JP2013255936A - Method for manufacturing austenitic stainless-clad steel excellent in marine corrosion resistance and low-temperature toughness - Google Patents

Method for manufacturing austenitic stainless-clad steel excellent in marine corrosion resistance and low-temperature toughness Download PDF

Info

Publication number
JP2013255936A
JP2013255936A JP2012133772A JP2012133772A JP2013255936A JP 2013255936 A JP2013255936 A JP 2013255936A JP 2012133772 A JP2012133772 A JP 2012133772A JP 2012133772 A JP2012133772 A JP 2012133772A JP 2013255936 A JP2013255936 A JP 2013255936A
Authority
JP
Japan
Prior art keywords
steel
corrosion resistance
clad steel
austenitic stainless
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012133772A
Other languages
Japanese (ja)
Other versions
JP5928175B2 (en
Inventor
Keiichiro Kishi
慶一郎 岸
Yoshihiro Yazawa
好弘 矢沢
Shunichi Tachibana
俊一 橘
Yota Kuronuma
洋太 黒沼
Toshiyuki Hoshino
俊幸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012133772A priority Critical patent/JP5928175B2/en
Publication of JP2013255936A publication Critical patent/JP2013255936A/en
Application granted granted Critical
Publication of JP5928175B2 publication Critical patent/JP5928175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an austenitic stainless-clad steel excellent in marine corrosion resistance and low-temperature toughness.SOLUTION: In a method for manufacturing austenitic stainless-clad steel with 30 mm or more total thickness excellent in marine corrosion resistance and low-temperature toughness, a carbon steel contains, by mass%, 0.10-0.15% C; 0.25-0.40% Si; 0.45-2.0% Mn; ≤0.015% P; ≤0.004% S; ≤0.006% N; 0.01-0.1% Cr; 0.005-0.05% Nb; and 0.005-0.05% Al, and is composed of the balance Fe and unavoidable impurities, regarding the component composition. A clad steel material including the carbon steel as a base material and austenitic stainless steel as a laminated material is heated to temperature of 1,000-1,250°C before starting hot rolling, in which a cumulative rolling reduction of control rolling in a temperature range of 730-950°C is set to be 30% or more, and rolling finishing temperature is set to be 730-850°C.

Description

本発明は、海洋構造物や造船、海水淡水化設備に代表される各種用途で使用される耐海水腐食性および低温靭性に優れたオーステナイト系ステンレスクラッド鋼に関するものである。   The present invention relates to an austenitic stainless clad steel excellent in seawater corrosion resistance and low temperature toughness used in various applications such as marine structures, shipbuilding and seawater desalination facilities.

近年、産業設備と構造物のニ−ズとしては耐久性と長寿命化およびメンテナンスフリ−が指向されており、ステンレス鋼はこれらのニ−ズに適合した材料として注目を集めている。一方で、ステンレス鋼の主原料であるNiやMo、Crに代表される合金元素は、価格の高騰や価格の上下動があるため、無垢のステンレス鋼に代わり、ステンレス鋼の優れた耐食性をより経済的に利用でき、価格が安定しかつ安価な鋼材としてステンレスクラッド鋼が、最近、注目されている。   In recent years, as the needs of industrial facilities and structures, durability, long life, and maintenance free have been directed, and stainless steel is attracting attention as a material suitable for these needs. On the other hand, alloy elements typified by Ni, Mo, and Cr, which are the main raw materials for stainless steel, have soaring prices and up / down movements in price. Therefore, instead of pure stainless steel, the superior corrosion resistance of stainless steel is more enhanced. Recently, stainless steel clad steel has attracted attention as a steel material that can be economically used, is stable in price, and inexpensive.

ステンレスクラッド鋼とは合せ材にステンレス鋼、母材に普通鋼材と、二種類の性質の異なる金属を接合した複合鋼材である。クラッド鋼は、異種金属を金属学的に接合させたもので、めっきとは異なり剥離する心配がなく単一金属および合金では達し得ない新たな特性を持たせることができる。このように、ステンレスクラッド鋼は、ステンレス鋼材の使用量が少なくてすみ、かつ、無垢材(全厚ステンレス鋼)と同等の耐食性を確保できるため、経済性と機能性が両立できる利点を有する。   Stainless steel clad steel is a composite steel material in which two kinds of different metals are joined, stainless steel as a laminated material and ordinary steel as a base material. The clad steel is obtained by metallographically bonding dissimilar metals, and unlike the plating, there is no fear of peeling, and it can have new characteristics that cannot be achieved by a single metal and alloy. As described above, the stainless clad steel requires only a small amount of stainless steel, and can secure the same corrosion resistance as that of a solid material (full thickness stainless steel).

以上から、ステンレスクラッド鋼は非常に有益な機能性鋼材であると考えられており、近年そのニ−ズが各種産業分野で益々高まっている。特にステンレスクラッド鋼を海洋構造物や海水と接する環境で使用される海水淡水化設備、造船(FPSO:Floating Production,Storage and Offloading system)等に代表される各種用途で使用する場合には、厳しい海水腐食環境下で使用されるため、耐海水腐食性が要求される。   From the above, stainless clad steel is considered to be a very useful functional steel material, and in recent years, its needs are increasing in various industrial fields. Especially when stainless steel clad steel is used in various applications such as seawater desalination equipment, shipbuilding (FPSO: Floating Production, Storage and Offloading system) used in environments where it contacts with ocean structures and seawater. Because it is used in a corrosive environment, seawater corrosion resistance is required.

ステンレス鋼の不動態皮膜は塩化物イオンにより破壊されやすくなり、その腐食形態は孔食腐食(Pitting Corrosion)または隙間腐食(Crevice Corrosion)の形態をとる。そのため、硫酸やふっ酸などに代表される酸中での腐食形態が全面腐食を呈するのに対し、海水中では局部腐食の起点となる耐孔食性が重要な指標となる。   The passive film of stainless steel is easily broken by chloride ions, and its corrosion form takes the form of Pitting Corrosion or Crevice Corrosion. Therefore, while corrosion forms in acids such as sulfuric acid and hydrofluoric acid exhibit general corrosion, pitting corrosion resistance, which is the starting point of local corrosion, is an important index in seawater.

