JP2010199325A - Apparatus and method of fabricating thin-film photoelectric conversion element - Google Patents

Apparatus and method of fabricating thin-film photoelectric conversion element Download PDF

Info

Publication number
JP2010199325A
JP2010199325A JP2009042979A JP2009042979A JP2010199325A JP 2010199325 A JP2010199325 A JP 2010199325A JP 2009042979 A JP2009042979 A JP 2009042979A JP 2009042979 A JP2009042979 A JP 2009042979A JP 2010199325 A JP2010199325 A JP 2010199325A
Authority
JP
Japan
Prior art keywords
film
flexible substrate
belt
electrode
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009042979A
Other languages
Japanese (ja)
Other versions
JP5104782B2 (en
Inventor
Tatsumi Kawada
辰実 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2009042979A priority Critical patent/JP5104782B2/en
Publication of JP2010199325A publication Critical patent/JP2010199325A/en
Application granted granted Critical
Publication of JP5104782B2 publication Critical patent/JP5104782B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method of fabricating a thin-film photoelectric conversion element which secures the distance between a belt-like flexible substrate and the electrode surface with high precision while exhibiting excellent utilization efficiency of the belt-like flexible substrate by securing a wide film deposition range thereof, and obtains a high quality multi-layered thin film. <P>SOLUTION: The apparatus of fabricating a thin-film photoelectric conversion element includes a plurality of film deposition mechanisms 10A-10C arranged in series, and substrate transfer units 3 and 5 which sequentially transfer the belt-like flexible substrates 2 to the plurality of film deposition mechanisms while stopping the film deposition surface thereof. The film deposition mechanisms 10A-10C have openings 21g and 21h which do not touch the film deposition surface at the carry-in part and carry-out part of the belt-like flexible substrate 2. When the belt-like flexible substrate 2 is stopping, the film deposition mechanisms 10A-10C perform the film deposition operation for depositing a film by touching the front and rear surfaces around the film deposition surface through sealing materials 21i and 31i except the openings, thereby forming vacuum atmosphere, and the release operation for permitting transfer of the belt-like flexible substrate by separating the sealing materials at least from around the film deposition surface. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、帯状可撓性基板を用いた、光エネルギーを電気エネルギーに変換する太陽電池などの薄膜光電変換素子の製造装置及び製造方法に関する。   The present invention relates to a manufacturing apparatus and a manufacturing method of a thin film photoelectric conversion element such as a solar cell that converts light energy into electric energy using a strip-like flexible substrate.

この種の薄膜光電変換素子の製造方法及び製造装置としては、成膜を断続的に行い、成膜時には基板を停止してシール材を介して密着する壁により気密の成膜室を形成してその中で成膜する。そして、成膜室壁および裏面に接触している接地電極を退避させ、浮かした基板を搬送することにより、基板に損傷を与えることなく次の成膜位置まで移動させるようにした薄膜光電変換装素子の製造方法及び製造装置が知られている(例えば、特許文献1参照)。   As a method and apparatus for manufacturing this type of thin film photoelectric conversion element, film formation is intermittently performed, and at the time of film formation, the substrate is stopped and an airtight film formation chamber is formed by a wall that is in close contact with a sealing material. A film is formed therein. Then, the ground electrode in contact with the film forming chamber wall and the back surface is retracted, and the floating substrate is transported to move to the next film forming position without damaging the substrate. An element manufacturing method and a manufacturing apparatus are known (see, for example, Patent Document 1).

このような薄膜光電変換素子の製造方法及び製造装置では、通常、非晶質太陽電池のN型層、I型層、P型層の各非晶質薄膜を形成する化学蒸着装置のステップ式のロール・ツー・ロール型プラズマ化学蒸着装置(以下、第1従来例と称す)としては、図6及び図7に示すように、1層部の非晶質薄膜を形成する成膜機構として、帯状可撓性基板100の搬送方向と直交する方向に、接地電極を支持する第1挟持部101と高周波電極を支持する第2挟持部102とを帯状可撓性基板100を挟んで相対移動可能に配置し、第1挟持部101及び第2挟持部102の外周側に、成膜面113を囲むようにシール材114を配設し、帯状可撓性基板100の停止状態で、第1挟持部101及び第2の挟持部102のシール材114を帯状可撓性基板100に接触させることにより気密性を有する成膜室を形成するようにしている。   In such a thin film photoelectric conversion element manufacturing method and manufacturing apparatus, the step type of a chemical vapor deposition apparatus for forming amorphous thin films of an N-type layer, an I-type layer, and a P-type layer of an amorphous solar cell is usually used. As a roll-to-roll type plasma chemical vapor deposition apparatus (hereinafter referred to as a first conventional example), as shown in FIGS. 6 and 7, as a film forming mechanism for forming an amorphous thin film of one layer portion, a belt-like structure is used. The first holding part 101 that supports the ground electrode and the second holding part 102 that supports the high-frequency electrode can be moved relative to each other across the belt-like flexible board 100 in a direction orthogonal to the conveyance direction of the flexible board 100. The sealing material 114 is disposed on the outer peripheral side of the first sandwiching portion 101 and the second sandwiching portion 102 so as to surround the film forming surface 113, and the first sandwiching portion is in a stopped state of the belt-shaped flexible substrate 100. 101 and the sealing material 114 of the 2nd clamping part 102 are strip | belt-shaped flexibility And so as to form a deposition chamber having an airtight by contacting the plate 100.

そして、上記構成を有する成膜機構をN型層、I型層、P型層用に3つ直列に配置し、これら間に帯状可撓性基板100を順次成膜位置に停止させながら搬送する。
この場合には、上流側の成膜機構でN型層を成膜し、次いで、下流側の次の成膜機構でN型層上にI型層を成膜し、最後に最下流側の成膜機構でI型層状にP型層を形成する。
このとき、帯状可撓性基板100に対する成膜位置は、第1挟持部101及び第2挟持部102のシール材114が成膜面に接触することから、成膜面に傷を付けないようにするには、図7に示すように、シール材114の接触位置より大きなピッチで帯状可撓性基板100を搬送しながら成膜する必要があり、成膜位置を搬送方向に連続させることはできず、少なくとも搬送方向にシール材が接触する所定間隔だけ開けて成膜位置を形成ことになる。このため、帯状可撓性基板の利用効率を高めるには限界があるという未解決の課題がある。
Three film forming mechanisms having the above-described configuration are arranged in series for the N-type layer, the I-type layer, and the P-type layer, and the belt-like flexible substrate 100 is sequentially transported while stopping at the film forming position. .
In this case, the N-type layer is deposited by the upstream deposition mechanism, then the I-type layer is deposited on the N-type layer by the downstream downstream deposition mechanism, and finally the most downstream side A P-type layer is formed into an I-type layer by a film forming mechanism.
At this time, the film forming position on the strip-shaped flexible substrate 100 is such that the sealing material 114 of the first holding unit 101 and the second holding unit 102 contacts the film forming surface so that the film forming surface is not damaged. In order to achieve this, as shown in FIG. 7, it is necessary to form a film while conveying the belt-like flexible substrate 100 at a pitch larger than the contact position of the sealant 114, and the film formation position can be continued in the conveyance direction. Instead, the film forming position is formed at least by a predetermined interval at which the sealing material contacts in the transport direction. For this reason, there exists an unsolved subject that there exists a limit in improving the utilization efficiency of a strip | belt-shaped flexible board | substrate.

これに対して、図8に示すように、帯状可撓性基板100を連続的に搬送して、3つの成膜機構でN型層、I型層及びP型層を順次成膜する連続搬送式のロール・ツー・ロール型プラズマ化学蒸着装置が知られている(以下、第2従来例と称す)。この第2従来例では、予め裏面電極を形成した帯状可撓性基板をロール仕込み室40Aの巻き戻しロール110から引出して、N型層を成膜する第1の成膜室41A、I型層を成膜する第2の成膜室41B及びP型層を成膜する第3の成膜室41Cの順に通過させてロール取り出し室40Bの巻取りロール111に巻き取るようにしている。帯状可撓性基板100には、第1の成膜室41AでN型層が成膜され、第2の成膜室41BでI型層が成膜され、最後に第3の成膜室41CでP型層が成膜されて、各非晶質薄膜層が積層される。   On the other hand, as shown in FIG. 8, the belt-like flexible substrate 100 is continuously conveyed, and the N-type layer, the I-type layer, and the P-type layer are sequentially formed by three film forming mechanisms. A roll-to-roll type plasma chemical vapor deposition apparatus of the type is known (hereinafter referred to as a second conventional example). In this second conventional example, a first film forming chamber 41A, an I-type layer for forming an N-type layer by drawing a belt-like flexible substrate, on which a back electrode has been formed in advance, from the rewind roll 110 of the roll preparation chamber 40A. Are passed in the order of the second film forming chamber 41B for forming the film and the third film forming chamber 41C for forming the P-type layer, and are wound around the take-up roll 111 of the roll take-out chamber 40B. On the strip-shaped flexible substrate 100, an N-type layer is formed in the first film formation chamber 41A, an I-type layer is formed in the second film formation chamber 41B, and finally the third film formation chamber 41C. A P-type layer is formed and each amorphous thin film layer is laminated.

