JP2010202589A - METHOD FOR PRODUCING 2,3-DIHYDRO-THIENO[3,4-b]FURAN DERIVATIVE AND NEW COMPOUND USED THEREFOR - Google Patents

METHOD FOR PRODUCING 2,3-DIHYDRO-THIENO[3,4-b]FURAN DERIVATIVE AND NEW COMPOUND USED THEREFOR Download PDF

Info

Publication number
JP2010202589A
JP2010202589A JP2009050309A JP2009050309A JP2010202589A JP 2010202589 A JP2010202589 A JP 2010202589A JP 2009050309 A JP2009050309 A JP 2009050309A JP 2009050309 A JP2009050309 A JP 2009050309A JP 2010202589 A JP2010202589 A JP 2010202589A
Authority
JP
Japan
Prior art keywords
group
general formula
substituent
represented
thieno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009050309A
Other languages
Japanese (ja)
Inventor
Yasusuke Kamata
泰輔 鎌田
Takashi Sugioka
尚 杉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2009050309A priority Critical patent/JP2010202589A/en
Publication of JP2010202589A publication Critical patent/JP2010202589A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new compound that permits acquisition of a 2,3-dihydro-thieno[3,4-b]furan derivative in a high yield under a mild condition, a method for producing the same and a method for producing the furan derivative using the same. <P>SOLUTION: A new compound represented by general formula (1) [wherein R<SP>1</SP>, R<SP>2</SP>, R<SP>3</SP>and R<SP>4</SP>are each independently a hydrogen atom or an optionally substituted 1-20C hydrocarbon group] is subjected to an intramolecular cyclization reaction to give the 2,3-dihydro-thieno[3,4-b]furan derivative. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、チオフェン骨格を有する新規化合物及びその製造方法、並びにそれを用いた2,3−ジヒドロ−チエノ[3,4−b]フラン誘導体の製造方法に関する。   The present invention relates to a novel compound having a thiophene skeleton and a method for producing the same, and a method for producing a 2,3-dihydro-thieno [3,4-b] furan derivative using the same.

従来、2,3−ジヒドロ−チエノ[3,4−b]フランの製造方法として、2−メトキシカルボニル−3−ヒドロキシ−4−ヒドロキシエチルチオフェンを閉環反応させた後に脱メトキシカルボニル化させて得る方法が知られている(特許文献1)。しかしながら、特許文献1に記載された方法では、350℃の高温で加熱する必要があり安全性やエネルギー効率の面で問題があった。また、出発原料のα−ヒドロキシメチレンブチロラクトンからの収率が2%以下であり、2,3−ジヒドロ−チエノ[3,4−b]フランを収率よく得る方法が望まれていた。   Conventionally, as a method for producing 2,3-dihydro-thieno [3,4-b] furan, a method in which 2-methoxycarbonyl-3-hydroxy-4-hydroxyethylthiophene is subjected to a ring-closing reaction and then demethoxycarbonylated. Is known (Patent Document 1). However, the method described in Patent Document 1 has a problem in terms of safety and energy efficiency because it is necessary to heat at a high temperature of 350 ° C. Further, a method for obtaining 2,3-dihydro-thieno [3,4-b] furan in high yield is desired, since the yield from α-hydroxymethylenebutyrolactone as a starting material is 2% or less.

特公昭48−14067号公報Japanese Patent Publication No. 48-14067

本発明は上記課題を解決するためになされたものであり、2,3−ジヒドロ−チエノ[3,4−b]フラン誘導体を温和な条件かつ高収率で得ることが可能な新規化合物及びその製造方法、並びにそれを用いた該フラン誘導体の製造方法を提供することを目的とするものである。   The present invention has been made to solve the above problems, and a novel compound capable of obtaining a 2,3-dihydro-thieno [3,4-b] furan derivative in mild conditions and in a high yield, and its It is an object of the present invention to provide a production method and a production method of the furan derivative using the production method.

上記課題は、下記一般式(1):

Figure 2010202589
[式中、R、R、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基である。]
で示される化合物を提供することによって解決される。 The above problem is solved by the following general formula (1):
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. ]
This is solved by providing a compound represented by:

また、上記課題は、下記一般式(2):

Figure 2010202589
[式中、R、R、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基である。]
で示される化合物を提供することによって解決される。 Moreover, the said subject is the following general formula (2):
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. ]
This is solved by providing a compound represented by:

更に、上記課題は、下記一般式(3):

Figure 2010202589
[式中、R、R、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基である。]
で示される化合物を提供することによって解決される。 Further, the above problem is solved by the following general formula (3):
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. ]
This is solved by providing a compound represented by:

また、上記課題は、下記一般式(1):

Figure 2010202589
[式中、R、R、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基である。]
で示される化合物を分子内環化反応させる、下記一般式(4):
Figure 2010202589
[式中、R、R、R及びRは、前記と同義である。]
で示される2,3−ジヒドロ−チエノ[3,4−b]フラン誘導体の製造方法を提供することによって解決される。 Moreover, the said subject is the following general formula (1):
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. ]
The following general formula (4):
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 have the same meanings as described above. ]
It is solved by providing a method for producing a 2,3-dihydro-thieno [3,4-b] furan derivative represented by the formula:

また、上記課題は、下記一般式(2):

Figure 2010202589
[式中、R、R、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基である。]
で示される化合物をアルカリ加水分解させる、下記一般式(1):
Figure 2010202589
[式中、R、R、R及びRは、前記と同義である。]
で示される化合物の製造方法を提供することによって解決される。 Moreover, the said subject is the following general formula (2):
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. ]
The following general formula (1):
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 have the same meanings as described above. ]
It is solved by providing the manufacturing method of the compound shown by these.

また、上記課題は、下記一般式(3):

Figure 2010202589
[式中、R、R、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基である。]
で示される化合物を脱臭素化反応させる、下記一般式(2):
Figure 2010202589
[式中、R、R、R及びRは、前記と同義である。]
で示される化合物の製造方法を提供することによって解決される。 Moreover, the said subject is the following general formula (3):
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. ]
The following general formula (2):
Figure 2010202589
Wherein, R 1, R 2, R 3 and R 4 have the same meanings as defined above. ]
It is solved by providing the manufacturing method of the compound shown by these.