ステンレス鋼の耐孔食性は一般的に孔食指数(PRE)(Cr(質量%)+3.3Mo(質量%)+16N(質量%)で表す)で整理され、孔食指数が高いほど、耐孔食性に優れるとされる。ただしこれは析出物等を固溶させる熱処理を施した無垢のステンレス鋼に関して適用できるものであり、炭素鋼との複合材料であるステンレスクラッド鋼の合せ材の耐孔食性にそのまま適用できるものではない。   The pitting corrosion resistance of stainless steel is generally arranged by the pitting corrosion index (PRE) (represented by Cr (mass%) + 3.3Mo (mass%) + 16N (mass%)). It is said to be excellent in food quality. However, this is applicable to solid stainless steel that has been heat-treated to dissolve precipitates, etc., and is not directly applicable to the pitting corrosion resistance of stainless clad steel composite material that is a composite material with carbon steel. .

ステンレスクラッド鋼は、通常、母材の強度や靭性等の機械的性質を確保する目的で、850〜950℃の温度域に加熱し、空冷するいわゆる焼きならしを行って使用される。ステンレス鋼は、不適切な熱処理や溶接による熱影響部のような熱履歴を受けると、耐食性が著しく低下する場合がある。その原因の一つは、炭化物やσ相などの金属間化合物の析出である。熱履歴にはクラッド鋼の板厚も影響を及ぼし、特に30mm以上のクラッド鋼においては冷却速度が低くなり、より炭化物やσ相などの金属間化合物が析出しやすくなる。   Stainless steel clad steel is usually used after so-called normalization in which it is heated to a temperature range of 850 to 950 ° C. and air-cooled for the purpose of ensuring mechanical properties such as strength and toughness of the base material. When stainless steel is subjected to a thermal history such as a heat-affected zone caused by inappropriate heat treatment or welding, the corrosion resistance may be significantly reduced. One of the causes is precipitation of intermetallic compounds such as carbide and σ phase. The plate thickness of the clad steel also affects the thermal history, and particularly in the clad steel of 30 mm or more, the cooling rate becomes low, and intermetallic compounds such as carbides and σ phases are more likely to precipitate.

母材の機械的性質を確保し、かつ耐食性が劣化することを防ぐため、これまで例えば、特許文献1では合せ材の成分を特定することにより、クラッド材のオーステナイト系ステンレス鋼を850〜950℃の焼きならし処理を施しても優れた耐食性を保つ技術が開示されている。   In order to ensure the mechanical properties of the base material and prevent the corrosion resistance from deteriorating, for example, in Patent Document 1, the austenitic stainless steel of the clad material is 850 to 950 ° C. by specifying the components of the laminated material. A technique for maintaining excellent corrosion resistance even after normalizing treatment is disclosed.

また、特許文献2には、固溶化熱処理条件と母材炭素鋼の成分を規定し、耐海水性に優れたステンレス鋼を合せ材とし炭素鋼を母材としたステンレスクラッド鋼管を製造する方法が開示されている。   Patent Document 2 discloses a method of manufacturing a stainless clad steel pipe that defines a solution heat treatment condition and components of a base material carbon steel and uses stainless steel having excellent seawater resistance as a combination material and carbon steel as a base material. It is disclosed.

また、特許文献3には母材炭素鋼の炭素含有量を規定し、接合粗圧下率と制御圧延による圧下率を規定することで母材靭性を確保する方法が開示されている。   Patent Document 3 discloses a method for securing the base material toughness by defining the carbon content of the base material carbon steel and by prescribing the joint rough reduction rate and the reduction rate by controlled rolling.

特開昭63−125615号公報JP-A-63-125615 特許第4179133号公報Japanese Patent No. 4179133 特公平2−41400号公報Japanese Examined Patent Publication No. 2-41400

しかしながら、特許文献1に開示された方法で得られるステンレスクラッド鋼の耐食性は、塩化第二鉄腐食試験における腐食速度が2g/m・h程度と耐海水腐食性としては十分ではないという問題がある。 However, the corrosion resistance of the stainless clad steel obtained by the method disclosed in Patent Document 1 has a problem that the corrosion rate in the ferric chloride corrosion test is about 2 g / m 2 · h, which is not sufficient as seawater corrosion resistance. is there.

一方、特許文献2に開示された方法では、ステンレスクラッド鋼管の用途(例えば、海洋構造物等)毎に求められる耐海水腐食性を確保するため、合せ材として使用するステンレス鋼を用途毎に選択しなければならない。すなわち、ステンレス鋼の成分のみで調整する方法が示されているに過ぎず、ステンレスクラッド鋼の場合、接合界面の健全性(接合性)に対する信頼性向上や母材と合せ材の性能(耐食性と機械的特性)を同時に維持することを高級鋼材や多様な品種すべてに対応することは難しいという問題がある。   On the other hand, in the method disclosed in Patent Document 2, in order to ensure the seawater corrosion resistance required for each use of a stainless clad steel pipe (for example, an offshore structure, etc.), the stainless steel used as a bonding material is selected for each use. Must. That is, only the method of adjusting only with the components of stainless steel is shown. In the case of stainless clad steel, the reliability of the bonding interface is improved in terms of soundness (bondability) and the performance of the base material and the laminated material (corrosion resistance and It is difficult to maintain high mechanical properties at the same time for high-grade steel materials and all kinds of products.

また、特許文献3に開示された方法では、合せ材ステンレス鋼の耐食性については検討がなされていないという問題がある。   In addition, the method disclosed in Patent Document 3 has a problem that the corrosion resistance of the laminated stainless steel has not been studied.

本発明は、上記した問題点を解決する耐海水腐食性および低温靭性に優れたオーステナイト系ステンレスクラッド鋼を提供することを目的とする。   An object of this invention is to provide the austenitic stainless clad steel excellent in seawater corrosion resistance and low temperature toughness which solves the above-mentioned problems.

