JP2010202966A - Highly corrosion-resistant stainless steel having excellent tensile property - Google Patents

Highly corrosion-resistant stainless steel having excellent tensile property Download PDF

Info

Publication number
JP2010202966A
JP2010202966A JP2009053086A JP2009053086A JP2010202966A JP 2010202966 A JP2010202966 A JP 2010202966A JP 2009053086 A JP2009053086 A JP 2009053086A JP 2009053086 A JP2009053086 A JP 2009053086A JP 2010202966 A JP2010202966 A JP 2010202966A
Authority
JP
Japan
Prior art keywords
stainless steel
hot
corrosion resistance
temperature
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009053086A
Other languages
Japanese (ja)
Inventor
Atsushi Sho
篤史 庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2009053086A priority Critical patent/JP2010202966A/en
Publication of JP2010202966A publication Critical patent/JP2010202966A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly corrosion-resistant austenitic stainless steel having excellent tensile properties and used for piping for a heat exchanger. <P>SOLUTION: The highly corrosion-resistant stainless steel having excellent tensile properties is obtained by subjecting a steel comprising, by mass, 0.025 to 0.060% C, ≤1.0% Si, ≤2.0% Mn, ≤0.035% P, ≤0.010% S, 11.0 to 13.5% Ni, 16.5 to 18.0% Cr, 2.0 to 3.0% Mo, ≤0.04% Al, 5×C to 0.50% Ti, 0.05 to 0.08% V and 0.010 to 0.025% N, and the balance Fe with inevitable impurities to hot extrusion. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、引張特性に優れた高耐食性オーステナイト系ステンレス鋼に関するもので、特に熱交換器用配管に使用される。   The present invention relates to a highly corrosion-resistant austenitic stainless steel having excellent tensile properties, and is particularly used for piping for heat exchangers.

一般に、Mo、Ti含有の高耐食性オーステナイト系ステンレス鋼は、Tiの添加効果で溶接時の材料の鋭敏化(耐食性の劣化)が抑制されており、主に腐食性流体の配管に用いられている。しかしながら、Tiは固溶強化元素であるNと非常に反応し易いため、N含有量を低く抑えなければならず、この影響で材料の設計強度(耐力)が低い。特に、熱間押出法で単に製管されるこの材料の鋼管の強度は非常に低いのが実状である。   In general, high corrosion resistance austenitic stainless steels containing Mo and Ti suppress the material sensitization (deterioration of corrosion resistance) during welding due to the addition effect of Ti, and are mainly used for piping of corrosive fluids. . However, since Ti is very easy to react with N which is a solid solution strengthening element, the N content must be kept low, and the design strength (proof strength) of the material is low due to this influence. In particular, the strength of the steel pipe of this material, which is simply produced by hot extrusion, is very low.

これまでオーステナイト系ステンレス鋼の強度を耐食性の劣化なしに向上させる方策として、主に以下の三つの方法が提案されている。第1は、再結晶温度以下で熱間加工・制御冷却後、析出時効処理する析出強化法である。例えば特開平5−214439号公報(特許文献1)には、900〜1000℃で50%以上の累積圧下率で熱間加工後、800℃以下まで5℃/s以上で冷却し、750〜800℃の間の温度で1〜5時間の熱処理を行い、強度及び耐食性の優れたオーステナイト系ステンレス鋼を製造する方法が提案されている。これは、歪みが残留し、かつ粒界炭化物が析出しない温度で熱間加工を行った後、粒界炭化物が析出しないように冷却、最終熱処理で粒内に微細な炭化物を析出させて耐食性を劣化させずに強度を改善する方法である。   Until now, the following three methods have been mainly proposed as a measure for improving the strength of austenitic stainless steel without deterioration of corrosion resistance. The first is a precipitation strengthening method in which precipitation aging treatment is performed after hot working / controlled cooling below the recrystallization temperature. For example, in Japanese Patent Laid-Open No. 5-214439 (Patent Document 1), after hot working at a cumulative rolling reduction of 50% or more at 900 to 1000 ° C., it is cooled to 800 ° C. or less at 5 ° C./s or more and 750 to 800. There has been proposed a method for producing an austenitic stainless steel having excellent strength and corrosion resistance by performing a heat treatment at a temperature between 1 ° C. for 1 to 5 hours. This is because after hot working at a temperature at which strain remains and grain boundary carbides do not precipitate, cooling is performed so that grain boundary carbides do not precipitate, and fine carbides precipitate in the grains in the final heat treatment to improve corrosion resistance. This is a method of improving the strength without deteriorating.

