JP5763313B2 - Process for producing 2- (1-benzothiophen-5-yl) ethanol - Google Patents

Process for producing 2- (1-benzothiophen-5-yl) ethanol Download PDF

Info

Publication number
JP5763313B2
JP5763313B2 JP2010196365A JP2010196365A JP5763313B2 JP 5763313 B2 JP5763313 B2 JP 5763313B2 JP 2010196365 A JP2010196365 A JP 2010196365A JP 2010196365 A JP2010196365 A JP 2010196365A JP 5763313 B2 JP5763313 B2 JP 5763313B2
Authority
JP
Japan
Prior art keywords
benzothiophen
added
ethanol
borohydride
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010196365A
Other languages
Japanese (ja)
Other versions
JP2011074073A (en
Inventor
孝彦 草薙
孝彦 草薙
尚徳 中村
尚徳 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Chemical Co Ltd
Original Assignee
Toyama Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama Chemical Co Ltd filed Critical Toyama Chemical Co Ltd
Priority to JP2010196365A priority Critical patent/JP5763313B2/en
Publication of JP2011074073A publication Critical patent/JP2011074073A/en
Application granted granted Critical
Publication of JP5763313B2 publication Critical patent/JP5763313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、医薬品の製造中間体として重要な2−(1−ベンゾチオフェン−5−イル)エタノールの新規製造法に関する。   The present invention relates to a novel process for producing 2- (1-benzothiophen-5-yl) ethanol, which is important as a pharmaceutical production intermediate.

2−(1−ベンゾチオフェン−5−イル)エタノールは、医薬品の製造中間体として重要な化合物である。たとえば、神経変性疾患治療薬として開発されている1−(3−(2−(1−ベンゾチオフェン−5−イル)エトキシ)プロピル)−3−アゼチジノール=マレイン酸塩は、2−(1−ベンゾチオフェン−5−イル)エタノールから製造される(特許文献1、2)。
2−(1−ベンゾチオフェン−5−イル)エタノールの工業的な製造法として、たとえば、5−ブロモベンゾチオフェンをパラジウム触媒存在下、マロン酸誘導体とカップリング反応した後、加水分解して(1−ベンゾチオフェン−5−イル)酢酸とし、水素化ホウ素アルカリ金属存在下、プロトン酸を添加して還元する方法(特許文献1)が報告されている。
2- (1-Benzothiophen-5-yl) ethanol is an important compound as a pharmaceutical intermediate. For example, 1- (3- (2- (1- (benzothiophen-5-yl) ethoxy) propyl) -3-azetidinol maleate, which is being developed as a therapeutic agent for neurodegenerative diseases, is 2- (1-benzo It is produced from thiophen-5-yl) ethanol (Patent Documents 1 and 2).
As an industrial production method of 2- (1-benzothiophen-5-yl) ethanol, for example, 5-bromobenzothiophene is subjected to a coupling reaction with a malonic acid derivative in the presence of a palladium catalyst, followed by hydrolysis (1 -Benzophenphen-5-yl) acetic acid, and a method of reducing by adding a protonic acid in the presence of an alkali metal borohydride (Patent Document 1) has been reported.

国際公開第2006/104088号パンフレットInternational Publication No. 2006/104088 Pamphlet 国際公開第03/035647号パンフレットInternational Publication No. 03/035647 Pamphlet

さらに優れた2−(1−ベンゾチオフェン−5−イル)エタノールの工業的な製造法が、強く望まれている。   Further, an excellent industrial production method of 2- (1-benzothiophen-5-yl) ethanol is strongly desired.

このような状況下において、本発明者らは鋭意検討を行った結果、(1−ベンゾチオフェン−5−イル)酢酸またはその塩をエステル化し、一般式[1]

Figure 0005763313
「式中、Rは、置換されていてもよいアルキル、シクロアルキルまたはアルアルキル基を示す。」で表される化合物を得た後、水素化ホウ素錯化合物による還元反応に付すことにより、副生成物が少なく、爆発性の高い水素ガスをほとんど発生させずに、高収率で高純度の2−(1−ベンゾチオフェン−5−イル)エタノールを製造できることを見出し、本発明を完成させた。 Under such circumstances, as a result of intensive studies, the present inventors esterified (1-benzothiophen-5-yl) acetic acid or a salt thereof, and represented by the general formula [1]
Figure 0005763313
After obtaining a compound represented by “wherein R 1 represents an optionally substituted alkyl, cycloalkyl or aralkyl group”, a reduction reaction with a borohydride complex compound is performed, whereby a secondary reaction is performed. The inventors found that 2- (1-benzothiophen-5-yl) ethanol with high yield and high purity can be produced with few products and almost no generation of highly explosive hydrogen gas, and completed the present invention. .

本発明の製造法は、(1)生成率が高い、(2)副生成物が少ない、(3)爆発性の高い水素ガスがほとんど発生しない、(4)収率が高い、(5)純度が高い、(6)反応の後処理が簡便である、などの特長を有している。すなわち、本発明の製造法は、人体に対して安全で、環境負荷が少なく、2−(1−ベンゾチオフェン−5−イル)エタノールの製造法として有用である。   The production method of the present invention has (1) high production rate, (2) few by-products, (3) almost no explosive hydrogen gas is generated, (4) high yield, (5) purity And (6) simple post-treatment of the reaction. That is, the production method of the present invention is safe for the human body, has little environmental impact, and is useful as a method for producing 2- (1-benzothiophen-5-yl) ethanol.

以下、本発明を詳細に説明する。
本明細書において、特にことわらない限り、各用語は、次の意味を有する。
ハロゲン原子とは、フッ素原子、塩素原子、臭素原子およびヨウ素原子を意味する。
アルキル基とは、たとえば、メチル、エチル、プロピル、イソプロピル、ブチル、sec−ブチル、イソブチル、tert−ブチル、ペンチル、イソペンチルおよびヘキシルなどの直鎖状または分枝鎖状のC1−6アルキル基を意味する。
シクロアルキル基とは、たとえば、シクロプロピル、シクロブチル、シクロペンチルおよびシクロヘキシルなどのC3−8シクロアルキル基を意味する。
アルアルキル基とは、たとえば、ベンジル、ジフェニルメチル、トリチル、フェネチルおよびナフチルメチルなどのアルC1−6アルキル基を意味する。
アルコキシ基とは、たとえば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、sec−ブトキシ、tert−ブトキシ、ペンチルオキシおよびイソペンチルオキシなどの直鎖状または分枝鎖状のC1−6アルキルオキシ基を意味する。
アリール基とは、たとえば、フェニルおよびナフチル基などの基を意味する。
Hereinafter, the present invention will be described in detail.
In this specification, unless otherwise stated, each term has the following meaning.
A halogen atom means a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
The alkyl group is, for example, a linear or branched C 1-6 alkyl group such as methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, isobutyl, tert-butyl, pentyl, isopentyl and hexyl. means.
A cycloalkyl group means, for example, a C 3-8 cycloalkyl group such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
An aralkyl group means an ar C 1-6 alkyl group such as benzyl, diphenylmethyl, trityl, phenethyl and naphthylmethyl.
The alkoxy group is, for example, linear or branched C 1-6 alkyl such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy and isopentyloxy. Means an oxy group.
An aryl group means groups such as phenyl and naphthyl groups.

のアルキル、シクロアルキルおよびアルアルキル基は、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基およびアリール基などから選ばれる1つ以上の基で置換されていてもよい。 The alkyl, cycloalkyl, and aralkyl groups of R 1 may be substituted with one or more groups selected from a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, an aryl group, and the like.

本発明において、好ましい製造法としては、以下の方法が挙げられる。   In the present invention, as a preferable production method, the following methods may be mentioned.

酸触媒が、硫酸である方法が好ましい。
ハロゲン化剤が、塩化チオニルである方法が好ましい。
が、アルキル、シクロアルキルまたはアルアルキル基である化合物を用いる方法が好ましく、メチル基、エチル基またはプロピル基である化合物を用いる方法がより好ましい。
水素化ホウ素錯化合物が、水素化ホウ素リチウム、水素化ホウ素カリウム、水素化ホウ素ナトリウムまたは水素化ホウ素カルシウムである方法が好ましく、水素化ホウ素リチウム、水素化ホウ素カリウムまたは水素化ホウ素ナトリウムである方法がより好ましい。
水素化ホウ素カリウムおよび水素化ホウ素ナトリウムを用いる場合、ハロゲン化金属塩を用いる方法が好ましく、ハロゲン化金属塩として塩化リチウムまたは塩化マグネシウムを用いる方法がより好ましい。
水素化ホウ素錯化合物が、水素化ホウ素リチウムである方法がより好ましい。
A method in which the acid catalyst is sulfuric acid is preferred.
A method in which the halogenating agent is thionyl chloride is preferred.
A method using a compound in which R 1 is an alkyl, cycloalkyl, or aralkyl group is preferable, and a method using a compound in which R 1 is a methyl group, an ethyl group, or a propyl group is more preferable.
A method in which the borohydride complex compound is lithium borohydride, potassium borohydride, sodium borohydride, or calcium borohydride is preferable, and a method in which lithium borohydride, potassium borohydride, or sodium borohydride is used. More preferred.
When using potassium borohydride and sodium borohydride, a method using a metal halide salt is preferable, and a method using lithium chloride or magnesium chloride as the metal halide salt is more preferable.
A method in which the borohydride complex compound is lithium borohydride is more preferable.