上記した課題を解決するために、複数の成分(鋼組成)および複数の履歴で圧延から熱処理まで完了したステンレスクラッド鋼における耐孔食性および低温靭性に優れた製造方法の検討を行った。そして、鋼の成分、圧延条件、耐孔食性、低温靭性に着目して検討を行ったところ、質量%でC:0.10〜0.15%、Si:0.25〜0.40%、Mn:0.45〜2.0%、P:0.015%以下、S:0.004%以下、N:0.006%以下、Cr:0.01〜0.1%、Nb:0.005〜0.05%、Al:0.005〜0.05%の成分範囲の炭素鋼を母材とし、オーステナイト系ステンレス鋼を合せ材とするクラッド鋼素材を、730〜950℃の温度域における制御圧延の累積圧下率を30%以上とし、仕上圧延温度を730〜850℃とする熱間圧延を行うことで、全厚30mm以上でかつASTM G48−03 Method Eによる臨界孔食発生温度(CPT)が45℃以上であり、かつJIS Z 2242による−40℃におけるシャルピー衝撃試験での吸収エネルギーが100J以上であることを特徴とする耐海水腐食性および低温靭性に優れたオーステナイト系ステンレスクラッド鋼を製造できた。   In order to solve the above-mentioned problems, a study was made on a manufacturing method excellent in pitting corrosion resistance and low-temperature toughness in stainless clad steel completed from rolling to heat treatment with a plurality of components (steel composition) and a plurality of histories. And when it examined considering the component of steel, rolling conditions, pitting corrosion resistance, and low temperature toughness, C: 0.10-0.15% by mass%, Si: 0.25-0.40%, Mn: 0.45 to 2.0%, P: 0.015% or less, S: 0.004% or less, N: 0.006% or less, Cr: 0.01 to 0.1%, Nb: 0.0. A clad steel material having a carbon steel in a component range of 005 to 0.05% and Al: 0.005 to 0.05% as a base material and an austenitic stainless steel as a combination material in a temperature range of 730 to 950 ° C. By performing hot rolling at a cumulative rolling reduction of 30% or more and a finish rolling temperature of 730 to 850 ° C., the critical pitting temperature (CPT) is 30 mm or more and ASTM G48-03 Method E is used. ) Is 45 ° C. or higher, and JIS Z 2242 An austenitic stainless clad steel excellent in seawater corrosion resistance and low-temperature toughness, characterized in that the absorbed energy in a Charpy impact test at −40 ° C. is 100 J or more.

本発明は、以上の知見に基づいてなされたものであり、その要旨は以下のとおりである。   This invention is made | formed based on the above knowledge, The summary is as follows.

[1]成分組成が、質量%で、C:0.10〜0.15%、Si:0.25〜0.40%、Mn:0.45〜2.0%P:0.015%以下、S:0.004%以下、N:0.006%以下、Cr:0.01〜0.1%、Nb:0.005〜0.05%、Al:0.005〜0.05%を含有し、残部Fe及び不可避的不純物からなる炭素鋼を母材とし、オーステナイト系ステンレス鋼を合せ材とするクラッド鋼素材を、1000〜1250℃に加熱後、熱間圧延を開始して、730〜950℃の温度域における制御圧延の累積圧下率を30%以上とし、圧延仕上温度を730〜850℃とする熱間圧延を行うことを特徴とする全厚30mm以上の耐海水腐食性および低温靭性に優れたオーステナイト系ステンレスクラッド鋼の製造方法。   [1] Component composition is mass%, C: 0.10 to 0.15%, Si: 0.25 to 0.40%, Mn: 0.45 to 2.0% P: 0.015% or less S: 0.004% or less, N: 0.006% or less, Cr: 0.01 to 0.1%, Nb: 0.005 to 0.05%, Al: 0.005 to 0.05% Containing a remaining steel and carbon steel composed of unavoidable impurities as a base material and a clad steel material made of austenitic stainless steel as a combined material, heated to 1000 to 1250 ° C., and then started hot rolling, Sea rolling corrosion resistance and low temperature toughness with a total thickness of 30 mm or more, characterized by performing hot rolling with a cumulative rolling reduction of 30% or more in a temperature range of 950 ° C. and a finishing temperature of 730 to 850 ° C. Method for producing austenitic stainless clad steel with excellent resistance.

[2]前記炭素鋼の成分組成が、更に、質量%で、Cu:0.01〜0.3%、Ni:0.01〜0.3%、Ti:0.005〜0.015%の中から選ばれる一種以上を含有することを特徴とする上記[1]記載の全厚30mm以上の耐海水腐食性および低温靭性に優れたオーステナイト系ステンレスクラッド鋼の製造方法。   [2] The composition of the carbon steel further includes, in mass%, Cu: 0.01 to 0.3%, Ni: 0.01 to 0.3%, Ti: 0.005 to 0.015%. The method for producing an austenitic stainless clad steel excellent in seawater corrosion resistance and low-temperature toughness having a total thickness of 30 mm or more as described in the above [1], comprising one or more selected from the above.

[3]上記[1]または[2]に記載のクラッド鋼素材を用いて、1000〜1250℃に加熱後、熱間圧延を開始して、730〜950℃の温度域における制御圧延の累積圧下率を30%以上とし、圧延仕上温度を730〜850℃とする熱間圧延を行った後に、冷却速度3〜40℃/s、冷却停止温度を500℃以上とする加速冷却を行うことを特徴とする全厚30mm以上の耐海水腐食性および低温靭性に優れたオーステナイト系ステンレスクラッド鋼の製造方法。   [3] Using the clad steel material according to the above [1] or [2], after heating to 1000 to 1250 ° C, hot rolling is started, and cumulative rolling of controlled rolling in a temperature range of 730 to 950 ° C is started. The rate is 30% or more, and after performing hot rolling with a rolling finishing temperature of 730 to 850 ° C., accelerated cooling with a cooling rate of 3 to 40 ° C./s and a cooling stop temperature of 500 ° C. or more is performed. A method for producing an austenitic stainless clad steel having a total thickness of 30 mm or more and excellent in seawater corrosion resistance and low temperature toughness.

[4]上記[1]乃至[3]の何れかに記載のステンレスクラッド鋼の製造方法において、合せ材のオーステナイト系ステンレス鋼の下記式(1)で定義される孔食指数(PRE)が、40以上であることを特徴とする全厚30mm以上の耐海水腐食性および低温靭性に優れたオーステナイト系ステンレスクラッド鋼の製造方法。   [4] In the method for producing a stainless clad steel according to any one of [1] to [3], the pitting corrosion index (PRE) defined by the following formula (1) of the austenitic stainless steel of the laminated material is: A method for producing an austenitic stainless clad steel having a total thickness of 30 mm or more and excellent in seawater corrosion resistance and low temperature toughness, characterized by being 40 or more.

PRE=Cr+3.3Mo+16N・・・・・(1)
なお、各元素記号は各元素の質量%で表示した含有量である。
PRE = Cr + 3.3Mo + 16N (1)
In addition, each element symbol is the content expressed by mass% of each element.