第2は再結晶温度以下で熱間加工して歪みを蓄積させ、再結晶や歪みの回復を抑制して制御冷却する転位強化法である。例えば特開平5−320756号公報(特許文献2)では、1100〜1300℃に加熱し、800〜1050℃、鍛造比1.2以上で鍛造した後、800〜500℃間を平均50℃/分以上で冷却して耐海水性に優れた高強度オーステナイト系ステンレス鋼を得る方法が提案されている。すなわち、これは再結晶温度以下の鍛造で導入された加工歪みが回復するのを抑制し、炭化物および窒化物の析出を抑制できる冷却速度で冷却して、オーステナイト系ステンレス鋼の高強度を維持し、靱性及び耐海水性劣化を防止する方法である。   The second is a dislocation strengthening method in which strain is accumulated by hot working below the recrystallization temperature, and controlled cooling is performed while suppressing recrystallization and recovery of strain. For example, in JP-A-5-320756 (Patent Document 2), after heating to 1100 to 1300 ° C., forging at 800 to 1050 ° C. and a forging ratio of 1.2 or more, the average between 800 and 500 ° C. is 50 ° C./min. A method for obtaining high-strength austenitic stainless steel having excellent seawater resistance by cooling as described above has been proposed. That is, this suppresses the recovery of work strain introduced by forging below the recrystallization temperature, and cools at a cooling rate that can suppress the precipitation of carbides and nitrides, thereby maintaining the high strength of the austenitic stainless steel. This is a method for preventing deterioration of toughness and seawater resistance.

第3は、微細化強化で、微細炭化物を組織内に均一析出させることで結晶粒の均一微細化をはかり高強度化する方法である。例えば特開昭64−36725号公報(特許文献3)では、最終の熱間加工の加熱温度を高温にして微細化に寄与する元素を固溶させ、最終の圧延を700℃以下のできるだけ低い温度で終了して急冷し、固溶化熱処理を行って、優れた耐食性と機械的性質を有するγ系ステンレス鋼管を製造する方法が提案されている。これは、Ti、Nbを添加した材料を高い加熱温度で固溶させた後、熱間加工で加工歪の蓄積をはかり、最終の固溶化熱処理でTi、Nb炭化物を微細析出させて微細均一な再結晶組織を有するオーステナイト鋼管を得る方法である。
特開平5−214439号公報 特開平5−320756号公報 特開昭64−36725号公報
The third is a method of increasing the strength by making the crystal grains uniformly refined by uniformly precipitating fine carbides in the structure by refinement strengthening. For example, in Japanese Patent Application Laid-Open No. 64-36725 (Patent Document 3), the heating temperature of the final hot working is set to a high temperature to dissolve the elements contributing to refinement, and the final rolling is as low as 700 ° C. or less. And a method of manufacturing a γ-based stainless steel pipe having excellent corrosion resistance and mechanical properties by quenching and solid solution heat treatment. This is because, after the material added with Ti and Nb is dissolved at a high heating temperature, the work strain is accumulated by hot working, and Ti and Nb carbides are finely precipitated in the final solution heat treatment to obtain fine and uniform. This is a method for obtaining an austenitic steel pipe having a recrystallized structure.
JP-A-5-214439 JP-A-5-320756 Japanese Unexamined Patent Publication No. 64-36725

