JP2010202451A - METHOD FOR PRODUCING In-Ga-Zn-BASED COMPOSITE OXIDE SINTERED COMPACT - Google Patents

METHOD FOR PRODUCING In-Ga-Zn-BASED COMPOSITE OXIDE SINTERED COMPACT Download PDF

Info

Publication number
JP2010202451A
JP2010202451A JP2009049387A JP2009049387A JP2010202451A JP 2010202451 A JP2010202451 A JP 2010202451A JP 2009049387 A JP2009049387 A JP 2009049387A JP 2009049387 A JP2009049387 A JP 2009049387A JP 2010202451 A JP2010202451 A JP 2010202451A
Authority
JP
Japan
Prior art keywords
sintered body
zno
composite oxide
based composite
oxide sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009049387A
Other languages
Japanese (ja)
Inventor
Kenichiro Shibata
憲一郎 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009049387A priority Critical patent/JP2010202451A/en
Publication of JP2010202451A publication Critical patent/JP2010202451A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an In-Ga-Zn-based composite oxide sintered compact where the In-Ga-Zn-based composite oxide sintered compact composed mainly of the crystal of a compound denoted as In<SB>2</SB>Ga<SB>2</SB>ZnO<SB>7</SB>is obtained as an IGZO sintered compact. <P>SOLUTION: The method for producing the In-Ga-Zn-based composite oxide sintered compact has a mixing step to pulverize a mixture of the oxides of indium (In), gallium (Ga) and zinc (Zn) in a molar ratio of 1:1:1 respectively and obtain raw material powders, a calcining step to calcine the raw material powders at a predetermined temperature and obtain calcined powders, a forming step to form a formed body having a predetermined size with the calcined powders and a baking step to bake the formed body at 1,500-1,600°C for 4 hours or more in a predetermined atmosphere and obtain the sintered compact. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、TFTや透明電極等に好適な透明薄膜形成用のIn−Ga−Zn系複合酸化物焼結体の製造方法に関し、詳しくは、InGaZnOで表される化合物の結晶が主体であるIn−Ga−Zn系複合酸化物焼結体の製造方法に関する。 The present invention relates to a method for producing an In—Ga—Zn-based composite oxide sintered body for forming a transparent thin film suitable for TFTs, transparent electrodes, and the like, and more specifically, a crystal of a compound represented by In 2 Ga 2 ZnO 7. The present invention relates to a method for producing an In—Ga—Zn-based composite oxide sintered body.

液晶表示装置や、有機EL等の薄膜エレクトロルミネッセンス表示装置等において、薄膜トランジスタ(TFT:Thin Film Transistor)のチャネル層や透明電極用の透明薄膜として、従来、主として、アモルファスシリコン膜が使用されてきた。   Conventionally, amorphous silicon films have been mainly used as channel layers of thin film transistors (TFTs) and transparent thin films for transparent electrodes in liquid crystal display devices and thin film electroluminescence display devices such as organic EL.

しかし、近年、この透明薄膜として、In−Ga−Zn系複合酸化物(IGZO)を主成分とするアモルファス半導体膜が、前記アモルファスシリコン膜よりもキャリヤの移動度が大きいという利点から注目されている(例えば、特許文献1、2)。   However, in recent years, as this transparent thin film, an amorphous semiconductor film containing In—Ga—Zn-based composite oxide (IGZO) as a main component has been attracting attention because of its advantage of higher carrier mobility than the amorphous silicon film. (For example, Patent Documents 1 and 2).

このIGZOを主成分とするアモルファス半導体膜として、従来は、主として、InGaZnOを主体とするIGZO焼結体から作製されたスパッタリングターゲット等の透明薄膜形成用材料を用いて、イオンプレーティング法、レーザーアブレーション法、スパッタリング法等様々の方法により、InGaZnOを主組成とするアモルファス半導体膜が形成されていた。 As an amorphous semiconductor film mainly composed of IGZO, conventionally, a material for forming a transparent thin film such as a sputtering target mainly made of an IGZO sintered body mainly composed of InGaZnO 4 is used. An amorphous semiconductor film containing InGaZnO 4 as a main composition has been formed by various methods such as an ablation method and a sputtering method.

特開2008−214697号公報JP 2008-214697 A 特開2008−163441号公報JP 2008-163441 A

しかし、近年、キャリヤの移動度や薄膜トランジスタ等の作製工程における耐エッチング性等がより優れたアモルファス半導体膜として、よりZnO含有率の小さなIGZOアモルファス半導体膜が求められており、特に、このような優れたアモルファス半導体膜を形成するためのスパッタリングターゲット等の透明薄膜形成用材料(IGZO焼結体)が求められている。   However, in recent years, an IGZO amorphous semiconductor film having a smaller ZnO content has been demanded as an amorphous semiconductor film having better carrier mobility and etching resistance in the manufacturing process of thin film transistors and the like. There is a need for a transparent thin film forming material (IGZO sintered body) such as a sputtering target for forming an amorphous semiconductor film.

このようなIGZO焼結体として、InGaZnOで表される複合酸化物焼結体を用いてInGaZnOを主組成とするアモルファス半導体膜を形成することにより、キャリヤの移動度や薄膜トランジスタ等の作製工程における耐エッチング性等が従来以上に優れたIGZOアモルファス半導体膜を形成することができることが最近見出されている。 Such IGZO sintered body by forming an amorphous semiconductor film as a main composition of In 2 Ga 2 ZnO 7 using the composite oxide sintered body represented by In 2 Ga 2 ZnO 7, the carrier Recently, it has been found that an IGZO amorphous semiconductor film having superior mobility and etching resistance in a manufacturing process of a thin film transistor or the like can be formed.

このような複合酸化物焼結体は、一般に、モル比が1:1:1のIn、Ga、ZnOを出発原料として作製されるが、反応が不充分な混合物や化合物状態であると、膜の形成時、蒸気圧が高いZnOのみが先に蒸発し易いため、膜の組成にズレが生じ、安定して均一なInGaZnOを主組成とするアモルファス半導体膜を得ることが困難になる。このため、本発明における複合酸化物焼結体のInGaZnO化合物は、できるだけ単一な結晶相である必要があるが、モル比が1:1:1のIn、Ga、ZnOを出発原料としても、InGaZnOで表される化合物の結晶が主体の単一な結晶相の複合酸化物焼結体を容易に得ることはできなかった。 Such a complex oxide sintered body is generally prepared using In 2 O 3 , Ga 2 O 3 , ZnO having a molar ratio of 1: 1: 1 as a starting material, but a mixture or a compound with insufficient reaction. In this state, when the film is formed, only ZnO having a high vapor pressure is likely to evaporate first, so that the composition of the film is shifted, and the amorphous semiconductor having a stable and uniform In 2 Ga 2 ZnO 7 as a main composition It becomes difficult to obtain a film. For this reason, the In 2 Ga 2 ZnO 7 compound of the composite oxide sintered body in the present invention needs to have a single crystal phase as much as possible, but the molar ratio is 1: 1: 1 In 2 O 3 , Ga Even when 2 O 3 and ZnO were used as starting materials, it was not possible to easily obtain a complex oxide sintered body having a single crystal phase mainly composed of crystals of a compound represented by In 2 Ga 2 ZnO 7 .