本発明によれば、耐海水腐食性および低温靭性に優れた全厚が30mm以上の耐海水ステンレスクラッド鋼が得られる。これにより、海洋構造物やFPSOに代表される造船分野、海水淡水化装置に代表される耐海水腐食性が要求される用途で、好適に用いることができる。   According to the present invention, a seawater resistant stainless clad steel having a total thickness of 30 mm or more excellent in seawater corrosion resistance and low temperature toughness can be obtained. Thereby, it can use suitably in the use for which the marine structure and the shipbuilding field represented by FPSO, and the seawater corrosion resistance represented by the seawater desalination apparatus are requested | required.

本発明のステンレスクラッド鋼の製造方法は、全厚30mm以上でかつASTM G48−03 Method Eによる臨界孔食発生温度(CPT)が45℃以上であり、かつJIS Z 2242による−40℃におけるシャルピー衝撃試験での吸収エネルギーが100J以上となるよう母材の炭素鋼の化学組成および製造条件を規定する。   The stainless clad steel production method of the present invention has a total thickness of 30 mm or more, a critical pitting corrosion temperature (CPT) according to ASTM G48-03 Method E of 45 ° C. or more, and a Charpy impact at −40 ° C. according to JIS Z 2242. The chemical composition and production conditions of the base carbon steel are specified so that the absorbed energy in the test is 100 J or more.

1.成分組成について
はじめに、本発明の母材の成分組成を規定した理由を説明する。なお、成分%は、全て質量%を意味する。
1. About component composition First, the reason which prescribed | regulated the component composition of the base material of this invention is demonstrated. In addition, all component% means the mass%.

C:0.10〜0.15%
Cは母材の強度を向上させる有効な成分であり、構造用鋼材としての強度を確保のために0.10%以上の含有を必要とする。しかし、0.15%を超える含有は母材の靭性を劣化させ、溶接性にも悪影響があるため、C量は0.10〜0.15%の範囲とする。好ましくは0.11〜0.13%の範囲である。
C: 0.10 to 0.15%
C is an effective component for improving the strength of the base material, and needs to contain 0.10% or more in order to ensure the strength as a structural steel material. However, if the content exceeds 0.15%, the toughness of the base metal is deteriorated and the weldability is also adversely affected, so the C content is in the range of 0.10 to 0.15%. Preferably it is 0.11 to 0.13% of range.

Si:0.25〜0.40%
Siは母材の強度確保、脱酸のため必要な成分であり、その効果を得るためには0.25%以上の含有が必要である。一方、0.40%を超えて含有すると母材の靭性を著しく劣化させるため、Si量は0.25〜0.40%の範囲とする。好ましくは0.30〜0.35%の範囲である。
Si: 0.25 to 0.40%
Si is a component necessary for securing the strength of the base material and deoxidation, and in order to obtain the effect, it is necessary to contain 0.25% or more. On the other hand, if the content exceeds 0.40%, the toughness of the base material is remarkably deteriorated, so the Si content is in the range of 0.25 to 0.40%. Preferably it is 0.30 to 0.35% of range.

Mn:0.45〜2.0%
Mnは母材の強度及び靭性の確保に有効な成分として0.45%以上の含有が必要であるが、2.0%を超えて含有すると溶接熱影響部の靭性が劣化し、鋼材コストも上昇するため、Mn量は0.45〜2.0%の範囲とする。なお、母材靭性、溶接熱影響部靭性の観点から、好ましくは1.0〜1.6%の範囲である。
Mn: 0.45-2.0%
Mn needs to be contained in an amount of 0.45% or more as an effective component for securing the strength and toughness of the base material. In order to increase, the amount of Mn is made into the range of 0.45-2.0%. In addition, from a viewpoint of base material toughness and weld heat affected zone toughness, it is preferably in the range of 1.0 to 1.6%.

P:0.015%以下
Pは鋼中の不可避不純物であり含有量が少ないほど望ましいが、工業的に低減させるためにはコストがかかるのでP量は0.015%以下とする。
P: 0.015% or less P is an inevitable impurity in steel, and the smaller the content, the better. However, in order to reduce industrially, the cost is high, so the P amount is 0.015% or less.

S:0.004%以下
Sは鋼中の不可避不純物であり含有量が少ないほど望ましいが、多すぎると靭性を著しく低下させることからS量は0.004%以下とする。
S: 0.004% or less S is an unavoidable impurity in the steel, and it is desirable that the content is small.

N:0.006%以下
Nは、鋼中のAlと結合し、圧延加工時の結晶粒径を調整し、鋼を強化するが、0.006%を超えて含有すると靭性が劣化するため、N量は0.006%以下とする。好ましくは0.003〜0.005%の範囲である。
N: 0.006% or less N combines with Al in the steel, adjusts the crystal grain size at the time of rolling, and strengthens the steel. However, if the content exceeds 0.006%, the toughness deteriorates. The N content is 0.006% or less. Preferably it is 0.003 to 0.005% of range.

Cr:0.01〜0.1%
Crは母材の強度及び靭性を向上させるために有効であり、0.01%以上含有することが好ましい。一方、0.1%を超える含有は溶接熱影響部靭性を低下させるため、Cr量は0.01〜0.1%の範囲とする。なお、好ましくは、0.02〜0.07%の範囲である。
Cr: 0.01 to 0.1%
Cr is effective for improving the strength and toughness of the base material, and is preferably contained in an amount of 0.01% or more. On the other hand, the content exceeding 0.1% lowers the weld heat affected zone toughness, so the Cr content is in the range of 0.01 to 0.1%. In addition, Preferably, it is 0.02 to 0.07% of range.

Nb:0.005〜0.05%
Nbは、NbCを生成することでの析出強化、および結晶粒の細粒化による靭性向上効果がある。そのため、本発明のように730〜950℃の温度域で累積圧下率30%以上の制御圧延を施す場合は、強度上昇、靭性向上に寄与する。その効果は0.005%以上の含有で発揮され、0.05%を超えると効果が飽和するだけでなく、鋼片に表面庇が生じやすくなる。従って、Nb量は0.005〜0.05%の範囲とする。なお、好ましくは0.025〜0.050%の範囲である。
Nb: 0.005 to 0.05%
Nb has the effect of improving the toughness due to precipitation strengthening by generating NbC and the refinement of crystal grains. Therefore, when performing controlled rolling with a cumulative reduction of 30% or more in the temperature range of 730 to 950 ° C. as in the present invention, it contributes to an increase in strength and toughness. The effect is exhibited when the content is 0.005% or more. If the content exceeds 0.05%, the effect is not only saturated, but surface flaws are likely to occur in the steel slab. Therefore, the Nb content is in the range of 0.005 to 0.05%. In addition, Preferably it is 0.025 to 0.050% of range.