上述したように、熱間加工仕上鋼材の強化は主に三つの方法が提案されている。第1は、特許文献1に示すような析出強化法であり、再結晶温度以下で熱間加工・制御冷却後、析出時効処理する方法である。第2は、特許文献2のような転位強化法であり、再結晶温度以下で熱間加工後加工歪みを蓄積させて、耐食性を劣化させる粒界炭化物が析出しないように制御冷却する方法である。第3は、特許文献3のような微細化強化法で、最終の熱間加工の加熱温度を高温にして微細化に寄与する元素を固溶させ、熱間加工で加工歪の蓄積をはかり、最終の固溶化熱処理で組織を微細化させて強化する方法である。しかし、熱間押出法は基本的に材料の加工を再結晶温度以上で行うため、過去に提案されている強化方法を適用できず、材料を強化させることが困難であった。   As described above, three methods have been proposed mainly for strengthening hot-worked finished steel. The first is a precipitation strengthening method as shown in Patent Document 1, which is a method of performing precipitation aging treatment after hot working / controlled cooling below the recrystallization temperature. The second is a dislocation strengthening method as in Patent Document 2, which is a method of controlling cooling so as to accumulate post-hot working strain below the recrystallization temperature and prevent precipitation of grain boundary carbides that degrade corrosion resistance. . The third is the refinement strengthening method as in Patent Document 3, in which the element that contributes to refinement is dissolved by increasing the heating temperature of the final hot working, and the working strain is accumulated by hot working, This is a method of refining and strengthening the structure by the final solution heat treatment. However, in the hot extrusion method, since the material is basically processed at the recrystallization temperature or higher, the strengthening method proposed in the past cannot be applied, and it is difficult to strengthen the material.

上述のような問題を解決するために発明者らは鋭意開発を進めた結果、熱間押出中の材料温度では固溶し難いVを含むTi炭窒化物(TiVCN)を微細分散させることで、熱間押出中の動的再結晶の際に組織を均一微細化でき、高強度化をはかる方法を見出した。これは、Ti添加の高耐食性オーステナイト系ステンレス鋼において、Vを狭い範囲で制御することで、TiV炭窒化物が均一微細分散した押出素材が調整でき、材料の再結晶温度以下で熱間加工することなく、熱間押出プロセスだけで強化を図る方法である。   In order to solve the above-mentioned problems, the inventors have intensively developed and as a result, finely dispersed Ti carbonitride (TiVCN) containing V, which is difficult to dissolve at the material temperature during hot extrusion, The present inventors have found a method capable of uniformly refining the structure during dynamic recrystallization during hot extrusion and increasing the strength. This is because in Ti-added highly corrosion-resistant austenitic stainless steel, by controlling V in a narrow range, an extruded material in which TiV carbonitride is uniformly finely dispersed can be adjusted, and hot working is performed at a temperature lower than the recrystallization temperature of the material. This is a method of strengthening only by a hot extrusion process.

強度をさらに高めたい場合には、冷間加工を行いTiCの析出による微細化強化を組み合わせる。この場合、熱間押出後の水冷を最終の固溶化熱処理温度に対して、40℃以上高い温度から行い、冷間加工を経て固溶化熱処理の際に過飽和分のTiCを粒界やサブグレインに析出させて微細化することにある。   When it is desired to further increase the strength, cold working is performed, and refinement strengthening by precipitation of TiC is combined. In this case, water cooling after hot extrusion is performed at a temperature higher than 40 ° C. with respect to the final solution heat treatment temperature, and the supersaturated TiC is converted into grain boundaries and subgrains during the solution heat treatment after cold working. It is to be refined by precipitation.

その発明の要旨とするところは、
(1)質量%で、C:0.025〜0.060%、Si:≦1.0%、Mn:≦2.0%、P:≦0.035%、S:≦0.010%、Ni:11.0〜13.5%、Cr:16.5〜18.0%、Mo:2.0〜3.0%、Al:≦0.04%、Ti:5×C〜0.50%、V:0.05〜0.08%、N:0.010〜0.025%を含有し、残部Feおよび不可避的不純物からなる鋼を熱間押出にて得ることを特徴とする引張特性に優れた高耐食性ステンレス鋼。
The gist of the invention is that
(1) By mass%, C: 0.025 to 0.060%, Si: ≦ 1.0%, Mn: ≦ 2.0%, P: ≦ 0.035%, S: ≦ 0.010%, Ni: 11.0 to 13.5%, Cr: 16.5 to 18.0%, Mo: 2.0 to 3.0%, Al: ≦ 0.04%, Ti: 5 × C to 0.50 %, V: 0.05 to 0.08%, N: 0.010 to 0.025%, and steel consisting of the remainder Fe and inevitable impurities is obtained by hot extrusion. Excellent corrosion resistance stainless steel.