また、上記課題は、下記一般式(5):

Figure 2010202589
[式中、R、R、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基である。]
で示される化合物に対して臭素及び酢酸を反応させる、下記一般式(3):
Figure 2010202589
[式中、R、R、R及びRは、前記と同義である。]
で示される化合物の製造方法を提供することによっても解決される。 Moreover, the said subject is the following general formula (5):
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. ]
In the following general formula (3), bromine and acetic acid are reacted with the compound represented by:
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 have the same meanings as described above. ]
It can also be solved by providing a method for producing the compound represented by the formula:

本発明の新規化合物を用いることにより、2,3−ジヒドロ−チエノ[3,4−b]フラン誘導体を温和な条件かつ高収率で提供することができる。こうして得られる2,3−ジヒドロ−チエノ[3,4−b]フラン誘導体は、医薬・農薬等の中間体や香味剤組成物への添加剤として用いられるだけでなく、導電性材料やエレクトロクロミック材料等として有用な重合体の原料として好適に用いられる。   By using the novel compound of the present invention, a 2,3-dihydro-thieno [3,4-b] furan derivative can be provided under mild conditions and in a high yield. The 2,3-dihydro-thieno [3,4-b] furan derivative thus obtained is not only used as an additive to intermediates and flavoring agents such as pharmaceuticals and agricultural chemicals, but also to conductive materials and electrochromic. It is suitably used as a raw material for polymers useful as materials.

本発明によれば、一般式(1)、(2)及び(3)で示される化合物、並びにこれらを中間体として用いて一般式(4)で示される2,3−ジヒドロ−チエノ[3,4−b]フラン誘導体の製造方法が提供される。一般式(1)、(2)及び(3)で示される化合物は新規化合物である。以下詳細について述べる。   According to the present invention, the compounds represented by the general formulas (1), (2) and (3), and 2,3-dihydro-thieno [3, represented by the general formula (4) using these as intermediates 4-b] A method for producing a furan derivative is provided. The compounds represented by the general formulas (1), (2) and (3) are novel compounds. Details will be described below.

Figure 2010202589
[式中、R、R、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基である。]
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. ]

Figure 2010202589
[式中、R、R、R及びRは、前記と同義である。]
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 have the same meanings as described above. ]

Figure 2010202589
[式中、R、R、R及びRは、前記と同義である。]
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 have the same meanings as described above. ]

Figure 2010202589
[式中、R、R、R及びRは、前記と同義である。]
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 have the same meanings as described above. ]

上記一般式(1)〜(4)で示される化合物において、R、R、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基である。 In the compounds represented by the general formulas (1) to (4), R 1 , R 2 , R 3 and R 4 each independently have 1 to 20 carbon atoms which may have a hydrogen atom or a substituent. It is a hydrocarbon group.

置換基を有してもよい炭素数1〜20の炭化水素基は、例えば、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいシクロアルキル基等が挙げられる。   The hydrocarbon group having 1 to 20 carbon atoms which may have a substituent may have, for example, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, or a substituent. Examples thereof include a good aryl group and an optionally substituted cycloalkyl group.

置換基を有してもよいアルキル基は、直鎖であっても分岐鎖であってもよい。アルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、n−ヘキシル基、イソヘキシル基、2−エチルヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基等が挙げられる。   The alkyl group which may have a substituent may be linear or branched. Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, A tert-pentyl group, n-hexyl group, isohexyl group, 2-ethylhexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group and the like can be mentioned.

置換基を有してもよいアルケニル基は、直鎖であっても分岐鎖であってもよい。アルケニル基としては、例えば、ビニル基、アリル基、メチルビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基等が挙げられる。   The alkenyl group which may have a substituent may be linear or branched. Examples of the alkenyl group include a vinyl group, an allyl group, a methylvinyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, a cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, and a cyclohexenyl group.

置換基を有してもよいアリール基としては、例えば、フェニル基、ナフチル基、アントリル基、フェナントリル基等が挙げられる。   Examples of the aryl group that may have a substituent include a phenyl group, a naphthyl group, an anthryl group, and a phenanthryl group.

置換基を有してもよいシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプタニル基、シクロオクタニル基、シクロノナニル基、シクロデカニル基、シクロウンデカニル基、シクロドデカニル基等が挙げられる。   Examples of the cycloalkyl group which may have a substituent include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptanyl group, a cyclooctanyl group, a cyclononanyl group, a cyclodecanyl group, a cycloundecanyl group, and a cyclohexane group. A dodecanyl group etc. are mentioned.

上述のアルキル基、アルケニル基、アリール基及びシクロアルキル基は置換基を有していてもよく、かかる置換基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのアルコキシ基;メチルチオ基、エチルチオ基などのアルキルチオ基;ヒドロキシ基;チオール基などが挙げられる。また、後述の工程4における分子内環化反応の反応速度を考慮すると、R又はRの少なくとも一方が水素原子であることが好ましく、R及びRの両方ともが水素原子であることがより好ましい。即ち、一般式(1)で示される化合物が第1級アルコール又は第2級アルコールであることが好ましく、第1級アルコールであることがより好ましい。 The alkyl group, alkenyl group, aryl group and cycloalkyl group described above may have a substituent. Examples of the substituent include alkoxy groups such as methoxy group, ethoxy group, propoxy group and butoxy group; Group, alkylthio group such as ethylthio group; hydroxy group; thiol group and the like. In consideration of the reaction rate of intramolecular cyclization reaction in step 4 below, it is preferable that at least one of R 1 or R 2 is a hydrogen atom, Both R 1 and R 2 are hydrogen atoms Is more preferable. That is, the compound represented by the general formula (1) is preferably a primary alcohol or a secondary alcohol, and more preferably a primary alcohol.

一般式(3)で示される新規化合物は、下記化学反応式(I)で示される工程1のように、一般式(5)で示される化合物を出発化合物として、臭素及び酢酸と反応させることにより得られる。   The novel compound represented by the general formula (3) is reacted with bromine and acetic acid using the compound represented by the general formula (5) as a starting compound as in Step 1 represented by the following chemical reaction formula (I). can get.