Al:0.005〜0.05%
Alは、脱酸剤として有効な元素であるが、0.005%未満ではその効果が得られず、0.05%を超えて含有させると靭性を劣化させるため、Al量は0.005〜0.05%の範囲とする。同様の理由から、好ましくは0.005〜0.015%の範囲である。
Al: 0.005 to 0.05%
Al is an element effective as a deoxidizer, but if less than 0.005%, the effect cannot be obtained, and if it exceeds 0.05%, the toughness deteriorates. The range is 0.05%. For the same reason, the range is preferably 0.005 to 0.015%.

以上が本発明の母材の基本成分であるが、更に特性を向上させるため、上記成分に加えて、選択的にCu、Ni及びTiの中から選ばれる一種以上を以下の範囲で含有してもよい。   The above is the basic component of the base material of the present invention, but in order to further improve the characteristics, in addition to the above components, one or more selected from Cu, Ni and Ti are selectively contained in the following range. Also good.

Cu:0.01〜0.3%
Cuは母材の靭性の改善と強度の上昇に有効であり0.01%以上含有することが好ましい。一方、0.3%を超える含有は母材の靭性や溶接熱影響部の靭性を劣化させるので、Cuを含有する場合は、Cu量は0.01〜0.3%の範囲とすることが好ましい。さらに好適には、0.20〜0.3%の範囲である。
Cu: 0.01 to 0.3%
Cu is effective in improving the toughness of the base material and increasing the strength, and is preferably contained in an amount of 0.01% or more. On the other hand, if the content exceeds 0.3%, the toughness of the base metal and the toughness of the heat affected zone are deteriorated. preferable. More preferably, it is 0.20 to 0.3% of range.

Ni:0.01〜0.3%
Niは母材の強度及び靭性を向上させるために有効であり、0.01%以上含有することが好ましい。一方、0.3%を超える含有はその効果が飽和するので、Niを含有する場合は、Ni量は0.01〜0.3%の範囲とすることが好ましい。さらに好適には、0.20〜0.28%の範囲である。
Ni: 0.01 to 0.3%
Ni is effective for improving the strength and toughness of the base material, and is preferably contained in an amount of 0.01% or more. On the other hand, the content exceeding 0.3% saturates the effect, so when Ni is contained, the Ni content is preferably in the range of 0.01 to 0.3%. More preferably, it is 0.20 to 0.28% of range.

Ti:0.005〜0.015%
TiはTiNを形成してスラブ加熱時や溶接熱影響部の粒成長を抑制し、結果としてミクロ組織の微細化をもたらして靭性を改善する効果がある。0.005%未満では効果が少ないため0.005%以上含有させる。一方、Tiの含有量が0.015%を超えると逆に溶接熱影響部靭性の劣化を引き起こすので、Tiを含有する場合は、Ti量は0.005〜0.015%の範囲とすることが好ましい。さらに好適には、0.010〜0.015%の範囲である。
Ti: 0.005 to 0.015%
Ti forms TiN and has the effect of suppressing grain growth during slab heating and welding heat affected zone, resulting in refinement of the microstructure and improving toughness. If it is less than 0.005%, the effect is small, so 0.005% or more is contained. On the other hand, if the Ti content exceeds 0.015%, the weld heat-affected zone toughness is deteriorated. Therefore, when Ti is contained, the Ti content should be in the range of 0.005 to 0.015%. Is preferred. More preferably, it is 0.010 to 0.015% of range.

なお、本発明のオーステナイト系ステンレスクラッド鋼の合せ材は耐海水腐食性に優れるオーステナイト系ステンレス鋼を用いるが、合せ材の条件として下記式(1)に規定する孔食指数を満たす必要がある。   In addition, although the austenitic stainless clad steel of the present invention uses an austenitic stainless steel excellent in seawater corrosion resistance, it is necessary to satisfy the pitting corrosion index defined in the following formula (1) as a condition of the laminated material.

孔食指数(PRE):40以下
孔食指数(Pitting Resistance Eqivalennt:PRE)は下記式(1)で定義される。
Pitting Corrosion Index (PRE): 40 or less The Pitting Corrosion Index (PRE) is defined by the following formula (1).

PRE=Cr+3.3Mo+16N・・・・・(1)
なお、各元素記号は各元素の質量%で表示した含有量である。
PRE = Cr + 3.3Mo + 16N (1)
In addition, each element symbol is the content expressed by mass% of each element.

耐海水腐食性としては、耐孔食性と耐隙間腐食性が重要である。これらの局部腐食に関しては、上記式(1)で定義される孔食指数で整理され、その数値が高いほど、耐孔食性に優れる。オーステナイト系ステンレス鋼を合せ材とするクラッド鋼において、十分な耐海水腐食性に優れた特性を得るには、孔食指数は40以上であることが好ましい。   As seawater corrosion resistance, pitting corrosion resistance and crevice corrosion resistance are important. These local corrosions are arranged by the pitting corrosion index defined by the above formula (1), and the higher the numerical value, the better the pitting corrosion resistance. In the clad steel using the austenitic stainless steel as a laminated material, the pitting corrosion index is preferably 40 or more in order to obtain sufficient seawater corrosion resistance.

2.製造方法について
本発明の耐海水腐食性および低温靭性に優れたオーステナイト系ステンレスクラッド鋼の製造方法を以下に述べる。
2. Production Method The production method of the austenitic stainless clad steel excellent in seawater corrosion resistance and low temperature toughness according to the present invention will be described below.

本発明のクラッド鋼の母材素材は、炭素鋼で、その成分組成は、前記した成分範囲に調整され、常法等により溶製することができる。該母材素材は、合せ材として耐海水腐食性に優れたオーステナイト系ステンレス鋼が選定されてクラッド鋼素材となり、熱間圧延されて全厚30mm以上の耐海水腐食性および低温靭性に優れたオーステナイト系ステンレスクラッド鋼となる。   The base material of the clad steel of the present invention is carbon steel, and its component composition is adjusted to the above-described component range and can be melted by a conventional method or the like. As the base material, austenitic stainless steel excellent in seawater corrosion resistance is selected as a laminated material to become a clad steel material, which is hot-rolled and austenite excellent in seawater corrosion resistance and low-temperature toughness with a total thickness of 30 mm or more. Stainless steel clad steel.