次に、本発明の製造方法について説明する。   Next, the manufacturing method of this invention is demonstrated.

[第一工程]

Figure 0005763313
「式中、Rは、前記と同様の意味を有する。」 [First step]
Figure 0005763313
“Wherein R 1 has the same meaning as described above.”

一般式[1]の化合物は、式[2]の化合物またはその塩を、酸触媒またはハロゲン化剤の存在下、一般式[3]で表されるアルコールと反応することにより製造することができる。
この反応に使用される酸としては、たとえば、塩酸、硫酸、塩化水素および臭化水素などの無機酸;ならびにメタンスルホン酸およびp−トルエンスルホン酸などの有機スルホン酸などが挙げられる。好ましい酸としては、無機酸が挙げられ、硫酸および塩化水素がより好ましく、硫酸がさらに好ましい。
酸の使用量は、式[2]の化合物またはその塩に対して0.0001倍モル以上用いればよく、好ましくは、0.01〜0.1倍モルである。
この反応に使用されるハロゲン化剤としては、たとえば、オキシ塩化リン、オキシ臭化リン、三塩化リン、五塩化リン、塩化チオニル、臭化チオニルおよび塩化オキサリルなどが挙げられ、塩化チオニルが好ましい。
ハロゲン化剤の使用量は、ハロゲン化剤の種類により異なるが、たとえば、塩化チオニルの場合、式[2]の化合物またはその塩に対して0.5倍モル以上あればよく、好ましくは、1〜2倍モルである。
一般式[3]で表されるアルコールとしては、メタノール、エタノール、プロパノール、ブタノールおよびペンタノールなどの直鎖アルキルアルコール類;イソブチルアルコールなどの分枝鎖アルキルアルコール類;メトキシエタノール、クロロエタノールおよびシクロヘキサンエタノールなどの置換アルキルアルコール類;シクロプロピルアルコールおよびシクロブチルアルコールなどのシクロアルキルアルコール類;ならびにベンジルアルコールおよびフェネチルアルコールなどのアルアルキルアルコール類などが挙げられる。好ましいアルコールとしては直鎖アルキルアルコール類が挙げられ、メタノール、エタノール、プロパノールおよびブタノールがより好ましい。
アルコールの使用量は、式[2]の化合物またはその塩に対して1倍モル以上用いればよく、好ましくは、溶媒としての機能をもたせるため0.5〜10倍量(v/w)、より好ましくは、0.5〜5倍量(v/w)である。
The compound of the general formula [1] can be produced by reacting the compound of the formula [2] or a salt thereof with an alcohol represented by the general formula [3] in the presence of an acid catalyst or a halogenating agent. .
Examples of the acid used in this reaction include inorganic acids such as hydrochloric acid, sulfuric acid, hydrogen chloride, and hydrogen bromide; and organic sulfonic acids such as methanesulfonic acid and p-toluenesulfonic acid. Preferable acids include inorganic acids, sulfuric acid and hydrogen chloride are more preferable, and sulfuric acid is more preferable.
The amount of the acid used may be 0.0001 times mol or more, preferably 0.01 to 0.1 times mol for the compound of formula [2] or a salt thereof.
Examples of the halogenating agent used in this reaction include phosphorus oxychloride, phosphorus oxybromide, phosphorus trichloride, phosphorus pentachloride, thionyl chloride, thionyl bromide, and oxalyl chloride, with thionyl chloride being preferred.
The amount of the halogenating agent used varies depending on the type of the halogenating agent. For example, in the case of thionyl chloride, the amount of the halogenating agent may be 0.5 times mol or more based on the compound of the formula [2] or a salt thereof, and preferably 1-2. Double mole.
Examples of the alcohol represented by the general formula [3] include linear alkyl alcohols such as methanol, ethanol, propanol, butanol and pentanol; branched alkyl alcohols such as isobutyl alcohol; methoxyethanol, chloroethanol and cyclohexaneethanol Substituted alkyl alcohols such as; cycloalkyl alcohols such as cyclopropyl alcohol and cyclobutyl alcohol; and aralkyl alcohols such as benzyl alcohol and phenethyl alcohol. Preferred alcohols include linear alkyl alcohols, and methanol, ethanol, propanol and butanol are more preferred.
The alcohol may be used in an amount of 1-fold mol or more based on the compound of the formula [2] or a salt thereof, and preferably 0.5 to 10-fold amount (v / w), more preferably to give a function as a solvent. , 0.5 to 5 times the amount (v / w).

酸触媒を用いる場合、脱水剤の存在下に実施することが好ましい。使用される脱水剤としては、たとえば、オルトぎ酸トリメチルおよびオルトぎ酸トリエチルなどのオルトぎ酸エステル類;オルト酢酸トリメチルおよびオルト酢酸トリエチルなどのオルト酢酸エステル類;炭酸ジメチルおよび炭酸ジエチルなどの炭酸エステル類;モレキュラシーブなどのゼオライト類;酢酸マグネシウムなどの無水無機塩などが挙げられる。
脱水剤の使用量は、脱水剤の種類により異なるが、たとえば、オルトぎ酸エステル類およびオルト酢酸エステル類の場合、式[2]の化合物またはその塩に対して1倍モル以上用いればよく、好ましくは、1〜2倍モルである。
When an acid catalyst is used, it is preferably carried out in the presence of a dehydrating agent. Examples of the dehydrating agent used include orthoformates such as trimethyl orthoformate and triethyl orthoformate; orthoacetic esters such as trimethyl orthoacetate and triethyl orthoacetate; carbonate esters such as dimethyl carbonate and diethyl carbonate. And zeolites such as molecular sieves and anhydrous inorganic salts such as magnesium acetate.
The amount of dehydrating agent used varies depending on the type of dehydrating agent. For example, in the case of orthoformate esters and orthoacetate esters, it may be used in an amount of 1 mol or more based on the compound of formula [2] or a salt thereof. Preferably, it is 1-2 times mole.

この反応は、溶媒の存在下に実施してもよい。使用される溶媒としては、反応に影響を及ぼさないものであれば特に限定されないが、たとえば、ヘキサンおよびシクロヘキサンなどの脂肪族炭化水素類;ベンゼン、トルエンおよびキシレンなどの芳香族炭化水素類;塩化メチレンおよびクロロホルムなどのハロゲン化炭化水素類;テトラヒドロフラン、1,2−ジメトキシエタンおよびジオキサンなどのエーテル類;ジメチルスルホキシドなどのスルホキシド類などが挙げられ、これらの溶媒は、混合して使用してもよい。
溶媒の使用量は、特に限定されないが、好ましくは、式[2]の化合物またはその塩に対して0.5〜10倍量(v/w)、より好ましくは、0.5〜3倍量(v/w)である。
This reaction may be carried out in the presence of a solvent. The solvent used is not particularly limited as long as it does not affect the reaction. For example, aliphatic hydrocarbons such as hexane and cyclohexane; aromatic hydrocarbons such as benzene, toluene and xylene; methylene chloride And halogenated hydrocarbons such as chloroform; ethers such as tetrahydrofuran, 1,2-dimethoxyethane and dioxane; sulfoxides such as dimethyl sulfoxide, and the like. These solvents may be used as a mixture.
The amount of the solvent to be used is not particularly limited, but preferably 0.5 to 10 times (v / w), more preferably 0.5 to 3 times (v / w) the compound of formula [2] or a salt thereof. ).

このようにして得られた一般式[1]の化合物は、単離せずにそのまま次の反応に用いてもよい。   The compound of the general formula [1] thus obtained may be used as it is in the next reaction without isolation.

[第二工程]

Figure 0005763313
「式中、Rは、前記と同様の意味を有する。」 [Second step]
Figure 0005763313
“Wherein R 1 has the same meaning as described above.”