Figure 2010202589
[式中、R、R、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基である。]
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. ]

上記化学反応式(I)で示される工程1は、一般式(5)で示される化合物に対して臭素及び酢酸を反応させる工程である。この反応により、一般式(5)で示される化合物におけるチオフェン骨格の2位、4位及び5位が臭素で置換されるとともに、ヒドロキシ基がアセチル基に置換されて一般式(3)で示される化合物を得ることができる。上記一般式(5)で示される化合物におけるR、R、R及びRとしては、上述の一般式(1)〜(4)で示される化合物の説明のところで例示されたものと同様のものを用いることができる。 Step 1 represented by the chemical reaction formula (I) is a step of reacting the compound represented by the general formula (5) with bromine and acetic acid. By this reaction, the 2-position, 4-position and 5-position of the thiophene skeleton in the compound represented by the general formula (5) are substituted with bromine, and the hydroxy group is substituted with an acetyl group, which is represented by the general formula (3). A compound can be obtained. R 1 , R 2 , R 3 and R 4 in the compound represented by the general formula (5) are the same as those exemplified in the description of the compounds represented by the general formulas (1) to (4). Can be used.

上記工程1における臭素の使用量は特に限定されず、一般式(5)で示される化合物1モルに対して、3〜12モルであることが好ましい。臭素の使用量が3モル未満の場合、臭素の置換反応が不十分となるおそれがある。一方、臭素の使用量が12モルを超える場合、チオフェン骨格の2位、4位及び5位以外への置換反応が起こるおそれがあり、6モル以下であることがより好ましい。また、上記工程1における酢酸の使用量は特に限定されず、一般式(5)で示される化合物1質量部に対して、1〜100質量部であることが好ましい。   The usage-amount of bromine in the said process 1 is not specifically limited, It is preferable that it is 3-12 mol with respect to 1 mol of compounds shown by General formula (5). If the amount of bromine used is less than 3 moles, the bromine substitution reaction may be insufficient. On the other hand, when the amount of bromine used exceeds 12 moles, there is a possibility that a substitution reaction other than the 2nd, 4th and 5th positions of the thiophene skeleton may occur, and it is more preferably 6 moles or less. Moreover, the usage-amount of the acetic acid in the said process 1 is not specifically limited, It is preferable that it is 1-100 mass parts with respect to 1 mass part of compounds shown by General formula (5).

上記工程1における反応温度としては特に限定されず、20〜100℃であることが好ましい。反応温度が20℃未満の場合、反応速度が極めて遅くなるおそれがあり、40℃以上であることがより好ましい。一方、反応温度が100℃を超える場合、生成物の分解を促進するおそれがあり、80℃以下であることがより好ましい。こうして得られる一般式(3)で示される化合物は、好適には単離することなく次の工程2における脱臭素化反応の出発化合物として用いることができる。   It does not specifically limit as reaction temperature in the said process 1, It is preferable that it is 20-100 degreeC. When reaction temperature is less than 20 degreeC, there exists a possibility that reaction rate may become very slow, and it is more preferable that it is 40 degreeC or more. On the other hand, when reaction temperature exceeds 100 degreeC, there exists a possibility of accelerating | stimulating decomposition | disassembly of a product, and it is more preferable that it is 80 degrees C or less. The compound represented by the general formula (3) thus obtained can be preferably used as a starting compound for the debromination reaction in the next step 2 without isolation.

一般式(2)で示される新規化合物は、下記化学反応式(II)で示される工程2のように、上記工程1により得られた一般式(3)で示される化合物を脱臭素化反応させることにより得られる。   The novel compound represented by the general formula (2) is subjected to a debromination reaction with the compound represented by the general formula (3) obtained by the above step 1 as in the step 2 represented by the following chemical reaction formula (II). Can be obtained.

Figure 2010202589
[式中、R、R、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基である。]
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. ]

上記化学反応式(II)で示される工程2は、一般式(3)で示される化合物を脱臭素化反応させる工程である。この反応により、一般式(3)で示される化合物におけるチオフェン骨格の2位及び5位の臭素が脱臭素化されて一般式(2)で示される化合物を得ることができる。   Step 2 represented by the chemical reaction formula (II) is a step of debromination reaction of the compound represented by the general formula (3). By this reaction, bromine at the 2-position and 5-position of the thiophene skeleton in the compound represented by the general formula (3) is debrominated to obtain a compound represented by the general formula (2).

上記工程2の好適な実施態様は、酢酸存在下で亜鉛粉末を用いて脱臭素化反応させる方法である。上記工程2における亜鉛粉末の使用量としては特に限定されず、一般式(3)で示される化合物1モルに対して、2〜20モルであることが好ましい。亜鉛粉末の使用量が2モル未満の場合、脱臭素化反応が不十分となるおそれがあり、3モル以上であることがより好ましい。一方、亜鉛粉末の使用量が20モルを超える場合、4位での脱臭素化反応が起こるおそれがあり、10モル以下であることがより好ましく、6モル以下であることが更に好ましい。また、上記工程2における酢酸の使用量は特に限定されず、一般式(3)で示される化合物1質量部に対して、0.1〜100質量部であることが好ましい。   A preferred embodiment of the above step 2 is a method of debromination using zinc powder in the presence of acetic acid. It does not specifically limit as the usage-amount of the zinc powder in the said process 2, It is preferable that it is 2-20 mol with respect to 1 mol of compounds shown by General formula (3). When the usage-amount of zinc powder is less than 2 mol, there exists a possibility that debromination reaction may become inadequate, and it is more preferable that it is 3 mol or more. On the other hand, when the usage-amount of zinc powder exceeds 20 mol, there exists a possibility that the debromination reaction in 4-position may occur, It is more preferable that it is 10 mol or less, It is further more preferable that it is 6 mol or less. Moreover, the usage-amount of the acetic acid in the said process 2 is not specifically limited, It is preferable that it is 0.1-100 mass parts with respect to 1 mass part of compounds shown by General formula (3).

上記工程2における反応温度としては特に限定されず、80〜140℃であることが好ましい。反応温度が80℃未満の場合、反応速度が極めて遅くなるおそれがあり、90℃以上であることがより好ましい。一方、反応温度が140℃を超える場合、生成物の分解を促進するおそれがあり、120℃以下であることがより好ましい。こうして得られる一般式(2)で示される化合物は、好適には単離することなく次の工程3におけるアルカリ加水分解反応の出発化合物として用いることができる。   It does not specifically limit as reaction temperature in the said process 2, It is preferable that it is 80-140 degreeC. When reaction temperature is less than 80 degreeC, there exists a possibility that reaction rate may become very slow, and it is more preferable that it is 90 degreeC or more. On the other hand, when reaction temperature exceeds 140 degreeC, there exists a possibility of promoting decomposition | disassembly of a product, and it is more preferable that it is 120 degrees C or less. The compound represented by the general formula (2) thus obtained can be used as a starting compound for the alkali hydrolysis reaction in the next step 3 without preferably being isolated.