加熱温度:1000〜1250℃
クラッド鋼素材の加熱温度は、1000℃未満では圧延能率が低下し、1250℃超えでは母材のオーステナイト粒が粗大化し母材の靭性が低下するため、1000〜1250℃の範囲とする。母材靭性の観点から好ましい加熱温度の範囲は1000〜1150℃である。
Heating temperature: 1000-1250 ° C
When the heating temperature of the clad steel material is less than 1000 ° C., the rolling efficiency decreases, and when it exceeds 1250 ° C., the austenite grains of the base material become coarse and the toughness of the base material decreases, so the range is 1000 to 1250 ° C. A preferable heating temperature range is 1000 to 1150 ° C. from the viewpoint of base material toughness.

制御圧延:730〜950℃の温度域における累積圧下率30%以上
母材側の条件として、強度および靭性を向上するため、730〜950℃の温度域、即ち、オーステナイト低温域か、もしくは2相域で圧延を仕上げる必要がある。オーステナイト低温域で圧延を行うのは、オーステナイト粒を伸長粒化し、且つ、オーステナイトの粒内に変形帯を導入させることにある。
Controlled rolling: Cumulative rolling reduction of 30% or more in the temperature range of 730 to 950 ° C. As a condition on the base metal side, in order to improve strength and toughness, the temperature range of 730 to 950 ° C., that is, the austenite low temperature range, or two phases It is necessary to finish rolling in the area. The rolling in the low temperature range of austenite is to make austenite grains elongated and to introduce a deformation band into the austenite grains.

オーステナイト粒の伸長粒化、変形帯の導入によりフェライトの核生成サイドが増加し、最終的には組織が細かくなり鋼の強度、靭性が向上するからである。2相域(730〜950℃の温度域)で圧延を行なうのも、フェライト粒内に歪を導入することで強度の向上を図り、同時に変形集合組織を導入させ靭性の向上をも達成することを狙ったものである。   This is because the nucleation side of ferrite increases due to the elongation of austenite grains and the introduction of deformation bands, eventually the structure becomes finer and the strength and toughness of the steel improve. Rolling in a two-phase region (temperature range of 730 to 950 ° C.) is to improve the strength by introducing strain into the ferrite grains, and at the same time, introduce a deformed texture to achieve improved toughness. Is aimed at.

累積圧下率を30%以上とするのは、累積圧下率が30%未満であると、オーステナイトの細粒化が不十分で靭性が向上しないからである。   The reason why the cumulative rolling reduction is 30% or more is that if the cumulative rolling reduction is less than 30%, the austenite is not sufficiently refined and the toughness is not improved.

圧延仕上温度:730〜850℃
母材側の圧延条件としては、圧延仕上温度が700〜850℃で必要な強度、低温靭性が得られる。850℃を超える場合にはオーステナイト粒の再結晶のためオーステナイト粒の伸長粒化、変形帯の導入が困難であり、一方700℃未満ではフェライト粒に過度の歪みが導入され、加工硬化が著しいからである。
Rolling finishing temperature: 730-850 ° C
As rolling conditions on the base material side, required strength and low temperature toughness can be obtained at a rolling finishing temperature of 700 to 850 ° C. When the temperature exceeds 850 ° C., it is difficult to stretch the austenite grains and introduce deformation bands due to recrystallization of the austenite grains. On the other hand, when the temperature is lower than 700 ° C., excessive strain is introduced into the ferrite grains and work hardening is remarkable. It is.

一方、合せ材側の圧延条件は、圧延仕上温度が730℃未満では耐食性の劣化が生じるため、仕上温度は730℃以上が必要である。   On the other hand, the rolling condition on the laminated material side requires that the finishing temperature be 730 ° C. or higher because the corrosion resistance deteriorates when the rolling finishing temperature is less than 730 ° C.

従って、母材、合せ材の両方の特性を確保するため、圧延仕上温度は730〜850℃とする。   Accordingly, the rolling finishing temperature is set to 730 to 850 ° C. in order to ensure the characteristics of both the base material and the laminated material.

冷却速度:3〜40℃/s
圧延後に加速冷却することにより、母材(炭素鋼)ではオーステナイト→フェライト変態が低温で起こり、一部にベイナイト変態も起こり、その結果更に高強度化、高靭性化が達成されることになる。また合せ材においても、上記冷却速度で冷却を実施することが耐食性確保の観点から好ましい。
Cooling rate: 3-40 ° C / s
By performing accelerated cooling after rolling, the austenite → ferrite transformation occurs at a low temperature in the base material (carbon steel), and part of the bainite transformation also occurs. As a result, higher strength and higher toughness are achieved. Moreover, also in a laminated material, it is preferable from a viewpoint of ensuring corrosion resistance to implement cooling with the said cooling rate.

冷却速度が3℃/s未満では冷却効果が顕著でなく、40℃/sを超える場合は冷却効果は飽和するので、冷却速度は、3〜40℃/sの範囲とするのが好ましい。   When the cooling rate is less than 3 ° C./s, the cooling effect is not remarkable. When the cooling rate exceeds 40 ° C./s, the cooling effect is saturated. Therefore, the cooling rate is preferably in the range of 3 to 40 ° C./s.

クラッド鋼の全厚:30mm以上
海洋構造物や造船用クラッド鋼は30mm以上の厚い材料が用いられるため。本発明では冷却速度が低くなる全厚30mm以上の材料についても耐海水腐食性、及び低温靭性に優れたクラッド鋼を提供する。
Overall thickness of clad steel: 30 mm or more Because clad steel for marine structures and shipbuilding uses a thick material of 30 mm or more. In the present invention, a clad steel excellent in seawater corrosion resistance and low-temperature toughness is provided even for a material having a total thickness of 30 mm or more with a low cooling rate.

以下に、本発明の実施例を詳細に説明する。   Examples of the present invention will be described in detail below.

表1に示す成分組成からなる炭素鋼を母材とし、表2に示すオ−ステナイト系ステンレス鋼を合せ材としスラブに組み立てた。ついでスラブを表3に示す温度に加熱して熱間圧延を施し、表3に示す各板厚のクラッド鋼を製造した。   A carbon steel having the composition shown in Table 1 was used as a base material, and an austenitic stainless steel shown in Table 2 was used as a combination material and assembled into a slab. Subsequently, the slab was heated to the temperature shown in Table 3 and hot-rolled to produce clad steel having each thickness shown in Table 3.