(2)前記(1)に記載の鋼に加えて、B:5〜20ppmを含有する、引張特性に優れた高耐食性ステンレス鋼。
(3)前記(1)または(2)に記載の鋼を請求項1または2に記載の鋼を熱間押出する際、押出後の水冷開始温度を最終の固溶化熱処理温度より40℃以上高い温度とすることを特徴とする引張特性に優れた高耐食性ステンレス鋼の製造方法にある。
(2) High corrosion resistance stainless steel having excellent tensile properties, containing B: 5 to 20 ppm in addition to the steel described in (1).
(3) When the steel according to (1) or (2) is hot-extruded with the steel according to claim 1 or 2, the water cooling start temperature after extrusion is higher by 40 ° C. or more than the final solution heat treatment temperature. It is in the manufacturing method of the high corrosion resistance stainless steel excellent in the tensile characteristic characterized by setting it as temperature.

以上述べたように、本発明は熱間押出加工のみで優れた耐食性を劣化させることなく高強度化が実現でき、その結果、鋼材使用量の削減ができる極めて優れた効果を奏するものである。   As described above, the present invention can achieve high strength without deteriorating excellent corrosion resistance only by hot extrusion, and as a result, has an extremely excellent effect of reducing the amount of steel used.

以下、本発明に係る成分組成の限定理由を説明する。
C:0.025〜0.060%
Cは、オーステナイト生成元素であり、オーステナイトを維持し、強度の確保のために必要な元素であるが、0.025%未満ではその効果が十分でなく、また、0.060%を超えると未固溶のTiCが増加して加工性を悪化させることから、その範囲を0.025〜0.060%とした。
Hereinafter, the reasons for limiting the component composition according to the present invention will be described.
C: 0.025 to 0.060%
C is an austenite-forming element, and is an element necessary for maintaining austenite and ensuring strength. However, if it is less than 0.025%, its effect is not sufficient, and if it exceeds 0.060%, it is not yet effective. Since the solid solution TiC increases and the workability deteriorates, the range is set to 0.025 to 0.060%.

Si:≦1.0%
Siは、脱酸のために必要な元素である。しかし、1.0%を超えると加工性を悪化させることから、その上限を1.0%とした。
Mn:≦2.0%
Mnは、Siと同様に、脱酸のために必要な元素である。しかし、2.0%を超えると加工性を悪化させることから、その上限を2.0%とした。
Si: ≦ 1.0%
Si is an element necessary for deoxidation. However, if it exceeds 1.0%, the workability deteriorates, so the upper limit was made 1.0%.
Mn: ≦ 2.0%
Mn is an element necessary for deoxidation like Si. However, if it exceeds 2.0%, the workability deteriorates, so the upper limit was made 2.0%.

P:≦0.035%
Pは、溶接性を悪化させるために、その上限を0.035%とした。好ましくは0.030%とする。
S:≦0.010%
Sは、耐食性や加工性を悪化させるので、その上限を0.010%とした。
P: ≦ 0.035%
The upper limit of P is 0.035% in order to deteriorate weldability. Preferably it is 0.030%.
S: ≦ 0.010%
Since S deteriorates corrosion resistance and workability, the upper limit was made 0.010%.

Ni:11.0〜13.5%
Niは、オーステナイト組織を得るために必要な元素である。しかし、11.0%ではその効果が十分でなく、また、13.0%を超えるとコスト上昇を招くことから、その範囲を11.0〜13.5%とした。
Cr:16.5〜18.0%
Crは、耐食性を得るための元素である。しかし、16.5%未満では所望の耐食性が得られない。また、多量の添加はNiの更なる添加が必要となってコスト上昇を招くことから、その上限を18.0%とした。
Ni: 11.0-13.5%
Ni is an element necessary for obtaining an austenite structure. However, if 11.0%, the effect is not sufficient, and if it exceeds 13.0%, the cost increases, so the range was set to 11.0 to 13.5%.
Cr: 16.5 to 18.0%
Cr is an element for obtaining corrosion resistance. However, if it is less than 16.5%, the desired corrosion resistance cannot be obtained. Moreover, since addition of a large amount requires further addition of Ni and causes a cost increase, the upper limit was made 18.0%.