一般式(1)で示される新規化合物は、下記化学反応式(III)で示される工程3のように、上記工程2により得られた一般式(2)で示される化合物をアルカリ加水分解させることにより得られる。   The novel compound represented by the general formula (1) is obtained by alkaline hydrolysis of the compound represented by the general formula (2) obtained by the above step 2 as in the step 3 represented by the following chemical reaction formula (III). Is obtained.

Figure 2010202589
[式中、R、R、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基である。]
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. ]

上記化学反応式(III)で示される工程3は、一般式(2)で示される化合物をアルカリ加水分解させる工程である。アルカリ加水分解は、溶媒の存在下で塩基を用いて反応させる方法により好適に行われる。アルカリ加水分解で用いられる塩基としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属水酸化物;水酸化カルシウム、水酸化バリウム等のアルカリ土類金属水酸化物などが挙げられる。これらの中でも、アルカリ金属水酸化物が好ましく用いられ、水酸化ナトリウムが特に好ましく用いられる。用いられる塩基の使用量は特に限定されず、一般式(2)で示される化合物1モルに対して、0.001〜1モルであることが好ましい。   Step 3 represented by the chemical reaction formula (III) is a step of subjecting the compound represented by the general formula (2) to alkali hydrolysis. Alkaline hydrolysis is suitably performed by a method of reacting with a base in the presence of a solvent. Examples of the base used in the alkaline hydrolysis include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide; alkaline earth metal hydroxides such as calcium hydroxide and barium hydroxide. Among these, alkali metal hydroxides are preferably used, and sodium hydroxide is particularly preferably used. The usage-amount of the base used is not specifically limited, It is preferable that it is 0.001-1 mol with respect to 1 mol of compounds shown by General formula (2).

工程3で用いられる溶媒としては、水、アルコールなどが好ましく用いられる。アルコールとしては、メタノール、エタノール、n−プロパノール、2−プロパノール等が挙げられる。これら溶媒は、単独で用いてもよいし、混合して用いてもよい。かかる溶媒の使用量は特に限定されず、一般式(2)で示される化合物1質量部に対して、1〜100質量部であることが好ましい。また、アルカリ加水分解させる際の反応温度については特に限定されず、0〜60℃であることが好ましい。反応温度が0℃未満の場合、反応速度が極めて遅くなるおそれがあり、10℃以上であることがより好ましい。一方、反応温度が60℃を超える場合、生成物の分解を促進するおそれがあり、40℃以下であることがより好ましい。   As the solvent used in Step 3, water, alcohol and the like are preferably used. Examples of the alcohol include methanol, ethanol, n-propanol, and 2-propanol. These solvents may be used alone or in combination. The usage-amount of this solvent is not specifically limited, It is preferable that it is 1-100 mass parts with respect to 1 mass part of compounds shown by General formula (2). Moreover, it does not specifically limit about the reaction temperature at the time of carrying out alkali hydrolysis, It is preferable that it is 0-60 degreeC. When reaction temperature is less than 0 degreeC, there exists a possibility that reaction rate may become very slow, and it is more preferable that it is 10 degreeC or more. On the other hand, when reaction temperature exceeds 60 degreeC, there exists a possibility of accelerating | stimulating decomposition | disassembly of a product, and it is more preferable that it is 40 degrees C or less.

また、本発明は、下記化学反応式(IV)で示される工程4のように、上記工程3により得られた一般式(1)で示される化合物を分子内環化反応させることにより、一般式(4)で示される2,3−ジヒドロ−チエノ[3,4−b]フラン誘導体を得ることを特徴とする。   Further, the present invention provides an intramolecular cyclization reaction of the compound represented by the general formula (1) obtained by the above step 3 as in the step 4 represented by the following chemical reaction formula (IV). A 2,3-dihydro-thieno [3,4-b] furan derivative represented by (4) is obtained.

Figure 2010202589
[式中、R、R、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基である。]
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. ]

上記工程4の好適な実施態様は、金属水素化物及び銅試薬を用いて分子内環化反応させる方法である。上記工程4で用いられる金属水素化物としては特に限定されず、水素化ナトリウム、水素化カリウム、水素化リチウム等のアルカリ金属水素化物;水素化カルシウム、水素化マグネシウム等のアルカリ土類金属水素化物などが挙げられる。中でも、反応性が良好である観点からアルカリ金属水素化物が好適に用いられる。金属水素化物の使用量としては特に限定されず、一般式(1)で示される化合物1モルに対して、1〜10モルであることが好ましい。   A preferred embodiment of the above step 4 is a method of carrying out an intramolecular cyclization reaction using a metal hydride and a copper reagent. The metal hydride used in Step 4 is not particularly limited, and alkali metal hydrides such as sodium hydride, potassium hydride, and lithium hydride; alkaline earth metal hydrides such as calcium hydride and magnesium hydride, and the like Is mentioned. Among these, alkali metal hydrides are preferably used from the viewpoint of good reactivity. It does not specifically limit as the usage-amount of a metal hydride, It is preferable that it is 1-10 mol with respect to 1 mol of compounds shown by General formula (1).

また、上記工程4で用いられる銅試薬としては特に限定されず、銅粉末;塩化銅(I)、臭化銅(I)、ヨウ化銅(I)等のハロゲン化銅などが挙げられる。反応性が良好である観点からハロゲン化銅が好適に用いられ、中でも臭化銅(I)が特に好適に用いられる。銅試薬の使用量としては特に限定されず、一般式(1)で示される化合物1モルに対して、0.01〜1モルであることが好ましい。   Moreover, it does not specifically limit as a copper reagent used at the said process 4, Copper halide; Copper halides, such as copper (I) chloride, copper (I) bromide, copper (I) iodide, etc. are mentioned. From the viewpoint of good reactivity, copper halide is preferably used, and copper (I) bromide is particularly preferably used. It does not specifically limit as the usage-amount of a copper reagent, It is preferable that it is 0.01-1 mol with respect to 1 mol of compounds shown by General formula (1).