以上により得られたステンレスクラッド鋼に対して、合せ材の耐食性を以下に示すASTM G48−03 Method Eにより評価した。   With respect to the stainless clad steel obtained as described above, the corrosion resistance of the laminated material was evaluated by ASTM G48-03 Method E shown below.

また、引張試験と、JIS Z 2242による−40℃におけるシャルピー衝撃試験を行い、YS(MPa)、TS(MPa)、吸収エネルギー(J)を求めた。   Further, a tensile test and a Charpy impact test at −40 ° C. according to JIS Z 2242 were performed to obtain YS (MPa), TS (MPa), and absorbed energy (J).

臨界孔食発生温度(Critical Pitting corrosion Temperature:CPT)はASTM G48−03 Method Eに定める「6%FeCl+1%HCl溶液中に5℃間隔で24時間の浸漬試験」により求めた。 The critical pitting corrosion temperature (CPT) was determined by “immersion test at 5 ° C. for 24 hours in 6% FeCl 3 + 1% HCl solution” defined in ASTM G48-03 Method E.

浸漬試験は5℃ピッチで昇温し、各温度で各3回行い、1回でも深さ0.025mm以上の孔食が発生した場合は不合格とし、孔食が発生して不合格となった最高試験温度をCPT(℃)とした。なお、CPTの目標温度は45℃以上、好ましくは50℃以上とした。   The immersion test is performed at a pitch of 5 ° C., and is performed three times at each temperature. If a pitting corrosion with a depth of 0.025 mm or more is generated even once, the pitting corrosion is rejected, and the pitting corrosion is generated and is rejected. The highest test temperature was CPT (° C.). The target temperature of CPT was 45 ° C. or higher, preferably 50 ° C. or higher.

評価結果を表3に示す。   The evaluation results are shown in Table 3.

Figure 2013255936
Figure 2013255936

Figure 2013255936
Figure 2013255936

Figure 2013255936
Figure 2013255936

表3より、発明例であるNo.1〜12、22は、CPTが目標温度の45℃以上、−40℃シャルピー吸収エネルギーが100J以上となっており、優れた耐海水腐食性と低温靭性を示している。   From Table 3, No. which is an invention example. Nos. 1 to 12 and 22 have a CPT of 45 ° C. or higher of the target temperature and a −40 ° C. Charpy absorbed energy of 100 J or higher, and exhibit excellent seawater corrosion resistance and low temperature toughness.

No.13〜21は比較例を示す。No.14〜18の母材は全て比較鋼であり、いずれも−40℃シャルピー吸収エネルギーが目標値を下回った。
No.13、No.19〜21の母材は何れも発明鋼であるが、13、20は仕上げ温度が規定温度より高すぎて−40℃シャルピーが劣り、19、21は仕上げ温度が規定温度より低すぎてCPTが目標温度を下回った。
No. 13-21 shows a comparative example. No. The base metals of 14 to 18 were all comparative steels, and the -40 ° C. Charpy absorbed energy was below the target value in all cases.
No. 13, no. Although the base materials 19 to 21 are all invented steels, the finishing temperatures of 13 and 20 are too higher than the specified temperature and -40 ° C Charpy is inferior. Below target temperature.

Claims (4)

成分組成が、質量%で、C:0.10〜0.15%、Si:0.25〜0.40%、Mn:0.45〜2.0%、P:0.015%以下、S:0.004%以下、N:0.006%以下、Cr:0.01〜0.1%、Nb:0.005〜0.05%、Al:0.005〜0.05%を含有し、残部Fe及び不可避的不純物からなる炭素鋼を母材とし、オーステナイト系ステンレス鋼を合せ材とするクラッド鋼素材を、1000〜1250℃に加熱後、熱間圧延を開始して、730〜950℃の温度域における制御圧延の累積圧下率を30%以上とし、圧延仕上温度を730〜850℃とする熱間圧延を行うことを特徴とする全厚30mm以上の耐海水腐食性および低温靭性に優れたオーステナイト系ステンレスクラッド鋼の製造方法。   Ingredient composition is mass%, C: 0.10-0.15%, Si: 0.25-0.40%, Mn: 0.45-2.0%, P: 0.015% or less, S : 0.004% or less, N: 0.006% or less, Cr: 0.01 to 0.1%, Nb: 0.005 to 0.05%, Al: 0.005 to 0.05% In addition, a carbon steel composed of the balance Fe and inevitable impurities is used as a base material, and a clad steel material including austenitic stainless steel as a combined material is heated to 1000 to 1250 ° C., and then hot rolling is started, and 730 to 950 ° C. It is excellent in seawater corrosion resistance and low temperature toughness with a total thickness of 30 mm or more, characterized by performing hot rolling with a cumulative rolling reduction rate of 30% or more in a temperature range of 730 to 850 ° C. A method for producing austenitic stainless clad steel. 前記炭素鋼の成分組成が、更に、質量%で、Cu:0.01〜0.3%、Ni:0.01〜0.3%、Ti:0.005〜0.015%の中から選ばれる一種以上を含有することを特徴とする請求項1記載の全厚30mm以上の耐海水腐食性および低温靭性に優れたオーステナイト系ステンレスクラッド鋼の製造方法。   The component composition of the carbon steel is further selected from Cu: 0.01 to 0.3%, Ni: 0.01 to 0.3%, and Ti: 0.005 to 0.015% by mass%. The method for producing an austenitic stainless clad steel having a total thickness of 30 mm or more and excellent in seawater corrosion resistance and low-temperature toughness according to claim 1. 請求項1または2に記載のクラッド鋼素材を用いて、1000〜1250℃に加熱後、熱間圧延を開始して、730〜950℃の温度域における制御圧延の累積圧下率を30%以上とし、圧延仕上温度を730〜850℃とする熱間圧延を行った後に、冷却速度3〜40℃/s、冷却停止温度を500℃以上とする加速冷却を行うことを特徴とする全厚30mm以上の耐海水腐食性および低温靭性に優れたオーステナイト系ステンレスクラッド鋼の製造方法。   Using the clad steel material according to claim 1 or 2, hot rolling is started after heating to 1000 to 1250 ° C., and the cumulative rolling reduction of controlled rolling in the temperature range of 730 to 950 ° C. is set to 30% or more. The total thickness of 30 mm or more is characterized by performing accelerated cooling with a cooling rate of 3 to 40 ° C./s and a cooling stop temperature of 500 ° C. or higher after performing hot rolling with a rolling finishing temperature of 730 to 850 ° C. Of austenitic stainless clad steel with excellent seawater corrosion resistance and low temperature toughness. 請求項1乃至3の何れかに記載のステンレスクラッド鋼の製造方法において、合せ材のオーステナイト系ステンレス鋼の下記式(1)で定義される孔食指数(PRE)が、40以上であることを特徴とする全厚30mm以上の耐海水腐食性および低温靭性に優れたオーステナイト系ステンレスクラッド鋼の製造方法。
PRE=Cr+3.3Mo+16N・・・・・(1)
なお、各元素記号は各元素の質量%で表示した含有量である。
In the manufacturing method of the stainless clad steel in any one of Claims 1 thru | or 3, the pitting corrosion index (PRE) defined by following formula (1) of the austenitic stainless steel of a laminated material is 40 or more. A method for producing an austenitic stainless clad steel having a total thickness of 30 mm or more and excellent in seawater corrosion resistance and low temperature toughness.
PRE = Cr + 3.3Mo + 16N (1)
In addition, each element symbol is the content expressed by mass% of each element.
JP2012133772A 2012-06-13 2012-06-13 Method for producing austenitic stainless clad steel with excellent seawater corrosion resistance and low temperature toughness Active JP5928175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012133772A JP5928175B2 (en) 2012-06-13 2012-06-13 Method for producing austenitic stainless clad steel with excellent seawater corrosion resistance and low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012133772A JP5928175B2 (en) 2012-06-13 2012-06-13 Method for producing austenitic stainless clad steel with excellent seawater corrosion resistance and low temperature toughness