Mo:2.0〜3.0%
Moは、耐食性を著しく向上させるための元素である。しかし、2.0%未満では所望の耐食性が得られない。また、多量の添加は加工性を悪化させるとともに、さらにNiの添加が必要となってコスト上昇を招くことから、その上限を3.0%とした。
Al:≦0.04%
Alは、脱酸が必要な場合に添加する元素である。しかし、過剰な添加は加工性の悪化を招くため、その上限を0.04%とした。
Mo: 2.0-3.0%
Mo is an element for remarkably improving the corrosion resistance. However, if it is less than 2.0%, desired corrosion resistance cannot be obtained. Further, addition of a large amount deteriorates workability and further requires addition of Ni, leading to an increase in cost, so the upper limit was made 3.0%.
Al: ≦ 0.04%
Al is an element added when deoxidation is necessary. However, excessive addition causes deterioration of workability, so the upper limit was made 0.04%.

Ti:5×C〜0.50%
Tiは、Vを含む微細なTi炭窒化物を生成させ、熱間押出材の微細化・高強度化に寄与する。また、フリーのCを固定し鋭敏化による耐食性の劣化抑制にも寄与する元素である。したがって、その下限を5×Cとする。しかし、0.50%を超えると多量のTiCが生成して、加工性を悪化させることから、その上限を0.50%とした。
Ti: 5 × C to 0.50%
Ti generates fine Ti carbonitride containing V, and contributes to refinement and high strength of the hot extruded material. Further, it is an element that fixes free C and contributes to suppression of deterioration of corrosion resistance due to sensitization. Therefore, the lower limit is 5 × C. However, if it exceeds 0.50%, a large amount of TiC is generated and the workability is deteriorated, so the upper limit was made 0.50%.

V:0.05〜0.08%
Vは、押出後の材料の結晶粒度を微細化させて、強度を改善させるために必要な元素である。しかし、0.05%未満ではその効果が十分でなく、また、0.08%を超える添加は熱間押出中の微細化に有効な炭窒化物が形成されなくなるため、その範囲を0.05〜0.08%とした。
V: 0.05-0.08%
V is an element necessary for reducing the crystal grain size of the material after extrusion and improving the strength. However, if the amount is less than 0.05%, the effect is not sufficient, and if it exceeds 0.08%, carbonitrides effective for miniaturization during hot extrusion are not formed. -0.08%.

N:0.010〜0.025%
Nは、TiV炭窒化物を生成させて、微細化による強度向上のために添加する。しかし、0.010%未満ではその効果が十分でなく、また、0.025%を超えると粗大な窒化物が生成し、熱間加工性が悪化することから、その範囲を0.010〜0.025%とした。好ましくは0.010〜0.020%とする。
N: 0.010 to 0.025%
N generates TiV carbonitride and is added for strength improvement by refinement. However, if it is less than 0.010%, the effect is not sufficient, and if it exceeds 0.025%, coarse nitrides are generated and hot workability deteriorates, so the range is set to 0.010 to 0. 0.025%. Preferably, the content is 0.010 to 0.020%.

B:5〜20ppm
Bは、固溶化熱処理中に粒界に微細析出してピンニング粒子として微細化に寄与する元素である。そのためには、5ppm以上必要である。しかし、20ppmを超えると熱間加工性を悪化させるため、その上限を20ppmとした。
B: 5 to 20 ppm
B is an element that finely precipitates at grain boundaries during the solution heat treatment and contributes to miniaturization as pinning particles. For that purpose, 5 ppm or more is required. However, if it exceeds 20 ppm, the hot workability deteriorates, so the upper limit was made 20 ppm.

押出後水冷開始温度:最終の固溶化熱処理温度+40℃以上
最終の固溶化熱処理中にTiCを析出させてさらなる微細化強化をはかるため、押出後の水冷開始温度を固溶化熱処理温度よりも高くして、析出元素を固溶化させる。固溶化熱処理温度に対して40℃以上高い場合に冷間加工材の微細化強化が認められたので、+40℃に規定した。
Water cooling start temperature after extrusion: Final solution heat treatment temperature + 40 ° C or higher TiC is precipitated during the final solution heat treatment for further refinement strengthening, so the water cooling start temperature after extrusion is higher than the solution heat treatment temperature. Then, the precipitated elements are dissolved. Since the refinement strengthening of the cold-worked material was observed when it was higher by 40 ° C. or more than the solution heat treatment temperature, it was defined as + 40 ° C.