上記工程4の分子内環化反応で用いられる溶媒としては特に限定されず、非プロトン性極性溶媒が好適に用いられる。具体例としては、N−メチルホルムアミド、N−エチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリジノン、1,3−ジメチル−2−イミダゾリジノン等のアミド系溶媒;ジメチルスルホキシド、メチルエチルスルホキシド、ジエチルスルホキシド等のスルホキシド系溶媒などが挙げられる。これらの溶媒は、単独で用いてもよいし、混合して用いてもよい。かかる溶媒の使用量は特に限定されず、一般式(1)で示される化合物1質量部に対して、1〜100質量部であることが好ましい。   It does not specifically limit as a solvent used by the intramolecular cyclization reaction of the said process 4, An aprotic polar solvent is used suitably. Specific examples include N-methylformamide, N-ethylformamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidinone, 1,3-dimethyl-2-imidazolidinone and other amide solvents. A sulfoxide solvent such as dimethyl sulfoxide, methyl ethyl sulfoxide, and diethyl sulfoxide; These solvents may be used alone or in combination. The usage-amount of this solvent is not specifically limited, It is preferable that it is 1-100 mass parts with respect to 1 mass part of compounds shown by General formula (1).

分子内環化反応させる際の反応温度については特に限定されず、50〜200℃であることが好ましい。反応温度が50℃未満の場合、反応速度が極めて遅くなるおそれがあり、70℃以上であることがより好ましく、90℃以上であることが更に好ましい。一方、反応温度が200℃を超える場合、生成物の分解を促進するおそれがあり、180℃以下であることがより好ましい。また、反応後に必要に応じて単離・精製を行ってもよい。具体例としては、反応混合物に水と、トルエン、酢酸エチル及び塩化メチレンなどの有機溶媒とを添加し、分液漏斗を用いて有機相と水相とに分離し、有機相を無水硫酸ナトリウムなどで乾燥後に濃縮し、得られた粗生成物を再結晶、蒸留、シリカゲルカラムクロマトグラフィなどにより精製する方法等が挙げられる。このことにより、純度の高い一般式(4)で示される2,3−ジヒドロ−チエノ[3,4−b]フラン誘導体を得ることができる。   The reaction temperature for the intramolecular cyclization reaction is not particularly limited, and is preferably 50 to 200 ° C. When reaction temperature is less than 50 degreeC, there exists a possibility that reaction rate may become very slow, it is more preferable that it is 70 degreeC or more, and it is still more preferable that it is 90 degreeC or more. On the other hand, when reaction temperature exceeds 200 degreeC, there exists a possibility of promoting decomposition | disassembly of a product, and it is more preferable that it is 180 degrees C or less. Moreover, you may isolate and refine | purify as needed after reaction. As a specific example, water and an organic solvent such as toluene, ethyl acetate and methylene chloride are added to the reaction mixture, and separated into an organic phase and an aqueous phase using a separatory funnel, and the organic phase is anhydrous sodium sulfate, etc. And then concentrating after drying, and the resulting crude product may be purified by recrystallization, distillation, silica gel column chromatography, or the like. Thereby, the 2,3-dihydro-thieno [3,4-b] furan derivative represented by the general formula (4) having high purity can be obtained.

以上説明したように、上記一般式(1)、(2)及び(3)で示される本発明の新規化合物を用いて得られる一般式(4)で示される2,3−ジヒドロ−チエノ[3,4−b]フラン誘導体は、例えば、医薬・農薬等の中間体や、特公昭48−14067号公報に記載されているような、食品、飲料、動物飼料、薬剤および煙草、もしくは芳香味剤組成物への添加剤として用いられるだけでなく、導電性材料、エレクトロクロミック材料、光電変換材料、エレクトロルミネッセンス材料、非線形光学材料、電界効果トランジスタ材料、RF−ID材料、メモリ材料、センサー材料、導電性プリントペースト、インクジェット塗料等に好適に用いられる重合体、特に好適には導電性ポリマーの原料モノマーとして有用である。   As explained above, 2,3-dihydro-thieno [3] represented by the general formula (4) obtained by using the novel compound of the present invention represented by the general formulas (1), (2) and (3) above. , 4-b] furan derivatives include, for example, intermediates such as pharmaceuticals and agricultural chemicals, foods, beverages, animal feeds, drugs and tobacco, or flavoring agents as described in Japanese Patent Publication No. 48-14067. In addition to being used as an additive to the composition, conductive materials, electrochromic materials, photoelectric conversion materials, electroluminescent materials, nonlinear optical materials, field effect transistor materials, RF-ID materials, memory materials, sensor materials, conductive materials The polymer is preferably used as a raw material monomer for a conductive polymer, particularly preferably for a conductive print paste and an ink jet paint.

以下、実施例を用いて本発明を更に具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

実施例1
[式(3a)で示される1−アセチル−2−(2,4,5−トリブロモチオフェン−3−イル)−エタンの合成]
温度計および滴下漏斗を備えた200mlの三口フラスコに、式(5a)で示される2−(チオフェン−3−イル)−エタン−1−オール15.0g(117mmol)および酢酸27mlを加えた。系内を窒素置換して50℃に加熱した後、臭素56.1g(351mmol)を30分かけて添加した。その後、反応容器を遮光し、50℃で15時間撹拌した。反応終了後、ヘキサン200ml、飽和チオ硫酸ナトリウム水溶液200mlおよび飽和炭酸水素ナトリウム水溶液200mlを添加した。有機相と水相を分離し、水相を200mlのヘキサンで抽出した。合わせた有機相を無水硫酸ナトリウムで乾燥した後、減圧下で濃縮することにより、式(3a)で示される1−アセチル−2−(2,4,5−トリブロモチオフェン−3−イル)−エタンの粗生成物を得た。化学反応式を以下に示す。
Example 1
[Synthesis of 1-acetyl-2- (2,4,5-tribromothiophen-3-yl) -ethane represented by the formula (3a)]
To a 200 ml three-necked flask equipped with a thermometer and a dropping funnel, 15.0 g (117 mmol) of 2- (thiophen-3-yl) -ethan-1-ol represented by the formula (5a) and 27 ml of acetic acid were added. The system was purged with nitrogen and heated to 50 ° C., and then 56.1 g (351 mmol) of bromine was added over 30 minutes. Thereafter, the reaction vessel was shielded from light and stirred at 50 ° C. for 15 hours. After completion of the reaction, 200 ml of hexane, 200 ml of saturated sodium thiosulfate aqueous solution and 200 ml of saturated sodium hydrogen carbonate aqueous solution were added. The organic and aqueous phases were separated and the aqueous phase was extracted with 200 ml of hexane. The combined organic phase was dried over anhydrous sodium sulfate and then concentrated under reduced pressure to give 1-acetyl-2- (2,4,5-tribromothiophen-3-yl)-represented by the formula (3a). A crude product of ethane was obtained. The chemical reaction formula is shown below.