また、各成膜室41A〜41Cには、接地電極50A及び高周波電極50Bが備えられており、これら電極間に形成される高周波電界により導入口50Cから成膜室に導入された反応ガスを励起してプラズマ状態にする。反応が済んだ不要なガスは排気口50Dから外部に排気される。ただし、各成膜室には、成膜する薄膜層の種類に応じた反応ガスが導入される。なお、この図8では、説明を省略するが、各成膜室41A〜41Cの接続部には不活性ガスがながれており、これにより各成膜室41A〜41Cでの処理を分離する。   Each of the film forming chambers 41A to 41C is provided with a ground electrode 50A and a high frequency electrode 50B, and a reactive gas introduced into the film forming chamber from the introduction port 50C is excited by a high frequency electric field formed between these electrodes. To a plasma state. Unnecessary gas after the reaction is exhausted to the outside through the exhaust port 50D. However, a reaction gas corresponding to the type of thin film layer to be formed is introduced into each film formation chamber. In FIG. 8, although description is omitted, an inert gas is circulated in the connection portions of the film forming chambers 41A to 41C, thereby separating the processes in the film forming chambers 41A to 41C.

図8に示す第2従来例の装置を用いて、帯状可撓性基板100の主面に対して、N型層、I型層及びP型層の各非晶質薄膜層をこの順に積層させる場合、先ず、ロール仕込み室40Aに近い成膜室41Aから順にN型層、I型層及びP型層を成膜するための反応ガスを導入する。そして、ロール仕込み室40Aに収納された帯状可撓性基板100を送り出して、先ず、N型の非晶質シリコン層を形成するための成膜室41Aを通過させる。N型層が成膜された基板領域は、続いてI型層を成膜するための成膜室41Bに導かれて、先のN型層に積そうしてI型層が成膜される。このN型層とI型層の積層された基板領域は、続いてP型層を成膜するための成膜室41Cに導かれて、先のN型層、I型層に積層してP型層が成膜される。以上により、N型層、I型層及びP型層の各相が順次積層して成膜される。   The amorphous thin film layers of the N-type layer, the I-type layer, and the P-type layer are laminated in this order on the main surface of the belt-like flexible substrate 100 using the apparatus of the second conventional example shown in FIG. In this case, first, a reaction gas for forming an N-type layer, an I-type layer, and a P-type layer is introduced in this order from the film formation chamber 41A close to the roll preparation chamber 40A. Then, the belt-shaped flexible substrate 100 housed in the roll preparation chamber 40A is sent out, and first passes through the film formation chamber 41A for forming an N-type amorphous silicon layer. The substrate region on which the N-type layer is formed is led to the film formation chamber 41B for forming the I-type layer, and the I-type layer is formed so as to be stacked on the previous N-type layer. . The substrate region where the N-type layer and the I-type layer are stacked is led to a film formation chamber 41C for forming a P-type layer, and is stacked on the previous N-type layer and I-type layer to form P. A mold layer is deposited. As described above, the N-type layer, the I-type layer, and the P-type layer are sequentially stacked to form a film.

この第2従来例によると、帯状可撓性基板100に積層される各非晶質薄膜層の成膜範囲は、図9(a)及び(b)に示すようになる。連続的に成膜を行うため、成膜面113が連続して材料の利用効率は高い。しかし、成膜中に帯状可撓性基板100を電極面に対して所定の膜質を得るために
距離を確保することが必要であるが、搬送しながらの成膜であるため、帯状可撓性基板100を第1従来例のようにヒータ及び包括型成膜室の接触部分で抑えることができず、非接触で位置決めをするため、帯状可撓性基板100のシワや振動により電極との距離を確保することが難しいという未解決の課題がある。
According to the second conventional example, the film forming range of each amorphous thin film layer laminated on the belt-like flexible substrate 100 is as shown in FIGS. 9A and 9B. Since film formation is performed continuously, the film formation surface 113 is continuously used, and the material utilization efficiency is high. However, it is necessary to secure a distance in order to obtain a predetermined film quality with respect to the electrode surface of the strip-shaped flexible substrate 100 during film formation. Since the substrate 100 cannot be suppressed at the contact portion of the heater and the comprehensive film forming chamber as in the first conventional example and is positioned without contact, the distance from the electrode due to wrinkles or vibration of the belt-like flexible substrate 100 There is an unresolved issue that it is difficult to ensure.

特許第3079830号公報Japanese Patent No. 3079830

しかしながら、上記第1従来例では各非晶質薄膜の成膜を正確に行うことがはできるが、帯状可撓性基板の利用効率は低下し、上記第2従来例では、逆に帯状可撓性基板の利用効率は高めることはできるが、帯状可撓性基板を搬送しながらの成膜により帯状可撓性基板のしわや振動により電極との距離を確保ことが困難で正確な成膜を行うことができないという未解決の課題があり、正確な成膜を行いながら帯状可撓性基板の利用効率を高めることはできないものであった。   However, in the first conventional example, each amorphous thin film can be formed accurately, but the utilization efficiency of the strip-like flexible substrate is lowered, and in the second conventional example, on the contrary, the strip-like flexible substrate is used. Although the use efficiency of the conductive substrate can be increased, it is difficult to secure the distance from the electrode due to wrinkling or vibration of the strip-shaped flexible substrate by forming the film while transporting the strip-shaped flexible substrate. There is an unsolved problem that it cannot be performed, and it is impossible to increase the utilization efficiency of the strip-shaped flexible substrate while performing accurate film formation.

そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、帯状可撓性基板の広範囲な成膜範囲を確保して帯状可撓性基板の利用効率に優れ、且つ帯状可撓性基板と電極面との距離を高精度で確保することができ、高品質な積層薄膜を得ることができる薄膜光電変換素子の製造装置及び製造方法を提供することを目的としている。   Therefore, the present invention has been made paying attention to the unsolved problems of the above-described conventional example, ensuring a wide film forming range of the strip-shaped flexible substrate, and excellent in utilization efficiency of the strip-shaped flexible substrate, And it aims at providing the manufacturing apparatus and manufacturing method of a thin film photoelectric conversion element which can ensure the distance of a strip | belt-shaped flexible substrate and an electrode surface with high precision, and can obtain a high quality laminated thin film. .

上記目的を達成するために、請求項1に係る薄膜光電変換素子の製造装置は、帯状可撓性基板上に複数の異なる性質の薄膜を積層して少なくとも光電変換層を形成する薄膜光電変換素子の製造装置であって、直列に配列された複数の成膜機構と、該複数の成膜機構に、前記帯状可撓性基板をその成膜面を停止させながら順次搬送する基板搬送部とを備え、前記成膜機構は、前記帯状可撓性基板の搬入部及び搬出部に前記成膜面に非接触となる開口部を有し、前記帯状可撓性基板の停止時に、前記開口部を除く成膜面の周囲における表裏面にシール材を介して接触して真空雰囲気を形成して成膜を行う成膜動作と、少なくとも前記成膜面の周囲から前記シール材を離間して前記帯状可撓性基板の搬送を許容する解放動作とを行うように構成されている。
この構成によると、成膜機構に帯状可撓性基板の搬入口及び搬出口に成膜面に非接触な開口部を形成したので、ステップ式のロール・ツー・ロール型式を採用しながら、帯状可撓性基板に連続した成膜面を形成することができ、帯状可撓性基板の利用効率を高めながら、成膜機構の成膜位置で帯状可撓性基板を停止させた状態で、開口部を除く部分でシール部材を接触させることができ、成膜面と成膜面側の電極との距離を正確に位置決めすることができる。
In order to achieve the above object, a thin film photoelectric conversion element manufacturing apparatus according to claim 1 is a thin film photoelectric conversion element in which a plurality of thin films having different properties are stacked on a strip-shaped flexible substrate to form at least a photoelectric conversion layer. A plurality of film forming mechanisms arranged in series, and a substrate transfer unit that sequentially transfers the belt-like flexible substrate while stopping the film forming surface to the plurality of film forming mechanisms. The film-forming mechanism has an opening that is in non-contact with the film-forming surface in the carrying-in part and the carrying-out part of the belt-like flexible substrate, and the opening is provided when the belt-like flexible substrate is stopped. A film forming operation for forming a film by forming a vacuum atmosphere by contacting the front and back surfaces around the film forming surface with a sealing material, and separating the sealing material from at least the periphery of the film forming surface; It is configured to perform a release operation that allows conveyance of the flexible substrate. There.
According to this configuration, since the film formation mechanism is formed with a non-contact opening on the film formation surface at the entrance and exit of the belt-like flexible substrate, while adopting the step-type roll-to-roll model, A continuous film-formation surface can be formed on the flexible substrate, and while the strip-shaped flexible substrate is stopped at the film-formation position of the film-formation mechanism while increasing the utilization efficiency of the strip-shaped flexible substrate, the opening The seal member can be brought into contact with the portion other than the portion, and the distance between the film formation surface and the electrode on the film formation surface side can be accurately positioned.