以下、本発明について実施例によって具体的に説明する。
表1に示す成分組成の鋼を1tの真空誘導溶解炉でインゴットを製造し、1280℃加熱でφ140の丸棒に鍛造した。その後、皮むき・穴あけを経て押出用のビレットに調整し、誘導加熱炉で1210℃に加熱後、外径38.0mm、肉厚5.0mmの寸法に熱間押出した(押出比33)。押出後速やかに水冷開始温度1050〜1100℃から水冷した。熱間仕上管の評価には、押出・水冷後の鋼管を1050℃、10分水冷による固溶化熱処理した鋼管を用いた。
Hereinafter, the present invention will be specifically described with reference to examples.
Ingots were produced from steels having the composition shown in Table 1 in a 1-t vacuum induction melting furnace, and forged into φ140 round bars by heating at 1280 ° C. Then, it adjusted to the billet for extrusion through peeling and punching, and after hot heating to 1210 degreeC with the induction heating furnace, it hot-extruded to the dimension of 38.0 mm in outer diameter and 5.0 mm in thickness (extrusion ratio 33). Immediately after extrusion, water cooling was performed from a water cooling start temperature of 1050 to 1100 ° C. For the evaluation of the hot finish pipe, a steel pipe obtained by subjecting the steel pipe after extrusion / water cooling to a solution heat treatment by water cooling at 1050 ° C. for 10 minutes was used.

冷間仕上管の評価には、押出水冷後の鋼管を冷間圧延機で外径21.3mm、肉厚2.0mmまで圧延し(減面率77%)、脱脂後、最終固溶化熱処理(1050℃、10分水冷)した鋼管を用いた。評価は、結晶粒度測定(JISG 0551)と引張試験(JIS Z 2201 12号試験片)で行った。判定は熱間仕上鋼管で0.2%耐力が300MPa以上の材料を良好とした。その結果を表1に示す。また冷間仕上鋼管は350MPa以上のものを良好とした。その結果を表2に示す。   For evaluation of the cold finish pipe, the steel pipe after extrusion water cooling is rolled to a outer diameter of 21.3 mm and a wall thickness of 2.0 mm with a cold rolling mill (area reduction rate of 77%), and after degreasing, a final solution heat treatment ( A steel pipe cooled at 1050 ° C. for 10 minutes was used. Evaluation was performed by crystal grain size measurement (JISG 0551) and tensile test (JIS Z 2201 No. 12 test piece). The determination was made with a hot-finished steel pipe having a 0.2% proof stress of 300 MPa or more. The results are shown in Table 1. In addition, a cold-finished steel pipe of 350 MPa or more was considered good. The results are shown in Table 2.

Figure 2010202966
表1に、熱間仕上材の場合の本発明例をNo.1〜8に、また、比較例をNo.9〜12に示す。
Figure 2010202966
Table 1 shows examples of the present invention in the case of hot finishing materials. 1 to 8 and Comparative Example No. Shown in 9-12.

表1に示すように、熱間仕上材の場合の比較例No.9はC含有量が低いために、結晶粒度番号が小さく、耐力強度が劣る。比較例No.10はV含有量が低いために、結晶粒度番号が小さく、耐力強度が劣る。比較例No.11はN含有量が低いために、結晶粒度番号が小さく、耐力強度が劣る。比較例No.12はV含有量が低いために、結晶粒度番号が小さく、耐力強度が劣る。これに対して1、本発明例であるNo.1〜8はいずれも本発明の条件を満たしていることから、その特性の優れていることが分かる。   As shown in Table 1, Comparative Example No. in the case of hot finishing material. Since No. 9 has a low C content, the crystal grain size number is small and the yield strength is inferior. Comparative Example No. Since No. 10 has a low V content, the crystal grain size number is small and the yield strength is inferior. Comparative Example No. Since No. 11 has a low N content, the crystal grain size number is small and the yield strength is inferior. Comparative Example No. Since No. 12 has a low V content, the crystal grain size number is small and the yield strength is poor. On the other hand, No. 1 as an example of the present invention. Since all of 1-8 satisfy the conditions of the present invention, it can be seen that the characteristics are excellent.

Figure 2010202966
表2に、冷間仕上材の場合の本発明例をNo.1〜5に、また、比較例をNo.6〜8に示す。
Figure 2010202966
Table 2 shows examples of the present invention in the case of a cold finish. 1 to 5 and Comparative Example No. Shown in 6-8.