Figure 2010202589
Figure 2010202589

式(3a)で示される1−アセチル−2−(2,4,5−トリブロモチオフェン−3−イル)−エタンのNMRデータは以下のとおりであった。
H−NMR(270MHz、CDCl、TMS) δ:4.22(t,2H,J=6.8Hz)、3.01(t,2H,J=6.8Hz)、2.05(s,3H)
The NMR data of 1-acetyl-2- (2,4,5-tribromothiophen-3-yl) -ethane represented by the formula (3a) was as follows.
1 H-NMR (270 MHz, CDCl 3 , TMS) δ: 4.22 (t, 2H, J = 6.8 Hz), 3.01 (t, 2H, J = 6.8 Hz), 2.05 (s, 3H)

実施例2
[式(2a)で示される1−アセチル−2−(4−ブロモチオフェン−3−イル)−エタンの合成]
温度計および滴下漏斗を備えた300mlの三口フラスコに、酢酸30ml、亜鉛粉末30.6g(469mmol)を加えた。系内を窒素置換し70℃に加熱した後、酢酸20mlで希釈した実施例1で得られた式(3a)で示される1−アセチル−2−(2,4,5−トリブロモチオフェン−3−イル)−エタンの粗生成物を全量1時間かけて添加した。その後、系内を100℃に加熱し、3時間撹拌した。反応終了後、系内を室温に冷却した後、ヘキサン200mlと飽和食塩水200mlを添加した。有機相と水相を分離し、水相を200mlのヘキサンで抽出した。合わせた有機相を無水硫酸ナトリウムで乾燥した後、減圧下で濃縮することにより、式(2a)で示される1−アセチル−2−(4−ブロモチオフェン−3−イル)−エタンの粗生成物を得た。化学反応式を以下に示す。
Example 2
[Synthesis of 1-acetyl-2- (4-bromothiophen-3-yl) -ethane represented by the formula (2a)]
To a 300 ml three-necked flask equipped with a thermometer and a dropping funnel, 30 ml of acetic acid and 30.6 g (469 mmol) of zinc powder were added. 1-acetyl-2- (2,4,5-tribromothiophene-3 represented by the formula (3a) obtained in Example 1 diluted with 20 ml of acetic acid after replacing the system with nitrogen and heating to 70 ° C. The total amount of -yl) -ethane crude product was added over 1 hour. Thereafter, the system was heated to 100 ° C. and stirred for 3 hours. After completion of the reaction, the system was cooled to room temperature, and 200 ml of hexane and 200 ml of saturated brine were added. The organic and aqueous phases were separated and the aqueous phase was extracted with 200 ml of hexane. The combined organic phases were dried over anhydrous sodium sulfate and concentrated under reduced pressure to give a crude product of 1-acetyl-2- (4-bromothiophen-3-yl) -ethane represented by the formula (2a) Got. The chemical reaction formula is shown below.

Figure 2010202589
Figure 2010202589

式(2a)で示される1−アセチル−2−(4−ブロモチオフェン−3−イル)−エタンのNMRデータは以下のとおりであった。
H−NMR(270MHz、CDCl、TMS) δ:7.24(d,1H,J=3.5Hz)、7.06(d,1H,J=3.5Hz)、4.29(t,2H,J=7.0Hz)、2.94(t,2H,J=7.0Hz)、2.04(s,3H)
The NMR data of 1-acetyl-2- (4-bromothiophen-3-yl) -ethane represented by the formula (2a) was as follows.
1 H-NMR (270MHz, CDCl 3, TMS) δ: 7.24 (d, 1H, J = 3.5Hz), 7.06 (d, 1H, J = 3.5Hz), 4.29 (t, 2H, J = 7.0 Hz), 2.94 (t, 2H, J = 7.0 Hz), 2.04 (s, 3H)

実施例3
[式(1a)で示される2−(4−ブロモチオフェン−3−イル)−エタン−1−オールの合成]
温度計を備えた200mlの三口フラスコに、35wt%水酸化ナトリウム水溶液50mlおよびエタノール50mlを加えた。系内に実施例2で得られた式(2a)で示される1−アセチル−2−(4−ブロモチオフェン−3−イル)−エタンの粗生成物を全量添加し、室温(20℃)で10分間撹拌した。反応終了後、トルエン100mlおよび飽和食塩水100mlを加え、有機相と水相を分離し、水相を100mlのトルエンで3回抽出した。合わせた有機相を、無水硫酸ナトリウムで乾燥した後、減圧下で濃縮することにより、式(1a)で示される2−(4−ブロモチオフェン−3−イル)−エタン−1−オールの粗生成物を得た。この粗生成物をシリカゲルカラムクロマトグラフィで精製することにより、下記の物性を有する式(1a)で示される2−(4−ブロモチオフェン−3−イル)−エタン−1−オール13.2g(63.7mmol、式(5a)で示される化合物からの単離収率54.5%)を得た。化学反応式を以下に示す。
Example 3
[Synthesis of 2- (4-bromothiophen-3-yl) -ethan-1-ol represented by the formula (1a)]
To a 200 ml three-necked flask equipped with a thermometer, 50 ml of 35 wt% aqueous sodium hydroxide and 50 ml of ethanol were added. The whole amount of the crude product of 1-acetyl-2- (4-bromothiophen-3-yl) -ethane represented by the formula (2a) obtained in Example 2 was added to the system, and the mixture was added at room temperature (20 ° C.). Stir for 10 minutes. After completion of the reaction, 100 ml of toluene and 100 ml of saturated brine were added, the organic phase and the aqueous phase were separated, and the aqueous phase was extracted 3 times with 100 ml of toluene. The combined organic phases are dried over anhydrous sodium sulfate and then concentrated under reduced pressure to give a crude product of 2- (4-bromothiophen-3-yl) -ethan-1-ol represented by formula (1a) I got a thing. By purifying the crude product by silica gel column chromatography, 13.2 g (63. 2) of 2- (4-bromothiophen-3-yl) -ethan-1-ol represented by the formula (1a) having the following physical properties was obtained. 7 mmol, an isolated yield of 54.5% from the compound represented by the formula (5a)). The chemical reaction formula is shown below.