式[4]の化合物は、一般式[1]の化合物を水素化ホウ素錯化合物による還元反応に付すことにより製造することができる。
この反応は、通常、溶媒の存在下に実施され、使用される溶媒としては、反応に影響を及ぼさないものであれば特に限定されないが、たとえば、塩化メチレン、クロロホルムおよびジクロロエタンなどのハロゲン化炭化水素類;テトラヒドロフラン、1,2−ジメトキシエタン、ビス(2−メトキシエチル)エーテルおよびジオキサンなどのエーテル類;メタノール、エタノール、プロパノール、2−プロパノールおよびブタノールなどのアルコール類;アセトニトリルなどのニトリル類;ベンゼン、トルエンおよびキシレンなどの芳香族炭化水素類;ならびに水などが挙げられ、これらの溶媒は混合して使用してもよい。
好ましい溶媒としては、エーテル類および芳香族炭化水素類の混合溶媒が挙げられ、テトラヒドロフランおよびトルエンの混合溶媒がより好ましい。
溶媒の使用量は、特に限定されないが、好ましくは、一般式[1]の化合物に対して1〜20倍量(v/w)、より好ましくは、2〜10倍量(v/w)である。
The compound of the formula [4] can be produced by subjecting the compound of the general formula [1] to a reduction reaction with a borohydride complex compound.
This reaction is usually carried out in the presence of a solvent, and the solvent used is not particularly limited as long as it does not affect the reaction. For example, halogenated hydrocarbons such as methylene chloride, chloroform and dichloroethane. Ethers such as tetrahydrofuran, 1,2-dimethoxyethane, bis (2-methoxyethyl) ether and dioxane; alcohols such as methanol, ethanol, propanol, 2-propanol and butanol; nitriles such as acetonitrile; benzene, Examples thereof include aromatic hydrocarbons such as toluene and xylene; and water. These solvents may be used as a mixture.
As a preferable solvent, a mixed solvent of ethers and aromatic hydrocarbons can be mentioned, and a mixed solvent of tetrahydrofuran and toluene is more preferable.
Although the usage-amount of a solvent is not specifically limited, Preferably it is 1-20 times amount (v / w) with respect to the compound of General formula [1], More preferably, it is 2-10 times amount (v / w) is there.

この反応で使用される水素化ホウ素錯化合物としては、たとえば、水素化ホウ素リチウム、水素化ホウ素ナトリウムおよび水素化ホウ素カリウムなどの水素化ホウ素アルカリ金属;ならびに水素化ホウ素カルシウムなどの水素化ホウ素アルカリ土類金属などが挙げられる。
好ましい水素化ホウ素錯化合物としては、水素化ホウ素リチウム、水素化ホウ素ナトリウム、水素化ホウ素カリウムおよび水素化ホウ素カルシウムが挙げられ、水素化ホウ素リチウム、水素化ホウ素ナトリウムおよび水素化ホウ素カリウムがより好ましい。
水素化ホウ素ナトリウムおよび水素化ホウ素カリウムを用いる場合、ハロゲン化金属塩の存在下に実施する方が好ましい。
ハロゲン化金属塩としては、たとえば、塩化リチウムおよび臭化リチウムなどのリチウム塩;塩化マグネシウムおよび臭化マグネシウムなどのマグネシウム塩;塩化カルシウムおよび臭化カルシムなどのカルシウム塩;ならびに塩化亜鉛および臭化亜鉛などの亜鉛塩などが挙げられる。
好ましいハロゲン化金属塩としては、塩化リチウム、塩化マグネシウムおよび塩化カルシウムが挙げられ、塩化リチウムおよび塩化マグネシウムがより好ましい。
ハロゲン化金属塩を用いない場合、水素化ホウ素錯化合物として水素化ホウ素リチウムを用いることが好ましい。
水素化ホウ素錯化合物およびハロゲン化金属塩の使用量は、一般式[1]の化合物に対して0.5倍モル以上用いればよく、好ましくは、0.6〜10倍モル、より好ましくは、0.6〜1.2倍モルである。
Examples of the borohydride complex used in this reaction include alkali metal borohydrides such as lithium borohydride, sodium borohydride and potassium borohydride; and alkaline borohydride such as calcium borohydride. And similar metals.
Preferred borohydride complex compounds include lithium borohydride, sodium borohydride, potassium borohydride and calcium borohydride, with lithium borohydride, sodium borohydride and potassium borohydride being more preferred.
When using sodium borohydride and potassium borohydride, it is preferable to carry out in the presence of a metal halide salt.
Examples of the metal halide salt include lithium salts such as lithium chloride and lithium bromide; magnesium salts such as magnesium chloride and magnesium bromide; calcium salts such as calcium chloride and calcium bromide; and zinc chloride and zinc bromide. The zinc salt of these is mentioned.
Preferred metal halide salts include lithium chloride, magnesium chloride and calcium chloride, with lithium chloride and magnesium chloride being more preferred.
When a metal halide salt is not used, it is preferable to use lithium borohydride as the borohydride complex compound.
The borohydride complex compound and the metal halide salt may be used in an amount of 0.5 times mol or more, preferably 0.6 to 10 times mol, more preferably 0.6 to 1.2 times the amount of the compound of the general formula [1]. Is a mole.

反応温度は、特に限定されないが、−20〜150℃であればよく、0〜80℃が好ましい。
反応時間は、特に限定されないが、10分間〜50時間であればよく、1〜20時間が好ましい
Although reaction temperature is not specifically limited, What is necessary is just -20-150 degreeC, and 0-80 degreeC is preferable.
The reaction time is not particularly limited, but may be 10 minutes to 50 hours, preferably 1 to 20 hours.

上記で述べた製造法により得られた、一般式[1]の化合物および式[4]の化合物は、抽出、晶出、蒸留およびカラムクロマトグラフィーなどの通常の方法によって単離精製することができる。
また、上記で述べた製造法における一般式[1]の化合物において、異性体(たとえば、光学異性体、幾何異性体および互変異性体など)が存在する場合、これらすべての異性体を使用することができ、また、金属塩、水和物、溶媒和物およびすべての結晶形を使用することができる。
The compound of the general formula [1] and the compound of the formula [4] obtained by the production method described above can be isolated and purified by usual methods such as extraction, crystallization, distillation and column chromatography. .
In addition, in the compound of the general formula [1] in the production method described above, when there are isomers (for example, optical isomers, geometric isomers, tautomers, etc.), all these isomers are used. In addition, metal salts, hydrates, solvates and all crystalline forms can be used.

次に、本発明の有用性を説明する。
試験例および実施例で用いられる各略号は、次の意味を有する。
Et:エチル、Me:メチル、Pr:プロピル、Pr:iso−プロピル
HPLC:高速液体クロマトグラフィー
Next, the usefulness of the present invention will be described.
Each abbreviation used in a test example and an example has the following meaning.
Et: ethyl, Me: methyl, Pr: propyl, i Pr: iso-propyl HPLC: high performance liquid chromatography

試験例1 第二工程の比較

Figure 0005763313
Test example 1 Comparison of the second process
Figure 0005763313

Figure 0005763313
本発明の製造法を用いることにより、収率および純度が向上し、爆発性の高い水素ガスの発生量が低減した。
Figure 0005763313
By using the production method of the present invention, the yield and purity were improved, and the generation amount of highly explosive hydrogen gas was reduced.

試験例2 第一工程および第二工程の比較

Figure 0005763313
Test example 2 Comparison of the first and second steps
Figure 0005763313

Figure 0005763313
本発明の製造法を用いることにより、収率および純度が向上し、爆発性の高い水素ガスの発生量が低減した。
Figure 0005763313
By using the production method of the present invention, the yield and purity were improved, and the generation amount of highly explosive hydrogen gas was reduced.

次に、本発明を参考例および実施例を挙げて説明するが、本発明はこれらに限定されるものではない。
目的物の純度は、以下の手順で求めた。
目的物を移動相に加えて溶解した。その溶解液の一部をHPLCに付し、以下の計算式で目的物の純度を求めた。
目的物の純度(%)=(目的物のピーク面積)/(全ピーク面積)×100
Next, the present invention will be described with reference examples and examples, but the present invention is not limited to these examples.
The purity of the target product was determined by the following procedure.
The desired product was added to the mobile phase and dissolved. A part of the solution was subjected to HPLC, and the purity of the target product was determined by the following calculation formula.
Purity (%) of target product = (peak area of target product) / (total peak area) × 100

生成率は、以下の手順で求めた。
少量の反応混合物を移動相に加えて溶解した。その溶解液の一部をHPLCに付し、以下の計算式で目的物の生成率を求めた。
目的物の生成率(%)=(目的物のピーク面積)/(全ピーク面積)×100
The production rate was determined by the following procedure.
A small amount of the reaction mixture was added to the mobile phase and dissolved. A part of the solution was subjected to HPLC, and the production rate of the target product was determined by the following calculation formula.
Production rate of target product (%) = (peak area of target product) / (total peak area) × 100

実施例1

Figure 0005763313
(1−ベンゾチオフェン−5−イル)酢酸50.0gのトルエン25mLの懸濁液に23〜33℃で塩化チオニル20.9mLを滴下した後、33〜58℃で10分間攪拌した。次いで、52〜58℃でメタノール75mLを滴下し、10分間還流後、常圧下に溶媒15mLを留去した。反応混合物を冷却後、水100mLおよびトルエン100mLを加えた。有機層を分取し、水100mLおよび炭酸水素ナトリウム1.09gを加えた。有機層を分取し、飽和塩化ナトリウム水溶液で洗浄後、硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した。得られた残留物を減圧蒸留し、無色油状のメチル=2−(1−ベンゾチオフェン−5−イル)アセタート45.6gを得た。
1H-NMR(CDCl3)δ値:3.64(3H,s),3.69(2H,s),7.20-7.27(2H,m),7.36(1H,d,J=5.6Hz),7.67(1H,s),7.77(1H,d,J=8.3Hz) Example 1
Figure 0005763313
20.9 mL of thionyl chloride was added dropwise to a suspension of 25 mL of toluene in 50.0 g of (1-benzothiophen-5-yl) acetic acid at 23 to 33 ° C., and the mixture was stirred at 33 to 58 ° C. for 10 minutes. Subsequently, 75 mL of methanol was added dropwise at 52 to 58 ° C., and after refluxing for 10 minutes, 15 mL of the solvent was distilled off under normal pressure. After cooling the reaction mixture, 100 mL of water and 100 mL of toluene were added. The organic layer was separated, and 100 mL of water and 1.09 g of sodium bicarbonate were added. The organic layer was separated, washed with a saturated aqueous sodium chloride solution and then dried over magnesium sulfate, and the solvent was distilled off under reduced pressure. The obtained residue was distilled under reduced pressure to obtain 45.6 g of colorless oily methyl 2- (1-benzothiophen-5-yl) acetate.
1 H-NMR (CDCl 3 ) δ value: 3.64 (3H, s), 3.69 (2H, s), 7.20-7.27 (2H, m), 7.36 (1H, d, J = 5.6 Hz), 7.67 (1H, s), 7.77 (1H, d, J = 8.3Hz)

実施例2

Figure 0005763313
(1−ベンゾチオフェン−5−イル)酢酸20.0gのエタノール60mL懸濁液に硫酸0.51gを加え、1時間還流した。次いで、74〜78℃でオルトぎ酸トリエチル15.4gを滴下し、1.5時間還流した。反応混合物に55℃で酢酸ナトリウム0.85gを加え、44〜51℃で水30mLを滴下した。エタノール20mLを加え、25〜35℃で30分間攪拌した。25〜38℃で水70mLを滴下し、4〜10℃で攪拌後、固形物を濾取し、白色固体のエチル=2−(1−ベンゾチオフェン−5−イル)アセタート22.2gを得た。
1H-NMR(CDCl3)δ値:
1.22-1.28(3H,m),3.73(2H,s),4.12-4.19(2H,m),7.25-7.32(1H,m),7.30(1H,d,J=5.5Hz),7.43(1H,d,J=5.5Hz),7.72-7.77(1H,m),7.83(1H,d,J=8.3Hz) Example 2
Figure 0005763313
To a suspension of (1-benzothiophen-5-yl) acetic acid (20.0 g) in ethanol (60 mL) was added 0.51 g of sulfuric acid, and the mixture was refluxed for 1 hour. Next, 15.4 g of triethyl orthoformate was added dropwise at 74 to 78 ° C., and the mixture was refluxed for 1.5 hours. To the reaction mixture, 0.85 g of sodium acetate was added at 55 ° C., and 30 mL of water was added dropwise at 44 to 51 ° C. Ethanol 20mL was added and it stirred at 25-35 degreeC for 30 minutes. 70 mL of water was added dropwise at 25 to 38 ° C., and the mixture was stirred at 4 to 10 ° C., and the solid matter was collected by filtration to obtain 22.2 g of white solid ethyl = 2- (1-benzothiophen-5-yl) acetate.
1 H-NMR (CDCl 3 ) δ value:
1.22-1.28 (3H, m), 3.73 (2H, s), 4.12-4.19 (2H, m), 7.25-7.32 (1H, m), 7.30 (1H, d, J = 5.5Hz), 7.43 (1H, d, J = 5.5Hz), 7.72-7.77 (1H, m), 7.83 (1H, d, J = 8.3Hz)

実施例3

Figure 0005763313
(1−ベンゾチオフェン−5−イル)酢酸50.0gのトルエン75mLおよびエタノール25mLの懸濁液に20〜30℃で塩化チオニル19.9mLを滴下した後、エタノール25mLを加え、70〜77℃で40分間攪拌した。常圧下に溶媒46mLを留去した。反応混合物を冷却後、トルエン100mLおよび水100mLを加えた。有機層を分取し、水100mL、炭酸カリウム3.59gおよび飽和塩化ナトリウム水溶液50mLを加えた。有機層を分取し、硫酸マグネシウムで乾燥後、減圧下に溶媒を留去し、エタノール30mLおよび水70mLを加えた。固形物を濾取後、減圧蒸留し、白色固体のエチル=2−(1−ベンゾチオフェン−5−イル)アセタート48.4gを得た。
CDCl3中における1H-NMRスペクトルのケミカルシフト値は、実施例2の値と一致した。 Example 3
Figure 0005763313
19.9 mL of thionyl chloride was added dropwise to a suspension of 75 mL of toluene (50.0 g) of acetic acid 50.0 g and ethanol 25 mL at 20 to 30 ° C., followed by addition of 25 mL of ethanol and 40 minutes at 70 to 77 ° C. Stir. 46 mL of the solvent was distilled off under normal pressure. After cooling the reaction mixture, 100 mL of toluene and 100 mL of water were added. The organic layer was separated, and 100 mL of water, 3.59 g of potassium carbonate, and 50 mL of a saturated aqueous sodium chloride solution were added. The organic layer was separated, dried over magnesium sulfate, the solvent was distilled off under reduced pressure, and 30 mL of ethanol and 70 mL of water were added. The solid was collected by filtration and distilled under reduced pressure to obtain 48.4 g of white solid ethyl = 2- (1-benzothiophen-5-yl) acetate.
The chemical shift value of the 1 H-NMR spectrum in CDCl 3 coincided with the value of Example 2.

実施例4

Figure 0005763313
(1−ベンゾチオフェン−5−イル)酢酸50.0gの1−プロパノール150mL懸濁液に硫酸0.77gを加え、1時間還流した。常圧下に溶媒100mLを留去し、102℃で30分間攪拌した。トルエン150mLを加え、常圧下に溶媒100mLを留去した。反応混合物を冷却後、トルエン100mL、水100mL、炭酸水素ナトリウム2.19gおよび塩化ナトリウム5.00gを加えた。有機層を分取し、飽和塩化ナトリウム水溶液で洗浄後、硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した。得られた残留物を減圧蒸留し、無色油状のプロピル=2−(1−ベンゾチオフェン−5−イル)アセタート51.6gを得た。
1H-NMR(CDCl3)δ値:0.91(3H,t,J=7.4Hz),1.59-1.69(2H,m),3.73(2H,s),4.06(2H,t,J=6.7Hz),7.24-7.32(1H,m),7.29(1H,d,J=5.5Hz),7.43(1H,d,J=5.5Hz),7.72-7.76(1H,m),7.82(1H,d,J=8.3Hz) Example 4
Figure 0005763313
0.77 g of sulfuric acid was added to a suspension of 50.0 g of (1-benzothiophen-5-yl) acetic acid in 150 mL of 1-propanol and refluxed for 1 hour. 100 mL of the solvent was distilled off under normal pressure, and the mixture was stirred at 102 ° C. for 30 minutes. Toluene 150 mL was added, and 100 mL of the solvent was distilled off under normal pressure. After cooling the reaction mixture, 100 mL of toluene, 100 mL of water, 2.19 g of sodium bicarbonate and 5.00 g of sodium chloride were added. The organic layer was separated, washed with a saturated aqueous sodium chloride solution and then dried over magnesium sulfate, and the solvent was distilled off under reduced pressure. The obtained residue was distilled under reduced pressure to obtain 51.6 g of colorless oily propyl = 2- (1-benzothiophen-5-yl) acetate.
1 H-NMR (CDCl 3 ) δ value: 0.91 (3H, t, J = 7.4 Hz), 1.59-1.69 (2H, m), 3.73 (2H, s), 4.06 (2H, t, J = 6.7 Hz) , 7.24-7.32 (1H, m), 7.29 (1H, d, J = 5.5Hz), 7.43 (1H, d, J = 5.5Hz), 7.72-7.76 (1H, m), 7.82 (1H, d, J = 8.3Hz)

実施例5

Figure 0005763313
水素化ホウ素カリウム9.79gおよび塩化リチウム7.70gのテトラヒドロフラン150mL懸濁液を2時間還流した。67〜71℃でエチル=2−(1−ベンゾチオフェン−5−イル)アセタート50.0gのトルエン100mL溶液を30分間かけて滴下し、70〜71℃で5.5時間攪拌した(反応液をHPLC分析した結果、2−(1−ベンゾチオフェン−5−イル)エタノールの生成率は96%であった。)。反応混合物を冷却後、アセトン25mLを滴下し、30分間攪拌した。水50mLを滴下し、1時間攪拌した。ここまでの水素ガス発生量は0.5Lであった。常圧下に溶媒100mLを留去し、水50mLおよび塩酸25mLを加えた。有機層を分取し、20%(w/w)水酸化ナトリウム水溶液50mLを加え、45分間還流した。反応混合物を冷却後、水50mLを加え、有機層を分取し、水洗後、常圧下に溶媒105mLを留去した。トルエン50mLを加え、常圧下に溶媒50mLを留去した。シクロヘキサン100mLを加え、40℃で種晶を加え、29〜36℃で30分間攪拌した。27〜29℃でシクロヘキサン100mLを滴下し、5℃まで冷却後、固形物を濾取し、白色固体の2−(1−ベンゾチオフェン−5−イル)エタノール36.5gを得た。
1H-NMR(CDCl3)δ値:1.41(1H,brs),2.99(2H,t,J=6.6Hz),3.88-3.96(2H,m),7.22(1H,dd,J=8.2,1.7Hz),7.30(1H,d,J=5.5Hz),7.44(1H,d,J=5.5Hz),7.68-7.71(1H,m),7.83(1H,d,J=8.2Hz) Example 5
Figure 0005763313
A suspension of 9.79 g of potassium borohydride and 7.70 g of lithium chloride in 150 mL of tetrahydrofuran was refluxed for 2 hours. A solution of ethyl 2- (1-benzothiophen-5-yl) acetate (50.0 g) in toluene (100 mL) was added dropwise at 67 to 71 ° C. over 30 minutes, and the mixture was stirred at 70 to 71 ° C. for 5.5 hours (the reaction solution was analyzed by HPLC). As a result, the production rate of 2- (1-benzothiophen-5-yl) ethanol was 96%.) After cooling the reaction mixture, 25 mL of acetone was added dropwise and stirred for 30 minutes. 50 mL of water was added dropwise and stirred for 1 hour. The amount of hydrogen gas generated so far was 0.5 L. 100 mL of the solvent was distilled off under normal pressure, and 50 mL of water and 25 mL of hydrochloric acid were added. The organic layer was separated, 50 mL of 20% (w / w) aqueous sodium hydroxide solution was added, and the mixture was refluxed for 45 minutes. After cooling the reaction mixture, 50 mL of water was added, the organic layer was separated, washed with water, and 105 mL of the solvent was distilled off under normal pressure. 50 mL of toluene was added, and 50 mL of the solvent was distilled off under normal pressure. 100 mL of cyclohexane was added, seed crystals were added at 40 ° C., and the mixture was stirred at 29 to 36 ° C. for 30 minutes. After adding 100 mL of cyclohexane dropwise at 27 to 29 ° C. and cooling to 5 ° C., the solid was collected by filtration to obtain 36.5 g of 2- (1-benzothiophen-5-yl) ethanol as a white solid.
1 H-NMR (CDCl 3 ) δ value: 1.41 (1H, brs), 2.99 (2H, t, J = 6.6 Hz), 3.88-3.96 (2H, m), 7.22 (1H, dd, J = 8.2,1.7 Hz), 7.30 (1H, d, J = 5.5Hz), 7.44 (1H, d, J = 5.5Hz), 7.68-7.71 (1H, m), 7.83 (1H, d, J = 8.2Hz)

実施例6

Figure 0005763313
水素化ホウ素カリウム2.45gおよび塩化リチウム1.92gのテトラヒドロフラン15mLおよび1,2−ジメトキシエタン15mL懸濁液を1.5時間還流した。73〜80℃でエチル=2−(1−ベンゾチオフェン−5−イル)アセタート10.0gのトルエン20mL溶液を30分間かけて滴下し、2時間還流した(反応液をHPLC分析した結果、2−(1−ベンゾチオフェン−5−イル)エタノールの生成率は98%であった。)。反応混合物を冷却後、アセトン5mLおよび水30mLを順次滴下し、常圧下に溶媒30mLを留去し、トルエン10mLおよび塩酸5mLを加えた。有機層を分取し、水20mLおよび20%(w/w)水酸化ナトリウム水溶液1mLを加えた。有機層を分取し、常圧下に溶媒19mLを留去した。シクロヘキサン20mLを加え、40℃で種晶を加え、29〜38℃で30分間攪拌した。29℃でシクロヘキサン20mLを滴下し、5℃まで冷却後、固形物を濾取し、白色固体の2−(1−ベンゾチオフェン−5−イル)エタノール7.28gを得た。
CDCl3中における1H-NMRスペクトルのケミカルシフト値は、実施例5の値と一致した。 Example 6
Figure 0005763313
A suspension of 2.45 g of potassium borohydride and 1.92 g of lithium chloride in 15 mL of tetrahydrofuran and 15 mL of 1,2-dimethoxyethane was refluxed for 1.5 hours. At 73-80 ° C., a solution of 10.0 g of ethyl 2- (1-benzothiophen-5-yl) acetate in 20 mL of toluene was added dropwise over 30 minutes, and the mixture was refluxed for 2 hours. The production rate of 1-benzothiophen-5-yl) ethanol was 98%.) After cooling the reaction mixture, 5 mL of acetone and 30 mL of water were successively added dropwise, 30 mL of the solvent was distilled off under normal pressure, and 10 mL of toluene and 5 mL of hydrochloric acid were added. The organic layer was separated, and 20 mL of water and 1 mL of 20% (w / w) aqueous sodium hydroxide solution were added. The organic layer was separated, and 19 mL of the solvent was distilled off under normal pressure. 20 mL of cyclohexane was added, seed crystals were added at 40 ° C, and the mixture was stirred at 29 to 38 ° C for 30 minutes. After adding 20 mL of cyclohexane dropwise at 29 ° C. and cooling to 5 ° C., the solid matter was collected by filtration to obtain 7.28 g of 2- (1-benzothiophen-5-yl) ethanol as a white solid.
The chemical shift value of the 1 H-NMR spectrum in CDCl 3 coincided with the value of Example 5.

実施例7

Figure 0005763313
エチル=2−(1−ベンゾチオフェン−5−イル)アセタート5.00gのビス(2−メトキシエチル)エーテル35mLおよび水0.20mLの溶液に塩化リチウム0.72gを加え、19〜44℃で10分間攪拌した。次いで、水素化ホウ素ナトリウム0.64gを加え、50〜57℃で4時間攪拌後、60〜68℃で3時間攪拌した。反応液をHPLC分析した結果、2−(1−ベンゾチオフェン−5−イル)エタノールの生成率は96%であった。 Example 7
Figure 0005763313
0.72 g of lithium chloride was added to a solution of ethyl 2- (1-benzothiophen-5-yl) acetate 5.00 g of bis (2-methoxyethyl) ether 35 mL and water 0.20 mL, and the mixture was stirred at 19 to 44 ° C. for 10 minutes. . Next, 0.64 g of sodium borohydride was added, and the mixture was stirred at 50 to 57 ° C for 4 hours, and then stirred at 60 to 68 ° C for 3 hours. As a result of HPLC analysis of the reaction solution, the production rate of 2- (1-benzothiophen-5-yl) ethanol was 96%.

実施例8

Figure 0005763313
水素化ホウ素ナトリウム0.64gおよび塩化リチウム0.72gの1,2−ジメトキシエタン15mLおよび水0.20g懸濁液を23〜35℃で15分間攪拌した。次いで、35〜37℃でエチル=2−(1−ベンゾチオフェン−5−イル)アセタート5.00gの1,2−ジメトキシエタン10mL溶液を滴下し、60〜65℃で3.5時間攪拌した。反応液をHPLC分析した結果、2−(1−ベンゾチオフェン−5−イル)エタノールの生成率は92%であった。 Example 8
Figure 0005763313
A suspension of 0.64 g of sodium borohydride and 0.72 g of lithium chloride in 15 mL of 1,2-dimethoxyethane and 0.20 g of water was stirred at 23 to 35 ° C. for 15 minutes. Next, a solution of ethyl 2- (1-benzothiophen-5-yl) acetate (5.00 g) in 1,2-dimethoxyethane (10 mL) was added dropwise at 35 to 37 ° C., and the mixture was stirred at 60 to 65 ° C. for 3.5 hours. As a result of HPLC analysis of the reaction solution, the production rate of 2- (1-benzothiophen-5-yl) ethanol was 92%.

実施例9

Figure 0005763313
水素化ホウ素カルシウム・テトラヒドロフラン付加体2.91gのテトラヒドロフラン30mL懸濁液に38℃でエチル=2−(1−ベンゾチオフェン−5−イル)アセタート10.0gのテトラヒドロフラン20mL溶液を20分間かけて滴下し、38〜40℃で1.5時間攪拌後、1.5時間還流した。冷却後、室温で一晩放置した。水素化ホウ素カルシウム・テトラヒドロフラン付加体1.94gを加え、30〜31℃で1時間攪拌後、1.5時間還流した(反応液をHPLC分析した結果、2−(1−ベンゾチオフェン−5−イル)エタノールの生成率は98%であった。)。反応混合物を冷却後、実施例6と同様に処理して、白色固体の2−(1−ベンゾチオフェン−5−イル)エタノール7.38gを得た。
CDCl3中における1H-NMRスペクトルのケミカルシフト値は、実施例5の値と一致した。 Example 9
Figure 0005763313
To a suspension of 2.91 g of calcium borohydride / tetrahydrofuran adduct in 30 mL of tetrahydrofuran was added dropwise a solution of 10.0 g of ethyl 2- (1-benzothiophen-5-yl) acetate in 20 mL of tetrahydrofuran at 38 ° C. over 20 minutes. The mixture was stirred at -40 ° C for 1.5 hours and then refluxed for 1.5 hours. After cooling, it was left overnight at room temperature. 1.94 g of calcium borohydride / tetrahydrofuran adduct was added, and the mixture was stirred at 30 to 31 ° C. for 1 hour and then refluxed for 1.5 hours (the result of HPLC analysis of the reaction solution was that 2- (1-benzothiophen-5-yl) ethanol The production rate was 98%.) The reaction mixture was cooled and treated in the same manner as in Example 6 to obtain 7.38 g of white solid 2- (1-benzothiophen-5-yl) ethanol.
The chemical shift value of the 1 H-NMR spectrum in CDCl 3 coincided with the value of Example 5.

実施例10

Figure 0005763313
水素化ホウ素カリウム2.45gおよび塩化マグネシウム2.16gのテトラヒドロフラン50mL懸濁液を2時間還流した。次いで、67〜72℃でエチル=2−(1−ベンゾチオフェン−5−イル)アセタート10.0gのトルエン20mL溶液を30分間かけて滴下し、1.5時間還流した(反応液をHPLC分析した結果、2−(1−ベンゾチオフェン−5−イル)エタノールの生成率は97%であった。)。反応混合物を冷却後、アセトン5mLを滴下し、20分間攪拌した。水50mLを滴下し、20分間攪拌後、常圧下に溶媒55mLを留去し、塩酸10mLおよびトルエン20mLを加えた。ここまでの水素ガス発生量は0.5Lであった。有機層を分取し、水20mLおよび25%(w/w)アンモニア水溶液1mLを加えた。有機層を分取し、水20mLおよび飽和塩化ナトリウム水溶液1mLを加えた。有機層を分取し、常圧下に溶媒29mLを留去した。シクロヘキサン20mLを加え、40℃で種晶を加え、31〜38℃で20分間攪拌した。30〜31℃でシクロヘキサン20mLを滴下し、5℃まで冷却後、固形物を濾取し、白色固体の2−(1−ベンゾチオフェン−5−イル)エタノール7.40gを得た。
CDCl3中における1H-NMRスペクトルのケミカルシフト値は、実施例5の値と一致した。 Example 10
Figure 0005763313
A suspension of 2.45 g of potassium borohydride and 2.16 g of magnesium chloride in 50 mL of tetrahydrofuran was refluxed for 2 hours. Subsequently, a toluene 20 mL solution of 10.0 g of ethyl 2- (1-benzothiophen-5-yl) acetate at 67 to 72 ° C. was added dropwise over 30 minutes and refluxed for 1.5 hours (the reaction solution was analyzed by HPLC. The production rate of-(1-benzothiophen-5-yl) ethanol was 97%.) After cooling the reaction mixture, 5 mL of acetone was added dropwise and stirred for 20 minutes. 50 mL of water was added dropwise, and after stirring for 20 minutes, 55 mL of the solvent was distilled off under normal pressure, and 10 mL of hydrochloric acid and 20 mL of toluene were added. The amount of hydrogen gas generated so far was 0.5 L. The organic layer was separated, and 20 mL of water and 1 mL of a 25% (w / w) aqueous ammonia solution were added. The organic layer was separated, and 20 mL of water and 1 mL of a saturated aqueous sodium chloride solution were added. The organic layer was separated, and 29 mL of the solvent was distilled off under normal pressure. 20 mL of cyclohexane was added, seed crystals were added at 40 ° C., and the mixture was stirred at 31 to 38 ° C. for 20 minutes. After adding 20 mL of cyclohexane dropwise at 30 to 31 ° C. and cooling to 5 ° C., the solid was collected by filtration to obtain 7.40 g of white solid 2- (1-benzothiophen-5-yl) ethanol.
The chemical shift value of the 1 H-NMR spectrum in CDCl 3 coincided with the value of Example 5.

実施例11

Figure 0005763313
(1−ベンゾチオフェン−5−イル)酢酸10.0gのトルエン30mL懸濁液にオルトぎ酸トリメチル5.52g、メタノール5mLおよび硫酸0.15gを加え、1.5時間還流した。常圧下に溶媒20mLを留去した。反応混合物を冷却後、水素化ホウ素リチウム(ca.3.6mol/Lテトラヒドロフラン溶液)8.67mLおよびテトラヒドロフラン21mLの混液に65〜76℃で40分間かけて滴下し、トルエン3.5mLを加え、1.5時間還流した(反応液をHPLC分析した結果、2−(1−ベンゾチオフェン−5−イル)エタノールの生成率は99%であった。)。常圧下に溶媒20mLを留去した。反応混合物を冷却後、実施例6と同様に処理して、白色固体の2−(1−ベンゾチオフェン−5−イル)エタノール8.55gを得た。水素ガス発生量は0.3Lであった。
CDCl3中における1H-NMRスペクトルのケミカルシフト値は、実施例5の値と一致した。 Example 11
Figure 0005763313
To a suspension of 10.0 g of (1-benzothiophen-5-yl) acetic acid in 30 mL of toluene were added trimethyl orthoformate (5.52 g), methanol (5 mL) and sulfuric acid (0.15 g), and the mixture was refluxed for 1.5 hours. 20 mL of the solvent was distilled off under normal pressure. After cooling the reaction mixture, lithium borohydride (ca.3.6 mol / L tetrahydrofuran solution) 8.67 mL and tetrahydrofuran 21 mL were added dropwise over 40 minutes at 65 to 76 ° C., toluene 3.5 mL was added and refluxed for 1.5 hours. (As a result of HPLC analysis of the reaction solution, the production rate of 2- (1-benzothiophen-5-yl) ethanol was 99%). 20 mL of the solvent was distilled off under normal pressure. The reaction mixture was cooled and treated in the same manner as in Example 6 to obtain 8.55 g of white solid 2- (1-benzothiophen-5-yl) ethanol. The amount of hydrogen gas generated was 0.3L.
The chemical shift value of the 1 H-NMR spectrum in CDCl 3 coincided with the value of Example 5.

実施例12

Figure 0005763313
(1−ベンゾチオフェン−5−イル)酢酸10.0gのトルエン30mL懸濁液にオルトぎ酸トリメチル5.52g、メタノール5mLおよび硫酸0.15gを加え、1.5時間還流した。この反応混合物に、58℃で酢酸ナトリウム0.26gを加え、常圧下に溶媒25mLを留去した。反応混合物を冷却後、水素化ホウ素カリウム2.24g、塩化リチウム1.76gおよびテトラヒドロフラン30mLの混液を2時間還流した懸濁液に67〜76℃で30分間かけて滴下し、トルエン9mLを加え、4.5時間還流した(反応液をHPLC分析した結果、2−(1−ベンゾチオフェン−5−イル)エタノールの生成率は98%であった。)。反応混合物を冷却後、実施例6と同様に処理して、白色固体の2−(1−ベンゾチオフェン−5−イル)エタノール8.41gを得た。
CDCl3中における1H-NMRスペクトルのケミカルシフト値は、実施例5の値と一致した。 Example 12
Figure 0005763313
To a suspension of 10.0 g of (1-benzothiophen-5-yl) acetic acid in 30 mL of toluene were added trimethyl orthoformate (5.52 g), methanol (5 mL) and sulfuric acid (0.15 g), and the mixture was refluxed for 1.5 hours. To this reaction mixture, 0.26 g of sodium acetate was added at 58 ° C., and 25 mL of the solvent was distilled off under normal pressure. After cooling the reaction mixture, a mixture of potassium borohydride 2.24 g, 1.76 g lithium chloride and 30 mL tetrahydrofuran was added dropwise to a suspension refluxed for 2 hours at 67-76 ° C. over 30 minutes, and 9 mL toluene was added for 4.5 hours. The mixture was refluxed (the HPLC analysis of the reaction mixture revealed that the production rate of 2- (1-benzothiophen-5-yl) ethanol was 98%). The reaction mixture was cooled and then treated in the same manner as in Example 6 to obtain 8.41 g of white solid 2- (1-benzothiophen-5-yl) ethanol.
The chemical shift value of the 1 H-NMR spectrum in CDCl 3 coincided with the value of Example 5.

実施例13

Figure 0005763313
(1−ベンゾチオフェン−5−イル)酢酸10.0gのエタノール20mL懸濁液に硫酸0.15gを加え、1時間還流した。次いで、オルトぎ酸トリエチル7.71gを滴下し、1.5時間還流した。この反応混合物に61℃で酢酸ナトリウム0.26gを加え、常圧下に溶媒15mLを留去した。トルエン30mLを加え、常圧下に溶媒25mLを留去した。反応混合物を冷却後、水素化ホウ素カリウム2.24g、塩化リチウム1.76gおよびテトラヒドロフラン30mLの混液を1時間還流した懸濁液に67〜75℃で30分間かけて滴下し、トルエン5mLを加え、4時間還流した。水素化ホウ素カリウム0.14gおよび塩化リチウム0.11gを加え、4時間還流した(反応液をHPLC分析した結果、2−(1−ベンゾチオフェン−5−イル)エタノールの生成率は99%であった。)。反応混合物を冷却後、実施例6と同様に処理して、白色固体の2−(1−ベンゾチオフェン−5−イル)エタノール8.42gを得た。
CDCl3中における1H-NMRスペクトルのケミカルシフト値は、実施例5の値と一致した。 Example 13
Figure 0005763313
0.15 g of sulfuric acid was added to a suspension of 10.0 g of (1-benzothiophen-5-yl) acetic acid in 20 mL of ethanol, and the mixture was refluxed for 1 hour. Next, 7.71 g of triethyl orthoformate was added dropwise and refluxed for 1.5 hours. To this reaction mixture, 0.26 g of sodium acetate was added at 61 ° C., and 15 mL of the solvent was distilled off under normal pressure. 30 mL of toluene was added, and 25 mL of the solvent was distilled off under normal pressure. After cooling the reaction mixture, a mixture of potassium borohydride 2.24 g, lithium lithium chloride 1.76 g and tetrahydrofuran 30 mL was added dropwise to a suspension refluxed for 1 hour at 67-75 ° C. over 30 minutes, and 5 mL of toluene was added for 4 hours. Refluxed. Potassium borohydride (0.14 g) and lithium chloride (0.11 g) were added, and the mixture was refluxed for 4 hours. As a result of HPLC analysis of the reaction solution, the yield of 2- (1-benzothiophen-5-yl) ethanol was 99%. ). The reaction mixture was cooled and treated in the same manner as in Example 6 to obtain 8.42 g of 2- (1-benzothiophen-5-yl) ethanol as a white solid.
The chemical shift value of the 1 H-NMR spectrum in CDCl 3 coincided with the value of Example 5.

実施例14

Figure 0005763313
(1−ベンゾチオフェン−5−イル)酢酸10.0gの1−プロパノール20mL懸濁液に硫酸0.15gを加え、2時間還流した。次いで、常圧下に溶媒8mLを留去し、30分間還流した。1−プロパノール10mLを加え、常圧下に溶媒10mLを留去した。この反応混合物に酢酸ナトリウム0.26gおよびトルエン30mLを加え、常圧下に溶媒21mLを留去した。反応混合物を冷却後、水素化ホウ素カリウム2.24g、塩化リチウム1.76gおよびテトラヒドロフラン30mLの混液を1時間還流した懸濁液に67〜75℃で40分間かけて滴下し、トルエン3mLを加え、4時間還流した(反応液をHPLC分析した結果、2−(1−ベンゾチオフェン−5−イル)エタノールの生成率は100%であった。)。反応混合物を冷却後、実施例6と同様に処理して、白色固体の2−(1−ベンゾチオフェン−5−イル)エタノール8.20gを得た。
CDCl3中における1H-NMRスペクトルのケミカルシフト値は、実施例5の値と一致した。 Example 14
Figure 0005763313
To a suspension of 10.0 g of (1-benzothiophen-5-yl) acetic acid in 20 mL of 1-propanol was added 0.15 g of sulfuric acid and refluxed for 2 hours. Subsequently, 8 mL of the solvent was distilled off under normal pressure and refluxed for 30 minutes. 10 mL of 1-propanol was added, and 10 mL of the solvent was distilled off under normal pressure. To this reaction mixture, 0.26 g of sodium acetate and 30 mL of toluene were added, and 21 mL of the solvent was distilled off under normal pressure. After cooling the reaction mixture, a mixture of potassium borohydride 2.24 g, 1.76 g lithium chloride and 30 mL tetrahydrofuran was added dropwise to the suspension refluxed for 1 hour at 67-75 ° C. over 40 minutes, and 3 mL toluene was added for 4 hours. The mixture was refluxed (the HPLC analysis of the reaction mixture revealed that the production rate of 2- (1-benzothiophen-5-yl) ethanol was 100%). The reaction mixture was cooled and treated in the same manner as in Example 6 to obtain 8.20 g of 2- (1-benzothiophen-5-yl) ethanol as a white solid.
The chemical shift value of the 1 H-NMR spectrum in CDCl 3 coincided with the value of Example 5.

実施例15

Figure 0005763313
(1−ベンゾチオフェン−5−イル)酢酸10.0gの2−プロパノール15mLおよびトルエン15mLの懸濁液に塩化チオニル7.43gを滴下し、60℃で1.5時間撹拌した。反応混合物を冷却後、トルエン30mLおよび水30mLを加えた。有機層を分取し、飽和炭酸水素ナトリウム水溶液および水で順次洗浄後、硫酸マグネシウムで乾燥した。減圧下に溶媒を留去し、トルエン15mLに溶解した。反応混合物を水素化ホウ素カリウム2.24g、塩化リチウム1.76gおよびテトラヒドロフラン50mLの混液を2時間還流した懸濁液に68〜78℃で30分間かけて滴下し、2時間還流した。テトラヒドロフラン10mLを加え、4.5時間還流した(反応液をHPLC分析した結果、2−(1−ベンゾチオフェン−5−イル)エタノールの生成率は95%であった。)。反応混合物を冷却後、実施例6と同様に処理して、淡黄色固体の2−(1−ベンゾチオフェン−5−イル)エタノール8.82gを得た。
CDCl3中における1H-NMRスペクトルのケミカルシフト値は、実施例5の値と一致した。 Example 15
Figure 0005763313
To a suspension of 10.0 g of (1-benzothiophen-5-yl) acetic acid in 15 mL of 2-propanol and 15 mL of toluene, 7.43 g of thionyl chloride was added dropwise and stirred at 60 ° C. for 1.5 hours. After cooling the reaction mixture, 30 mL of toluene and 30 mL of water were added. The organic layer was separated, washed successively with saturated aqueous sodium hydrogencarbonate and water, and dried over magnesium sulfate. The solvent was distilled off under reduced pressure and dissolved in 15 mL of toluene. The reaction mixture was added dropwise to a suspension obtained by refluxing a mixture of 2.24 g of potassium borohydride, 1.76 g of lithium chloride and 50 mL of tetrahydrofuran for 2 hours at 68 to 78 ° C., and refluxed for 2 hours. Tetrahydrofuran 10mL was added and it recirculate | refluxed for 4.5 hours (As a result of HPLC-analyzing the reaction liquid, the production rate of 2- (1-benzothiophen-5-yl) ethanol was 95%). The reaction mixture was cooled and treated in the same manner as in Example 6 to obtain 8.82 g of 2- (1-benzothiophen-5-yl) ethanol as a pale yellow solid.
The chemical shift value of the 1 H-NMR spectrum in CDCl 3 coincided with the value of Example 5.

比較例1 (特許文献1の方法)

Figure 0005763313
水素化ホウ素ナトリウム14.8gをテトラヒドロフラン125mLに懸濁させ、(1−ベンゾチオフェン−5−イル)酢酸50.0gのテトラヒドロフラン120mL溶液および硫酸19.1gを順次滴下し、テトラヒドロフラン5mLを加え、17〜30℃で30分間攪拌した。常圧下に溶媒を120mL留去した(反応液をHPLC分析した結果、2−(1−ベンゾチオフェン−5−イル)エタノールの生成率は91%であった。)。冷却後、この反応混合物にアセトン25mLを滴下後、15分間攪拌した。水100mLを滴下し、15分間攪拌後、20%(w/w)水酸化ナトリウム水溶液50mLおよびトルエン125mLを加えた。ここまでの水素ガス発生量は18.8Lであった。有機層を分取し、水洗後、溶媒を留去し、シクロヘキサンを加えた。析出物を濾取し、淡黄色固体の2−(1−ベンゾチオフェン−5−イル)エタノール40.1gを得た。 Comparative Example 1 (Method of Patent Document 1)
Figure 0005763313
14.8 g of sodium borohydride is suspended in 125 mL of tetrahydrofuran, 120 mL of a solution of 50.0 g of (1-benzothiophen-5-yl) acetic acid and 19.1 g of sulfuric acid are successively added dropwise, 5 mL of tetrahydrofuran is added, and the mixture is added at 17 to 30 ° C. Stir for 30 minutes. 120 mL of the solvent was distilled off under normal pressure (as a result of HPLC analysis of the reaction solution, the production rate of 2- (1-benzothiophen-5-yl) ethanol was 91%). After cooling, 25 mL of acetone was added dropwise to the reaction mixture, followed by stirring for 15 minutes. 100 mL of water was added dropwise, and after stirring for 15 minutes, 50 mL of a 20% (w / w) aqueous sodium hydroxide solution and 125 mL of toluene were added. The hydrogen gas generation amount so far was 18.8L. The organic layer was separated, washed with water, the solvent was distilled off, and cyclohexane was added. The precipitate was collected by filtration to obtain 40.1 g of 2- (1-benzothiophen-5-yl) ethanol as a pale yellow solid.

Claims (4)

(1−ベンゾチオフェン−5−イル)酢酸またはその塩を、酸触媒またはハロゲン化剤の存在下、一般式
Figure 0005763313
「式中、Rは、置換されていてもよいアルキル、シクロアルキルまたはアルアルキル基を示す。」で表されるアルコールと反応し、一般式
Figure 0005763313
「式中、Rは、前記と同様の意味を有する。」で表される化合物を得た後、水素化ホウ素リチウムによる還元反応に付すことを特徴とする、2−(1−ベンゾチオフェン−5−イル)エタノールの製造法。
(1-Benzothiophen-5-yl) acetic acid or a salt thereof in the presence of an acid catalyst or a halogenating agent
Figure 0005763313
In the formula, R 1 represents an optionally substituted alkyl, cycloalkyl, or aralkyl group.
Figure 0005763313
2- (1-benzothiophene-, wherein R 1 has the same meaning as described above, and then subjected to a reduction reaction with lithium borohydride. 5-yl) A method for producing ethanol.
一般式
Figure 0005763313
「式中、Rは、置換されていてもよいアルキル、シクロアルキルまたはアルアルキル基を示す。」で表される化合物を、水素化ホウ素リチウムによる還元反応に付すことを特徴とする、2−(1−ベンゾチオフェン−5−イル)エタノールの製造法。
General formula
Figure 0005763313
Wherein R 1 represents an optionally substituted alkyl, cycloalkyl, or aralkyl group, and is subjected to a reduction reaction with lithium borohydride , 2- A method for producing (1-benzothiophen-5-yl) ethanol.
還元反応が、ハロゲン化金属塩の存在下、水素化ホウ素リチウムによる還元反応に代り、水素化ホウ素カリウムによる還元反応である請求項1または2のいずれか1項に記載の製造法。 The production method according to claim 1 , wherein the reduction reaction is a reduction reaction with potassium borohydride instead of a reduction reaction with lithium borohydride in the presence of a metal halide salt. ハロゲン化金属塩が、塩化リチウムまたは塩化マグネシウムである請求項に記載の製造法。 The process according to claim 3 , wherein the metal halide salt is lithium chloride or magnesium chloride.
JP2010196365A 2009-09-03 2010-09-02 Process for producing 2- (1-benzothiophen-5-yl) ethanol Active JP5763313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010196365A JP5763313B2 (en) 2009-09-03 2010-09-02 Process for producing 2- (1-benzothiophen-5-yl) ethanol

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009203634 2009-09-03
JP2009203634 2009-09-03
JP2010196365A JP5763313B2 (en) 2009-09-03 2010-09-02 Process for producing 2- (1-benzothiophen-5-yl) ethanol

Publications (2)

Publication Number Publication Date
JP2011074073A JP2011074073A (en) 2011-04-14
JP5763313B2 true JP5763313B2 (en) 2015-08-12

Family

ID=44018424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010196365A Active JP5763313B2 (en) 2009-09-03 2010-09-02 Process for producing 2- (1-benzothiophen-5-yl) ethanol

Country Status (1)

Country Link
JP (1) JP5763313B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2641363B2 (en) * 1992-04-22 1997-08-13 三共株式会社 Novel phenethyl alcohol and its production method
DE60311812T2 (en) * 2002-07-15 2007-11-22 Janssen Pharmaceutica N.V. 3-FURYLANALOGO OF TOXOFLAVIN AS KINASEINHIBITORS
MX2007000428A (en) * 2004-07-15 2008-03-05 Amr Technology Inc Aryl-and heteroaryl-substituted tetrahydroisoquinolines and use thereof to block reuptake of norepinephrine, dopamine, and serotonin.
CN101151257B (en) * 2005-03-28 2012-07-18 富山化学工业株式会社 Process for production of 1-(3-(2-(1-benzothiophen-5-yl)-ethoxy)propyl)azetidin-3-ol or salts thereof
AR061185A1 (en) * 2006-05-26 2008-08-13 Chugai Pharmaceutical Co Ltd HETEROCICLICAL COMPOUNDS AS INHIBITORS OF HSP90. PHARMACEUTICAL COMPOSITIONS.

Also Published As

Publication number Publication date
JP2011074073A (en) 2011-04-14

Similar Documents

Publication Publication Date Title
NO340366B1 (en) Process for the preparation of 3- (2- (1-benzothiophen-5-yl) ethoxy) propionic acid or salts thereof
US6743926B2 (en) Process for the preparation of indole derivatives and intermediates of the process
JP2018507871A (en) Process for producing 3-chloro-2-vinylphenylsulfonates
JP5763313B2 (en) Process for producing 2- (1-benzothiophen-5-yl) ethanol
EP1873145B1 (en) Method for producing nicotinic acid derivative or salt thereof
WO2001053264A1 (en) Process for preparing quinolylacrylonitrile and intermediates therefor
KR100995882B1 (en) Process for preparing intermediate of pitavastatin or its salt
JP6256469B2 (en) Process for the preparation of spiro [2.5] octane-5,7-dione
CZ299711B6 (en) Process for preparing 6-aryl-5,6-dioxohexanoic acid
JP5205971B2 (en) Method for producing tetrahydropyran compound
WO2011152442A1 (en) Method for producing 2-chloro-6-fluorobenzoxazole
JP4561635B2 (en) Process for producing 4-alkoxycarbonyltetrahydropyran or tetrahydropyranyl-4-carboxylic acid
US7915418B2 (en) Intermediates and process for the production of optically active quinolonecarboxylic acid derivatives
JP5148836B2 (en) Process for producing nicotinic acid derivative or salt thereof
KR20110134249A (en) Process for preparing intermediate of pitavastatin or its salt
JPWO2011065351A1 (en) Method for producing cyclohexane derivative
JP3918468B2 (en) 3,3-bis (alkoxycarbonyl-methylthio) propionitrile and process for producing the same
JP4194984B2 (en) Phenylnaphthylimidazole compound
CZ307255B6 (en) A new method of preparing elvitegravir
WO2010122793A1 (en) Process for production of pyrazine derivative, and intermediate for the production
JPWO2010029756A1 (en) Process for producing 5- [2- (methylthio) ethoxy] pyrimidin-2-amine
JP2020529412A (en) Intermediate compounds and methods
JP2003342211A (en) Method for producing 4,4-difluoro-3-buten-1-ol derivative
JPH07126254A (en) Imidazole compound and its production
JP2007320930A (en) Method for producing phenyltetrazole derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150402

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150611

R150 Certificate of patent or registration of utility model

Ref document number: 5763313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250