比較例No.6は水冷開始温度が低いために、結晶粒度番号が小さく、耐力強度が低い。比較例No.7は水冷開始温度が低いために、結晶粒度番号が小さく、耐力強度が低い。比較例No.8は水冷開始温度が低いために、結晶粒度番号が小さく、耐力強度が低い。これに対して、本発明例であるNo.1〜5はいずれも本発明の条件を満たしていることから、その特性の優れていることが分かる。   Comparative Example No. Since No. 6 has a low water cooling start temperature, the crystal grain size number is small and the proof strength is low. Comparative Example No. Since No. 7 has a low water cooling start temperature, the crystal grain size number is small and the proof strength is low. Comparative Example No. Since No. 8 has a low water cooling start temperature, the crystal grain size number is small and the yield strength is low. On the other hand, No. which is an example of the present invention. Since 1-5 satisfy | fills the conditions of this invention, it turns out that the characteristic is excellent.

以上のように、Ti添加の高耐食性オーステナイト系ステンレス鋼において、Vを制御することで、微細分散したTiV炭窒化物が形成し、材料の再結晶温度以下で熱間加工することなく、熱間押出プロセスだけで高強度化が図れる。本発明は、余分な熱間加工工程を経ることなく耐食性の優れた高強度鋼管が提供でき、鋼材使用量の削減による工業的な効果は大きいものと見込まれる。

特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
As described above, in Ti-added highly corrosion-resistant austenitic stainless steel, by controlling V, finely dispersed TiV carbonitride is formed, and without hot working below the recrystallization temperature of the material, High strength can be achieved only by the extrusion process. INDUSTRIAL APPLICABILITY The present invention can provide a high-strength steel pipe excellent in corrosion resistance without going through an extra hot working step, and is expected to have a great industrial effect due to a reduction in the amount of steel used.

Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina

Claims (3)

質量%で、
C:0.025〜0.060%、
Si:≦1.0%、
Mn:≦2.0%、
P:≦0.035%、
S:≦0.010%、
Ni:11.0〜13.5%、
Cr:16.5〜18.0%、
Mo:2.0〜3.0%、
Al:≦0.04%、
Ti:5×C〜0.50%、
V:0.05〜0.08%、
N:0.010〜0.025%
を含有し、残部Feおよび不可避的不純物からなる鋼を熱間押出にて得ることを特徴とする引張特性に優れた高耐食性ステンレス鋼。
% By mass
C: 0.025 to 0.060%,
Si: ≦ 1.0%,
Mn: ≦ 2.0%,
P: ≦ 0.035%,
S: ≦ 0.010%,
Ni: 11.0-13.5%,
Cr: 16.5 to 18.0%,
Mo: 2.0-3.0%,
Al: ≦ 0.04%,
Ti: 5 × C to 0.50%,
V: 0.05-0.08%,
N: 0.010 to 0.025%
A high corrosion resistance stainless steel excellent in tensile properties, characterized in that a steel comprising the balance Fe and inevitable impurities is obtained by hot extrusion.
請求項1に記載の鋼に加えて、B:5〜20ppmを含有する、引張特性に優れた高耐食性ステンレス鋼。 A high corrosion resistance stainless steel excellent in tensile properties, containing B: 5 to 20 ppm in addition to the steel according to claim 1. 請求項1または2に記載の鋼を熱間押出する際、押出後の水冷開始温度を最終の固溶化熱処理温度より40℃以上高い温度とすることを特徴とする引張特性に優れた高耐食性ステンレス鋼の製造方法。 A high corrosion resistance stainless steel excellent in tensile characteristics, characterized in that when the steel according to claim 1 or 2 is hot-extruded, the water cooling start temperature after extrusion is set to a temperature higher by 40 ° C or more than the final solution heat treatment temperature. Steel manufacturing method.
JP2009053086A 2009-03-06 2009-03-06 Highly corrosion-resistant stainless steel having excellent tensile property Withdrawn JP2010202966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009053086A JP2010202966A (en) 2009-03-06 2009-03-06 Highly corrosion-resistant stainless steel having excellent tensile property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009053086A JP2010202966A (en) 2009-03-06 2009-03-06 Highly corrosion-resistant stainless steel having excellent tensile property

Publications (1)

Publication Number Publication Date
JP2010202966A true JP2010202966A (en) 2010-09-16