Figure 2010202589
Figure 2010202589

式(1a)で示される2−(4−ブロモチオフェン−3−イル)−エタン−1−オールのNMRデータは以下のとおりであった。
H−NMR(270MHz、CDCl、TMS) δ:7.25(d,1H,J=3.5Hz)、7.10(d,1H,J=3.5Hz)、3.85(t,2H,J=6.5Hz)、2.88(t,2H,J=6.5Hz)、1.70(br,1H)
The NMR data of 2- (4-bromothiophen-3-yl) -ethan-1-ol represented by the formula (1a) was as follows.
1 H-NMR (270 MHz, CDCl 3 , TMS) δ: 7.25 (d, 1H, J = 3.5 Hz), 7.10 (d, 1H, J = 3.5 Hz), 3.85 (t, 2H, J = 6.5 Hz), 2.88 (t, 2H, J = 6.5 Hz), 1.70 (br, 1H)

実施例4
[式(4a)で示される2,3−ジヒドロ−チエノ[3,4−b]フランの合成]
温度計を備えた内容積50mlの三口フラスコに、式(1a)で示される2−(4−ブロモチオフェン−3−イル)−エタン−1−オール5.40g(26.1mmol)およびN−メチルピロリジノン10mlを加えた。系内を窒素で置換した後、水素化ナトリウム(60%)1.25g(31.3mmol)を添加し、室温にて20分撹拌した。系内を95℃に加熱した後、臭化銅(I)0.47g(3.3mmol)を添加し、2分間撹拌した。反応終了後、反応容器を氷冷した後、蒸留水10mlおよびトルエン30mlを添加し、有機相と水相を分離し、水相を30mlのトルエンで抽出した。合わせた有機相を無水硫酸ナトリウムで乾燥後、減圧下で濃縮することにより粗生成物を得た。この粗生成物をシリカゲルカラムクロマトグラフィで精製することにより、下記の物性を有する式(4a)で示される2,3−ジヒドロ−チエノ[3,4−b]フラン250mg(1.98mmol、単離収率7.6%)を得た。化学反応式を以下に示す。
Example 4
[Synthesis of 2,3-dihydro-thieno [3,4-b] furan represented by the formula (4a)]
In a three-necked flask with an internal volume of 50 ml equipped with a thermometer, 5.40 g (26.1 mmol) of 2- (4-bromothiophen-3-yl) -ethan-1-ol represented by the formula (1a) and N-methyl 10 ml of pyrrolidinone was added. After replacing the system with nitrogen, 1.25 g (31.3 mmol) of sodium hydride (60%) was added, and the mixture was stirred at room temperature for 20 minutes. After heating the system to 95 ° C., 0.47 g (3.3 mmol) of copper (I) bromide was added and stirred for 2 minutes. After completion of the reaction, the reaction vessel was ice-cooled, 10 ml of distilled water and 30 ml of toluene were added, the organic phase and the aqueous phase were separated, and the aqueous phase was extracted with 30 ml of toluene. The combined organic phases were dried over anhydrous sodium sulfate and concentrated under reduced pressure to obtain a crude product. By purifying the crude product by silica gel column chromatography, 250 mg (1.98 mmol, 2,98% of 2,3-dihydro-thieno [3,4-b] furan represented by the formula (4a) having the following physical properties was isolated. Rate 7.6%). The chemical reaction formula is shown below.

Figure 2010202589
Figure 2010202589

式(4a)で示される2,3−ジヒドロ−チエノ[3,4−b]フランのNMRデータは以下のとおりであった。
H−NMR(270MHz、CDCl、TMS) δ:6.72(d−d,1H,J=2.4Hz,1.4Hz)、6.01(d,1H,J=2.4Hz)、4.89(t,2H,J=7.8)、2.99(d−t,2H,J=1.4Hz,7.8Hz)
The NMR data of 2,3-dihydro-thieno [3,4-b] furan represented by the formula (4a) were as follows.
1 H-NMR (270 MHz, CDCl 3 , TMS) δ: 6.72 (dd, 1H, J = 2.4 Hz, 1.4 Hz), 6.01 (d, 1H, J = 2.4 Hz), 4.89 (t, 2H, J = 7.8), 2.99 (dt, 2H, J = 1.4 Hz, 7.8 Hz)

Claims (7)

下記一般式(1):
Figure 2010202589
[式中、R、R、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基である。]
で示される化合物。
The following general formula (1):
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. ]
A compound represented by
下記一般式(2):
Figure 2010202589
[式中、R、R、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基である。]
で示される化合物。
The following general formula (2):
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. ]
A compound represented by
下記一般式(3):
Figure 2010202589
[式中、R、R、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基である。]
で示される化合物。
The following general formula (3):
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. ]
A compound represented by
下記一般式(1):
Figure 2010202589
[式中、R、R、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基である。]
で示される化合物を分子内環化反応させる、下記一般式(4):
Figure 2010202589
[式中、R、R、R及びRは、前記と同義である。]
で示される2,3−ジヒドロ−チエノ[3,4−b]フラン誘導体の製造方法。
The following general formula (1):
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. ]
The following general formula (4):
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 have the same meanings as described above. ]
The manufacturing method of the 2,3-dihydro-thieno [3,4-b] furan derivative shown by these.
下記一般式(2):
Figure 2010202589
[式中、R、R、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基である。]
で示される化合物をアルカリ加水分解させる、下記一般式(1):
Figure 2010202589
[式中、R、R、R及びRは、前記と同義である。]
で示される化合物の製造方法。
The following general formula (2):
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. ]
The following general formula (1):
Figure 2010202589
Wherein, R 1, R 2, R 3 and R 4 have the same meanings as defined above. ]
The manufacturing method of the compound shown by these.
下記一般式(3):
Figure 2010202589
[式中、R、R、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基である。]
で示される化合物を脱臭素化反応させる、下記一般式(2):
Figure 2010202589
[式中、R、R、R及びRは、前記と同義である。]
で示される化合物の製造方法。
The following general formula (3):
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. ]
The following general formula (2):
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 have the same meanings as described above. ]
The manufacturing method of the compound shown by these.
下記一般式(5):
Figure 2010202589
[式中、R、R、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基である。]
で示される化合物に対して臭素及び酢酸を反応させる、下記一般式(3):
Figure 2010202589
[式中、R、R、R及びRは、前記と同義である。]
で示される化合物の製造方法。
The following general formula (5):
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. ]
In the following general formula (3), bromine and acetic acid are reacted with the compound represented by:
Figure 2010202589
[Wherein, R 1 , R 2 , R 3 and R 4 have the same meanings as described above. ]
The manufacturing method of the compound shown by these.
JP2009050309A 2009-03-04 2009-03-04 METHOD FOR PRODUCING 2,3-DIHYDRO-THIENO[3,4-b]FURAN DERIVATIVE AND NEW COMPOUND USED THEREFOR Pending JP2010202589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009050309A JP2010202589A (en) 2009-03-04 2009-03-04 METHOD FOR PRODUCING 2,3-DIHYDRO-THIENO[3,4-b]FURAN DERIVATIVE AND NEW COMPOUND USED THEREFOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009050309A JP2010202589A (en) 2009-03-04 2009-03-04 METHOD FOR PRODUCING 2,3-DIHYDRO-THIENO[3,4-b]FURAN DERIVATIVE AND NEW COMPOUND USED THEREFOR