また、最も一般的なアモルファス半導体膜を得る方法であるDCスパッタリング用ターゲットの製造においては、できるだけ緻密で比抵抗の小さいターゲット材質が要求されるが、密度比で60〜80%程度のものしか得られておらず、また比抵抗の小さなDCスパッタリングに適したターゲットも得られていなかった。   Further, in the production of a target for DC sputtering, which is the most common method for obtaining an amorphous semiconductor film, a target material that is as dense as possible and has a low specific resistance is required, but only a material with a density ratio of about 60 to 80% is obtained. Further, a target suitable for DC sputtering with a small specific resistance has not been obtained.

そこで、本発明は、優れたIGZOアモルファス半導体膜を形成することができる透明薄膜形成用材料、即ち、IGZO焼結体として、InGaZnOで表される化合物の結晶が主体であり、緻密で且つ比抵抗の小さい複合酸化物焼結体を得ることができるIn−Ga−Zn系複合酸化物焼結体の製造方法を提供することを課題とする。 Therefore, the present invention is mainly a crystal of a compound represented by In 2 Ga 2 ZnO 7 as a transparent thin film forming material that can form an excellent IGZO amorphous semiconductor film, that is, an IGZO sintered body, It is an object of the present invention to provide a method for producing an In—Ga—Zn-based composite oxide sintered body capable of obtaining a dense complex oxide sintered body having a small specific resistance.

本発明者は、従来の技術において、モル比1:1:1付近のIn、Ga、ZnOを出発物質としながらも、何故、InGaZnOで表される化合物の結晶が主体であり、緻密で且つ比抵抗の小さい複合酸化物焼結体を得ることができなかったのか、その理由につき鋭意検討した。その結果、以下に示す各請求項の発明により上記の課題を解決することができることを見出し、本発明に至った。 The present inventor, in the prior art, uses In 2 O 3 , Ga 2 O 3 , and ZnO in a molar ratio of about 1: 1: 1 as a starting material, but why the compound represented by In 2 Ga 2 ZnO 7 is used. Whether or not a complex oxide sintered body having a high density and a small specific resistance could not be obtained has been studied earnestly. As a result, the inventors have found that the above-described problems can be solved by the inventions of the following claims, and have reached the present invention.

請求項1に記載の発明は、
インジウム(In)、ガリウム(Ga)および亜鉛(Zn)の各酸化物の粉末を1:1:1のモル比で混合、粉砕して原料粉末とする混合工程と、
前記原料粉末を、所定の温度で仮焼して仮焼粉体とする仮焼工程と、
前記仮焼粉体を、所定の寸法の成形体とする成形工程と、
前記成形体を、所定の雰囲気中、1500〜1600℃で4時間以上焼成して焼結体とする焼成工程と
を有することを特徴とするIn−Ga−Zn系複合酸化物焼結体の製造方法である。
The invention described in claim 1
A mixing step of mixing and pulverizing powders of oxides of indium (In), gallium (Ga) and zinc (Zn) at a molar ratio of 1: 1: 1 to obtain a raw material powder;
A calcining step of calcining the raw material powder at a predetermined temperature to obtain a calcined powder;
A molding step in which the calcined powder is formed into a molded body having a predetermined dimension;
And a firing step of firing the molded body at 1500 to 1600 ° C. for 4 hours or more in a predetermined atmosphere to form a sintered body, producing an In—Ga—Zn-based composite oxide sintered body Is the method.

本発明者は、従来のように、原料粉末をそのまま混合成形して焼成するのではなく、原料粉末を一旦仮焼し、さらに、従来焼成温度の上限と考えられていた1450℃を超える1500〜1600℃という高温で焼成することにより、InGaZnOで表される化合物の結晶が主体であり、緻密で且つ比抵抗の小さい複合酸化物焼結体が得られることを見出した。 The present inventor does not mix and mold the raw material powder as it is, but calcines the raw material powder temporarily, and further exceeds 1500 to 1450 ° C., which has been considered as the upper limit of the conventional firing temperature. It was found that by firing at a high temperature of 1600 ° C., a complex oxide sintered body mainly composed of crystals of a compound represented by In 2 Ga 2 ZnO 7 and having a small specific resistance can be obtained.

仮焼を省略した場合には、結晶の不均一相が生成されやすく、InGaZnOで表される化合物の結晶が主体である複合酸化物焼結体を得ることが難しい。また、95%以上の密度比(焼結体の密度の理論密度に対する比)を有する焼結体を得ることができず、焼結体にクラック等が生じる恐れがある。また、比抵抗も大きな材質しか得られない。 When calcination is omitted, a heterogeneous phase of crystals is easily generated, and it is difficult to obtain a complex oxide sintered body mainly composed of crystals of a compound represented by In 2 Ga 2 ZnO 7 . Moreover, a sintered body having a density ratio of 95% or more (ratio of the density of the sintered body to the theoretical density) cannot be obtained, and there is a possibility that cracks or the like may occur in the sintered body. Moreover, only a material having a large specific resistance can be obtained.

仮焼を行うことにより、ZnGaが生成され、成形工程の前に混合粉体から、高温焼成時に蒸発しやすく組成変動を起こしやすいフリーのZnOを除去して、結晶の不均一相が生成されることを抑制することができる。 By carrying out calcination, ZnGa 2 O 4 is generated, and free ZnO that easily evaporates at the time of high-temperature firing and easily changes in composition is removed from the mixed powder before the forming step, so that an inhomogeneous phase of the crystal is formed. Generation | occurrence | production can be suppressed.

焼成温度が1500℃未満であると、InGaZnO結晶が主体である複合酸化物焼結体、即ち、InGaZnO単相構造に近い複合酸化物焼結体を得ることができず、InGaZnO等、InGaZnO以外の結晶の含有率が高くなる恐れがあり、95%以上の密度比を有する焼結体を得ることができない。また、比抵抗も10−2Ωcm以上となる。 When the firing temperature is less than 1500 ° C., a composite oxide sintered body mainly composed of In 2 Ga 2 ZnO 7 crystals, that is, a composite oxide sintered body close to an In 2 Ga 2 ZnO 7 single-phase structure is obtained. And the content of crystals other than In 2 Ga 2 ZnO 7 such as InGaZnO 4 may be high, and a sintered body having a density ratio of 95% or more cannot be obtained. The specific resistance is also 10 −2 Ωcm or more.

一方、焼成温度が1500℃以上であると、InGaZnO結晶が生成される。しかし、焼成温度が1600℃を超えると、ZnOの蒸発、減少率が大きくなり過ぎ、組成の変動、気泡の発生、焼結体の変形の増大等を招く恐れがある。焼成温度が1500〜1600℃であれば、ZnOの蒸発、減少率を1〜10mol%程度に抑制することができ、InGaZnO単相構造に近い高密度(95%以上の密度比)の複合酸化物焼結体を得ることができる。 On the other hand, if the firing temperature is 1500 ° C. or higher, In 2 Ga 2 ZnO 7 crystals are generated. However, if the firing temperature exceeds 1600 ° C., the evaporation and reduction rate of ZnO becomes too large, which may lead to composition variation, bubble generation, increased deformation of the sintered body, and the like. If the firing temperature is 1500 to 1600 ° C., the evaporation and reduction rate of ZnO can be suppressed to about 1 to 10 mol%, and a high density close to the In 2 Ga 2 ZnO 7 single phase structure (a density ratio of 95% or more) ) Composite oxide sintered body can be obtained.

焼成時間は、4時間以上であることが好ましい。4時間未満では、InGaZnO結晶が充分に生成されず、InGaZnO等、InGaZnO以外の結晶の含有率が高くなり、不均一性の高い焼結体となる。12〜24時間であると、InGaZnO以外の結晶の含有率を5wt%以下とすることができるためより好ましい。なお、焼成は、大気雰囲気又は不活性ガス雰囲気中で行うことが好ましい。酸素気流中等、過剰な酸素雰囲気中で焼成すると、DCスパッタリングに適した10−2Ωcm以下の比抵抗が得られない場合がある。 The firing time is preferably 4 hours or longer. If it is less than 4 hours, In 2 Ga 2 ZnO 7 crystals are not sufficiently formed, and the content of crystals other than In 2 Ga 2 ZnO 7 such as InGaZnO 4 increases, resulting in a highly non-uniform sintered body. It is more preferable that it is 12 to 24 hours because the content of crystals other than In 2 Ga 2 ZnO 7 can be 5 wt% or less. Note that the firing is preferably performed in an air atmosphere or an inert gas atmosphere. When firing in an excessive oxygen atmosphere such as an oxygen stream, a specific resistance of 10 −2 Ωcm or less suitable for DC sputtering may not be obtained.

請求項2に記載の発明は、
前記焼結体を、不活性ガス雰囲気中、1450〜1550℃の温度、98MPa以上の圧力でHIP処理するHIP工程を有することを特徴とする請求項1に記載のIn−Ga−Zn系複合酸化物焼結体の製造方法である。
The invention described in claim 2
2. The In—Ga—Zn-based composite oxidation according to claim 1, further comprising a HIP process in which the sintered body is subjected to HIP treatment in an inert gas atmosphere at a temperature of 1450 to 1550 ° C. and a pressure of 98 MPa or more. This is a method for manufacturing a sintered product.

高温、高圧のArガス等の不活性ガス雰囲気中でHIP処理(熱間静水圧処理)を施すことにより、ZnOの蒸発を抑制しつつ、高密度のInGaZnO結晶が主体である複合酸化物焼結体を得ることができる。 Mainly high-density In 2 Ga 2 ZnO 7 crystal while suppressing evaporation of ZnO by applying HIP treatment (hot isostatic pressure treatment) in an inert gas atmosphere such as high-temperature and high-pressure Ar gas. A composite oxide sintered body can be obtained.

請求項3に記載の発明は、
前記仮焼粉体、成形体または焼結体を、不活性ガス雰囲気中、還元性材料からなる型に接触させることなく、1450〜1550℃の温度、19.6MPa以上の圧力でホットプレス処理することを特徴とする請求項1に記載のIn−Ga−Zn系複合酸化物焼結体の製造方法である。
The invention according to claim 3
The calcined powder, molded body, or sintered body is hot-pressed at a temperature of 1450 to 1550 ° C. and a pressure of 19.6 MPa or higher without contacting a mold made of a reducing material in an inert gas atmosphere. It is a manufacturing method of the In-Ga-Zn type complex oxide sintered compact of Claim 1 characterized by the above-mentioned.

仮焼粉体、成形体あるいは焼結体を、高温、高圧のArガス等の不活性ガス雰囲気中で、カーボン等の還元性材料からなる型に接触させることなく、ホットプレスを行うことにより、ZnOの蒸発を抑制しつつ、高密度のInGaZnO結晶が主体である複合酸化物焼結体を得ることができる。 By carrying out hot pressing without bringing the calcined powder, molded body or sintered body into contact with a mold made of a reducing material such as carbon in an inert gas atmosphere such as high-temperature and high-pressure Ar gas, A composite oxide sintered body mainly composed of high-density In 2 Ga 2 ZnO 7 crystal can be obtained while suppressing evaporation of ZnO.

請求項4に記載の発明は、
前記混合工程において、インジウム(In)およびガリウム(Ga)の各酸化物に対して、亜鉛の酸化物(ZnO)を1〜10mol%多く混合することを特徴とする請求項1ないし請求項3のいずれか1項に記載のIn−Ga−Zn系複合酸化物焼結体の製造方法である。
The invention according to claim 4
4. In the mixing step, 1 to 10 mol% of zinc oxide (ZnO) is mixed in an amount of each oxide of indium (In) and gallium (Ga). It is a manufacturing method of the In-Ga-Zn system complex oxide sintered compact given in any 1 paragraph.

前記したように、高温焼成においてはZnOが蒸発し易い。ZnOを1〜10mol%多く混合しておくことにより、InGaZnO化合物の結晶を形成するために必要なZnOを確実に確保することができるため、In、Ga、ZnO換算したときのモル比がより1:1:1に近い焼結体を得ることができる。 As described above, ZnO tends to evaporate during high-temperature firing. By mixing ZnO in an amount of 1 to 10 mol% in a large amount, ZnO necessary for forming a crystal of the In 2 Ga 2 ZnO 7 compound can be surely secured, so In 2 O 3 , Ga 2 O 3 A sintered body having a molar ratio closer to 1: 1: 1 when converted to ZnO can be obtained.

請求項5に記載の発明は、
前記焼成工程におけるZnOの減少率が10mol%以下であることを特徴とする請求項1ないし請求項4のいずれか1項に記載のIn−Ga−Zn系複合酸化物焼結体の製造方法である。
The invention described in claim 5
The method for producing an In-Ga-Zn-based composite oxide sintered body according to any one of claims 1 to 4, wherein a reduction rate of ZnO in the firing step is 10 mol% or less. is there.

焼成工程におけるZnOの減少率(蒸発率)を10%以下とすることにより、InGaZnO単相構造に近い高密度の且つ、低比抵抗の複合酸化物焼結体を安定して得ることができる。 By reducing the reduction rate (evaporation rate) of ZnO in the firing process to 10% or less, a high-density and low-resistivity composite oxide sintered body close to the In 2 Ga 2 ZnO 7 single-phase structure can be stably obtained. Obtainable.

本発明によれば、IGZO焼結体として、モル比が1:1:1のIn、Ga及びZnOを出発原料として、InGaZnOで表される化合物の結晶が主体である複合酸化物焼結体を得るIn−Ga−Zn系複合酸化物焼結体の製造方法を容易に提供することができる。 According to the present invention, as an IGZO sintered body, a crystal of a compound represented by In 2 Ga 2 ZnO 7 using In 2 O 3 , Ga 2 O 3 and ZnO having a molar ratio of 1: 1: 1 as a starting material. Thus, it is possible to easily provide a method for producing an In—Ga—Zn-based composite oxide sintered body that obtains a composite oxide sintered body mainly composed of.

実施例1のIn−Ga−Zn系複合酸化物焼結体のX線回折図である。3 is an X-ray diffraction pattern of the In—Ga—Zn-based composite oxide sintered body of Example 1. FIG. 実施例1のIn−Ga−Zn系複合酸化物焼結体の破断面のSEM写真である。4 is a SEM photograph of a fracture surface of the In—Ga—Zn-based composite oxide sintered body of Example 1. FIG. 実施例2のIn−Ga−Zn系複合酸化物焼結体のX線回折図である。3 is an X-ray diffraction diagram of an In—Ga—Zn-based composite oxide sintered body of Example 2. FIG. 実施例3のIn−Ga−Zn系複合酸化物焼結体のX線回折図である。4 is an X-ray diffraction diagram of an In—Ga—Zn-based composite oxide sintered body of Example 3. FIG.

以下、本発明を実施の形態に基づいて説明する。なお、本発明は、以下の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。   Hereinafter, the present invention will be described based on embodiments. Note that the present invention is not limited to the following embodiments. Various modifications can be made to the following embodiments within the same and equivalent scope as the present invention.

はじめに本発明に用いる原料粉末とその混合方法および焼成について概要を説明する。
1.原料粉末
前記したように、本発明の焼結体は、Cd、Cu、Na等の不純物含有量が少ないことが好ましい。このため、原料粉末には純度99.99%以上の高純度のIn、Ga、ZnOの粉末が好ましく用いられる。
First, an outline of the raw material powder used in the present invention, a mixing method thereof and firing is described.
1. Raw Material Powder As described above, the sintered body of the present invention preferably has a low content of impurities such as Cd, Cu, and Na. For this reason, high purity In 2 O 3 , Ga 2 O 3 and ZnO powders having a purity of 99.99% or more are preferably used as the raw material powder.

2.原料粉末の混合
イ.混合比率
前記したように、In、Ga、ZnOのうちZnOは蒸気圧が高く焼成時に蒸発し易い。このため、In:Ga:Zn:Oの比率が、より2:2:1:7に近い組成の焼結体を得るためには、混合粉体のIn:Ga:ZnOの比率が1:1:1よりもZnOの比率を1〜10モル%高い比率にすることが有効である。
2. Mixing raw material powder a. Mixing ratio As described above, among In 2 O 3 , Ga 2 O 3 , and ZnO, ZnO has a high vapor pressure and easily evaporates during firing. For this reason, in order to obtain a sintered body having a composition in which the ratio of In: Ga: Zn: O is closer to 2: 2: 1: 7, the mixed powder In 2 O 3 : Ga 2 O 3 : ZnO is used. It is effective to make the ZnO ratio 1-10 mol% higher than the 1: 1 ratio.

ロ.混合方法
原料粉末の混合には乾式、湿式の何れの混合方式を用いてもよい。具体的には、通常のボールミルや遊星ボールミルを用いて混合される。また、湿式の混合方式により混合を行った場合の乾燥には自然乾燥やスプレードライヤ等の乾燥方法が好ましく用いられる。
B. Mixing method Either a dry method or a wet method may be used for mixing the raw material powders. Specifically, mixing is performed using a normal ball mill or a planetary ball mill. In addition, a drying method such as natural drying or a spray dryer is preferably used for drying when mixing is performed by a wet mixing method.

3.焼結体の作製
焼結体の作製は、仮焼と焼成の2段階で行う。
イ.仮焼
前記したように、焼成前に混合粉体を仮焼して予めZnGaを生成させ、フリーのZnOを含まないようにしておくことによって不均一相の生成を抑制し、InGaZnOの単相の生成を促進することができる。また、焼結体の密度を高め、焼結体にクラックが発生することを抑制することができる。
3. Production of sintered body Production of the sintered body is carried out in two stages of calcination and firing.
I. Calcination As described above, the mixed powder is calcined before firing to generate ZnGa 2 O 4 in advance, and free ZnO is not contained, thereby suppressing the generation of a heterogeneous phase, and In 2 Generation of a single phase of Ga 2 ZnO 7 can be promoted. Moreover, the density of a sintered compact can be raised and it can suppress that a crack generate | occur | produces in a sintered compact.

ロ.焼成
a.焼成時間、焼成温度
焼成は焼成温度1500〜1600℃、焼成時間4時間以上の条件で行う。InGaZnOの生成には1500℃以上の高温焼成が必要である。焼成温度が1500℃未満の場合は95%以上の密度比を有する焼結体が得られない。一方1600℃を超える場合は、ZnOの蒸発により、焼結体の組成が変動したり、焼結体中に気泡が発生したり、焼結体の変形が大きくなったりする恐れがある。また、焼成時間が4時間未満では、InGaZnO等、InGaZnO以外の結晶の含有率が高くなる恐れがある。12〜24時間焼成するとInGaZnO等の含有率を5wt%以下にできるため好ましい。
B. Firing a. Firing time, calcination temperature Firing is performed under conditions of a calcination temperature of 1500 to 1600 ° C. and a calcination time of 4 hours or more. High temperature baking at 1500 ° C. or higher is necessary for the production of In 2 Ga 2 ZnO 7 . When the firing temperature is less than 1500 ° C., a sintered body having a density ratio of 95% or more cannot be obtained. On the other hand, when the temperature exceeds 1600 ° C., the composition of the sintered body may fluctuate due to evaporation of ZnO, bubbles may be generated in the sintered body, and deformation of the sintered body may increase. Further, if the firing time is less than 4 hours, the content of crystals other than In 2 Ga 2 ZnO 7 such as InGaZnO 4 may be increased. It is preferable to calcinate for 12 to 24 hours because the content of InGaZnO 4 or the like can be reduced to 5 wt% or less.

b.焼成の方式
焼成に際して、蒸気圧の高いZnOの蒸発を抑制しつつ高密度の焼結体を得る必要があるため、大気中焼成や不活性ガス焼成の他に、高圧のArガスを用いるHIP処理やArガス雰囲気中におけるホットプレス処理が好ましく用いられる。
b. Firing method Since it is necessary to obtain a high-density sintered body while suppressing evaporation of ZnO having a high vapor pressure during firing, HIP treatment using high-pressure Ar gas in addition to firing in the air or inert gas Hot pressing in an Ar gas atmosphere is preferably used.

次に実施例により、本発明を具体的に説明する。
(実施例1)
本実施例は、材料としてIn粉末、Ga粉末、ZnO粉末の混合粉末を用い、前記混合粉末を仮焼後、仮焼粉体を一軸加圧成形により成形した後、焼成してターゲットとなる焼結体を作製した例である。
Next, an Example demonstrates this invention concretely.
Example 1
In this example, a mixed powder of In 2 O 3 powder, Ga 2 O 3 powder, and ZnO powder was used as a material. After calcining the mixed powder, the calcined powder was molded by uniaxial pressure molding and then fired. This is an example in which a sintered body as a target was produced.

1.材料粉末の粉砕混合
In(純度99.99%、平均粒子径約3μm)、Ga(純度99.99%、平均粒子径約2μm)、ZnO(純度99.99%、平均粒子径約1μm)の各粉末を、モル比で1:1:1.05の比率となるように秤量し、ボールミル装置を用いて10時間粉砕混合した。なお、分散媒にはエチルアルコールを用いた。粉砕混合後自然乾燥した。
1. Grinding and mixing of material powders In 2 O 3 (purity 99.99%, average particle size about 3 μm), Ga 2 O 3 (purity 99.99%, average particle size about 2 μm), ZnO (purity 99.99%, average Each powder having a particle diameter of about 1 μm was weighed so as to have a molar ratio of 1: 1: 1.05, and pulverized and mixed for 10 hours using a ball mill apparatus. Note that ethyl alcohol was used as a dispersion medium. After milling and mixing, it was naturally dried.

2.仮焼
次に、得られた混合粉末を解砕、粉砕してアルミナ製ルツボに入れ、大気雰囲気中、1000℃で5時間仮焼を行ない、仮焼粉体を得た。得られた仮焼粉体のX線回折測定を行なった結果、ZnGaとInの回折ピークが認められ、フリーのZnOのピークは認められなかった。
2. Calcination Next, the obtained mixed powder was crushed and pulverized, put into an alumina crucible, and calcined at 1000 ° C. for 5 hours in an air atmosphere to obtain a calcined powder. As a result of X-ray diffraction measurement of the obtained calcined powder, diffraction peaks of ZnGa 2 O 4 and In 2 O 3 were observed, and no free ZnO peak was observed.

3.成形および焼成
次に、得られた仮焼粉体を一軸加圧成形により加圧成形し、直径100mm、厚さ約9mmの円板状の成形体を得た。得られた成形体を大気雰囲気中、1525℃で18時間焼成して焼結体を得た。得られた焼結体は、直径が80mmに収縮(厚さは約7mm)しており、外観は黒灰色であった。また、焼結体には大きな変形やクラックの発生が認められなかった。このように大きな変形が認められなかったのは、1525℃、即ち1600℃以下の温度で焼成したためであり、クラックの発生が認められなかったのは、仮焼を行ったためである。
3. Molding and Firing Next, the obtained calcined powder was pressure-molded by uniaxial pressure molding to obtain a disk-shaped molded body having a diameter of 100 mm and a thickness of about 9 mm. The obtained molded body was fired at 1525 ° C. for 18 hours in an air atmosphere to obtain a sintered body. The obtained sintered body was contracted to a diameter of 80 mm (thickness was about 7 mm), and the appearance was blackish gray. In addition, no significant deformation or cracking was observed in the sintered body. Such a large deformation was not observed because it was fired at a temperature of 1525 ° C., ie, 1600 ° C. or less, and the generation of cracks was not observed because it was calcined.

4.ターゲットの作製
次に、得られた焼結体を直径76.2mm、厚さ5.0mmに加工してターゲットとした。
4). Preparation of target Next, the obtained sintered body was processed into a diameter of 76.2 mm and a thickness of 5.0 mm to obtain a target.

5.特性評価
ターゲットとなる焼結体のX線回折測定、ICP発光分析による組成分析、SEMによる破断面の観察、密度および導電性(体積抵抗)の測定を行なった。
5). Characteristic evaluation The target sintered body was subjected to X-ray diffraction measurement, composition analysis by ICP emission analysis, fracture surface observation by SEM, density and conductivity (volume resistance).

(1)X線回折測定
X線回折測定により測定された焼結体のX線回折図を図1に示す。図1には2θが30.3°、35°、57°付近等にInGaZnOに固有の回折ピークが認められ、焼結体には主としてInGaZnOが生成していることが確認された。また、ほぼ単相であることが分かった。このように、ほぼInGaZnOの単相からなる焼結体が得られたのは、主として1525℃、即ち1500℃以上の温度で、18時間、即ち4時間以上加熱して焼成したことと、焼成の前に仮焼を行ったためである。
(1) X-ray diffraction measurement FIG. 1 shows an X-ray diffraction pattern of the sintered body measured by X-ray diffraction measurement. 2θ is 30.3 ° in FIG. 1, 35 °, 57 ° around like observed specific diffraction peak in In 2 Ga 2 ZnO 7 to, the sintered body primarily generated by In 2 Ga 2 ZnO 7 It was confirmed that Moreover, it turned out that it is a substantially single phase. Thus, a sintered body substantially consisting of a single phase of In 2 Ga 2 ZnO 7 was obtained mainly by baking at a temperature of 1525 ° C., that is, 1500 ° C. or more, for 18 hours, that is, for 4 hours or more. This is because calcination was performed before firing.

(2)組成分析
ICP法による組成分析の結果、焼結体に含まれるIn、Ga、Znのwt%は、それぞれIn:41.9%、Ga:25.6%、Zn:11.7%であった。この結果をIn、Ga、ZnOのモル比に換算するとIn:Ga:ZnO=1.02:1.02:1.00となり、モル比が1:1:1からのズレが0.02、すなわち2%であることが確認できた。
(2) Composition analysis As a result of the composition analysis by the ICP method, the wt% of In, Ga, and Zn contained in the sintered body was In: 41.9%, Ga: 25.6%, and Zn: 11.7%, respectively. Met. When this result is converted into a molar ratio of In 2 O 3 , Ga 2 O 3 and ZnO, it becomes In 2 O 3 : Ga 2 O 3 : ZnO = 1.02: 1.02: 1.00, and the molar ratio is 1: It was confirmed that the deviation from 1: 1 was 0.02, that is, 2%.

(3)SEMによる破断面の観察
焼結体の破断面の観察により得られたSEM写真を図2に示す。図2より、焼結体の結晶粒径はおよそ20〜30μmであり、気孔については0.5〜3μmの気孔がわずかに散見されるのみであることが分かった。
(3) Observation of fracture surface by SEM FIG. 2 shows an SEM photograph obtained by observation of the fracture surface of the sintered body. From FIG. 2, it was found that the crystal grain size of the sintered body was approximately 20 to 30 μm, and the pores of 0.5 to 3 μm were only slightly scattered.

(4)密度および体積抵抗の測定
アルキメデス法(水中法)により得られた焼結体の密度を測定した。また、焼結体のX線回折データの格子定数から計算される理論密度は6.494g/cmであり、測定された密度の、理論密度に対する比(密度比)を算定した。また、抵抗率計(三菱油化社製、ロレスタ)を使用して四探針法により焼結体の体積抵抗を測定した。密度と体積抵抗の測定結果および密度比の算定結果を後記する実施例2、実施例3の結果と併せて表1に示す。
(4) Measurement of density and volume resistance The density of the sintered body obtained by the Archimedes method (underwater method) was measured. The theoretical density calculated from the lattice constant of the X-ray diffraction data of the sintered body was 6.494 g / cm 3 , and the ratio (density ratio) of the measured density to the theoretical density was calculated. Further, the volume resistance of the sintered body was measured by a four-point probe method using a resistivity meter (manufactured by Mitsubishi Oil Chemical Co., Ltd., Loresta). The measurement results of the density and volume resistance and the calculation results of the density ratio are shown in Table 1 together with the results of Example 2 and Example 3 to be described later.

(実施例2)
本実施例は、実施例1と同様にして作製した仮焼粉体をCIP(冷間静水圧)成形により成形した後、焼成を行なって焼結体を作製し、さらにHIP処理を行なってターゲットとなる焼結体を作製した例である。
(Example 2)
In this example, a calcined powder produced in the same manner as in Example 1 was molded by CIP (cold isostatic pressing) molding, then baked to produce a sintered body, and further subjected to HIP treatment to obtain a target. It is an example which produced the sintered compact used as follows.

1.仮焼粉体の作製
実施例1と同様にして、仮焼粉体を作製した。
1. Preparation of calcined powder A calcined powder was produced in the same manner as in Example 1.

2.成形および焼成
得られた仮焼粉体を解砕、粉砕後、CIP成形により加圧成形し、直径約95mm、厚さ約9mmの円板状の成形体を得た。得られた成形体を大気雰囲気中、1520℃で12時間焼成して焼結体を得た。得られた焼結体は、直径が80mmに収縮(厚さは約7.5mm)しており、外観は黒灰色であった。実施例1と同様にして焼結体の密度を測定した結果、吸水は認められず、密度は6.2g/cmであり、理論密度6.494g/cmに対する密度比は95%であった。また、得られた焼結体のX線回折測定を行なった。
2. Molding and Firing The obtained calcined powder was crushed and pulverized, and then pressure-molded by CIP molding to obtain a disk-shaped compact having a diameter of about 95 mm and a thickness of about 9 mm. The obtained molded body was fired at 1520 ° C. for 12 hours in an air atmosphere to obtain a sintered body. The obtained sintered body was contracted to a diameter of 80 mm (thickness was about 7.5 mm), and the appearance was blackish gray. Example 1 Results of measuring the density of the sintered body in the same manner as the water absorption is not observed, the density is 6.2 g / cm 3, the density ratio with respect to the theoretical density of 6.494g / cm 3 are met 95% It was. Moreover, the X-ray diffraction measurement of the obtained sintered compact was performed.

3.X線回折測定と組成分析
測定により得られたX線回折図を図3に示す。図3には主としてInGaZnOに固有の回折ピークが認められ、また、2θが20.5°付近にInGaZnOに固有の回折ピークがわずかに認められた。このようにX線回折測定結果から焼結体には主としてInGaZnOが生成していることが確認された。また、約数mol%程度のInGaZnOが混在していることが分かった。また、ICP発光分析による組成分析の結果、In、Ga、ZnOのモル比の1:1:1からのズレが5%以内であることが確認された。
3. X-ray diffraction measurement and composition analysis An X-ray diffraction diagram obtained by the measurement is shown in FIG. In FIG. 3, a diffraction peak inherent to In 2 Ga 2 ZnO 7 was observed, and a diffraction peak inherent to InGaZnO 4 was slightly observed when 2θ was around 20.5 °. As described above, it was confirmed from the X-ray diffraction measurement results that In 2 Ga 2 ZnO 7 was mainly formed in the sintered body. It was also found that about several mol% of InGaZnO 4 was mixed. Moreover, as a result of the composition analysis by ICP emission analysis, it was confirmed that the deviation from the 1: 1: 1 molar ratio of In 2 O 3 , Ga 2 O 3 , and ZnO was within 5%.

4.ターゲットの作製
得られた焼結体をArガス雰囲気中、1500℃、152MPa、1時間でHIP処理を行なった後、直径76.2mm、厚さ5mmに加工してターゲットとした。
4). Preparation of target The obtained sintered body was subjected to HIP treatment in an Ar gas atmosphere at 1500 ° C., 152 MPa for 1 hour, and then processed into a diameter of 76.2 mm and a thickness of 5 mm to obtain a target.

5.密度および体積抵抗の測定
実施例1と同様にして作製した焼結体の密度を測定し、密度比を算定した。また、体積抵抗を測定した。密度と体積抵抗の測定結果および密度比の算定結果を実施例1および後記する実施例3の結果と併せて表1に示す。
5). Measurement of Density and Volume Resistance The density of the sintered body produced in the same manner as in Example 1 was measured, and the density ratio was calculated. Moreover, volume resistance was measured. The measurement results of the density and volume resistance and the calculation result of the density ratio are shown in Table 1 together with the results of Example 1 and Example 3 described later.

(実施例3)
本実施例は、実施例1と同様にして作製した仮焼粉体をArガス雰囲気中でホットプレス処理を行なった後、Arガス雰囲気中でアニール処理してターゲットとなる焼結体を作製した例である。
(Example 3)
In this example, a calcined powder produced in the same manner as in Example 1 was hot-pressed in an Ar gas atmosphere, and then annealed in an Ar gas atmosphere to produce a target sintered body. It is an example.

1.仮焼粉体の作製
実施例1と同様にして、仮焼粉体を作製した。
1. Preparation of calcined powder A calcined powder was produced in the same manner as in Example 1.

2.成形および焼成
得られた仮焼粉体を実施例1で用いた一軸加圧成形により直径約60mm、厚さ15mmの円板状に成形した後、得られた成形体をアルミナ系酸化物セラミックス製の型を用いてArガス雰囲気中、1500℃、24.5MPaで1時間ホットプレス処理して焼結体を得た。焼結体の厚さは成形体に対して約50%収縮した。ホットプレス処理後の焼結体の密度比は98%であった。さらに、得られた焼結体をArガス雰囲気中、1550℃で8時間アニール処理した。
2. Molding and Firing After the obtained calcined powder was formed into a disk shape having a diameter of about 60 mm and a thickness of 15 mm by uniaxial pressure molding used in Example 1, the obtained compact was made of alumina-based oxide ceramics. Was used for hot pressing at 1500 ° C. and 24.5 MPa for 1 hour in an Ar gas atmosphere to obtain a sintered body. The thickness of the sintered body contracted by about 50% with respect to the molded body. The density ratio of the sintered body after the hot press treatment was 98%. Furthermore, the obtained sintered body was annealed at 1550 ° C. for 8 hours in an Ar gas atmosphere.

3.ターゲットの作製
アニール処理をした焼結体を直径50.8mm、厚さ6mmに加工してターゲットとした。
3. Production of target The sintered body that had been subjected to the annealing treatment was processed into a target having a diameter of 50.8 mm and a thickness of 6 mm.

4.X線回折、密度および体積抵抗の測定
実施例1と同様にして作製したターゲットとなる焼結体のX線回折測定、ICP発光分析による組成分析を行った。また、密度を測定し、密度比を算定した。さらに、体積抵抗を測定した。図4にX線回折図を示す。図4より、焼結体には主としてInGaZnOが生成していることが確認された。また、2θが20.5°付近にInGaZnOに固有の回折ピークがわずかに認められ、InGaZnOも存在していることが確認された。また、ICP発光分析による組成分析の結果、In、Ga、ZnOのモル比の1:1:1からのズレが5%以内であることが確認された。密度と体積抵抗の測定結果および密度比の算定結果を実施例1、実施例2の結果と併せて表1に示す。
4). Measurement of X-Ray Diffraction, Density and Volume Resistance A sintered body as a target produced in the same manner as in Example 1 was subjected to X-ray diffraction measurement and composition analysis by ICP emission analysis. Moreover, the density was measured and the density ratio was calculated. Furthermore, the volume resistance was measured. FIG. 4 shows an X-ray diffraction diagram. From FIG. 4, it was confirmed that In 2 Ga 2 ZnO 7 was mainly generated in the sintered body. Further, a slight diffraction peak specific to InGaZnO 4 was observed around 2θ of 20.5 °, and it was confirmed that InGaZnO 4 was also present. Moreover, as a result of the composition analysis by ICP emission analysis, it was confirmed that the deviation from the 1: 1: 1 molar ratio of In 2 O 3 , Ga 2 O 3 , and ZnO was within 5%. The measurement results of density and volume resistance and the calculation results of the density ratio are shown in Table 1 together with the results of Example 1 and Example 2.

表1より、実施例1〜3において作製された焼結体は、密度比が99%以上であることが分かる。特に、HIP処理を用いて焼成した実施例2の場合には、100%という高い密度比が得られている。また、体積抵抗が10−2Ωcmを下回っていることが分かる。このように、95%以上の高い密度比が得られたのは、仮焼を行ったことによる効果が大きい。 From Table 1, it turns out that the sintered compact produced in Examples 1-3 has a density ratio of 99% or more. In particular, in Example 2 fired using HIP treatment, a high density ratio of 100% is obtained. Moreover, it turns out that volume resistance is less than 10 <-2 > (omega | ohm) cm. Thus, the high density ratio of 95% or more was obtained because the effect by performing calcination was great.

なお、実施例1〜3において作製された焼結体について、ICP発光分析によりCd、Cu、Fe、K、Ni、Pbの含有量を調査した結果、何れのターゲットについてもこれらの個々の不純物元素の含有量は10ppm以下であり、またこれらの不純物元素の総含有量は100ppm以下であることが確認された。また、同様にICP発光分析によりNaの含有量を調査した結果、2〜20ppmであることが確認された。   In addition, about the sintered compact produced in Examples 1-3, as a result of investigating content of Cd, Cu, Fe, K, Ni, and Pb by ICP emission analysis, these individual impurity elements were found for any target. The content of was 10 ppm or less, and the total content of these impurity elements was confirmed to be 100 ppm or less. Similarly, as a result of investigating the content of Na by ICP emission analysis, it was confirmed to be 2 to 20 ppm.

以上詳述したように、実施例1〜3において作製された焼結体は、InGaZnOを主体とする焼結体であるため、これらの焼結体をターゲットに用いてInGaZnOを主体とする膜をスパッタ等で成膜した時の膜組成のズレが起きにくく、キャリアの移動度が大きく、安定したアモルファス半導体膜を作製することができる。 As described above in detail, since the sintered bodies produced in Examples 1 to 3 are sintered bodies mainly composed of In 2 Ga 2 ZnO 7 , these sintered bodies are used as targets for In 2. When a film mainly composed of Ga 2 ZnO 7 is formed by sputtering or the like, the composition of the film is less likely to be shifted, the carrier mobility is large, and a stable amorphous semiconductor film can be manufactured.

また、密度比が95%以上(気孔率が5%以下)と高密度な焼結体であるため、ターゲットとして欠陥が少なく、放電などの安定したスパッタ等が行われ、パーティクルなどの欠陥が少なく均一性の高いアモルファス半導体膜を作製することができる。   In addition, since the density ratio is 95% or more (porosity is 5% or less), the sintered body is high in density, so there are few defects as targets, stable sputtering such as discharge is performed, and there are few defects such as particles. A highly uniform amorphous semiconductor film can be manufactured.

また、体積抵抗が10−2Ωcmを下回っているため、特にDCスパッターリング用のターゲットとして好適である。 Further, since the volume resistance is less than 10 −2 Ωcm, it is particularly suitable as a target for DC sputtering.

さらに、不純物量が少ないため、本実施例の焼結体をターゲットに用いて成膜することにより、しきい値電圧の変動が抑制され、TFTや有機EL用として安定した作動状態を有するアモルファス半導体膜を作製することができる。   Furthermore, since the amount of impurities is small, by forming a film using the sintered body of this example as a target, fluctuations in threshold voltage are suppressed, and an amorphous semiconductor having a stable operating state for TFTs and organic ELs A film can be made.

Claims (5)

インジウム(In)、ガリウム(Ga)および亜鉛(Zn)の各酸化物の粉末を1:1:1のモル比で混合、粉砕して原料粉末とする混合工程と、
前記原料粉末を、所定の温度で仮焼して仮焼粉末とする仮焼工程と、
前記仮焼粉末を、所定の寸法の成形体とする成形工程と、
前記成形体を、所定の雰囲気中、1500〜1600℃で4時間以上焼成して焼結体とする焼成工程と
を有することを特徴とするIn−Ga−Zn系複合酸化物焼結体の製造方法。
A mixing step of mixing and pulverizing powders of oxides of indium (In), gallium (Ga) and zinc (Zn) at a molar ratio of 1: 1: 1 to obtain a raw material powder;
A calcining step of calcining the raw material powder at a predetermined temperature to obtain a calcined powder;
A molding step in which the calcined powder is a molded body having a predetermined size;
And a firing step of firing the molded body at 1500 to 1600 ° C. for 4 hours or more in a predetermined atmosphere to form a sintered body, producing an In—Ga—Zn-based composite oxide sintered body Method.
前記焼結体を、不活性ガス雰囲気中、1450〜1550℃の温度、98MPa以上の圧力でHIP処理するHIP工程を有することを特徴とする請求項1に記載のIn−Ga−Zn系複合酸化物焼結体の製造方法。   2. The In—Ga—Zn-based composite oxidation according to claim 1, further comprising a HIP process in which the sintered body is subjected to a HIP process in an inert gas atmosphere at a temperature of 1450 to 1550 ° C. and a pressure of 98 MPa or more. A method for manufacturing a sintered body. 前記仮焼粉末、成形体または焼結体を、不活性ガス雰囲気中、還元性材料からなる型に接触させることなく、1450〜1550℃の温度、19.6MPa以上の圧力でホットプレス処理することを特徴とする請求項1に記載のIn−Ga−Zn系複合酸化物焼結体の製造方法。   Hot-pressing the calcined powder, molded body or sintered body at a temperature of 1450 to 1550 ° C. and a pressure of 19.6 MPa or more without bringing it into contact with a mold made of a reducing material in an inert gas atmosphere The manufacturing method of the In-Ga-Zn type complex oxide sintered compact of Claim 1 characterized by these. 前記混合工程において、インジウム(In)およびガリウム(Ga)の各酸化物に対して、亜鉛の酸化物(ZnO)を1〜10mol%多く混合することを特徴とする請求項1ないし請求項3のいずれか1項に記載のIn−Ga−Zn系複合酸化物焼結体の製造方法。   4. In the mixing step, zinc oxide (ZnO) is mixed in an amount of 1 to 10 mol% more than indium (In) and gallium (Ga) oxides. The manufacturing method of the In-Ga-Zn type complex oxide sintered compact of any one of Claims 1. 前記焼成工程におけるZnOの減少率が10mol%以下であることを特徴とする請求項1ないし請求項4のいずれか1項に記載のIn−Ga−Zn系複合酸化物焼結体の製造方法。   The method for producing an In-Ga-Zn-based composite oxide sintered body according to any one of claims 1 to 4, wherein a reduction rate of ZnO in the firing step is 10 mol% or less.
JP2009049387A 2009-03-03 2009-03-03 METHOD FOR PRODUCING In-Ga-Zn-BASED COMPOSITE OXIDE SINTERED COMPACT Pending JP2010202451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009049387A JP2010202451A (en) 2009-03-03 2009-03-03 METHOD FOR PRODUCING In-Ga-Zn-BASED COMPOSITE OXIDE SINTERED COMPACT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009049387A JP2010202451A (en) 2009-03-03 2009-03-03 METHOD FOR PRODUCING In-Ga-Zn-BASED COMPOSITE OXIDE SINTERED COMPACT

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013060760A Division JP2013139387A (en) 2013-03-22 2013-03-22 METHOD FOR PRODUCING In-Ga-Zn-BASED COMPOSITE OXIDE SINTERED COMPACT

Publications (1)

Publication Number Publication Date
JP2010202451A true JP2010202451A (en) 2010-09-16

Family

ID=42964328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009049387A Pending JP2010202451A (en) 2009-03-03 2009-03-03 METHOD FOR PRODUCING In-Ga-Zn-BASED COMPOSITE OXIDE SINTERED COMPACT

Country Status (1)

Country Link
JP (1) JP2010202451A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195405A (en) * 2010-03-23 2011-10-06 Sumitomo Electric Ind Ltd Conductive oxide and method for manufacturing the same
WO2012153491A1 (en) * 2011-05-10 2012-11-15 出光興産株式会社 In-ga-zn oxide sputtering target and method for producing same
JP2013139387A (en) * 2013-03-22 2013-07-18 Sumitomo Electric Ind Ltd METHOD FOR PRODUCING In-Ga-Zn-BASED COMPOSITE OXIDE SINTERED COMPACT
JP2014005165A (en) * 2012-06-22 2014-01-16 Solar Applied Materials Technology Corp Indium gallium zinc oxide, production method and application thereof
JP2014055348A (en) * 2012-08-10 2014-03-27 Mitsubishi Materials Corp Sputtering target for forming transparent oxide film and method for producing the same
JP2014125648A (en) * 2012-12-25 2014-07-07 Tosoh Corp Igzo sintered body and sputtering target
KR101440594B1 (en) * 2012-12-28 2014-09-17 재단법인 포항산업과학연구원 MIXING METHOD FOR In2O3, Ga2O3 AND ZnO
JP2014224035A (en) * 2013-04-19 2014-12-04 住友化学株式会社 PRODUCTION METHOD OF In-Ga-Zn COMPOUND OXIDE SINTERED BODY
JP2015157755A (en) * 2008-12-15 2015-09-03 出光興産株式会社 Composite oxide sintered body and sputtering target composed of the same
CN106029604A (en) * 2014-02-27 2016-10-12 住友金属矿山株式会社 Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245220A (en) * 1994-06-10 1996-09-24 Hoya Corp Electrically conductive oxide and electrode using same
JP2007073312A (en) * 2005-09-06 2007-03-22 Canon Inc Sputtering target, and method of forming thin film using the target
JP2008214697A (en) * 2007-03-05 2008-09-18 Idemitsu Kosan Co Ltd Sputtering target
WO2009148154A1 (en) * 2008-06-06 2009-12-10 出光興産株式会社 Sputtering target for oxide thin film and process for producing the sputtering target

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245220A (en) * 1994-06-10 1996-09-24 Hoya Corp Electrically conductive oxide and electrode using same
JP2007073312A (en) * 2005-09-06 2007-03-22 Canon Inc Sputtering target, and method of forming thin film using the target
JP2008214697A (en) * 2007-03-05 2008-09-18 Idemitsu Kosan Co Ltd Sputtering target
WO2009148154A1 (en) * 2008-06-06 2009-12-10 出光興産株式会社 Sputtering target for oxide thin film and process for producing the sputtering target

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157755A (en) * 2008-12-15 2015-09-03 出光興産株式会社 Composite oxide sintered body and sputtering target composed of the same
JP2011195405A (en) * 2010-03-23 2011-10-06 Sumitomo Electric Ind Ltd Conductive oxide and method for manufacturing the same
WO2012153491A1 (en) * 2011-05-10 2012-11-15 出光興産株式会社 In-ga-zn oxide sputtering target and method for producing same
JP2012237031A (en) * 2011-05-10 2012-12-06 Idemitsu Kosan Co Ltd In-ga-zn oxide sputtering target and method for producing same
US9206502B2 (en) 2011-05-10 2015-12-08 Idemitsu Kosan Co., Ltd. In—Ga—Zn oxide sputtering target and method for producing same
JP2014005165A (en) * 2012-06-22 2014-01-16 Solar Applied Materials Technology Corp Indium gallium zinc oxide, production method and application thereof
JP2014055348A (en) * 2012-08-10 2014-03-27 Mitsubishi Materials Corp Sputtering target for forming transparent oxide film and method for producing the same
JP2014125648A (en) * 2012-12-25 2014-07-07 Tosoh Corp Igzo sintered body and sputtering target
KR101440594B1 (en) * 2012-12-28 2014-09-17 재단법인 포항산업과학연구원 MIXING METHOD FOR In2O3, Ga2O3 AND ZnO
JP2013139387A (en) * 2013-03-22 2013-07-18 Sumitomo Electric Ind Ltd METHOD FOR PRODUCING In-Ga-Zn-BASED COMPOSITE OXIDE SINTERED COMPACT
JP2014224035A (en) * 2013-04-19 2014-12-04 住友化学株式会社 PRODUCTION METHOD OF In-Ga-Zn COMPOUND OXIDE SINTERED BODY
CN106029604A (en) * 2014-02-27 2016-10-12 住友金属矿山株式会社 Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target

Similar Documents

Publication Publication Date Title
JP2010202451A (en) METHOD FOR PRODUCING In-Ga-Zn-BASED COMPOSITE OXIDE SINTERED COMPACT
JP5024226B2 (en) Oxide sintered body and manufacturing method thereof, sputtering target, semiconductor thin film
JP5205696B2 (en) Gallium oxide based sintered body and method for producing the same
JP5349587B2 (en) Indium oxide sintered body, indium oxide transparent conductive film, and method for producing the transparent conductive film
TWI403602B (en) In-Ga-Zn-based oxide sputtering target
TWI523966B (en) Oxide sintered body and sputtering target and manufacturing method thereof
JP2012052227A (en) Method for manufacturing sputtering target, and sputtering target
TWI546273B (en) In-Ga-Zn-based oxide sputtering target and a method for manufacturing the same
JP2011058012A (en) Semi-conductor oxide
JP5546143B2 (en) Composite oxide sintered body for forming transparent thin film and transparent thin film forming material
JP5381844B2 (en) In-Ga-Zn-based composite oxide sintered body and method for producing the same
JP6781931B2 (en) Sputtering target material
TW201333230A (en) Oxide sintered compact and sputtering target, and method for producing same
TWI720188B (en) Oxide sintered body, sputtering target and oxide semiconductor film
TW201816156A (en) Oxide sintered body and sputtering target
JP2009184876A (en) Gzo sintered body, and method for producing the same
TW201335407A (en) Oxide sintered compact and sputtering target, and method for producing same
JP2014024738A (en) Igzo sintered body, sputtering target, and oxide film
JP6070171B2 (en) IGZO sintered body and sputtering target
JP2013139387A (en) METHOD FOR PRODUCING In-Ga-Zn-BASED COMPOSITE OXIDE SINTERED COMPACT
JP6774624B2 (en) Oxide target material
JP2010285321A (en) Method for manufacturing zinc oxide-based sintered compact for sputtering target
JP5387247B2 (en) Conductive oxide
JP6067028B2 (en) Method for producing zinc oxide based sputtering target
JP2014091635A (en) Production method of oxide sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140203