Family

ID=42964734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009053086A Withdrawn JP2010202966A (en) 2009-03-06 2009-03-06 Highly corrosion-resistant stainless steel having excellent tensile property

Country Status (1)

Country Link
JP (1) JP2010202966A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191202A1 (en) * 2012-06-20 2013-12-27 新日鐵住金株式会社 Austenitic alloy tube
CN106567010A (en) * 2015-10-10 2017-04-19 江苏锦越航空合金材料有限公司 Corrosion-resistant stainless steel and production method thereof
CN106567009A (en) * 2015-10-10 2017-04-19 江苏锦越航空合金材料有限公司 High-temperature-resistant corrosion-resistant stainless steel and production method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191202A1 (en) * 2012-06-20 2013-12-27 新日鐵住金株式会社 Austenitic alloy tube
JP5459633B1 (en) * 2012-06-20 2014-04-02 新日鐵住金株式会社 Austenitic alloy tube
KR20150012288A (en) * 2012-06-20 2015-02-03 신닛테츠스미킨 카부시키카이샤 Austenitic alloy tube
CN104379787A (en) * 2012-06-20 2015-02-25 新日铁住金株式会社 Austenitic alloy tube
KR101660154B1 (en) 2012-06-20 2016-09-26 신닛테츠스미킨 카부시키카이샤 Austenitic alloy tube
US9859026B2 (en) 2012-06-20 2018-01-02 Nippon Steel & Sumitomo Metal Corporation Austenitic alloy tube
CN106567010A (en) * 2015-10-10 2017-04-19 江苏锦越航空合金材料有限公司 Corrosion-resistant stainless steel and production method thereof
CN106567009A (en) * 2015-10-10 2017-04-19 江苏锦越航空合金材料有限公司 High-temperature-resistant corrosion-resistant stainless steel and production method thereof

Similar Documents

Publication Publication Date Title
US10597760B2 (en) High-strength steel material for oil well and oil well pipes
JP5500960B2 (en) Fine grain austenitic stainless steel sheet with excellent stress corrosion cracking resistance and workability
JP3758508B2 (en) Manufacturing method of duplex stainless steel pipe
WO2009154161A1 (en) Heat-resistant austenitic alloy, heat-resistant pressure-resistant member comprising the alloy, and process for producing the same
WO2016047734A1 (en) Austenitic stainless steel sheet and method for producing same
WO2017135240A1 (en) HOT ROLLED Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND METHOD FOR PRODUCING SAME, AND COLD ROLLED Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND METHOD FOR PRODUCING SAME
JP2004323937A (en) Austenitic stainless steel
JP6379282B2 (en) Ferritic / austenitic stainless steel sheet with excellent corrosion resistance on the shear end face
JP2008019479A (en) Rolled austenitic stainless steel plate with excellent strength and ductility, and its manufacturing method
JP5362582B2 (en) Ferritic stainless steel with excellent corrosion resistance and stretch formability and method for producing the same
KR101539520B1 (en) Duplex stainless steel sheet
JP5842769B2 (en) Duplex stainless steel and manufacturing method thereof
JP2012255198A (en) Method for producing austenitic stainless steel pipe, and austenitic stainless steel pipe
JP2009091636A (en) Two-phase stainless steel wire rod for high-strength highly corrosion-resistant bolt having excellent cold forgeability, steel wire, bolt and method for producing the same
JP2009299171A (en) Austenitic stainless steel sheet for press forming with fine-grained structure and method for producing the same
JP2005307246A (en) High-tensile-strength steel with composite structure of fine crystal grain
JP2019507016A (en) Manufacturing method of austenitic stainless steel pipe
JP5857914B2 (en) Welding material for duplex stainless steel
JP2010202966A (en) Highly corrosion-resistant stainless steel having excellent tensile property
JP2015147975A (en) Precipitation hardening stainless steel and component for sensor
RU2681074C1 (en) Method of manufacturing corrosion rolled product from low-alloy steel
JP7333327B2 (en) new duplex stainless steel
JP2013255936A (en) Method for manufacturing austenitic stainless-clad steel excellent in marine corrosion resistance and low-temperature toughness
JP5365499B2 (en) Duplex stainless steel and urea production plant for urea production plant
JP5228994B2 (en) Manufacturing method of ferritic stainless steel material and manufacturing method of ferritic stainless steel pipe

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605