Publications (2)

Publication Number Publication Date
JP2013255936A true JP2013255936A (en) 2013-12-26
JP5928175B2 JP5928175B2 (en) 2016-06-01

Family

ID=49952831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012133772A Active JP5928175B2 (en) 2012-06-13 2012-06-13 Method for producing austenitic stainless clad steel with excellent seawater corrosion resistance and low temperature toughness

Country Status (1)

Country Link
JP (1) JP5928175B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108665A (en) * 2014-12-09 2016-06-20 Jfeスチール株式会社 Stainless clad steel plate
JP2017001044A (en) * 2015-06-05 2017-01-05 新日鐵住金ステンレス株式会社 Extremely thick stainless steel plate and manufacturing method thereof
WO2023143290A1 (en) * 2022-01-26 2023-08-03 宝山钢铁股份有限公司 High-strength pipeline resistant to aluminum sulfate corrosion and fabrication method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475791A (en) * 1990-03-30 1992-03-10 Nippon Steel Corp Production of clad steel plate
JPH07246481A (en) * 1994-03-10 1995-09-26 Nippon Steel Corp Production of high strength clad steel sheet
JP2006328460A (en) * 2005-05-25 2006-12-07 Japan Steel Works Ltd:The Base material for clad steel, and method for producing clad steel using the base material for clad steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475791A (en) * 1990-03-30 1992-03-10 Nippon Steel Corp Production of clad steel plate
JPH07246481A (en) * 1994-03-10 1995-09-26 Nippon Steel Corp Production of high strength clad steel sheet
JP2006328460A (en) * 2005-05-25 2006-12-07 Japan Steel Works Ltd:The Base material for clad steel, and method for producing clad steel using the base material for clad steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108665A (en) * 2014-12-09 2016-06-20 Jfeスチール株式会社 Stainless clad steel plate
JP2017001044A (en) * 2015-06-05 2017-01-05 新日鐵住金ステンレス株式会社 Extremely thick stainless steel plate and manufacturing method thereof
WO2023143290A1 (en) * 2022-01-26 2023-08-03 宝山钢铁股份有限公司 High-strength pipeline resistant to aluminum sulfate corrosion and fabrication method therefor

Also Published As

Publication number Publication date
JP5928175B2 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
JP6857729B2 (en) Super austenitic stainless steel rolled composite steel sheet and its manufacturing method
KR101967678B1 (en) Nickel-base alloy-clad steel plate and method for producing the same
JP6477735B2 (en) Duplex stainless steel clad steel and manufacturing method thereof
KR100920536B1 (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
JP6168131B2 (en) Stainless clad steel plate
KR20160058817A (en) Austenitic stainless steel clad steel plate and process for manufacturing same
KR102389712B1 (en) Two-phase stainless steel clad steel sheet and manufacturing method thereof
JP6555435B2 (en) Clad steel sheet and manufacturing method thereof
JP6079165B2 (en) High toughness and corrosion resistant Ni alloy clad steel plate with excellent weld toughness and method for producing the same
JP2014114466A (en) Cladding material of duplex stainless clad steel having excellent pitting-corrosion resistance, duplex stainless clad steel using the same, and method for producing the same
JP6705569B1 (en) Clad steel plate and method of manufacturing the same
KR101539520B1 (en) Duplex stainless steel sheet
JP6024643B2 (en) Manufacturing method of Ni alloy clad steel sheet excellent in low temperature toughness and HAZ toughness of base metal and corrosion resistance of laminated material
KR102389788B1 (en) Two-phase stainless steel clad steel sheet and manufacturing method thereof
JP2014043616A (en) Duplex stainless steel, and manufacturing method thereof
JP4787141B2 (en) Thick steel plate with excellent toughness of weld heat-affected zone and low softening
JP6390567B2 (en) Manufacturing method of stainless clad steel plate
JP6079611B2 (en) Ni alloy clad steel plate excellent in low temperature toughness and HAZ toughness of base metal and corrosion resistance of laminated material, and method for producing the same
JP5874664B2 (en) High strength steel plate with excellent drop weight characteristics and method for producing the same
JP5928175B2 (en) Method for producing austenitic stainless clad steel with excellent seawater corrosion resistance and low temperature toughness
JP6750572B2 (en) Clad steel plate having high strength and excellent low temperature toughness as base material and method for producing the same
JP6398576B2 (en) Steel sheet with excellent toughness and method for producing the same
JP6573060B1 (en) Clad steel plate
JP7281314B2 (en) Base material for clad steel, clad steel and method for producing clad steel
JP2016079427A (en) Steel sheet excellent in high temperature strength and toughness and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R150 Certificate of patent or registration of utility model

Ref document number: 5928175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250