Publications (1)

Publication Number Publication Date
JP2010202589A true JP2010202589A (en) 2010-09-16

Family

ID=42964444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009050309A Pending JP2010202589A (en) 2009-03-04 2009-03-04 METHOD FOR PRODUCING 2,3-DIHYDRO-THIENO[3,4-b]FURAN DERIVATIVE AND NEW COMPOUND USED THEREFOR

Country Status (1)

Country Link
JP (1) JP2010202589A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4814067B1 (en) * 1968-12-27 1973-05-02
JP2001501954A (en) * 1996-10-10 2001-02-13 マサチューセッツ インスティテュート オブ テクノロジー Synthesis of aryl ethers, related methods and reagents

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4814067B1 (en) * 1968-12-27 1973-05-02
JP2001501954A (en) * 1996-10-10 2001-02-13 マサチューセッツ インスティテュート オブ テクノロジー Synthesis of aryl ethers, related methods and reagents

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6013021684; SPINELLI,D. et al: 'Transmission of substituent effects in systems with bonds of different order.  Kinetics of the react' Journal of the Chemical Society, Perkin Transactions 2:  Physical Organic Chemistry(1972-1999) No.4, 1972, pp.441-445 *
JPN6013021688; KATAOKA,N. et al: 'Air stable, sterically hindered ferrocenyl dialkylphosphines for palladium-catalyzed C-C, C-N, and C' Journal of Organic Chemistry Vol.67, No.16, 2002, pp.5553-5566 *
JPN6013021691; FAGAN,P.J. et al: 'Using Intelligent/Random Library Screening To Design Focused Libraries for the Optimization of Homog' Journal of the American Chemical Society Vol.122, No.21, 2000, pp.5043-5051 *
JPN7013001682; KUNES,J. et al: 'Synthesis and antifungal activity evaluation of 3-heteroaryl-2,5-dihydrofuran-2-ones. An unusual fra' Collection of Czechoslovak Chemical Communications Vol.66, No.12, 2001, pp.1809-1830 *

Similar Documents

Publication Publication Date Title
JP7339946B2 (en) Method for producing 2-(5-methoxyisochroman-1-yl)-4,5-dihydro-1H-imidazole and hydrogen sulfate thereof
JPS6240358B2 (en)
KR101345394B1 (en) Process for preparing 5-(3,6-dihydro-2,6-dioxo-4-trifluoromethyl-1(2h)-pyrimidinyl)phenylthiol compounds
KR101583851B1 (en) Method for producing 3-methyl-2-thiophenecarboxylic acid
KR101112731B1 (en) Method for preparing 3-iodothyronamine
JP2010202589A (en) METHOD FOR PRODUCING 2,3-DIHYDRO-THIENO[3,4-b]FURAN DERIVATIVE AND NEW COMPOUND USED THEREFOR
DK3250556T3 (en) PROCEDURES FOR THE PREPARATION OF COMPOUNDS, SUCH AS 3-ARYL BUTANALS THAT CAN BE USED FOR THE SYNTHESIS OF MEDETOMIDINE
EP2909164A1 (en) A process for the preparation of ospemifene
KR101308227B1 (en) Method for producing nicotinic acid derivative or salt thereof
KR102221534B1 (en) Process for the synthesis of substituted gamma lactams
KR101313365B1 (en) Process for the manufacture of hydroxylated isoflavones
JP6256469B2 (en) Process for the preparation of spiro [2.5] octane-5,7-dione
CN102731452A (en) Preparation method of vilazodone intermediate
WO2008115912A1 (en) Regio-specific synthesis of 4-bromo-3-methyl-5-propoxy-thiophene-2-carboxylic acid
JP4561635B2 (en) Process for producing 4-alkoxycarbonyltetrahydropyran or tetrahydropyranyl-4-carboxylic acid
CN110563568B (en) Preparation method of trifluoroacetylacetone
CN103497125B (en) Preparation method of ethylidene hydrazinoformate
JP4667589B2 (en) Method for producing 2,4-dihydroxypyridine
KR101606395B1 (en) Process for the preparation of agomelatine
KR20080094075A (en) Process for preparing 3,4-disubstituted phenylacetic acids and novel intermediates
CN115108904A (en) Synthesis method of betimeric acid bulk drug
JP4663105B2 (en) Method for producing 2-sulfonyl-4-oxypyridine derivative
JP4690733B2 (en) Method for producing 3-hydroxypyrazole-1-carboxamide derivative
Shah Phase transfer catalysis assisted thorpe reaction for the synthesis of 3-aminothiophene-2-carboxylates
JP5763313B2 (en) Process for producing 2- (1-benzothiophen-5-yl) ethanol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A02 Decision of refusal

Effective date: 20131001

Free format text: JAPANESE INTERMEDIATE CODE: A02