また、請求項2に係る薄膜光電変換素子の製造装置は、前記成膜機構が、前記帯状可撓性基板の成膜面を挟んで相対移動可能な一対の電極収容部と、前記一対の電極収納部のうち成膜面に対向する電極収容部の前記帯状可撓性基板の搬入部及び搬出部に形成した成膜面に非接触となる開口部と、該一対の電極収容部を形成する周壁に前記開口部を除いて形成した前記帯状可撓性基板の成膜面の外側に接触するシール材と、前記一対の電極収容部を、前記シール材が前記帯状可撓性基板の成膜面の外側に接触して真空雰囲気形成する成膜位置と前記一対の電極収容部の少なくとも成膜面側の電極収容部の周囲の前記シール材が前記帯状可撓性基板から離間する解放位置との間で相対移動させる相対移動制御部とを備えていることを特徴としている。   The thin-film photoelectric conversion device manufacturing apparatus according to claim 2 is characterized in that the film forming mechanism includes a pair of electrode housing portions that are relatively movable with the film forming surface of the belt-shaped flexible substrate interposed therebetween, and the pair of electrodes. An opening that is not in contact with the film forming surface formed on the carry-in portion and the carry-out portion of the belt-like flexible substrate of the electrode housing portion facing the film formation surface of the storage portion and the pair of electrode storage portions are formed. A sealing material that contacts the outside of the film-forming surface of the strip-shaped flexible substrate formed on the peripheral wall excluding the opening, and the pair of electrode housing portions, and the sealing material forms a film on the strip-shaped flexible substrate A film forming position where a vacuum atmosphere is formed in contact with the outside of the surface; and a release position where the seal material around the electrode housing portion on at least the film forming surface side of the pair of electrode housing portions is separated from the strip-shaped flexible substrate; And a relative movement control unit for relative movement between the two. .

この構成によると、成膜機構で、帯状可撓性基板が停止している成膜時に、帯状可撓性基板の搬入部及び搬出部に開口部が形成されて成膜面と非接触とされているので、帯状可撓性基板を搬送方向に任意のピッチで搬送しても、成膜面が傷つくことはない。
また、請求項3に係る薄膜光電変換素子の製造装置は、請求項2に係る発明において、前記成膜機構は、一対の電極収容部が前記成膜位置にある状態で、前記帯状可撓性基板の成膜面に対向する電極と、当該電極とは前記帯状可撓性基板の反対側で当該帯状可撓性基板と接触する電極との間に高周波電圧を印加して成膜するように構成されていることを特徴としている。
According to this configuration, the film forming mechanism forms an opening in the carry-in portion and the carry-out portion of the belt-like flexible substrate so that the film-formation surface is not in contact with the belt-like flexible substrate during film formation when the belt-like flexible substrate is stopped. Therefore, even if the belt-shaped flexible substrate is transported at an arbitrary pitch in the transport direction, the film forming surface is not damaged.
The thin-film photoelectric conversion device manufacturing apparatus according to claim 3 is the invention according to claim 2, wherein the film-forming mechanism is configured such that the pair of electrode housing portions is in the film-forming position, A film is formed by applying a high-frequency voltage between an electrode facing the film formation surface of the substrate and an electrode in contact with the electrode on the opposite side of the band-shaped flexible substrate. It is characterized by being composed.

この構成によると、一対の電極収容部が成膜位置にある状態で、成膜面とは反対側の電極が帯状可撓性基板と接触しているので、成膜面側で対向する電極と帯状可撓性基板との間の距離を高精度で位置決めすることができ、良質な成膜を得ることができる。
また、請求項4に係る薄膜光電変換素子の製造装置は、請求項1乃至3の何れか1項に係る発明において、前記複数の成膜機構は所定間隔を保って直列に配列され、前記基板搬送部は、前記成膜機構の成膜を行う電極の搬送方向長さと等しいピッチ以下のピッチで前記帯状可撓性基板を搬送することを特徴としている。
According to this configuration, since the electrode on the side opposite to the film formation surface is in contact with the belt-shaped flexible substrate in a state where the pair of electrode accommodating portions are at the film formation position, The distance between the belt-shaped flexible substrate can be positioned with high accuracy, and a high-quality film can be obtained.
According to a fourth aspect of the present invention, there is provided the thin-film photoelectric conversion device manufacturing apparatus according to any one of the first to third aspects, wherein the plurality of film forming mechanisms are arranged in series at predetermined intervals, The transport unit transports the strip-shaped flexible substrate at a pitch equal to or less than a pitch equal to a transport direction length of an electrode for performing film deposition of the film deposition mechanism.

この構成によると、成膜機構の成膜を行う電極の搬送方向長さと等しいピッチ以下のピッチで帯状可撓性基板を搬送することにより、帯状可撓性基板上に連続した成膜を積層して形成することができる。
また、請求項5に係る薄膜光電変換素子の製造装置は、請求項1乃至3の何れか1項に係る発明において、前記複数の成膜機構は所定間隔を保って直列に配列され、前記基板搬送部は、前記成膜機構の成膜を行う電極の搬送方向長さを等分割したピッチで前記帯状可撓性基板を搬送することを特徴としている。
According to this configuration, the continuous film formation is laminated on the strip-shaped flexible substrate by transporting the strip-shaped flexible substrate at a pitch equal to or less than a pitch equal to the transport direction length of the electrode for film deposition of the deposition mechanism. Can be formed.
The thin film photoelectric conversion device manufacturing apparatus according to claim 5 is the invention according to any one of claims 1 to 3, wherein the plurality of film forming mechanisms are arranged in series at predetermined intervals, and the substrate The transport unit transports the strip-shaped flexible substrate at a pitch equally divided in a transport direction length of an electrode for film formation by the film formation mechanism.

この構成によると、成膜機構の成膜を行う電極を等分した長さと等しいピッチで帯状可撓性基板を搬送することにより、帯状可撓性基板上に連続した成膜の厚さを一様に形成することができ、膜質の均一化を図ることができる。
また、請求項6に係る薄膜光電変換素子の製造方法は、帯状可撓性基板上に複数の異なる性質の薄膜を積層して少なくとも光電変換層を形成する薄膜光電変換素子の製造方法であって、前記帯状可撓性基板を直列に配列された複数の成膜機構の成膜位置に搬送して停止させる搬送ステップと、前記成膜機構の成膜位置で停止された前記帯状可撓性基板をその成膜面の搬入部及び搬出部で当該成膜面と非接触となる開口部を有し、該開口部を除く前記成膜面の周囲をシール材を介して挟持して真空雰囲気を形成し、当該成膜面に成膜する成膜ステップと、成膜面の成膜が完了した時点で前記シール材を介する挟持状態を解除して、成膜面を所定ピッチで搬送して停止させるステップとを繰り返して異なる性質の薄膜を積層した光電変換層を形成することを特徴としている。
According to this configuration, the thickness of the continuous film formation on the belt-like flexible substrate is reduced by conveying the belt-like flexible substrate at a pitch equal to the length of the electrodes to be deposited by the film-forming mechanism. In this way, the film quality can be made uniform.
Moreover, the manufacturing method of the thin film photoelectric conversion element which concerns on Claim 6 is a manufacturing method of the thin film photoelectric conversion element which laminates | stacks several thin film of a different property on a strip | belt-shaped flexible substrate, and forms a photoelectric conversion layer at least. A transporting step of transporting and stopping the strip-shaped flexible substrate to a deposition position of a plurality of deposition mechanisms arranged in series; and the strip-shaped flexible substrate stopped at the deposition position of the deposition mechanism Having an opening that is not in contact with the film formation surface at the carry-in portion and the carry-out portion of the film formation surface, and sandwiching the periphery of the film formation surface excluding the opening with a sealing material to create a vacuum atmosphere. Forming and depositing the film on the film forming surface, and when the film formation on the film forming surface is completed, the nipping state via the sealing material is released, and the film forming surface is conveyed at a predetermined pitch and stopped. To form a photoelectric conversion layer in which thin films with different properties are stacked It is characterized in Rukoto.

この構成とすることにより、ステップ式のロール・ツー・ロール型式を採用しながら、帯状可撓性基板に連続した成膜面を形成することができ、帯状可撓性基板の利用効率を高めながら、成膜機構の成膜位置で帯状可撓性基板を停止させた状態で、開口部を除く部分でシール部材を接触させることができ、成膜面と成膜面側の電極との距離を正確に位置決めすることができる。   By adopting this configuration, while adopting a step-type roll-to-roll type, it is possible to form a continuous film formation surface on the belt-like flexible substrate, while increasing the utilization efficiency of the belt-like flexible substrate. The sealing member can be brought into contact with the portion excluding the opening in a state where the belt-like flexible substrate is stopped at the film forming position of the film forming mechanism, and the distance between the film forming surface and the electrode on the film forming surface side can be adjusted. Accurate positioning is possible.

また、請求項7に係る薄膜光電変換素子の製造方法は、請求項6に係る発明において、前記成膜ステップは、シール材による挟持状態で、前記可撓性基板の成膜面に対向する電極と該電極とは当該帯状可撓性基板を挟んで反対側に配設された前記帯状可撓性基板に接触する電極との間に高周波電圧を印加して成膜することを特徴としている。
この構成によると、シール材による挟持状態で、成膜面とは反対側の電極が帯状可撓性基板と接触しているので、成膜面側で対向する電極と帯状可撓性基板との間の距離を高精度で位置決めすることができ、良質な成膜を得ることができる。
According to a seventh aspect of the present invention, there is provided the method for manufacturing a thin film photoelectric conversion element according to the sixth aspect of the invention, wherein the film-forming step is an electrode facing the film-forming surface of the flexible substrate while being sandwiched by a sealing material. The electrode is formed by applying a high-frequency voltage between the electrode and the electrode in contact with the band-shaped flexible substrate disposed on the opposite side of the band-shaped flexible substrate.
According to this configuration, since the electrode on the opposite side to the film formation surface is in contact with the belt-like flexible substrate while being sandwiched by the sealing material, the electrode opposed to the film formation surface side and the belt-like flexible substrate The distance between them can be positioned with high accuracy, and a high-quality film can be obtained.

また、請求項8に係る薄膜光電変換素子の製造方法は、請求項6又は7に係る発明において、前記複数の成膜機構が所定間隔を保って直列に配列され、前記帯状可撓性基板を成膜機構の電極の搬送方向長さ以下のピッチで搬送することを特徴としている。
この構成によると、成膜を行う電極の搬送方向長さと等しいピッチ以下のピッチで帯状可撓性基板を搬送することにより、帯状可撓性基板上に連続した成膜を積層して形成することができる。
According to an eighth aspect of the present invention, there is provided a method for manufacturing a thin film photoelectric conversion element according to the sixth or seventh aspect, wherein the plurality of film forming mechanisms are arranged in series at a predetermined interval, The film is transported at a pitch equal to or shorter than the transport direction length of the electrode of the film forming mechanism.
According to this configuration, a continuous film formation is laminated on the strip-shaped flexible substrate by transporting the strip-shaped flexible substrate at a pitch equal to or less than the pitch in the transport direction of the electrode on which the film is formed. Can do.

また、請求項9に係る薄膜光電変換素子の製造方法は、請求項6又は7に係る発明において、前記複数の成膜機構が所定間隔を保って直列に配列され、前記帯状可撓性基板を成膜機構の電極の搬送方向長さを等分割したピッチで搬送することを特徴としている。
この構成によると、成膜を行う電極を等分した長さと等しいピッチで帯状可撓性基板を搬送することにより、帯状可撓性基板上に連続した成膜の厚さを一様に形成することができ、膜質の均一化を図ることができる。
A thin film photoelectric conversion element manufacturing method according to claim 9 is the invention according to claim 6 or 7, wherein the plurality of film forming mechanisms are arranged in series at predetermined intervals, It is characterized in that the electrodes are transported at a pitch equally divided in the transport direction length of the electrodes of the film forming mechanism.
According to this configuration, a continuous film thickness is uniformly formed on the belt-like flexible substrate by transporting the belt-like flexible substrate at a pitch equal to the length of the electrodes to be deposited equally. Therefore, the film quality can be made uniform.

本発明によれば、成膜機構に帯状可撓性基板の搬入部及び搬出部に成膜面に非接触となる開口部を形成したので、帯状可撓性基板を所定ピッチで間欠的に搬送しながら、成膜を行うことが可能となり、帯状可撓性基板に連続した成膜面を形成して利用効率を高めることができるとともに、成膜時にシール材が開口部を除く帯状可撓性基板の表裏に接触するので、帯状可撓性基板の位置決めを行うことができ、成膜面とこれに対向する電極との距離を高精度に保持することができ、良質な薄膜を形成することができるという効果が得られる。   According to the present invention, the film forming mechanism is provided with the opening portions which are not in contact with the film forming surface at the carry-in portion and the carry-out portion of the belt-like flexible substrate, so that the belt-like flexible substrate is intermittently conveyed at a predetermined pitch. However, it is possible to form a film, and a continuous film-forming surface can be formed on the band-shaped flexible substrate to increase the utilization efficiency. Since it contacts the front and back of the substrate, it is possible to position the belt-shaped flexible substrate, maintain the distance between the film formation surface and the electrode facing it with high accuracy, and form a high-quality thin film The effect of being able to be obtained.

本発明の第1の実施形態を示す説明図であって、(a)は前面板を取り外した状態の正面図、(b)は右側面板を取り外した状態の側面図である。It is explanatory drawing which shows the 1st Embodiment of this invention, Comprising: (a) is a front view of the state which removed the front plate, (b) is a side view of the state which removed the right side plate. 成膜機構の一例を示す解放状態を示す断面図である。It is sectional drawing which shows the open state which shows an example of the film-forming mechanism. 成膜機構の一例を示す共通接地電極を帯状可撓性基板に接触させた状態を示す断面図である。It is sectional drawing which shows the state which made the common ground electrode which shows an example of the film-forming mechanism contact the strip | belt-shaped flexible substrate. 成膜機構の一例を示す成膜状態を示す断面図である。It is sectional drawing which shows the film-forming state which shows an example of the film-forming mechanism. 帯状可撓性基板の成膜状態を示す説明図であって、(a)は正面図、(b)は側面図である。It is explanatory drawing which shows the film-forming state of a strip | belt-shaped flexible board | substrate, Comprising: (a) is a front view, (b) is a side view. 第1従来例を示す成膜機構の断面図である。It is sectional drawing of the film-forming mechanism which shows a 1st prior art example. 第1従来例における帯状可撓性基板の成膜状態を示す説明図であって、(a)は正面図、(b)は側面図である。It is explanatory drawing which shows the film-forming state of the strip | belt-shaped flexible substrate in a 1st prior art example, Comprising: (a) is a front view, (b) is a side view. 第2従来例を示す断面図である。It is sectional drawing which shows a 2nd prior art example. 第2従来例における帯状可撓性基板の成膜状態を示す説明図であって、(a)は正面図、(b)は側面図である。It is explanatory drawing which shows the film-forming state of the strip | belt-shaped flexible substrate in a 2nd prior art example, Comprising: (a) is a front view, (b) is a side view.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は本発明の薄膜光電変換素子の製造装置を示す全体構成図であって、図中、1は上下方向に延長する真空室である。この真空室1内には、上端部に帯状可撓性基板2を巻装して送り出す送出ロール3が配設された基板送出室4が形成され、下端部に送り出しロール3から送り出された帯状可撓性基板2を巻き取る巻取ロール5が配設された基板巻取室6が形成されている。送出ロール3から送り出された帯状可撓性基板2はガイドロール7によって案内され、巻取ロール5に巻き取られる帯状可撓性基板2はガイドロール8によって案内されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an overall configuration diagram showing an apparatus for manufacturing a thin film photoelectric conversion element according to the present invention. In the figure, 1 is a vacuum chamber extending in the vertical direction. In this vacuum chamber 1, a substrate delivery chamber 4 is formed in which a delivery roll 3 is disposed in which an upper end portion is wound with a strip-like flexible substrate 2 and delivered, and a lower end portion is sent out from the delivery roll 3. A substrate winding chamber 6 in which a winding roll 5 for winding the flexible substrate 2 is disposed is formed. The strip-shaped flexible substrate 2 fed out from the feed roll 3 is guided by the guide roll 7, and the strip-shaped flexible substrate 2 wound up by the winding roll 5 is guided by the guide roll 8.

そして、基板送出室4及び基板巻取室6間に帯状可撓性基板2を挿通する3つの成膜機構10A、10B及び10Cが直列に配設されている。各成膜機構10A〜10Cのそれぞれは、図2に示すように、帯状可撓性基板2の搬送路を挟んで対向する固定挟持部材11と可動挟持部材12とを有する。固定挟持部材11は、真空室1の背面板部に固定支持された絶縁部材で形成された電極収容部21と、この電極収容部21内に非接触状態で配置された高周波電極22と、この高周波電極22を支持する導電性支持部材23と、反応ガス導入管24とを備えている。   Three film forming mechanisms 10A, 10B, and 10C for inserting the strip-shaped flexible substrate 2 between the substrate delivery chamber 4 and the substrate winding chamber 6 are arranged in series. As shown in FIG. 2, each of the film forming mechanisms 10 </ b> A to 10 </ b> C includes a fixed clamping member 11 and a movable clamping member 12 that are opposed to each other with the conveyance path of the belt-like flexible substrate 2 interposed therebetween. The fixed clamping member 11 includes an electrode housing portion 21 formed of an insulating member fixedly supported on the back plate portion of the vacuum chamber 1, a high-frequency electrode 22 disposed in a non-contact state within the electrode housing portion 21, A conductive support member 23 that supports the high-frequency electrode 22 and a reaction gas introduction pipe 24 are provided.

電極収容部21は、反応ガス導入管24によって真空室1の背面板部に固定支持されており、帯状可撓性基板2と平行な方形の底板部21aとこの底板部21aの外周縁から前方に延長する4つの周壁21b〜21eとを有し、底板部21a及び周壁21b〜21eで囲まれる前方を開放した電極収容空間21fが形成されている。ここで、周壁21bの帯状可撓性基板2の搬送方向の対向壁21b及び21cには、図1(b)に示すように、帯状可撓性基板2の搬入部及び搬出部に帯状可撓性基板2の裏面と非接触となる開口部21g及び21hが形成されている。また、帯状可撓性基板2の搬送方向と直交する方向の周壁21d及び21eの長さは図2に示すように、帯状可撓性部材2の側縁間距離よりも短く設定されて上端面が帯状可撓性基板2に接触可能に形成され、この上端面にOリング等のシール材21iが配設されている。   The electrode accommodating portion 21 is fixedly supported on the back plate portion of the vacuum chamber 1 by the reaction gas introduction tube 24, and is formed in front of the rectangular bottom plate portion 21a parallel to the belt-like flexible substrate 2 and the outer peripheral edge of the bottom plate portion 21a. There are four peripheral walls 21b to 21e extending to the front, and an electrode housing space 21f that is open at the front surrounded by the bottom plate portion 21a and the peripheral walls 21b to 21e is formed. Here, on the opposing walls 21b and 21c of the peripheral wall 21b in the transport direction of the strip-shaped flexible substrate 2, as shown in FIG. Openings 21g and 21h that are not in contact with the back surface of the conductive substrate 2 are formed. Further, as shown in FIG. 2, the length of the peripheral walls 21d and 21e in the direction orthogonal to the conveying direction of the belt-like flexible substrate 2 is set to be shorter than the distance between the side edges of the belt-like flexible member 2, and the upper end surface. Is formed so as to be in contact with the belt-like flexible substrate 2, and a sealing material 21i such as an O-ring is disposed on the upper end surface.

高周波電極22は、帯状可撓性基板2の成膜面に対向する面積を有する方形板状に形成されており、真空室1の背面板部に配設された導電性支持部材23によって電極収容部21の電極収容空間21内に帯状可撓性基板2と対向して支持されている。この高周波電極22の前面は後述するように成膜位置で帯状可撓性基板2との間に所定間隔を保持する位置に設定されている。そして、導電性支持部材23に一端が接地された高周波電源25の他端が接続されている。   The high-frequency electrode 22 is formed in a rectangular plate shape having an area facing the film forming surface of the belt-like flexible substrate 2, and the electrode is accommodated by the conductive support member 23 disposed on the back plate portion of the vacuum chamber 1. It is supported in the electrode accommodating space 21 of the portion 21 so as to face the belt-like flexible substrate 2. As will be described later, the front surface of the high-frequency electrode 22 is set at a position where a predetermined distance is maintained between the high-frequency electrode 22 and the belt-like flexible substrate 2 at the film forming position. Then, the other end of the high frequency power supply 25 whose one end is grounded is connected to the conductive support member 23.

また、可動挟持部材22は、図2に示すように、固定挟持部材11の電極収容部21と対向する電極収容部31と、この電極収容部31内に配設されたヒータを内装する共通接地電極32と、電極収容部31を帯状可撓性基板2に対して進退移動させる第1の移動機構33と、共通接地電極32を帯状可撓性基板2に対して進退移動させる第2の移動機構34とを備えている。   Further, as shown in FIG. 2, the movable clamping member 22 has a common ground that houses an electrode accommodating portion 31 that faces the electrode accommodating portion 21 of the fixed clamping member 11 and a heater disposed in the electrode accommodating portion 31. The electrode 32, the first moving mechanism 33 that moves the electrode accommodating portion 31 forward and backward relative to the belt-like flexible substrate 2, and the second movement that moves the common ground electrode 32 forward and backward relative to the belt-like flexible substrate 2. And a mechanism 34.

電極収容部31は、前述した固定挟持部材11の電極収容部21と同様に、帯状可撓性基板2と平行な底板部31aと、この底板部31aの周囲から右方に延長する周壁31b〜31eとを有し、底板部31a及び周壁31b〜31eで囲まれる前方を開放した電極収容空間31fが形成されている。ここで、周壁31bの帯状可撓性基板2の搬送方向の対向壁31b及び31cには、図1(b)に示すように、帯状可撓性基板2の搬入部及び搬出部に帯状可撓性基板2の裏面と非接触となる開口部31g及び31hが形成されている。また、帯状可撓性基板2の搬送方向と直交する方向の周壁31d及び31eの長さは図2に示すように、帯状可撓性部材2の側縁間距離よりも短く設定されて上端面が帯状可撓性基板2に接触可能に形成され、この上端面にOリング等のシール材31iが配設されている。   The electrode accommodating portion 31 includes a bottom plate portion 31a parallel to the belt-like flexible substrate 2 and a peripheral wall 31b extending rightward from the periphery of the bottom plate portion 31a in the same manner as the electrode accommodating portion 21 of the fixed clamping member 11 described above. An electrode housing space 31f having a front end surrounded by the bottom plate portion 31a and the peripheral walls 31b to 31e is formed. Here, on the opposing walls 31b and 31c of the peripheral wall 31b in the transport direction of the belt-like flexible substrate 2, as shown in FIG. Openings 31g and 31h that are not in contact with the back surface of the conductive substrate 2 are formed. Further, as shown in FIG. 2, the length of the peripheral walls 31d and 31e in the direction orthogonal to the conveying direction of the belt-like flexible substrate 2 is set to be shorter than the distance between the side edges of the belt-like flexible member 2, and the upper end surface. Is formed so as to be able to contact the belt-like flexible substrate 2, and a sealing material 31i such as an O-ring is disposed on the upper end surface.

そして、電極収容部31がその前端面に配設された支持筒部31jが真空室1の正面板部を貫通して外方に延長され、その先端が第1の移動機構33に連結されている。
共通接地電極32は前述した高周波電極22と同一の大きさの方形板状に形成され、その前端に配設された支持円柱部32aが支持筒部31jを貫通して真空室1の外側に延長し、第2の移動機構34に連結されている。
And the support cylinder part 31j by which the electrode accommodating part 31 was arrange | positioned by the front end surface penetrates the front board part of the vacuum chamber 1, and is extended outside, The front-end | tip is connected with the 1st moving mechanism 33. Yes.
The common ground electrode 32 is formed in a rectangular plate shape having the same size as the high-frequency electrode 22 described above, and a support column part 32a disposed at the front end of the common ground electrode 32 extends outside the vacuum chamber 1 through the support cylinder part 31j. The second moving mechanism 34 is connected.

第1の移動機構33及び第2の移動機構34は、図2に示すように、空気圧シリンダチューブ35とこのシリンダチューブ35内に配設されたピストン36と、このピストン36に連結されたピストンロッド37とで構成され、ピストンロッド37がそれぞれ支持筒部31j及び支持円柱部32aに連結されている。
そして、第1の移動機構33によって、電極収容部31が、図2に示す帯状可撓性基板2に所定間隔を保って対向する解放位置と、図4に示す周壁31d及び31eのシール材31iが帯状可撓性部材2を介して電極収容部21の周壁21d及び21eのシール材21iと接触する成膜位置との間で移動される。
As shown in FIG. 2, the first moving mechanism 33 and the second moving mechanism 34 include a pneumatic cylinder tube 35, a piston 36 disposed in the cylinder tube 35, and a piston rod connected to the piston 36. 37, and the piston rod 37 is connected to the support cylinder part 31j and the support column part 32a, respectively.
Then, the first moving mechanism 33 causes the electrode housing portion 31 to face the strip-shaped flexible substrate 2 shown in FIG. 2 at a predetermined interval, and the sealing material 31i of the peripheral walls 31d and 31e shown in FIG. Is moved between the film forming positions in contact with the sealing materials 21i of the peripheral walls 21d and 21e of the electrode accommodating portion 21 via the belt-like flexible member 2.

また、第2の移動機構34によって、共通接地電極32が図2に示す背面が帯状可撓性基板2に対して所定間隔を保って対向する解放位置と、図3及び図4に示す背面が帯状可撓性基板2に接触して帯状可撓性基板2を高周波電極22に対して所定間隔を保つ位置に位置決めする基板接触位置との間で移動される。
なお、成膜機構10Aには、N型層を成膜する反応ガスが供給可能とされ、成膜機構10BにはI型層を成膜する反応ガスが供給可能とされ、成膜機構10CにはP型層を成膜する反応ガスが供給可能とされている。また、成膜機構10A〜10Cの高周波電極22の帯状可撓性基板2の搬送方向の配置関係は、図5に示すように、隣接する高周波電極22間の距離Laが高周波電極22の帯状可撓性基板2の搬送方向の長さLbの半分の長さに設定されている。また、帯状可撓性基板2は送出ロール3及び巻取ロール5によって高周波電極22の帯状可撓性基板2の搬送方向の長さLbの半分のピッチずつ間欠的に搬送される。
Further, the second moving mechanism 34 causes the common ground electrode 32 to have a release position in which the back surface shown in FIG. 2 is opposed to the belt-like flexible substrate 2 at a predetermined interval, and the back surface shown in FIGS. 3 and 4. The belt-shaped flexible substrate 2 is moved between a substrate contact position that contacts the belt-shaped flexible substrate 2 and positions the belt-shaped flexible substrate 2 at a position that maintains a predetermined distance from the high-frequency electrode 22.
Note that a reaction gas for forming an N-type layer can be supplied to the film formation mechanism 10A, and a reaction gas for forming an I-type layer can be supplied to the film formation mechanism 10B. Can supply a reactive gas for forming a P-type layer. Further, as shown in FIG. 5, the distance La between adjacent high-frequency electrodes 22 is such that the high-frequency electrodes 22 of the high-frequency electrodes 22 in the transport direction of the film-forming mechanisms 10A to 10C are in the transport direction. The length is set to half the length Lb of the flexible substrate 2 in the transport direction. In addition, the strip-shaped flexible substrate 2 is intermittently transported by the sending roll 3 and the take-up roll 5 by a half pitch of the length Lb of the strip-shaped flexible substrate 2 in the transport direction of the high-frequency electrode 22.

次に、上記実施形態の動作を説明する。
先ず、送出ロール3から送り出した帯状可撓性基板2を、各成膜機構10A〜10Cを図2に示す解放位置とした状態で対向する高周波電極22及び共通接地電極32間を挿通させて巻取ロール5に巻き取る状態にセットする。そして、帯状可撓性基板2を停止させた状態で、各成膜機構10A〜10Cで同時に、第2の移動機構34を作動させて共通接地電極32の背面を帯状可撓性基板2の成膜面とは反対側の裏面に接触させて、帯状可撓性基板2を高周波電極22側に押しながら前進させる。そして、図3に示す帯状可撓性基板2の成膜面と高周波電極22との間の距離が所定距離となる接触位置まで移動させる。このとき、共通接地電極32に内装するヒータによって帯状可撓性基板2を成膜に必要な温度まで加熱する。
Next, the operation of the above embodiment will be described.
First, the belt-like flexible substrate 2 sent out from the sending roll 3 is inserted between the high-frequency electrode 22 and the common ground electrode 32 facing each other in a state where the film forming mechanisms 10A to 10C are in the release positions shown in FIG. Set to take-up roll 5 to be wound up. Then, with the strip-shaped flexible substrate 2 stopped, the film-forming mechanisms 10A to 10C simultaneously operate the second moving mechanism 34 so that the back surface of the common ground electrode 32 is formed on the strip-shaped flexible substrate 2. The belt-shaped flexible substrate 2 is moved forward while being pushed toward the high-frequency electrode 22 side in contact with the back surface opposite to the film surface. And it moves to the contact position from which the distance between the film-forming surface of the strip | belt-shaped flexible substrate 2 shown in FIG. 3 and the high frequency electrode 22 turns into a predetermined distance. At this time, the belt-like flexible substrate 2 is heated to a temperature necessary for film formation by a heater built in the common ground electrode 32.

次いで、第1の移動機構33を作動させて、電極収容部31をその周壁31d及び31eの端面に形成したシール材31iと帯状可撓性基板2を介して電極収容部21の周壁21d及び21eの端面に形成したシール材21iとで帯状可撓性基板2を挟持する成膜位置まで移動させる。この状態で、シール材21i及び31iによって成膜室が形成され、帯状可撓性基板2が共通接地電極32に沿って平滑化され、帯状可撓性基板2と高周波電極22との間が所定距離に保持される。そして、形成された成膜室に反応ガス導入管24から成膜機構10AではN型層に対応する反応ガスを、成膜機構10BではI型層に対応する反応ガスを、成膜機構10CではP型層に対応する反応ガスをそれぞれ個別に供給するとともに、高周波電極22及び共通接地電極32間に高周波電源25から高周波電圧を印加することにより、プラズマCVDによるa−Si系薄膜の成膜が行われる。   Next, the first moving mechanism 33 is operated, and the peripheral walls 21d and 21e of the electrode accommodating portion 21 are interposed via the sealing material 31i formed on the end faces of the peripheral walls 31d and 31e and the belt-shaped flexible substrate 2. The film is moved to the film forming position where the belt-like flexible substrate 2 is sandwiched by the sealing material 21i formed on the end surface of the film. In this state, a film forming chamber is formed by the sealing materials 21i and 31i, the strip-shaped flexible substrate 2 is smoothed along the common ground electrode 32, and a predetermined gap is formed between the strip-shaped flexible substrate 2 and the high-frequency electrode 22. Held in the distance. Then, the reaction gas corresponding to the N-type layer is formed in the film formation mechanism 10A, the reaction gas corresponding to the I-type layer is formed in the film formation mechanism 10B, and the reaction gas corresponding to the I-type layer is formed in the film formation mechanism 10C. A reactive gas corresponding to the P-type layer is separately supplied, and a high-frequency voltage is applied from the high-frequency power source 25 between the high-frequency electrode 22 and the common ground electrode 32, thereby forming an a-Si thin film by plasma CVD. Done.

そして、成膜が終了すると、第1の移動機構33及び第2の移動機構34を原位置に復帰させることにより、共通接地電極32を帯状可撓性基板2から離間させるとともに、電極収容部31を帯状可撓性電極2から離間させて解放位置に復帰させると、帯状可撓性基板2が高周波電極22及び共通接地電極32間に非接触状態で対向する位置に復帰する。
この解放位置で、送出ロール3及び巻取ロール5で帯状可撓性基板2を高周波電極22の帯状可撓性基板2の搬送方向の長さLbの半分のピッチだけ下降させて停止させ、再度成膜機構10A〜10Cで上記の成膜処理を実行する。
When the film formation is completed, the first moving mechanism 33 and the second moving mechanism 34 are returned to the original positions, so that the common ground electrode 32 is separated from the belt-shaped flexible substrate 2 and the electrode accommodating portion 31 is formed. Is separated from the strip-shaped flexible electrode 2 and returned to the release position, the strip-shaped flexible substrate 2 returns to a position facing the high-frequency electrode 22 and the common ground electrode 32 in a non-contact state.
At this release position, the feeding roll 3 and the take-up roll 5 lower the belt-like flexible substrate 2 by a half pitch of the length Lb of the belt-like flexible substrate 2 in the transport direction of the high-frequency electrode 22 and stop it again. The film forming process is performed by the film forming mechanisms 10A to 10C.

このように帯状可撓性基板2を高周波電極22の帯状可撓性基板2の搬送方向の長さLbの半分のピッチずつ間欠的に移動させて且つ成膜機構10A〜10Cで成膜を繰り返すことにより、図5に示すように、成膜機構10Aで成膜されたP型層は高周波電極の半分のピッチで搬送されることにより、成膜機構10Aの高周波電極22に合計して2ステップ分留まることになり、1回の成膜で形成される膜厚の2倍の厚さとなる。また、高周波電極22の半分のピッチで帯状可撓性基板2が搬送されるので、帯状可撓性基板2に連続したP型層が形成されることになる。そして、次に、成膜機構10Bに搬送されることにより、この成膜機構10Bでも合計して2ステップ分留まることから1回の成膜で形成される膜厚の2倍の厚さのI型層が成膜される。続いて、成膜機構10Cに搬送されることにより、同様に合成して2ステップ分留まることから1回の成膜で形成される膜厚の2倍の厚さのP型層が成膜されて、薄膜光電変換素子が形成される。   In this way, the strip-shaped flexible substrate 2 is intermittently moved by a half pitch of the length Lb of the high-frequency electrode 22 in the transport direction of the strip-shaped flexible substrate 2 and deposition is repeated by the deposition mechanisms 10A to 10C. Thus, as shown in FIG. 5, the P-type layer formed by the film forming mechanism 10A is transported at a half pitch of the high frequency electrode, so that the high frequency electrode 22 of the film forming mechanism 10A is totaled in two steps. Thus, the thickness of the film is twice that of the film formed by one film formation. In addition, since the belt-like flexible substrate 2 is transported at a half pitch of the high-frequency electrode 22, a continuous P-type layer is formed on the belt-like flexible substrate 2. Then, by being transferred to the film forming mechanism 10B, the film forming mechanism 10B also makes a total of two steps, so that the thickness I is twice the film thickness formed by one film formation. A mold layer is deposited. Subsequently, the film is transported to the film forming mechanism 10C and similarly synthesized and divided for two steps, so that a P-type layer having a thickness twice as large as the film formed by one film formation is formed. Thus, a thin film photoelectric conversion element is formed.

このとき、電極収容部21及び31の周壁21d,21e及び31d,31eで挟まれる帯状可撓性基板2の部分は、成膜面の外側であり、帯状可撓性基板2の成膜面は開口部21g,21hが形成されているので非接触であり、接触により汚染の心配がなく所望の膜厚を確保することができる。
なお、上記実施形態においては、帯状可撓性基板2を高周波電極22の帯状可撓性基板2の搬送方向の長さLbの半分のピッチで間欠的に搬送する場合について説明したが、これに限定されるものではなく、高周波電極22の帯状可撓性基板2の搬送方向の長さLb以下のピッチであれば、任意のピッチで帯状可撓性基板2を搬送して帯状可撓性基板2状に連続した成膜を行って薄膜光電変換素子を形成することができる。
At this time, the portion of the band-shaped flexible substrate 2 sandwiched between the peripheral walls 21d, 21e and 31d, 31e of the electrode accommodating portions 21 and 31 is outside the film formation surface, and the film formation surface of the band-shaped flexible substrate 2 is Since the openings 21g and 21h are formed, there is no contact, and there is no fear of contamination due to the contact, and a desired film thickness can be ensured.
In the above embodiment, the case where the strip-shaped flexible substrate 2 is intermittently transported at a pitch half the length Lb of the strip-shaped flexible substrate 2 in the transport direction of the high-frequency electrode 22 has been described. The belt-like flexible substrate 2 is transported at an arbitrary pitch as long as the pitch is equal to or less than the length Lb of the high-frequency electrode 22 in the carrying direction of the belt-like flexible substrate 2. A thin film photoelectric conversion element can be formed by performing continuous film formation in two shapes.

さらに、帯状可撓性基板2の搬送ピッチを高周波電極22の帯状可撓性基板2の搬送方向の長さLbの等分ピッチとすることで、帯状可撓性基板2の被成膜部分は高周波電極22に対して成膜されるために滞在する時間が等しくなり、均一な膜厚を確保することができる。
さらに、N型層、I型層及びP型層を成膜する成膜機構10A、10B及び10Cの高周波電極22の帯状可撓性基板2の搬送方向の長さLbを送りピッチに対して異なる整数倍とすることで、成膜時間を変えることができる。
Further, by setting the conveyance pitch of the band-shaped flexible substrate 2 to an equal pitch of the length Lb of the high-frequency electrode 22 in the conveyance direction of the band-shaped flexible substrate 2, the film formation portion of the band-shaped flexible substrate 2 is Since the film is deposited on the high-frequency electrode 22, the staying time is equalized, and a uniform film thickness can be ensured.
Further, the length Lb of the high-frequency electrode 22 of the film forming mechanisms 10A, 10B, and 10C for forming the N-type layer, the I-type layer, and the P-type layer in the transport direction of the belt-like flexible substrate 2 is different from the feed pitch. The film formation time can be changed by setting the integral multiple.

なお、上記実施形態においては、真空室1が上下方向に延長して、帯状可撓性基板2を鉛直方向に搬送する場合について説明したが、これに限定されるものではなく、伸空室1を水平方向に延長して、帯状可撓性基板2を水平方向に搬送し、成膜機構10A〜10Cを通過させるようにしてもよい。
また、上記実施形態においては、1つの帯状可撓性基板2に成膜する場合について説明したが、2つの帯状可撓性基板2を成膜する場合には両帯状可撓性基板2間に高周波電極を個別に固定配置し、これらの高周波電極の外側にそれぞれ共通接地電極を可動可能に配設するようにすればよい。
In the above embodiment, the case where the vacuum chamber 1 extends in the vertical direction and the belt-shaped flexible substrate 2 is conveyed in the vertical direction has been described. However, the present invention is not limited to this. May be extended in the horizontal direction to convey the belt-like flexible substrate 2 in the horizontal direction and pass through the film forming mechanisms 10A to 10C.
Further, in the above embodiment, the case where the film is formed on one belt-like flexible substrate 2 has been described. The high-frequency electrodes may be individually fixed and disposed, and the common ground electrode may be movably disposed outside the high-frequency electrodes.

1…真空室、2…帯状可撓性基板、3…送出ロール、4…基板送出室、5…巻取ロール、6…巻取ロール、7,8…ガイドロール、11…固定挟持部材、12…可動挟持部材、21…電極収容部、21g,21h…開口部、21i…シール材、22…高周波電極、23…導電性支持部材、24…反応ガス導入管、31…電極収容部、31f,31h…開口部、31i…シール材、32…共通接地電極、33…第1の移動機構、34…第2の移動機構   DESCRIPTION OF SYMBOLS 1 ... Vacuum chamber, 2 ... Strip-like flexible substrate, 3 ... Delivery roll, 4 ... Substrate delivery chamber, 5 ... Winding roll, 6 ... Winding roll, 7, 8 ... Guide roll, 11 ... Fixed clamping member, 12 DESCRIPTION OF SYMBOLS ... Movable clamping member, 21 ... Electrode accommodating part, 21g, 21h ... Opening part, 21i ... Sealing material, 22 ... High frequency electrode, 23 ... Conductive support member, 24 ... Reaction gas introduction pipe, 31 ... Electrode accommodating part, 31f, 31h: opening, 31i: sealing material, 32: common ground electrode, 33: first moving mechanism, 34: second moving mechanism

Claims (9)

帯状可撓性基板上に複数の異なる性質の薄膜を積層して少なくとも光電変換層を形成する薄膜光電変換素子の製造装置であって、
直列に配列された複数の成膜機構と、該複数の成膜機構に、前記帯状可撓性基板をその成膜面を停止させながら順次搬送する基板搬送部とを備え、
前記成膜機構は、前記帯状可撓性基板の搬入部及び搬出部に前記成膜面に非接触となる開口部を有し、前記帯状可撓性基板の停止時に、前記開口部を除く成膜面の周囲における表裏面にシール材を介して接触して真空雰囲気を形成して成膜を行う成膜動作と、少なくとも前記成膜面の周囲から前記シール材を離間して前記帯状可撓性基板の搬送を許容する解放動作とを行うように構成されている
ことを特徴とする薄膜光電変換素子の製造装置。
A thin-film photoelectric conversion element manufacturing apparatus for forming a photoelectric conversion layer by laminating a plurality of thin films having different properties on a strip-shaped flexible substrate,
A plurality of film-forming mechanisms arranged in series, and a substrate transport unit that sequentially transports the strip-shaped flexible substrate while stopping the film-forming surface to the plurality of film-forming mechanisms,
The film forming mechanism has openings that are not in contact with the film forming surface at the carrying-in and carrying-out portions of the belt-like flexible substrate, and the opening is removed when the belt-like flexible substrate is stopped. A film forming operation for forming a film by forming a vacuum atmosphere by contacting the front and back surfaces around the film surface via a seal material, and separating the seal material from at least the periphery of the film surface to form the strip-shaped flexible film An apparatus for manufacturing a thin film photoelectric conversion element, wherein the apparatus is configured to perform a releasing operation that allows conveyance of a conductive substrate.
前記成膜機構は、前記帯状可撓性基板の成膜面を挟んで相対移動可能な一対の電極収容部と、
前記一対の電極収納部のうち成膜面に対向する電極収容部の前記帯状可撓性基板の搬入部及び搬出部に形成した成膜面に非接触となる開口部と、
該一対の電極収容部を形成する周壁に前記開口部を除いて形成した前記帯状可撓性基板の成膜面の外側に接触するシール材と、
前記一対の電極収容部を、前記シール材が前記帯状可撓性基板の成膜面の外側に接触して真空雰囲気形成する成膜位置と前記一対の電極収容部の少なくとも成膜面側の電極収容部の周囲の前記シール材が前記帯状可撓性基板から離間する解放位置との間で相対移動させる相対移動制御部と
を備えていることを特徴とする請求項1に記載の薄膜光電変換素子の製造装置。
The film formation mechanism includes a pair of electrode housing portions that can move relative to each other with the film formation surface of the belt-shaped flexible substrate interposed therebetween,
An opening that is in non-contact with the film formation surface formed on the carry-in portion and the carry-out portion of the belt-like flexible substrate of the electrode storage portion facing the film formation surface of the pair of electrode storage portions;
A sealing material in contact with the outer side of the film-forming surface of the strip-shaped flexible substrate formed on the peripheral walls forming the pair of electrode housing portions excluding the opening;
A film forming position where the sealing material contacts the outside of the film forming surface of the belt-shaped flexible substrate to form the pair of electrode housing parts, and an electrode on at least the film forming surface side of the pair of electrode housing parts The thin film photoelectric conversion according to claim 1, further comprising: a relative movement control unit that moves the sealing material around the housing unit relative to a release position separated from the belt-like flexible substrate. Device manufacturing equipment.
前記成膜機構は、一対の電極収容部が前記成膜位置にある状態で、前記帯状可撓性基板の成膜面に対向する電極と、当該電極とは前記帯状可撓性基板の反対側で当該帯状可撓性基板と接触する電極との間に高周波電圧を印加して成膜するように構成されていることを特徴とする請求項2に記載の薄膜光電変換素子の製造装置。   The film forming mechanism includes an electrode facing the film forming surface of the strip-shaped flexible substrate and a side opposite to the band-shaped flexible substrate in a state where a pair of electrode housing portions are at the film forming position. 3. The apparatus for manufacturing a thin film photoelectric conversion element according to claim 2, wherein a film is formed by applying a high frequency voltage between the electrode in contact with the belt-like flexible substrate. 前記複数の成膜機構は所定間隔を保って直列に配列され、前記基板搬送部は、前記成膜機構の成膜を行う電極の搬送方向長さと等しいピッチ以下のピッチで前記帯状可撓性基板を搬送することを特徴とする請求項1乃至3の何れか1項に記載の薄膜光電変換素子の製造装置。   The plurality of film forming mechanisms are arranged in series at a predetermined interval, and the substrate transport unit has the belt-like flexible substrate at a pitch equal to or less than a pitch equal to a transport direction length of an electrode for performing film formation of the film forming mechanism. The apparatus for manufacturing a thin film photoelectric conversion element according to claim 1, wherein the thin film photoelectric conversion element is conveyed. 前記複数の成膜機構は所定間隔を保って直列に配列され、前記基板搬送部は、前記成膜機構の成膜を行う電極の搬送方向長さを等分割したピッチで前記帯状可撓性基板を搬送することを特徴とする請求項1乃至3の何れか1項に記載の薄膜光電変換素子の製造装置。   The plurality of film forming mechanisms are arranged in series at a predetermined interval, and the substrate transport unit is configured to form the strip-shaped flexible substrate at a pitch that equally divides a transport direction length of an electrode that performs film formation of the film forming mechanism. The apparatus for manufacturing a thin film photoelectric conversion element according to claim 1, wherein the thin film photoelectric conversion element is conveyed. 帯状可撓性基板上に複数の異なる性質の薄膜を積層して少なくとも光電変換層を形成する薄膜光電変換素子の製造方法であって、
前記帯状可撓性基板を直列に配列された複数の成膜機構の成膜位置に搬送して停止させる搬送ステップと、
前記成膜機構の成膜位置で停止された前記帯状可撓性基板をその成膜面の搬入部及び搬出部で当該成膜面と非接触となる開口部を有し、該開口部を除く前記成膜面の周囲をシール材を介して挟持して真空雰囲気を形成し、当該成膜面に成膜する成膜ステップと、
成膜面の成膜が完了した時点で前記シール材を介する挟持状態を解除して、成膜面を所定ピッチで搬送して停止させるステップとを繰り返して異なる性質の薄膜を積層した光電変換層を形成することを特徴とする薄膜光電変換素子の製造方法。
A method of manufacturing a thin film photoelectric conversion element, wherein a plurality of thin films having different properties are laminated on a belt-like flexible substrate to form at least a photoelectric conversion layer,
A transporting step of transporting and stopping the strip-shaped flexible substrate to a film forming position of a plurality of film forming mechanisms arranged in series;
The belt-like flexible substrate stopped at the film formation position of the film formation mechanism has an opening portion that is not in contact with the film formation surface at the carry-in portion and the carry-out portion of the film formation surface, and excludes the opening portion. A film forming step of forming a vacuum atmosphere by sandwiching the periphery of the film forming surface through a sealing material, and forming a film on the film forming surface;
A photoelectric conversion layer in which thin films having different properties are stacked by releasing the nipping state via the sealing material when the film formation on the film formation surface is completed, and repeating the step of conveying and stopping the film formation surface at a predetermined pitch Forming a thin film photoelectric conversion element.
前記成膜ステップは、シール材による挟持状態で、前記可撓性基板の成膜面に対向する電極と該電極とは当該帯状可撓性基板を挟んで反対側に配設された前記帯状可撓性基板に接触する電極との間に高周波電圧を印加して成膜することを特徴とする請求項6に記載の薄膜光電変換素子の製造方法。   In the film forming step, the electrode facing the film forming surface of the flexible substrate and the electrode are disposed on the opposite side of the band-shaped flexible substrate in a state of being sandwiched by a sealing material. 7. The method of manufacturing a thin film photoelectric conversion element according to claim 6, wherein a film is formed by applying a high frequency voltage between the electrode and the electrode in contact with the flexible substrate. 前記複数の成膜機構が所定間隔を保って直列に配列され、前記帯状可撓性基板を成膜機構の電極の搬送方向長さ以下のピッチで搬送することを特徴とする請求項6又は7に記載の薄膜光電変換素子の製造方法。   The plurality of film forming mechanisms are arranged in series at a predetermined interval, and the belt-shaped flexible substrate is transported at a pitch equal to or less than the length of the electrode of the film forming mechanism in the transport direction. The manufacturing method of the thin film photoelectric conversion element of description. 前記複数の成膜機構が所定間隔を保って直列に配列され、前記帯状可撓性基板を成膜機構の電極の搬送方向長さを等分割したピッチで搬送することを特徴とする請求項6又は7に記載の薄膜光電変換素子の製造方法。   The plurality of film forming mechanisms are arranged in series at a predetermined interval, and the belt-shaped flexible substrate is transported at a pitch that equally divides the transport direction length of the electrodes of the film forming mechanism. Or a method for producing the thin-film photoelectric conversion element according to 7.
JP2009042979A 2009-02-25 2009-02-25 Thin-film light conversion element manufacturing apparatus and manufacturing method Expired - Fee Related JP5104782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009042979A JP5104782B2 (en) 2009-02-25 2009-02-25 Thin-film light conversion element manufacturing apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009042979A JP5104782B2 (en) 2009-02-25 2009-02-25 Thin-film light conversion element manufacturing apparatus and manufacturing method

Publications (2)

Publication Number Publication Date
JP2010199325A true JP2010199325A (en) 2010-09-09
JP5104782B2 JP5104782B2 (en) 2012-12-19

Family

ID=42823746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009042979A Expired - Fee Related JP5104782B2 (en) 2009-02-25 2009-02-25 Thin-film light conversion element manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP5104782B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9640260B2 (en) 2011-02-03 2017-05-02 Micron Technology, Inc. Memory devices with a connecting region having a band gap lower than a band gap of a body region

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722337A (en) * 1993-07-05 1995-01-24 Fuji Electric Co Ltd Thin film manufacturing device
JPH0963970A (en) * 1995-08-30 1997-03-07 Fuji Electric Co Ltd Thin film manufacturing device and manufacture thereof
JPH101243A (en) * 1996-06-14 1998-01-06 Nec Corp Film material fixing mechanism
JPH1041237A (en) * 1996-05-20 1998-02-13 Fuji Electric Co Ltd Film forming equipment and solar battery
JP2001007367A (en) * 1999-06-25 2001-01-12 Fuji Electric Co Ltd Method and device for manufacturing film solar cell
JP2001110729A (en) * 1999-10-06 2001-04-20 Mitsubishi Heavy Ind Ltd Apparratus for continuously manufacturing method of semiconductor element
JP2005072408A (en) * 2003-08-27 2005-03-17 Fuji Electric Holdings Co Ltd Thin film manufacturing apparatus and method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722337A (en) * 1993-07-05 1995-01-24 Fuji Electric Co Ltd Thin film manufacturing device
JPH0963970A (en) * 1995-08-30 1997-03-07 Fuji Electric Co Ltd Thin film manufacturing device and manufacture thereof
JPH1041237A (en) * 1996-05-20 1998-02-13 Fuji Electric Co Ltd Film forming equipment and solar battery
JPH101243A (en) * 1996-06-14 1998-01-06 Nec Corp Film material fixing mechanism
JP2001007367A (en) * 1999-06-25 2001-01-12 Fuji Electric Co Ltd Method and device for manufacturing film solar cell
JP2001110729A (en) * 1999-10-06 2001-04-20 Mitsubishi Heavy Ind Ltd Apparratus for continuously manufacturing method of semiconductor element
JP2005072408A (en) * 2003-08-27 2005-03-17 Fuji Electric Holdings Co Ltd Thin film manufacturing apparatus and method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9640260B2 (en) 2011-02-03 2017-05-02 Micron Technology, Inc. Memory devices with a connecting region having a band gap lower than a band gap of a body region
US9953710B2 (en) 2011-02-03 2018-04-24 Micron Technology, Inc. Memory devices with a connecting region having a band gap lower than a band gap of a body region

Also Published As

Publication number Publication date
JP5104782B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5182610B2 (en) Thin film solar cell manufacturing equipment
US8419880B2 (en) Method of transferring graphene
TWI625410B (en) Apparatus for processing flexible substrate
TWI619827B (en) Apparatus for depositing thin film on substrate and method of depositing thin film thereon
TWI620828B (en) Deposition apparatus and method
KR20120109989A (en) Web substrate deposition system
JP2002217119A (en) Plasma cvd method and its apparatus
US20110262641A1 (en) Inline chemical vapor deposition system
JP4985209B2 (en) Thin film solar cell manufacturing equipment
US11610764B2 (en) Plasma source and method of operating the same
US20180057939A1 (en) Manufacturing method of transparent electrode
JP5104782B2 (en) Thin-film light conversion element manufacturing apparatus and manufacturing method
JP2000307139A (en) Manufacture of thin film solar cell and thin film electrode layer forming device
JP2000261015A (en) Solar battery film-forming apparatus
JP5292696B2 (en) Plasma CVD apparatus, thin film manufacturing method, and laminated substrate
JP4893235B2 (en) Film forming apparatus and film forming method
JP4780474B2 (en) Thin film laminate manufacturing method and manufacturing apparatus
JP5023914B2 (en) Thin film manufacturing apparatus and thin film manufacturing method
JP4126810B2 (en) Thin film solar cell manufacturing equipment
JP6471623B2 (en) Film forming apparatus and film forming method
US20120315724A1 (en) Method and apparatus for deposition of selenium thin-film and plasma head thereof
JP2001035798A (en) Film-forming apparatus
JP7286477B2 (en) Thin film forming equipment
JP2009049029A (en) Apparatus for manufacturing thin film solar cell
JP2001323376A (en) Equipment for depositing film

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees