおよび/または中央の収集部通路152を通って流れる衝突後の流れが少なくなる場合がある。その結果、特定の状況の下では、低下をもたらす横断流のレベルがわずかに大きくなる場合がある。しかし、挿入物140、141、142、143、144、145、146、162の2つ以上を接続して接続構造にすることによって、部品コストが下がり、製造プロセスおよび/または部品取り付けが単純になる場合がある。さらに、挿入物140、141、142、143、144、145、146、162を接続すると、動作中に、翼内での適切な位置がより良好に保たれる場合がある。
挿入物141、142、143、144、145、146、分割壁挿入物162、およびコネクタ172はすべて、従来の手段および方法によって好適な任意の材料から作っても良い。コネクタ172は、それが接続する挿入物と一体的に形成しても良いし、別個の部品として作って後で取り付けても良い。
前述した本発明の好ましい実施形態の説明から、改善、変形、および変更が当業者には明らかである。当該技術におけるこのような改善、変形、および変更は、添付の請求項によって網羅されることが意図されている。また、前述のことは本出願の説明した実施形態にのみ関係すること、および以下の請求項およびその均等物によって規定される本明細書の趣旨および範囲から逸脱することなく、本明細書において多くの変形および変更を施しても良いことが明らかである。

Claims (10)

  1. 略中空の翼(110)を伴うタービン・ブレードであって、翼(110)の外壁は、冷媒の流れを受け取るための少なくとも1つの半径方向に延びるチャンバ(120)を画定し、翼(110)は、上流または前方方向に存在する前縁(112)と、下流または後部方向に存在する後縁(118)と、凸状の吸引側116と、凹状の圧力側114とを備え、
    タービン・ブレードは、
    チャンバ(120)内に配置される複数の挿入物(140、141、142、143、144、145、および/または146)であって、最初に、チャンバ(120)に入る冷媒の少なくとも一部を受け取り、冷媒の相当な部分を複数の挿入物開口部50を通して外壁(133)の内面に向かって送るように構成される挿入物を備え、
    挿入物(140、141、142、143、144、145、および/または146)は、少なくとも1つの内向き流出経路(150)と内向き流出経路(150)が流れ込む中央の収集部通路(152)とを形成するように構成されるタービン・ブレード。
  2. 外壁(133)を通る複数の膜冷却開口部(52)と、翼(110)の後縁(118)またはその付近に位置する複数の後縁冷却開口部(134)とをさらに備え、
    挿入物(140、141、142、143、144、145、および/または146)は、一般的にチャンバ(120)内に分室を形成する薄肉の半径方向に延びる隔壁を含み、
    タービン・ブレードは、タービン・ロータ・ブレードおよびタービン・ステータ・ブレードの一方を含み、、
    少なくとも1つの内向き流出経路(150)は一般的に、チャンバの外壁(133)付近の位置から、内向き流出経路(150)が中央の収集部通路(152)に接続するチャンバ(120)の中央付近の位置へと延びる経路を含み、
    中央の収集部通路(152)は、チャンバ(120)内の前方位置からチャンバ内の後部位置へ、翼(110)の圧力側(114)と吸引側(116)との間のほぼ中間点を接続する中央翼弦基準線に大まかに沿って延び、
    少なくとも1つの内向き流出経路(150)は、中央の収集部通路(152)に大まかに垂直な方向に配向され、
    挿入物開口部(50)のサイズは、挿入物開口部(50)が、挿入物(140、141、142、143、144、145、および/または146)を通る冷媒の流れに衝突し、冷媒の流れを翼(110)の外壁(133)の内面に向かって送るように形成される請求項1に記載のタービン・ブレード。
  3. 複数の挿入物(140、141、142、143、144、145、および/または146)は、
    少なくとも2つの圧力側挿入物(141)、(142)、および/または(143)であって、それらの間にある少なくとも1つの内向き流出経路(150)を画定するように構成される圧力側挿入物と、
    少なくとも2つの吸引側挿入物(144)、(145)、および/または(146)であって、それらの間にある少なくとも1つの内向き流出経路(150)を画定するように構成される吸引側挿入物と、を備え、
    各挿入物(140、141、142、143、144、145、および/または146)は、外壁(133)の内面に対向し挿入物開口部(50)が形成される外面を備え、外面は一般的に外壁(133)の内面の輪郭に従うが、内面に対して離間に配置される請求項1に記載のタービン・ブレード。
  4. 圧力側挿入物(141)、(142)、および/または(143)は、前縁に近い方の位置から後縁に近い方の位置に配置された前部圧力側挿入物(141)、中央部圧力側挿入物(142)、および後部圧力側挿入物143を備え、
    吸引側挿入物(144)、(145)、および/または(146)は、前縁に近い方の位置から後縁に近い方の位置に配置された前部吸引側挿入物(144)、中央部吸引側挿入物(145)、および後部吸引側挿入物(146)を備え、
    さらに、前部吸引側挿入物(141)および前部圧力側挿入物のすぐ前方に位置する(144)鼻部挿入物(140)を備え、
    内向き流出経路(150)は、鼻部挿入物(140)と前部圧力側挿入物(141)との間、前部圧力側挿入物(141)と中央部圧力側挿入物(142)との間、中央部圧力側挿入物(142)と後部圧力側挿入物(143)との間、鼻部挿入物(140)と前部吸引側挿入物(144)との間、前部吸引側挿入物(144)と中央部吸引側挿入物(145)との間、および中央部吸引側挿入物(145)と後部吸引側挿入物(146)との間に配置される請求項3に記載のタービン・ブレード。
  5. 少なくとも2つの挿入物(141)、(142)、および/または(143)は、チャンバ(120)の圧力側に配置され、圧力側(114)の外壁(133)付近で始まりチャンバ(120)の中央付近の位置まで延びる少なくとも1つの内向き流出経路(150)を画定し、
    少なくとも2つの挿入物(144)、(145)、および/または(146)は、チャンバ(120)の吸引側に配置され、吸引側(116)の外壁(133)付近で始まりチャンバ(120)の中央付近の位置まで延びる少なくとも1つの内向き流出経路(150)を画定し、
    チャンバ(120)の圧力側の少なくとも2つの挿入物(141)、(142)、および/または(143)と、チャンバ(120)の吸引側の少なくとも2つの挿入物(144)、(145)、および/または(146)とが、中央の収集部通路(152)をはさんでそれぞれが他方に対向するように離間に配置され、
    内向き流出経路(150)の1つをはさんで互いに対向する隣接する挿入物(140)、(141)、(142)、(143)、(144)、(145)、および/または(146)の壁は、ほぼ平行であり、
    中央の収集部通路1(52)をはさんで互いに対向する隣接する挿入物(140)、(141)、(142)、(143)、(144)、(145)、および/または(146)の壁は、ほぼ平行である請求項1に記載のタービン・ブレード。
  6. 後部位置の挿入物を含む挿入物(143)、(146)の少なくとも一方が、チャンバ(120)の後部端部付近に位置し、後部挿入物延長部分(158)を備え、
    後部挿入物延長部分(158)は、後部位置挿入物(143)、(146)から始まる延長部分であって、ほぼ下流方向に延び、中央のチャンバ(120)の後縁のすぐ前方の位置で外壁(133)の内面に接続する延長部分を含み、
    後部挿入物延長部分(158)は、外壁(133)の内面と後部位置挿入物(143)、(146)の外面との間に形成される経路の後部端部を実質的に遮るように構成される請求項1に記載のタービン・ブレード。
  7. チャンバ(120)の後部端部の圧力側は第1の後部位置挿入物(143)を備え、
    第1の後部位置挿入物(143)は後部挿入物延長部分(158)を備え、
    チャンバ(120)の後部端部の吸引側は第2の後部位置挿入物(146)を備え、
    第2の後部位置挿入物(146)は後部挿入物延長部分(158)を備える請求項6に記載のタービン・ブレード。
  8. 分割壁挿入物(162)をさらに備え、
    分割壁挿入物(62)は、チャンバ(120)を翼(110)の内側の半径方向位置から翼(110)の外側の半径方向位置へと実質的に分割する半径方向に延びる隔壁であり、
    分割壁挿入物(162)は、チャンバ(120)のほぼ中心に沿って前方位置から後部位置まで延び、チャンバ(120)を圧力側チャンバと吸引側チャンバとに実質的に分割し、
    分割壁挿入物(162)は、外壁(133)の内面との間に形成された接続部から始まって、チャンバ(120)の前方領域へと進み、チャンバ(120)の後部端部付近の位置で終了し、
    分割壁挿入物(162)は、圧力側挿入物(141)、(142)、および/または(143)を、吸引側挿入物(144)、(145)、および/または(146)から分離する請求項1に記載のタービン・ブレード。
  9. 前記接続部は、翼チャンバ(120)の吸引側の前縁(112)のすぐ後部に形成され、
    前記接続部から、分割壁挿入物(162)が、チャンバ(120)を横断するように延び、チャンバ(120)の吸引側と圧力側との間のほぼ中間点に達すると、方向を変えて、圧力側(114)と吸引側(116)との間のほぼ中間点を接続する中央翼弦基準線に沿って後部方向に延びる請求項8に記載のタービン・ブレード。
  10. 少なくとも2つの隣接する挿入物(140)、(141)、(142)、(143)、(144)、(145)、および/または(146)は複数のコネクタ(170)によって接続され、
    コネクタ(170)は一般的に、隣接する挿入物(140)、(141)、(142)、(143)、(144)、(145)、および/または(146)と半堅固または堅固に結合する軸方向および/または周方向に延びる接続部を備え、
    コネクタは、コネクタが接続する隣接する挿入物(140)、(141)、(142)、(143)、(144)、(145)、および/または(146)の間の複数の異なる半径方向高さに位置し、
    複数の挿入物(140)、(141)、(142)、(143)、(144)、(145)、および/または(146)は、
    少なくとも2つの圧力側挿入物(141)、(142)、および/または(143)であって、それらの間にある少なくとも1つの内向き流出経路(150)を画定するように構成され、圧力側挿入物(141)、(142)、および/または(143)のそれぞれは、隣接する圧力側挿入物(141)、(142)、および/または(143)のそれぞれに複数のコネクタ(172)を介して接続される圧力側挿入物と、
    少なくとも2つの吸引側挿入物(144)、(145)、および/または(146)であって、それらの間にある少なくとも1つの内向き流出経路(150)を画定するように構成され、吸引側挿入物(144)、(145)、および/または(146)のそれぞれは、隣接する吸引側挿入物(144)、(145)、および/または(146)のそれぞれに複数のコネクタ(172)を介して接続される吸引側挿入物と、を備える請求項1に記載のタービン・ブレード。
JP2010039505A 2009-02-27 2010-02-25 タービン・ブレード冷却 Expired - Fee Related JP5599624B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/394,486 2009-02-27
US12/394,486 US8182223B2 (en) 2009-02-27 2009-02-27 Turbine blade cooling

Publications (2)

Publication Number Publication Date
JP2010203437A true JP2010203437A (ja) 2010-09-16
JP5599624B2 JP5599624B2 (ja) 2014-10-01

Family

ID=41667800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010039505A Expired - Fee Related JP5599624B2 (ja) 2009-02-27 2010-02-25 タービン・ブレード冷却

Country Status (4)

Country Link
US (1) US8182223B2 (ja)
EP (1) EP2224097B1 (ja)
JP (1) JP5599624B2 (ja)
CN (1) CN101825002B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202342A (ja) * 2011-03-25 2012-10-22 Mitsubishi Heavy Ind Ltd タービン翼、及び、インピンジメント冷却構造
JP2014501361A (ja) * 2010-12-30 2014-01-20 ロールス−ロイス・ノース・アメリカン・テクノロジーズ,インコーポレーテッド ガスタービンエンジンおよびガスタービンエンジンの冷却流路構成要素
KR101605074B1 (ko) * 2014-11-28 2016-03-21 부산대학교 산학협력단 냉각 구조를 가지는 가스 터빈용 노즐

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2436884A1 (en) 2010-09-29 2012-04-04 Siemens Aktiengesellschaft Turbine arrangement and gas turbine engine
US8814518B2 (en) * 2010-10-29 2014-08-26 General Electric Company Apparatus and methods for cooling platform regions of turbine rotor blades
US8608430B1 (en) * 2011-06-27 2013-12-17 Florida Turbine Technologies, Inc. Turbine vane with near wall multiple impingement cooling
US9353631B2 (en) * 2011-08-22 2016-05-31 United Technologies Corporation Gas turbine engine airfoil baffle
US9033652B2 (en) 2011-09-30 2015-05-19 General Electric Company Method and apparatus for cooling gas turbine rotor blades
EP2628901A1 (en) 2012-02-15 2013-08-21 Siemens Aktiengesellschaft Turbine blade with impingement cooling
US9546554B2 (en) * 2012-09-27 2017-01-17 Honeywell International Inc. Gas turbine engine components with blade tip cooling
US9267381B2 (en) 2012-09-28 2016-02-23 Honeywell International Inc. Cooled turbine airfoil structures
US9995148B2 (en) 2012-10-04 2018-06-12 General Electric Company Method and apparatus for cooling gas turbine and rotor blades
US9169733B2 (en) 2013-03-20 2015-10-27 General Electric Company Turbine airfoil assembly
WO2015057309A2 (en) * 2013-09-18 2015-04-23 United Technologies Corporation Insert and standoff design for a gas turbine engine vane
US9732617B2 (en) 2013-11-26 2017-08-15 General Electric Company Cooled airfoil trailing edge and method of cooling the airfoil trailing edge
US9765631B2 (en) * 2013-12-30 2017-09-19 General Electric Company Structural configurations and cooling circuits in turbine blades
US10012090B2 (en) * 2014-07-25 2018-07-03 United Technologies Corporation Airfoil cooling apparatus
US10156145B2 (en) * 2015-10-27 2018-12-18 General Electric Company Turbine bucket having cooling passageway
CN105422194B (zh) * 2015-12-11 2018-01-02 中国南方航空工业(集团)有限公司 涡轮发动机静子叶片的冷却流路
US10605090B2 (en) * 2016-05-12 2020-03-31 General Electric Company Intermediate central passage spanning outer walls aft of airfoil leading edge passage
DE102016216858A1 (de) 2016-09-06 2018-03-08 Rolls-Royce Deutschland Ltd & Co Kg Laufschaufel für eine Turbomaschine und Verfahren für den Zusammenbau einer Laufschaufel für eine Turbomaschine
US10480327B2 (en) * 2017-01-03 2019-11-19 General Electric Company Components having channels for impingement cooling
FR3062675B1 (fr) * 2017-02-07 2021-01-15 Safran Helicopter Engines Aube haute pression ventilee de turbine d'helicoptere comprenant un conduit amont et une cavite centrale de refroidissement
FR3067389B1 (fr) * 2017-04-10 2021-10-29 Safran Aube de turbine presentant une structure amelioree
US11047240B2 (en) * 2017-05-11 2021-06-29 General Electric Company CMC components having microchannels and methods for forming microchannels in CMC components
WO2019035802A1 (en) 2017-08-14 2019-02-21 Siemens Aktiengesellschaft TURBINE DAWN AND CORRESPONDING SERVICE METHOD
DE102020103657B4 (de) * 2020-02-12 2022-06-23 Doosan Heavy Industries & Construction Co., Ltd. Dreiwandiger Pralleinsatz zur Wiederverwendung von Prallluft in einem Schaufelblatt, Schaufelblatt, das den Pralleinsatz umfasst, Turbomaschinenkomponente und eine damit versehene Gasturbine
DE102020103648A1 (de) * 2020-02-12 2021-08-12 Doosan Heavy Industries & Construction Co., Ltd. Pralleinsatz zur Wiederverwendung von Prallluft in einem Schaufelblatt, Schaufelblatt, das einen Pralleinsatz umfasst, Turbomaschinenkomponente und damit versehende Gasturbine
DE102020106135B4 (de) * 2020-03-06 2023-08-17 Doosan Enerbility Co., Ltd. Strömungsmaschinenkomponente für eine gasturbine, strömungsmaschinenanordnung und gasturbine mit derselben
US11867085B2 (en) * 2020-03-25 2024-01-09 Mitsubishi Heavy Industries, Ltd. Turbine blade
JP7162641B2 (ja) 2020-07-20 2022-10-28 三菱重工業株式会社 蒸気タービン静翼
KR102356488B1 (ko) 2020-08-21 2022-02-07 두산중공업 주식회사 터빈 베인 및 이를 포함하는 가스 터빈
US11994293B2 (en) 2020-08-31 2024-05-28 General Electric Company Impingement cooling apparatus support structure and method of manufacture
US11994292B2 (en) * 2020-08-31 2024-05-28 General Electric Company Impingement cooling apparatus for turbomachine
US20220090505A1 (en) * 2020-09-22 2022-03-24 General Electric Company Airfoil having cavity insert to separate flow
CN114776388B (zh) * 2022-05-26 2022-09-23 中国航发四川燃气涡轮研究院 航空发动机涡轮叶片尾缘主动强化冷却结构
US11566536B1 (en) * 2022-05-27 2023-01-31 General Electric Company Turbine HGP component with stress relieving cooling circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693801A (ja) * 1992-09-17 1994-04-05 Hitachi Ltd ガスタービン翼
JP2001214706A (ja) * 2000-02-01 2001-08-10 Mitsubishi Heavy Ind Ltd ガスタービン蒸気冷却静翼
JP2008274906A (ja) * 2007-05-07 2008-11-13 Mitsubishi Heavy Ind Ltd タービン用翼

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3715170A (en) * 1970-12-11 1973-02-06 Gen Electric Cooled turbine blade
US5363654A (en) * 1993-05-10 1994-11-15 General Electric Company Recuperative impingement cooling of jet engine components
US5480281A (en) * 1994-06-30 1996-01-02 General Electric Co. Impingement cooling apparatus for turbine shrouds having ducts of increasing cross-sectional area in the direction of post-impingement cooling flow
US5702232A (en) * 1994-12-13 1997-12-30 United Technologies Corporation Cooled airfoils for a gas turbine engine
US5711650A (en) * 1996-10-04 1998-01-27 Pratt & Whitney Canada, Inc. Gas turbine airfoil cooling
US6733229B2 (en) * 2002-03-08 2004-05-11 General Electric Company Insert metering plates for gas turbine nozzles
US6742991B2 (en) * 2002-07-11 2004-06-01 Mitsubishi Heavy Industries, Ltd. Turbine blade and gas turbine
FR2885645A1 (fr) * 2005-05-13 2006-11-17 Snecma Moteurs Sa Aube creuse de rotor pour la turbine d'un moteur a turbine a gaz, equipee d'une baignoire
US7465154B2 (en) * 2006-04-18 2008-12-16 United Technologies Corporation Gas turbine engine component suction side trailing edge cooling scheme
US7488156B2 (en) * 2006-06-06 2009-02-10 Siemens Energy, Inc. Turbine airfoil with floating wall mechanism and multi-metering diffusion technique
US7497655B1 (en) * 2006-08-21 2009-03-03 Florida Turbine Technologies, Inc. Turbine airfoil with near-wall impingement and vortex cooling
US7556476B1 (en) * 2006-11-16 2009-07-07 Florida Turbine Technologies, Inc. Turbine airfoil with multiple near wall compartment cooling
US7871246B2 (en) * 2007-02-15 2011-01-18 Siemens Energy, Inc. Airfoil for a gas turbine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693801A (ja) * 1992-09-17 1994-04-05 Hitachi Ltd ガスタービン翼
JP2001214706A (ja) * 2000-02-01 2001-08-10 Mitsubishi Heavy Ind Ltd ガスタービン蒸気冷却静翼
JP2008274906A (ja) * 2007-05-07 2008-11-13 Mitsubishi Heavy Ind Ltd タービン用翼

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014501361A (ja) * 2010-12-30 2014-01-20 ロールス−ロイス・ノース・アメリカン・テクノロジーズ,インコーポレーテッド ガスタービンエンジンおよびガスタービンエンジンの冷却流路構成要素
JP2012202342A (ja) * 2011-03-25 2012-10-22 Mitsubishi Heavy Ind Ltd タービン翼、及び、インピンジメント冷却構造
KR101605074B1 (ko) * 2014-11-28 2016-03-21 부산대학교 산학협력단 냉각 구조를 가지는 가스 터빈용 노즐

Also Published As

Publication number Publication date
EP2224097B1 (en) 2018-11-14
EP2224097A3 (en) 2017-06-07
EP2224097A2 (en) 2010-09-01
CN101825002A (zh) 2010-09-08
US8182223B2 (en) 2012-05-22
US20100221123A1 (en) 2010-09-02
JP5599624B2 (ja) 2014-10-01
CN101825002B (zh) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5599624B2 (ja) タービン・ブレード冷却
JP5879022B2 (ja) タービン翼冷却回路
US10934856B2 (en) Gas turbine engines with improved leading edge airfoil cooling
JP6496542B2 (ja) タービンブレード内の構造構成および冷却回路
EP2787174B1 (en) Gas turbine engines with turbine airfoil cooling
JP4993726B2 (ja) カスケード先端部バッフルエーロフォイル
JP6661702B2 (ja) 先端部レールの冷却を備える翼形部
JP4436500B2 (ja) エーロフォイルの前縁隔離冷却
KR20160037093A (ko) 가스 터빈의 터빈 블레이드를 위한 냉각 기구
JP6435188B2 (ja) タービン翼における構造的構成および冷却回路
EP3415719B1 (en) Turbomachine blade cooling structure
US10662778B2 (en) Turbine airfoil with internal impingement cooling feature
JP6506549B2 (ja) タービンブレード内の構造構成および冷却回路
JP2019007478A (ja) ロータブレード先端部
US20160186574A1 (en) Interior cooling channels in turbine blades
JP2015127533A (ja) タービンブレード内の構造構成および冷却回路
JP5662672B2 (ja) タービン翼形部冷却アパーチャに関連する装置
US20160186577A1 (en) Cooling configurations for turbine blades

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140813

R150 Certificate of patent or registration of utility model

Ref document number: 5599624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees