JP2010198850A - Electron emission element, electron emission device, charging device, image forming device, electron beam curing device self light-emitting device, image device, blower, cooling device, manufacturing method for electron emission element - Google Patents

Electron emission element, electron emission device, charging device, image forming device, electron beam curing device self light-emitting device, image device, blower, cooling device, manufacturing method for electron emission element Download PDF

Info

Publication number
JP2010198850A
JP2010198850A JP2009041150A JP2009041150A JP2010198850A JP 2010198850 A JP2010198850 A JP 2010198850A JP 2009041150 A JP2009041150 A JP 2009041150A JP 2009041150 A JP2009041150 A JP 2009041150A JP 2010198850 A JP2010198850 A JP 2010198850A
Authority
JP
Japan
Prior art keywords
electron
emitting device
fine particles
conductive fine
acceleration layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009041150A
Other languages
Japanese (ja)
Other versions
JP4932864B2 (en
Inventor
Ayae Nagaoka
彩絵 長岡
Tadashi Iwamatsu
正 岩松
Hiroyuki Hirakawa
弘幸 平川
Yasuro Imura
康朗 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009041150A priority Critical patent/JP4932864B2/en
Priority to CN2009102044713A priority patent/CN101814405B/en
Priority to US12/695,381 priority patent/US8547007B2/en
Publication of JP2010198850A publication Critical patent/JP2010198850A/en
Application granted granted Critical
Publication of JP4932864B2 publication Critical patent/JP4932864B2/en
Priority to US13/835,133 priority patent/US8616931B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cold Cathode And The Manufacture (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electron emission element which can restrain deterioration of an electron acceleration layer and effectively enables stable electron emission at atmospheric pressure as well as in a vacuum and is formed by raising mechanical strength. <P>SOLUTION: The electron emission element 1 has the electron acceleration layer 4 between an electrode substrate 2 and a thin-film electrode 3. The electron acceleration layer 4 includes binder resin 15 wherein insulator fine particles 5 and conductive fine particles 6 are dispersed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電圧を印加することにより電子を放出する電子放出素子に関するものである。   The present invention relates to an electron-emitting device that emits electrons by applying a voltage.

従来の電子放出素子として、スピント(Spindt)型電極、カーボンナノチューブ(CNT)型電極などが知られている。このような電子放出素子は、例えば、FED(Field Emision Display)の分野に応用検討されている。このような電子放出素子は、尖鋭形状部に電圧を印加して約1GV/mの強電界を形成し、トンネル効果により電子放出させる。   As a conventional electron-emitting device, a Spindt type electrode, a carbon nanotube (CNT) type electrode, and the like are known. Such an electron-emitting device has been studied for application in the field of FED (Field Emission Display), for example. In such an electron-emitting device, a voltage is applied to the sharp portion to form a strong electric field of about 1 GV / m, and electrons are emitted by the tunnel effect.

しかしながら、これら2つのタイプの電子放出素子は、電子放出部表面近傍が強電界であるため、放出された電子は電界により大きなエネルギーを得て気体分子を電離しやすくなる。気体分子の電離により生じた陽イオンは強電界により素子の表面方向に加速衝突し、スパッタリングによる素子破壊が生じるという問題がある。また、大気中の酸素は電離エネルギーより解離エネルギーが低いため、イオンの発生より先にオゾンを発生する。オゾンは人体に有害である上、その強い酸化力により様々なものを酸化することから、素子の周囲の部材にダメージを与えるという問題が存在し、これを避けるために周辺部材には耐オゾン性の高い材料を用いなければならないという制限が生じている。   However, since these two types of electron-emitting devices have a strong electric field in the vicinity of the surface of the electron-emitting region, the emitted electrons easily obtain a large energy by the electric field and easily ionize gas molecules. There is a problem that cations generated by ionization of gas molecules are accelerated and collided in the direction of the surface of the device by a strong electric field, and device destruction occurs due to sputtering. Moreover, since oxygen in the atmosphere has lower dissociation energy than ionization energy, ozone is generated prior to the generation of ions. Since ozone is harmful to the human body and oxidizes various things with its strong oxidizing power, there is a problem of damaging members around the element. To avoid this, the surrounding members are ozone resistant. There is a restriction that high material must be used.

そこで、上記とは別のタイプの電子放出素子として、MIM(Metal Insulator Metal)型やMIS(Metal Insulator Semiconductor)型の電子放出素子が知られている。これらは素子内部の量子サイズ効果及び強電界を利用して電子を加速し、平面状の素子表面から電子を放出させる面放出型の電子放出素子である。これらは素子内部の電子加速層で加速した電子を放出するため、素子外部に強電界を必要としない。従って、MIM型及びMIS型の電子放出素子においては、上記スピント型やCNT型、BN型の電子放出素子のように気体分子の電離によるスパッタリングで破壊されるという問題やオゾンが発生するという問題を克服できる。また、このような電子放出素子の機械的強度を高めるために、例えば、特許文献1には、電子加速層として、複数の絶縁物粒子からなる粉体層とこの粉体層を覆う酸化物絶縁体からなる固定層とを設けた電子放出素子が開示されている。   Therefore, MIM (Metal Insulator Metal) type and MIS (Metal Insulator Semiconductor) type electron emitting devices are known as other types of electron emitting devices. These are surface emission type electron-emitting devices that use the quantum size effect and strong electric field inside the device to accelerate electrons and emit electrons from the planar device surface. Since these emit electrons accelerated by the electron acceleration layer inside the device, a strong electric field is not required outside the device. Therefore, the MIM type and MIS type electron-emitting devices have a problem that they are destroyed by sputtering due to ionization of gas molecules, and ozone is generated, like the Spindt-type, CNT-type, and BN-type electron-emitting devices. It can be overcome. In order to increase the mechanical strength of such an electron-emitting device, for example, in Patent Document 1, as an electron acceleration layer, a powder layer composed of a plurality of insulator particles and an oxide insulation covering the powder layer are disclosed. An electron-emitting device provided with a fixed layer made of a body is disclosed.

特開2000−311640号公報(平成12年11月7日公開)JP 2000-31640 A (published November 7, 2000)

しかし、MIM型やMIS型の上記従来の電子放出素子を、大気中で動作させた場合、様々な気体分子が素子表面に吸着し、電子加速層の電気的特性などを変質させ、電子放出電流が減少するという問題が新たに発生している。   However, when the above-mentioned conventional electron emission device of MIM type or MIS type is operated in the atmosphere, various gas molecules are adsorbed on the surface of the device, and the electric characteristics of the electron acceleration layer are altered, resulting in an electron emission current. There is a new problem of decrease.

これら電子加速層で電子を加速するMIM型やMIS型の従来の電子放出素子の表面は、電子加速層に電界を印加する上部電極(薄膜電極)の役割を担っており、一般的に金属薄膜で構成されている。また、MIM型やMIS型の従来の電子放出素子の表面は、電子加速層で加速された電子を、金属薄膜をトンネルして真空中に放出させる役割をも担っており、金属薄膜の膜厚が薄いほど電子加速層で加速された電子のトンネル確率が高くなり、電子放出量が多くなる。そのため、金属薄膜の膜厚は薄い方が好ましいと言えるが、金属薄膜の膜厚が薄すぎると、緻密な膜を形成することが困難であるため、気体分子のバリア効果がほとんどない。従って、大気中で電子放出素子を動作させた場合、気体分子が内部の電子加速層に侵入し、電子加速層の電気的特性を変質させ、電子放出電流が減少するという課題が発生する。   The surface of these conventional electron emission devices of MIM type and MIS type that accelerate electrons by these electron acceleration layers plays the role of an upper electrode (thin film electrode) that applies an electric field to the electron acceleration layer. It consists of Further, the surface of the conventional electron-emitting device of the MIM type or the MIS type also plays a role of causing electrons accelerated by the electron acceleration layer to tunnel through the metal thin film and emit into the vacuum. The smaller the thickness, the higher the tunnel probability of electrons accelerated by the electron acceleration layer, and the more the electron emission. Therefore, it can be said that the metal thin film is preferably thin. However, if the metal thin film is too thin, it is difficult to form a dense film, so that there is almost no gas molecule barrier effect. Therefore, when the electron-emitting device is operated in the atmosphere, there is a problem that gas molecules enter the internal electron acceleration layer, change the electrical characteristics of the electron acceleration layer, and reduce the electron emission current.

この結果、大気中において安定して電子を発生させることはできず、特に電子加速層に導電微粒子が含まれている場合では、大気中の酸素により導電微粒子の酸化が進み、電子加速層を劣化させ、電子放出が止まってしまう。   As a result, electrons cannot be stably generated in the atmosphere, and especially when the electron acceleration layer contains conductive fine particles, the oxidation of the conductive fine particles proceeds due to oxygen in the atmosphere, deteriorating the electron acceleration layer. The electron emission stops.

さらに、電子加速層に微粒子が含まれており、その分散性が悪く凝集体となっていると、素子の性能が均一にならず、安定した電子供給はできなくなる。また、特許文献1のように、電子加速層に絶縁物粒子が含まれていると、電子加速層表面の凹凸が粗くなり、その上の金属薄膜を薄く形成することが困難となる。よって、金属薄膜は上記したように薄い方が好ましいが、このように薄く形成することができなくなると、電子を効率よく放出させることができなくなる。   Furthermore, if the electron acceleration layer contains fine particles, and its dispersibility is poor and it is an aggregate, the performance of the device will not be uniform and stable electron supply will not be possible. Further, as in Patent Document 1, when the electron acceleration layer contains insulating particles, the surface of the electron acceleration layer becomes uneven, and it is difficult to form a thin metal thin film thereon. Therefore, it is preferable that the metal thin film is thin as described above. However, if the metal thin film cannot be formed so thin, electrons cannot be efficiently emitted.

本発明は上記課題に鑑みなされたものであり、電子加速層の劣化を抑制でき、真空中だけでなく大気圧中でも効率よく安定した電子放出を可能とし、さらに機械的強度を高めて形成される、電子放出素子等の提供を目的とする。   The present invention has been made in view of the above problems, and can suppress deterioration of the electron acceleration layer, enable efficient and stable electron emission not only in a vacuum but also in an atmospheric pressure, and formed with increased mechanical strength. An object is to provide an electron-emitting device or the like.

本発明の電子放出素子は、上記課題を解決するために、電極基板と薄膜電極と該電極基板および該薄膜電極に挟持された電子加速層とを有し、上記電極基板と上記薄膜電極との間に電圧が印加されると、上記電子加速層で電子を加速させて、上記薄膜電極から該電子を放出させる電子放出素子であって、上記電子加速層は、絶縁体物質および導電微粒子が分散された樹脂バインダーを含むことを特徴としている。   In order to solve the above-described problems, an electron-emitting device of the present invention has an electrode substrate, a thin film electrode, the electrode substrate, and an electron acceleration layer sandwiched between the thin film electrodes. When a voltage is applied between them, the electron accelerating layer accelerates the electrons and emits the electrons from the thin film electrode. The electron accelerating layer includes an insulator material and conductive fine particles dispersed therein. It is characterized by containing the resin binder made.

上記構成によると、電極基板と薄膜電極との間には、絶縁体物質および導電微粒子が分散された樹脂バインダーを含む電子加速層が設けられている。この電子加速層は、絶縁体物質と導電微粒子とが樹脂バインダーに分散された薄膜の層であり、半導電性を有する。この半導電性の電子加速層に電圧を印加すると、電子加速層内に電流が流れ、その一部は印加電圧の形成する強電界により弾道電子となって放出される。ここで、導電微粒子はバインダー樹脂に分散されており、つまり、導電微粒子の周囲にはバインダー樹脂が存在しているため、大気中の酸素による酸化に伴う素子劣化を発生し難い。よって、真空中だけでなく大気圧中でも安定して動作させることができる。   According to the above configuration, the electron acceleration layer including the resin binder in which the insulator substance and the conductive fine particles are dispersed is provided between the electrode substrate and the thin film electrode. This electron acceleration layer is a thin film layer in which an insulating substance and conductive fine particles are dispersed in a resin binder, and has semiconductivity. When a voltage is applied to the semiconductive electron acceleration layer, a current flows in the electron acceleration layer, and a part thereof is emitted as ballistic electrons by the strong electric field formed by the applied voltage. Here, since the conductive fine particles are dispersed in the binder resin, that is, the binder resin exists around the conductive fine particles, it is difficult to cause element degradation due to oxidation by oxygen in the atmosphere. Therefore, it can be stably operated not only in a vacuum but also in an atmospheric pressure.

また、絶縁体物質および導電微粒子は樹脂バインダーに分散しているため、凝集が起こり難く、素子の性能が均一になり、安定した電子供給が可能である。また、樹脂バインダーは電極基板との接着性が高く、機械的強度が高い。さらに、樹脂バインダーにより、電子加速層表面の平滑性をよくすることができ、その上の薄膜電極を薄く形成することができる。従って、本発明の電子放出素子は、電子加速層を絶縁体物質および導電微粒子がほぼ均一に拡散した薄膜にでき、性能が均一で、機械的強度の高いものとなる。   In addition, since the insulator substance and the conductive fine particles are dispersed in the resin binder, aggregation hardly occurs, the device performance becomes uniform, and stable electron supply is possible. Further, the resin binder has high adhesiveness with the electrode substrate and high mechanical strength. Furthermore, the resin binder can improve the smoothness of the surface of the electron acceleration layer, and the thin film electrode thereon can be formed thin. Therefore, in the electron-emitting device of the present invention, the electron acceleration layer can be a thin film in which the insulator substance and the conductive fine particles are almost uniformly diffused, and the performance is uniform and the mechanical strength is high.

このように、本発明の電子放出素子は、電子加速層の劣化を抑制でき、真空中だけでなく大気圧中でも効率よく安定した電子放出が可能となる。さらに本発明の電子放出素子は、機械的強度を高められる。   As described above, the electron-emitting device of the present invention can suppress the deterioration of the electron acceleration layer, and enables efficient and stable electron emission not only in vacuum but also at atmospheric pressure. Furthermore, the electron-emitting device of the present invention can increase the mechanical strength.

また、本発明の電子放出素子では、上記構成に加え、上記導電微粒子は、抗酸化力が高い導電体であってもよい。   In the electron-emitting device of the present invention, in addition to the above configuration, the conductive fine particles may be a conductor having high anti-oxidation power.

ここで、ここで言う抗酸化力が高いとは、酸化物形成反応の低いことを指す。一般的に熱力学計算より求めた、酸化物生成自由エネルギーの変化量ΔG[kJ/mol]値が負で大きい程、酸化物の生成反応が起こり易いことを表す。本発明ではΔG>−450[kJ/mol]以上に該当する金属元素が、抗酸化力の高い導電微粒子として該当する。また、該当する導電微粒子の周囲に、その導電微粒子の大きさよりも小さい絶縁体物質を付着、または被覆することで、酸化物の生成反応をより起こし難くした状態の導電微粒子も、抗酸化力が高い導電微粒子に含まれる。   Here, the high antioxidant power mentioned here indicates that the oxide formation reaction is low. In general, the larger the negative value ΔG [kJ / mol] value of the oxide formation free energy obtained by thermodynamic calculation, the easier the oxide formation reaction occurs. In the present invention, a metal element corresponding to ΔG> −450 [kJ / mol] or more corresponds to conductive fine particles having a high antioxidant power. In addition, the conductive fine particles in a state in which an oxide generation reaction is more difficult to occur by attaching or coating an insulating material smaller than the size of the conductive fine particles around the corresponding conductive fine particles have anti-oxidation power. Included in high conductive particles.

上記構成によると、導電微粒子として抗酸化力が高い導電体を用いることから、大気中の酸素による酸化に伴う素子劣化を発生し難いため、電子放出素子を大気圧中でもより安定して動作させることができる。よって、寿命を長くでき、大気中でも長時間連続動作をさせることができる。   According to the above configuration, since a conductive material having high anti-oxidation power is used as the conductive fine particles, it is difficult to cause device deterioration due to oxidation by oxygen in the atmosphere, so that the electron-emitting device can be operated more stably even at atmospheric pressure. Can do. Therefore, the lifetime can be extended and continuous operation can be performed for a long time even in the atmosphere.

本発明の電子放出素子では、上記構成に加え、上記導電微粒子は、貴金属であってもよい。このように、上記導電微粒子が、貴金属であることで、導電微粒子の、大気中の酸素による酸化などをはじめとする素子劣化を防ぐことができる。よって、電子放出素子の長寿命化を図ることができる。   In the electron-emitting device of the present invention, in addition to the above configuration, the conductive fine particles may be a noble metal. As described above, since the conductive fine particles are precious metals, it is possible to prevent element deterioration such as oxidation of the conductive fine particles by oxygen in the atmosphere. Therefore, the lifetime of the electron-emitting device can be extended.

本発明の電子放出素子では、上記構成に加え、上記導電微粒子を成す導電体は、金、銀、白金、パラジウム、及びニッケルの少なくとも1つを含んでいてもよい。このように、上記導電微粒子を成す導電体が、金、銀、白金、パラジウム、及びニッケルの少なくとも1つを含んでいることで、導電微粒子の、大気中の酸素による酸化などをはじめとする素子劣化を、より効果的に防ぐことができる。よって、電子放出素子の長寿命化をより効果的に図ることができる。   In the electron-emitting device of the present invention, in addition to the above configuration, the conductor constituting the conductive fine particles may include at least one of gold, silver, platinum, palladium, and nickel. As described above, the conductive material forming the conductive fine particles contains at least one of gold, silver, platinum, palladium, and nickel, so that the conductive fine particles are oxidized by oxygen in the atmosphere. Deterioration can be prevented more effectively. Therefore, the lifetime of the electron-emitting device can be extended more effectively.

本発明の電子放出素子では、上記構成に加え、上記導電微粒子の平均径は、導電性を制御する必要から、上記絶縁体物質の大きさよりも小さくなければならず、3〜10nmであるのが好ましい。このように、上記導電微粒子の平均径を、上記絶縁体物質の微粒子径よりも小さく、好ましくは3〜10nmとすることにより、電子加速層内で、導電微粒子による導電パスが形成されず、電子加速層内での絶縁破壊が起こり難くなる。また原理的には不明確な点が多いが、粒子径が上記範囲内の導電微粒子を用いることで、弾道電子が効率よく生成される。   In the electron-emitting device of the present invention, in addition to the above-described configuration, the average diameter of the conductive fine particles must be smaller than the size of the insulator substance because it is necessary to control conductivity, and is 3 to 10 nm. preferable. Thus, by setting the average diameter of the conductive fine particles to be smaller than the fine particle diameter of the insulator substance, preferably 3 to 10 nm, a conductive path by the conductive fine particles is not formed in the electron acceleration layer, and the electrons Dielectric breakdown is less likely to occur in the acceleration layer. Although there are many unclear points in principle, ballistic electrons are efficiently generated by using conductive fine particles having a particle diameter within the above range.

本発明の電子放出素子では、上記構成に加え、上記絶縁体物質は、SiO、Al、及びTiOの少なくとも1つを含んでいてもよい。または有機ポリマーを含んでいてもよい。上記絶縁体物質が、SiO、Al、及びTiOの少なくとも1つを含んでいる、あるいは、有機ポリマーを含んでいると、これら物質の絶縁性が高いことにより、上記電子加速層の抵抗値を任意の範囲に調整することが可能となる。特に、絶縁体物質として酸化物(SiO、Al、及びTiOの)を用い、導電微粒子として抗酸化力が高い導電体を用いる場合には、大気中の酸素による酸化に伴う素子劣化をより一層発生し難くなるため、大気圧中でも安定して動作させる効果をより顕著に発現させることができる。 In the electron-emitting device of the present invention, in addition to the above configuration, the insulator substance may include at least one of SiO 2 , Al 2 O 3 , and TiO 2 . Or it may contain an organic polymer. If the insulator material contains at least one of SiO 2 , Al 2 O 3 , and TiO 2 , or contains an organic polymer, the insulating property of these materials is high. It is possible to adjust the resistance value to an arbitrary range. In particular, when an oxide (SiO 2 , Al 2 O 3 , and TiO 2 ) is used as an insulator substance and a conductor having high anti-oxidation power is used as a conductive fine particle, an element accompanying oxidation by oxygen in the atmosphere Since the deterioration is less likely to occur, the effect of stably operating even at atmospheric pressure can be exhibited more significantly.

ここで、上記絶縁体物質は微粒子であってもよく、その平均径が10〜1000nmであるのが好ましく、12〜110nmであるのがより好ましい。この場合、粒子径の分散状態は平均粒径に対してブロードであっても良く、例えば平均粒径50nmの微粒子は、20〜100nmの領域にその粒子径分布を有していても問題ない。上記微粒子である絶縁体物質の平均径を好ましくは10〜1000nm、より好ましくは12〜110nmとすることにより、上記絶縁体物質の大きさよりも小さい上記導電微粒子の内部から外部へと効率よく熱伝導させて、素子内を電流が流れる際に発生するジュール熱を効率よく逃がすことができ、電子放出素子が熱で破壊されることを防ぐことができる。さらに、上記電子加速層における抵抗値の調整を行いやすくすることができる。   Here, the insulator substance may be fine particles, and the average diameter is preferably 10 to 1000 nm, and more preferably 12 to 110 nm. In this case, the dispersion state of the particle diameter may be broad with respect to the average particle diameter. For example, fine particles having an average particle diameter of 50 nm may have a particle diameter distribution in the region of 20 to 100 nm. By making the average diameter of the insulating substance, which is the fine particles, preferably 10 to 1000 nm, more preferably 12 to 110 nm, heat conduction is efficiently conducted from the inside to the outside of the conductive fine particles that are smaller than the size of the insulating substance. Thus, Joule heat generated when current flows in the device can be efficiently released, and the electron-emitting device can be prevented from being destroyed by heat. Furthermore, the resistance value in the electron acceleration layer can be easily adjusted.

本発明の電子放出素子では、上記構成に加え、上記電子加速層における上記導電微粒子の割合が、重量比で0.5〜30%が好ましい。0.5%より少ない場合は導電微粒子として素子内電流を増加させる効果を発揮せず、30%より多い場合は導電微粒子の凝集が発生する。中でも、2〜20%であるのがより好ましい。   In the electron-emitting device of the present invention, in addition to the above configuration, the ratio of the conductive fine particles in the electron acceleration layer is preferably 0.5 to 30% by weight. When the amount is less than 0.5%, the effect of increasing the current in the device as conductive fine particles is not exhibited, and when the amount is more than 30%, aggregation of the conductive fine particles occurs. Among these, 2 to 20% is more preferable.

本発明の電子放出素子では、上記構成に加え、上記電子加速層の層厚は、12〜6000nmであるのが好ましく、300〜6000nmであるのがより好ましい。上記電子加速層の層厚を、好ましくは12〜6000nm、より好ましくは300〜6000nmとすることにより、電子加速層の層厚を均一化すること、また層厚方向における電子加速層の抵抗調整が可能となる。この結果、電子放出素子表面の全面から一様に電子を放出させることが可能となり、かつ素子外へ効率よく電子を放出させることができる。   In the electron-emitting device of the present invention, in addition to the above configuration, the thickness of the electron acceleration layer is preferably 12 to 6000 nm, and more preferably 300 to 6000 nm. By making the layer thickness of the electron acceleration layer preferably 12 to 6000 nm, more preferably 300 to 6000 nm, the electron acceleration layer can be made uniform, and the resistance of the electron acceleration layer can be adjusted in the layer thickness direction. It becomes possible. As a result, electrons can be uniformly emitted from the entire surface of the electron-emitting device, and electrons can be efficiently emitted outside the device.

本発明の電子放出素子では、上記構成に加え、上記薄膜電極は、金、銀、炭素、タングステン、チタン、アルミ、及びパラジウムの少なくとも1つを含んでいてもよい。上記薄膜電極に、金、銀、炭素、タングステン、チタン、アルミ、及びパラジウムの少なくとも1つが含まれることによって、これら物質の仕事関数の低さから、電子加速層で発生させた電子を効率よくトンネルさせ、電子放出素子外に高エネルギーの電子をより多く放出させることができる。   In the electron-emitting device of the present invention, in addition to the above configuration, the thin film electrode may include at least one of gold, silver, carbon, tungsten, titanium, aluminum, and palladium. By containing at least one of gold, silver, carbon, tungsten, titanium, aluminum, and palladium in the thin film electrode, electrons generated in the electron acceleration layer are efficiently tunneled due to the low work function of these materials. Thus, more high-energy electrons can be emitted outside the electron-emitting device.

本発明の電子放出素子では、上記構成に加え、上記導電微粒子の周囲に、当該導電微粒子の大きさより小さい絶縁体物質が存在してもよい。このように、上記導電微粒子の周囲に、当該導電微粒子の大きさより小さい絶縁体物質が存在することは、素子作成時の導電微粒子の分散液中での分散性向上に貢献する他、導電微粒子の、大気中の酸素による酸化などをはじめとする素子劣化を、より効果的に防ぐことができる。よって、電子放出素子の長寿命化をより効果的に図ることができる。   In the electron-emitting device of the present invention, in addition to the above configuration, an insulating material smaller than the size of the conductive fine particles may exist around the conductive fine particles. As described above, the presence of an insulating material smaller than the size of the conductive fine particles around the conductive fine particles contributes to the improvement in dispersibility of the conductive fine particles in the dispersion liquid at the time of device preparation. Further, it is possible to more effectively prevent device deterioration including oxidation due to oxygen in the atmosphere. Therefore, the lifetime of the electron-emitting device can be extended more effectively.

本発明の電子放出素子では、上記構成に加え、上記導電微粒子の周囲に存在する上記導電微粒子の大きさより小さい絶縁体物質は、アルコラート、脂肪酸、及びアルカンチオールの少なくとも1つを含んでいてもよい。このように、上記導電微粒子の周囲に存在する上記導電微粒子の大きさより小さい絶縁体物質が、アルコラート、脂肪酸、及びアルカンチオールの少なくとも1つを含んでいることで、素子作成時の導電微粒子の分散液中での分散性向上に貢献するため、導電微粒子の凝集体が元と成る電流の異常パス形成を生じ難くする他、絶縁体物質の周囲に存在する導電微粒子自身の酸化に伴う粒子の組成変化を生じないため、電子放出特性に影響を与えることがない。よって、電子放出素子の長寿命化をより効果的に図ることができる。   In the electron-emitting device of the present invention, in addition to the above configuration, the insulator material smaller than the size of the conductive fine particles present around the conductive fine particles may include at least one of alcoholate, fatty acid, and alkanethiol. . As described above, since the insulator material smaller than the size of the conductive fine particles existing around the conductive fine particles contains at least one of alcoholate, fatty acid, and alkanethiol, the dispersion of the conductive fine particles at the time of device preparation is achieved. In order to contribute to the improvement of dispersibility in the liquid, the formation of abnormal paths of the current caused by the aggregates of the conductive fine particles is made difficult, and the composition of the particles accompanying the oxidation of the conductive fine particles themselves existing around the insulator substance Since no change occurs, the electron emission characteristics are not affected. Therefore, the lifetime of the electron-emitting device can be extended more effectively.

ここで、本発明の電子放出素子では、上記導電微粒子の周囲に存在する上記導電微粒子の大きさより小さい絶縁体物質は、上記導電微粒子表面に付着して付着物質として存在するものであり、当該付着物質は、上記導電微粒子の平均径より小さい形状の集合体として、上記導電微粒子表面を被膜していてもよい。このように、上記導電微粒子の周囲に存在する上記導電微粒子の大きさより小さい絶縁体物質が、上記導電微粒子表面に付着あるいは、上記導電微粒子の平均径より小さい形状の集合体として、上記導電微粒子表面を被膜していることで、素子作成時の導電微粒子の分散液中での分散性向上に貢献するため、導電微粒子の凝集体が元と成る電流の異常パス形成を生じ難くする他、絶縁体物質の周囲に存在する導電微粒子自身の酸化に伴う粒子の組成変化を生じないため、電子放出特性に影響を与えることがない。よって、電子放出素子の長寿命化をさらに効果的に図ることができる。   Here, in the electron-emitting device of the present invention, the insulator material smaller than the size of the conductive fine particles existing around the conductive fine particles is attached to the surface of the conductive fine particles and exists as an attached substance. The substance may coat the surface of the conductive fine particles as an aggregate having a shape smaller than the average diameter of the conductive fine particles. As described above, the surface of the conductive fine particles is formed as an aggregate in which an insulating substance smaller than the size of the conductive fine particles existing around the conductive fine particles adheres to the surface of the conductive fine particles or has a shape smaller than the average diameter of the conductive fine particles. In order to contribute to improving the dispersibility of the conductive fine particles in the dispersion liquid at the time of device preparation, it is difficult to form an abnormal current path due to the aggregate of the conductive fine particles. Since there is no change in the composition of the particles accompanying the oxidation of the conductive fine particles themselves existing around the substance, the electron emission characteristics are not affected. Therefore, the lifetime of the electron-emitting device can be further effectively increased.

本発明の電子放出装置は、上記いずれか1つの電子放出素子と、上記電極基板と上記薄膜電極との間に電圧を印加する電源部と、を備えたことを特徴としている。   The electron-emitting device of the present invention includes any one of the above-described electron-emitting devices and a power supply unit that applies a voltage between the electrode substrate and the thin-film electrode.

上記構成によると、電気的導通を確保して十分な素子内電流を流し、薄膜電極から弾道電子を効率よく安定して放出させることができる。   According to the above configuration, it is possible to ensure electrical continuity, flow a sufficient in-device current, and efficiently and stably emit ballistic electrons from the thin film electrode.

さらに、本発明の電子放出素子を自発光デバイス、及びこの自発光デバイスを備えた画像表示装置に用いることにより、安定で長寿命な面発光を実現する自発光デバイスを提供することができる。   Furthermore, by using the electron-emitting device of the present invention for a self-light-emitting device and an image display apparatus provided with the self-light-emitting device, a self-light-emitting device that realizes stable and long-life surface light emission can be provided.

また、本発明の電子放出素子を、送風装置あるいは冷却装置に用いることにより、放電を伴わず、オゾンやNOxを始めとする有害な物質の発生がなく、被冷却体表面でのスリップ効果を利用することにより高効率で冷却することができる。   In addition, by using the electron-emitting device of the present invention in a blower or a cooling device, no discharge occurs, no harmful substances such as ozone and NOx are generated, and the slip effect on the surface of the object to be cooled is used. By doing so, it is possible to cool with high efficiency.

また、本発明の電子放出素子を、帯電装置、及びこの帯電装置を備えた画像形成装置に用いることにより、放電を伴わず、オゾンやNOxを始めとする有害な物質を発生させることなく、長期間安定して被帯電体を帯電させることができる。   Further, by using the electron-emitting device of the present invention in a charging device and an image forming apparatus equipped with the charging device, the discharge is not accompanied and no harmful substances such as ozone and NOx are generated. The object to be charged can be charged stably for a period.

また、本発明の電子放出素子を、電子線硬化装置に用いることにより、面積的に電子線硬化でき、マスクレス化が図れ、低価格化・高スループット化を実現することができる。   In addition, by using the electron-emitting device of the present invention in an electron beam curing apparatus, the electron beam can be cured in terms of area, maskless can be achieved, and cost reduction and high throughput can be realized.

本発明の電子放出素子の製造方法は、上記課題を解決するために、電極基板と薄膜電極と該電極基板および該薄膜電極に挟持された電子加速層とを有し、上記電極基板と上記薄膜電極との間に電圧が印加されると、上記電子加速層で電子を加速させて、上記薄膜電極から該電子を放出させる電子放出素子の製造方法であって、樹脂バインダーに絶縁体物質が分散された分散液を調整する分散液調整工程と、上記分散液に導電微粒子が分散された混合液を調整する混合液調整工程と、上記電極基板上に、上記混合液を塗布して上記電子加速層を形成する電子加速層形成工程と、を含むことを特徴としている。   In order to solve the above problems, the method for manufacturing an electron-emitting device of the present invention includes an electrode substrate, a thin film electrode, the electrode substrate, and an electron acceleration layer sandwiched between the thin film electrode, and the electrode substrate and the thin film. When a voltage is applied between the electrodes, the electron acceleration layer accelerates the electrons to emit the electrons from the thin film electrode, and the insulator material is dispersed in the resin binder. A dispersion adjusting step for adjusting the dispersion, a mixture adjusting step for adjusting a mixture in which conductive fine particles are dispersed in the dispersion, and the electron acceleration by applying the mixture on the electrode substrate. And an electron acceleration layer forming step of forming a layer.

上記方法によると、電極基板上に、樹脂バインダーに絶縁体物質および導電微粒子が分散された混合液を塗布して電子加速層を設ける。このことによって、電極基板上に絶縁体物質および導電微粒子を薄く均一に被覆して、性能が均一で、効率よく安定した電子放出が可能な、機械的強度の高い素子を得ることができる。   According to the above method, an electron acceleration layer is provided on an electrode substrate by applying a mixed liquid in which an insulating substance and conductive fine particles are dispersed in a resin binder. As a result, it is possible to obtain an element with high mechanical strength that has a uniform performance and enables efficient and stable electron emission by covering the electrode substrate with an insulating material and conductive fine particles thinly and uniformly.

本発明の電子放出素子は、上記のように、上記電子加速層は、絶縁体物質および導電微粒子が分散された樹脂バインダーを含む。   In the electron-emitting device of the present invention, as described above, the electron acceleration layer includes a resin binder in which an insulating material and conductive fine particles are dispersed.

この電子加速層は、絶縁体物質と導電微粒子とが樹脂バインダーに分散された薄膜の層であり、半導電性を有する。この半導電性の電子加速層に電圧を印加すると、電子加速層内に電流が流れ、その一部は印加電圧の形成する強電界により弾道電子となって放出される。ここで、導電微粒子はバインダー樹脂に分散されており、つまり、導電微粒子の周囲にはバインダー樹脂が存在しているため、大気中の酸素による酸化に伴う素子劣化を発生し難い。よって、真空中だけでなく大気圧中でも安定して動作させることができる。   This electron acceleration layer is a thin film layer in which an insulating substance and conductive fine particles are dispersed in a resin binder, and has semiconductivity. When a voltage is applied to the semiconductive electron acceleration layer, a current flows in the electron acceleration layer, and a part thereof is emitted as ballistic electrons by the strong electric field formed by the applied voltage. Here, since the conductive fine particles are dispersed in the binder resin, that is, the binder resin exists around the conductive fine particles, it is difficult to cause element degradation due to oxidation by oxygen in the atmosphere. Therefore, it can be stably operated not only in a vacuum but also in an atmospheric pressure.

また、絶縁体物質および導電微粒子は樹脂バインダーに分散しているため、凝集が起こり難く、素子の性能が均一になり、安定した電子供給が可能である。また、樹脂バインダーは電極基板との接着性が高く、機械的強度が高い。従って、本発明の電子放出素子は、電子加速層を絶縁体物質および導電微粒子がほぼ均一に拡散した薄膜にでき、性能が均一で、機械的強度の高いものとなる。   In addition, since the insulator substance and the conductive fine particles are dispersed in the resin binder, aggregation hardly occurs, the device performance becomes uniform, and stable electron supply is possible. Further, the resin binder has high adhesiveness with the electrode substrate and high mechanical strength. Therefore, in the electron-emitting device of the present invention, the electron acceleration layer can be a thin film in which the insulator substance and the conductive fine particles are almost uniformly diffused, and the performance is uniform and the mechanical strength is high.

このように、本発明の電子放出素子は、電子加速層の劣化を抑制でき、真空中だけでなく大気圧中でも効率よく安定した電子放出が可能となる。さらに本発明の電子放出素子は、機械的強度を高められる。   As described above, the electron-emitting device of the present invention can suppress the deterioration of the electron acceleration layer, and enables efficient and stable electron emission not only in vacuum but also at atmospheric pressure. Furthermore, the electron-emitting device of the present invention can increase the mechanical strength.

本発明の一実施形態の電子放出素子の構成を示す模式図である。It is a schematic diagram which shows the structure of the electron-emitting element of one Embodiment of this invention. 図1の電子放出素子における電子加速層付近の断面の拡大図である。FIG. 2 is an enlarged view of a cross section in the vicinity of an electron acceleration layer in the electron-emitting device of FIG. 1. 電子放出実験の測定系を示す図である。It is a figure which shows the measurement system of an electron emission experiment. 本発明の電子放出素子を用いた帯電装置の一例を示す図である。It is a figure which shows an example of the charging device using the electron-emitting element of this invention. 本発明の電子放出素子を用いた電子線硬化装置の一例を示す図である。It is a figure which shows an example of the electron beam hardening apparatus using the electron-emitting element of this invention. 本発明の電子放出素子を用いた自発光デバイスの一例を示す図である。It is a figure which shows an example of the self-light-emitting device using the electron-emitting element of this invention. 本発明の電子放出素子を用いた自発光デバイスの他の一例を示す図である。It is a figure which shows another example of the self-light-emitting device using the electron-emitting element of this invention. 本発明の電子放出素子を用いた自発光デバイスの更に別の一例を示す図である。It is a figure which shows another example of the self-light-emitting device using the electron-emitting element of this invention. 本発明の電子放出素子を用いた自発光デバイスを具備する画像表示装置の他の一例を示す図である。It is a figure which shows another example of the image display apparatus which comprises the self-light-emitting device using the electron-emitting element of this invention. 本発明に係る電子放出素子を用いた送風装置及びそれを具備した冷却装置の一例を示す図である。It is a figure which shows an example of the air blower using the electron-emitting element which concerns on this invention, and a cooling device provided with the same. 本発明の電子放出素子を用いた送風装置及びそれを具備した冷却装置の別の一例を示す図である。It is a figure which shows another example of the air blower using the electron-emitting element of this invention, and a cooling device provided with the same.

以下、本発明の電子放出素子の実施形態および実施例について、図1〜11を参照しながら具体的に説明する。なお、以下に記述する実施の形態および実施例は本発明の具体的な一例に過ぎず、本発明はこれらよって限定されるものではない。   Hereinafter, embodiments and examples of the electron-emitting device of the present invention will be specifically described with reference to FIGS. Note that the embodiments and examples described below are merely specific examples of the present invention, and the present invention is not limited thereto.

〔実施の形態1〕
図1は、本発明の電子放出素子の一実施形態の構成を示す模式図である。図1に示すように、本実施形態の電子放出素子1は、下部電極となる電極基板2と、上部電極となる薄膜電極3と、その間に挟まれて存在する電子加速層4とからなる。また、電極基板2と薄膜電極3とは電源7に繋がっており、互いに対向して配置された電極基板2と薄膜電極3との間に電圧を印加できるようになっている。電子放出素子1は、電極基板2と薄膜電極3との間に電圧を印加することで、電極基板2と薄膜電極3との間、つまり、電子加速層4に電流を流し、その一部を印加電圧の形成する強電界により弾道電子として、薄膜電極3を透過および/あるいは薄膜電極3の隙間から放出させる。なお、電子放出素子1と電源7とから電子放出装置10が成る。
[Embodiment 1]
FIG. 1 is a schematic diagram showing the configuration of an embodiment of an electron-emitting device of the present invention. As shown in FIG. 1, an electron-emitting device 1 according to this embodiment includes an electrode substrate 2 that is a lower electrode, a thin film electrode 3 that is an upper electrode, and an electron acceleration layer 4 that is sandwiched therebetween. In addition, the electrode substrate 2 and the thin film electrode 3 are connected to a power source 7 so that a voltage can be applied between the electrode substrate 2 and the thin film electrode 3 arranged to face each other. The electron-emitting device 1 applies a voltage between the electrode substrate 2 and the thin film electrode 3, thereby passing a current between the electrode substrate 2 and the thin film electrode 3, that is, the electron acceleration layer 4. The thin film electrode 3 is transmitted and / or emitted from the gap between the thin film electrodes 3 as ballistic electrons by the strong electric field formed by the applied voltage. The electron emission device 10 is composed of the electron emission element 1 and the power source 7.

下部電極となる電極基板2は、電子放出素子の支持体の役割を担う。そのため、ある程度の強度を有し、直に接する物質との接着性が良好で、適度な導電性を有するものであれば、特に制限なく用いることができる。例えばSUSやTi、Cu等の金属基板、SiやGe、GaAs等の半導体基板、ガラス基板のような絶縁体基板、プラスティック基板等が挙げられる。例えばガラス基板のような絶縁体基板を用いるのであれば、その電子加速層4との界面に金属などの導電性物質を電極として付着さることによって、下部電極となる電極基板2として用いることができる。上記導電性物質としては、導電性に優れた材料を、マグネトロンスパッタ等を用いて薄膜形成できれば、その構成材料は特に問わないが、大気中での安定動作を所望するのであれば、抗酸化力の高い導電体を用いることが好ましく、貴金属を用いることがより好ましい。また、酸化物導電材料として、透明電極に広く利用されているITO薄膜も有用である。また、強靭な薄膜を形成できるという点で、例えば、ガラス基板表面にTiを200nm成膜し、さらに重ねてCuを1000nm成膜した金属薄膜を用いてもよいが、これら材料および数値に限定されることはない。   The electrode substrate 2 serving as the lower electrode serves as a support for the electron-emitting device. Therefore, any material can be used without particular limitation as long as it has a certain degree of strength, has good adhesion to a directly contacting substance, and has appropriate conductivity. Examples thereof include metal substrates such as SUS, Ti, and Cu, semiconductor substrates such as Si, Ge, and GaAs, insulator substrates such as glass substrates, and plastic substrates. For example, if an insulating substrate such as a glass substrate is used, a conductive substance such as a metal is attached to the interface with the electron acceleration layer 4 as an electrode, so that it can be used as the electrode substrate 2 serving as a lower electrode. . The conductive material is not particularly limited as long as a material having excellent conductivity can be formed into a thin film using magnetron sputtering or the like, but its constituent material is not particularly limited. It is preferable to use a conductor having a high thickness, and it is more preferable to use a noble metal. An ITO thin film widely used for transparent electrodes is also useful as an oxide conductive material. In addition, for example, a metal thin film in which a Ti film is formed to 200 nm on a glass substrate surface and a Cu film is further formed to a 1000 nm thickness may be used in that a tough thin film can be formed. Never happen.

薄膜電極3は、電子加速層4内に電圧を印加させるものである。そのため、電圧の印加が可能となるような材料であれば特に制限なく用いることができる。ただし、電子加速層4内で加速され高エネルギーとなった電子をなるべくエネルギーロス無く透過させて放出させるという観点から、仕事関数が低くかつ薄膜を形成することが可能な材料であれば、より高い効果が期待できる。このような材料として、例えば、仕事関数が4〜5eVに該当する金、銀、炭素、タングステン、チタン、アルミ、パラジウムなどが挙げられる。中でも大気圧中での動作を想定した場合、酸化物および硫化物形成反応のない金が、最良な材料となる。また、酸化物形成反応の比較的小さい銀、パラジウム、タングステンなども問題なく実使用に耐える材料である。また薄膜電極3の膜厚は、電子放出素子1から外部へ電子を効率良く放出させる条件として重要であり、10〜55nmの範囲とすることが好ましい。薄膜電極3を平面電極として機能させるための最低膜厚は10nmであり、これ未満の膜厚では、電気的導通を確保できない。一方、電子放出素子1から外部へ電子を放出させるための最大膜厚は55nmであり、これを超える膜厚では弾道電子の透過が起こらず、薄膜電極3で弾道電子の吸収あるいは反射による電子加速層4への再捕獲が生じてしまう。   The thin film electrode 3 applies a voltage in the electron acceleration layer 4. Therefore, any material that can be applied with voltage can be used without particular limitation. However, from the standpoint that electrons accelerated and become high energy in the electron acceleration layer 4 are transmitted with as little energy loss as possible and emitted, a material having a low work function and capable of forming a thin film is higher. The effect can be expected. Examples of such a material include gold, silver, carbon, tungsten, titanium, aluminum, palladium, and the like whose work function corresponds to 4 to 5 eV. In particular, assuming operation at atmospheric pressure, gold without oxide and sulfide formation reaction is the best material. In addition, silver, palladium, tungsten, and the like, which have a relatively small oxide formation reaction, are materials that can withstand actual use without problems. The film thickness of the thin-film electrode 3 is important as a condition for efficiently emitting electrons from the electron-emitting device 1 to the outside, and is preferably in the range of 10 to 55 nm. The minimum film thickness for causing the thin film electrode 3 to function as a planar electrode is 10 nm. If the film thickness is less than this, electrical conduction cannot be ensured. On the other hand, the maximum film thickness for emitting electrons from the electron-emitting device 1 to the outside is 55 nm. If the film thickness exceeds this, no ballistic electrons are transmitted, and the thin-film electrode 3 accelerates electrons by absorbing or reflecting ballistic electrons. Recapture into layer 4 will occur.

電子加速層4は、図2に示すように、絶縁体物質5と導電微粒子6とが分散されたバインダー樹脂15を含んでいればよい。本実施形態では、電子加速層4には、絶縁体物質5として絶縁体微粒子5と、導電微粒子6とが分散された、バインダー樹脂15を含んでいる。   As shown in FIG. 2, the electron acceleration layer 4 only needs to include a binder resin 15 in which an insulator material 5 and conductive fine particles 6 are dispersed. In the present embodiment, the electron acceleration layer 4 includes a binder resin 15 in which insulating fine particles 5 and conductive fine particles 6 are dispersed as the insulating material 5.

また絶縁体微粒子5の大きさは、導電微粒子6に対して優位な放熱効果を得るため、導電微粒子6の直径よりも大きいことが好ましく、絶縁体微粒子5の直径(平均径)は10〜1000nmであることが好ましく、12〜110nmがより好ましい。   The size of the insulating fine particles 5 is preferably larger than the diameter of the conductive fine particles 6 in order to obtain a heat radiation effect superior to that of the conductive fine particles 6, and the diameter (average diameter) of the insulating fine particles 5 is 10 to 1000 nm. It is preferable that it is 12-110 nm.

絶縁体微粒子5の材料はSiO、Al、TiOといったものが実用的となる。ただし、表面処理が施された小粒径シリカ粒子を用いると、それよりも粒子径の大きな球状シリカ粒子を用いるときと比べて、溶媒中に占めるシリカ粒子の表面積が増加し、溶液粘度が上昇するため、電子加速層4の膜厚が若干増加する傾向にある。また、絶縁体微粒子5の材料には、有機ポリマーから成る微粒子を用いてもよく、例えば、JSR株式会社の製造販売するスチレン/ジビニルベンゼンから成る高架橋微粒子(SX8743)、または日本ペイント株式会社の製造販売するスチレン・アクリル微粒子のファインスフェアシリーズが利用可能である。ここで、絶縁体微粒子5は、2種類以上の異なる粒子を用いてもよく、また、粒径のピークが異なる粒子を用いてもよく、あるいは、単一粒子で粒径がブロードな分布のものを用いてもよい。 Materials of the insulating fine particles 5 such thing as SiO 2, Al 2 O 3, TiO 2 becomes practical. However, using small-sized silica particles with surface treatment increases the surface area of the silica particles in the solvent and increases the solution viscosity compared to using spherical silica particles with a larger particle diameter. Therefore, the film thickness of the electron acceleration layer 4 tends to increase slightly. The material of the insulating fine particles 5 may be fine particles made of an organic polymer. For example, highly crosslinked fine particles (SX8743) made of styrene / divinylbenzene manufactured and sold by JSR Corporation, or manufactured by Nippon Paint Corporation. The fine sphere series of styrene / acrylic fine particles to be sold is available. Here, the insulating fine particles 5 may use two or more kinds of different particles, may use particles having different particle size peaks, or have a single particle and a broad distribution of particle sizes. May be used.

導電微粒子6の材料としては、弾道電子を生成するという動作原理の上ではどのような導電体でも用いることができる。ただし、大気圧動作させた時の酸化劣化を避ける目的から、抗酸化力が高い導電体である必要があり、貴金属が好ましく、例えば、金、銀、白金、パラジウム、ニッケルといった材料が挙げられる。このような導電微粒子6は、公知の微粒子製造技術であるスパッタ法や噴霧加熱法を用いて作成可能であり、応用ナノ研究所が製造販売する銀ナノ粒子等の市販の金属微粒子粉体も利用可能である。弾道電子の生成の原理については後段で記載する。   As the material of the conductive fine particles 6, any conductor can be used on the principle of operation of generating ballistic electrons. However, for the purpose of avoiding oxidative degradation when operated at atmospheric pressure, it is necessary to be a conductor having high anti-oxidation power, and a noble metal is preferable, and examples thereof include materials such as gold, silver, platinum, palladium, and nickel. Such conductive fine particles 6 can be prepared using a known fine particle production technique such as sputtering or spray heating, and also use commercially available metal fine particle powders such as silver nanoparticles produced and sold by Applied Nano Laboratory. Is possible. The principle of ballistic electron generation will be described later.

ここで、導電微粒子6の平均径は、導電性を制御する必要から、以下で説明する絶縁体微粒子5の大きさよりも小さくなければならず、3〜10nmであるのがより好ましい。このように、導電微粒子6の平均径を、絶縁体微粒子5の粒子径よりも小さく、好ましくは3〜10nmとすることにより、電子加速層4内で、導電微粒子6による導電パスが形成されず、電子加速層4内での絶縁破壊が起こり難くなる。また原理的には不明確な点が多いが、粒子径が上記範囲内の導電微粒子6を用いることで、弾道電子が効率よく生成される。   Here, since it is necessary to control the conductivity, the average diameter of the conductive fine particles 6 must be smaller than the size of the insulating fine particles 5 described below, and is more preferably 3 to 10 nm. Thus, by setting the average diameter of the conductive fine particles 6 to be smaller than the particle diameter of the insulating fine particles 5, preferably 3 to 10 nm, a conductive path by the conductive fine particles 6 is not formed in the electron acceleration layer 4. Insulation breakdown in the electron acceleration layer 4 hardly occurs. Although there are many unclear points in principle, ballistic electrons are efficiently generated by using the conductive fine particles 6 having a particle diameter in the above range.

また、電子加速層4全体における導電微粒子6の割合は、0.5〜30重量%が好ましい。0.5重量%より少ない場合は導電微粒子として素子内電流を増加させる効果を発揮せず、30重量%より多い場合は導電微粒子の凝集が発生する。中でも、1〜10重量%であることがより好ましい。   The proportion of the conductive fine particles 6 in the entire electron acceleration layer 4 is preferably 0.5 to 30% by weight. When the amount is less than 0.5% by weight, the effect of increasing the current in the device as conductive fine particles is not exhibited, and when the amount is more than 30% by weight, aggregation of the conductive fine particles occurs. Especially, it is more preferable that it is 1 to 10 weight%.

なお、導電微粒子6の周囲には、導電微粒子6の大きさより小さい絶縁体物質である小絶縁体物質が存在していてもよく、この小絶縁体物質は、導電微粒子6の表面に付着する付着物質であってもよく、付着物質は、導電微粒子6の平均径より小さい形状の集合体として、導電微粒子6の表面を被膜する絶縁被膜であってもよい。小絶縁体物質としては、弾道電子を生成するという動作原理の上ではどのような絶縁体物質でも用いることができる。ただし、導電微粒子6の大きさより小さい絶縁体物質が導電微粒子6を被膜する絶縁被膜であり、絶縁被膜を導電微粒子6の酸化被膜によって賄った場合、大気中での酸化劣化により酸化皮膜の厚さが所望の膜厚以上に厚くなってしまう恐れがあるため、大気圧動作させた時の酸化劣化を避ける目的から、有機材料による絶縁被膜が好ましく、例えば、アルコラート、脂肪酸、アルカンチオールといった材料が挙げられる。この絶縁被膜の厚さは薄い方が有利であることが言える。   Note that a small insulator material, which is an insulator material smaller than the size of the conductive fine particles 6, may exist around the conductive fine particles 6, and the small insulator material adheres to the surface of the conductive fine particles 6. The substance may be a substance, and the attached substance may be an insulating film that coats the surface of the conductive fine particles 6 as an aggregate having a shape smaller than the average diameter of the conductive fine particles 6. As the small insulator material, any insulator material can be used on the principle of operation of generating ballistic electrons. However, when the insulating material smaller than the size of the conductive fine particle 6 is an insulating film that coats the conductive fine particle 6, and the insulating film is covered by the oxide film of the conductive fine particle 6, the thickness of the oxide film due to oxidative degradation in the atmosphere. In order to avoid oxidative degradation when operated at atmospheric pressure, an insulating film made of an organic material is preferable. For example, materials such as alcoholate, fatty acid, and alkanethiol are listed. It is done. It can be said that the thinner the insulating coating, the more advantageous.

樹脂バインダー15は、基板電極2との接着性がよく、絶縁体微粒子5および導電微粒子6を分散でき、絶縁性を有するものであればよい。このような樹脂バインダー15として、例えば、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、加水分解性基含有シロキサン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2−(3、4エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシシラン、3−アクリロキシプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1、3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3−イソシアネートプロピルトリエトキシシラン、などが挙げられる。これらの樹脂バインダーは、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。   The resin binder 15 is not particularly limited as long as it has good adhesion to the substrate electrode 2, can disperse the insulating fine particles 5 and the conductive fine particles 6, and has insulating properties. Examples of such a resin binder 15 include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, phenyltriethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, hydrolyzable group-containing siloxane, Vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxy Propyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysila N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-tri Ethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-mercaptopropyltri Examples include methoxysilane, bis (triethoxysilylpropyl) tetrasulfide, and 3-isocyanatopropyltriethoxysilane. These resin binders can be used alone or in combination of two or more.

電極基板2上の電子加速層4が導電微粒子および絶縁体微粒子で構成されていると、機会的強度が弱く、その上に薄膜電極を設けてももろく、壊れやすいため、電子放出も不安定になる。しかし、導電微粒子および絶縁体微粒子がバインダー樹脂15に分散されていると、樹脂バインダー15が電極基板2との接着性が高く機械的強度が高いため、電子放出素子1の機械的強度が増す。また、導電微粒子および絶縁体微粒子が樹脂バインダー15に分散していると、凝集が起こり難くなる。よって、電子放出素子1の性能が均一になり、安定した電子供給が可能となる。また、バインダー樹脂15により、電子加速層4表面の平滑性をよくすることができ、その上の薄膜電極3を薄く形成することができる。   When the electron acceleration layer 4 on the electrode substrate 2 is composed of conductive fine particles and insulator fine particles, the opportunity strength is weak, and a thin film electrode may be provided on the electrode acceleration layer 4 and it is fragile, so that electron emission is unstable. Become. However, when the conductive fine particles and the insulating fine particles are dispersed in the binder resin 15, the mechanical strength of the electron-emitting device 1 is increased because the resin binder 15 has high adhesion to the electrode substrate 2 and high mechanical strength. Further, when the conductive fine particles and the insulating fine particles are dispersed in the resin binder 15, aggregation hardly occurs. Therefore, the performance of the electron-emitting device 1 becomes uniform, and stable electron supply is possible. Further, the binder resin 15 can improve the smoothness of the surface of the electron acceleration layer 4 and the thin film electrode 3 thereon can be formed thin.

電子加速層4は薄いほど強電界がかかるため低電圧印加で電子を加速させることができるが、層厚を均一化できること、また層厚方向における電子加速層の抵抗調整が可能となることなどから、電子加速層4の層厚は、12〜6000nmが好ましく、300〜6000nmがより好ましい。   As the electron acceleration layer 4 is thinner, a stronger electric field is applied, so that electrons can be accelerated by applying a low voltage. However, the thickness of the layer can be made uniform and the resistance of the electron acceleration layer in the thickness direction can be adjusted. The layer thickness of the electron acceleration layer 4 is preferably 12 to 6000 nm, and more preferably 300 to 6000 nm.

次に、電子放出の原理について説明する。図2は、電子放出素子1の電子加速層4付近の断面を拡大した模式図である。図2に示すように、電子加速層4は、その大部分を絶縁体微粒子5およびバインダー樹脂15で構成され、その隙間に導電微粒子6が点在している。電子加速層4は絶縁体微粒子5およびバインダー樹脂15と少数の導電微粒子6とで構成されるため、半導電性を有する。よって電子加速層4へ電圧を印加すると、極弱い電流が流れる。電子加速層4の電圧電流特性は所謂バリスタ特性を示し、印加電圧の上昇に伴い急激に電流値を増加させる。この電流の一部は、印加電圧が形成する電子加速層4内の強電界により弾道電子となり、薄膜電極3を透過および/あるいはその隙間を通過して電子放出素子1の外部へ放出される。弾道電子の形成過程は、電子が電界方向に加速されつつトンネルすることによるものと考えられるが、断定できていない。   Next, the principle of electron emission will be described. FIG. 2 is an enlarged schematic view of the cross section near the electron acceleration layer 4 of the electron-emitting device 1. As shown in FIG. 2, most of the electron acceleration layer 4 is composed of the insulating fine particles 5 and the binder resin 15, and the conductive fine particles 6 are scattered in the gaps. Since the electron acceleration layer 4 is composed of the insulating fine particles 5 and the binder resin 15 and a small number of conductive fine particles 6, it has semiconductivity. Therefore, when a voltage is applied to the electron acceleration layer 4, a very weak current flows. The voltage-current characteristic of the electron acceleration layer 4 shows a so-called varistor characteristic, and the current value is rapidly increased as the applied voltage increases. Part of this current becomes ballistic electrons due to the strong electric field in the electron acceleration layer 4 formed by the applied voltage, passes through the thin film electrode 3 and / or passes through the gap, and is emitted to the outside of the electron-emitting device 1. The formation process of ballistic electrons is thought to be due to electrons tunneling while being accelerated in the direction of the electric field, but it has not been determined.

以上のように、電子放出素子1では、電子加速層4は、絶縁体微粒子5と導電微粒子6とが樹脂バインダー15に分散された薄膜の層である。ここで、導電微粒子4はバインダー樹脂に分散されており、つまり、導電微粒子4の周囲にはバインダー樹脂15が存在しているため、大気中の酸素による酸化に伴う素子劣化を発生し難い。よって、電子放出素子1を、真空中だけでなく大気圧中でも安定して動作させることができる。また、絶縁体物質5および導電微粒子6は樹脂バインダー15に分散しているため、凝集が起こり難く、電子放出素子1の性能が均一になり、電子放出素子1は、安定した電子供給が可能である。また、樹脂バインダー15は電極基板2との接着性が高く、機械的強度が高い。さらに、樹脂バインダー15により、電子加速層4表面の凹凸を平坦にでき、その上の薄膜電極3を薄く形成することができる。   As described above, in the electron-emitting device 1, the electron acceleration layer 4 is a thin film layer in which the insulating fine particles 5 and the conductive fine particles 6 are dispersed in the resin binder 15. Here, since the conductive fine particles 4 are dispersed in the binder resin, that is, the binder resin 15 exists around the conductive fine particles 4, it is difficult to cause element degradation due to oxidation by oxygen in the atmosphere. Therefore, the electron-emitting device 1 can be stably operated not only in a vacuum but also in an atmospheric pressure. Further, since the insulator material 5 and the conductive fine particles 6 are dispersed in the resin binder 15, aggregation hardly occurs, the performance of the electron-emitting device 1 becomes uniform, and the electron-emitting device 1 can stably supply electrons. is there. Moreover, the resin binder 15 has high adhesiveness with the electrode substrate 2 and high mechanical strength. Further, the resin binder 15 can make the surface of the electron acceleration layer 4 uneven, and the thin film electrode 3 thereon can be formed thin.

従って、電子放出素子1は、電子加速層4を絶縁体物質5および導電微粒子6がほぼ均一に拡散した薄膜とすることができ、性能が均一で、機械的強度の高いものとなる。   Therefore, in the electron-emitting device 1, the electron acceleration layer 4 can be a thin film in which the insulator material 5 and the conductive fine particles 6 are almost uniformly diffused, and the performance is uniform and the mechanical strength is high.

このように、電子放出素子1は、電子加速層4の劣化を抑制でき、真空中だけでなく大気圧中でも効率よく安定した電子放出が可能となる。さらに電子放出素子1は、簡便で安価に機械的強度を高められる。   Thus, the electron-emitting device 1 can suppress the deterioration of the electron acceleration layer 4 and can efficiently and stably emit electrons not only in a vacuum but also at atmospheric pressure. Furthermore, the electron-emitting device 1 can increase the mechanical strength simply and inexpensively.

次に、電子放出素子1の、製造方法の一実施形態について説明する。   Next, an embodiment of a manufacturing method of the electron-emitting device 1 will be described.

まず、絶縁体物質5と樹脂バインダー15と有機溶媒中に分散させた絶縁体物質含有樹脂バインダー分散液を得る。ここで用いられる有機溶媒としては、絶縁体物質5と樹脂バインダー15とを分散でき、かつ塗布後に乾燥できれば、特に制限なく用いることができ、例えば、メタノール、エタノール、プロパノール、2−プロパノール、ブタノール、2−ブタノールなどが挙げられる。これらの有機溶媒は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。分散方法は特に限定されるものではなく、例えば、常温で超音波分散器にかけることで分散させることができる。絶縁体物質の含有率は、3〜50重量%が好ましい。3重量%より少ない場合は絶縁体として電子加速層4の抵抗を調整するという効果を発揮せず、50重量%より多い場合は絶縁体物質4の凝集が発生する。なかでも、20〜30重量%であることがより好ましい。   First, an insulator substance-containing resin binder dispersion dispersed in an insulator substance 5, a resin binder 15, and an organic solvent is obtained. The organic solvent used here can be used without particular limitation as long as it can disperse the insulator material 5 and the resin binder 15 and can be dried after coating. For example, methanol, ethanol, propanol, 2-propanol, butanol, Examples include 2-butanol. These organic solvents can be used alone or in combination of two or more. The dispersion method is not particularly limited, and for example, it can be dispersed by applying an ultrasonic disperser at room temperature. The content of the insulator substance is preferably 3 to 50% by weight. When the amount is less than 3% by weight, the effect of adjusting the resistance of the electron acceleration layer 4 as an insulator is not exhibited. Especially, it is more preferable that it is 20-30 weight%.

次に、導電微粒子溶液を、上記のように得られた絶縁体物質含有樹脂バインダー溶液と混合して絶縁体物質および導電微粒子混合溶液を得る。混合方法は特に限定されるものではなく、例えば、常温で攪拌すればよい。ここで、この混合に際して、導電微粒子が粉末状の場合は、有機溶媒中に分散させた導電微粒子溶液を用いるのがよい。この有機溶媒としては、導電微粒子6を分散でき、かつ塗布後に乾燥できれば、特に制限なく用いることができ、例えば、ヘキサン、トルエンなどが挙げられる。導電微粒子の含有率は、0.5〜30重量%が好ましい。1重量%より少ない場合は導電微粒子として素子内電流を増加させる効果を発揮せず、30重量%より多い場合は導電微粒子の凝集が発生する。中でも、2〜20重量%であることがより好ましい。   Next, the conductive fine particle solution is mixed with the insulator substance-containing resin binder solution obtained as described above to obtain an insulator substance and conductive fine particle mixed solution. The mixing method is not particularly limited, and may be stirred at room temperature, for example. Here, when the conductive fine particles are in the form of powder during the mixing, it is preferable to use a conductive fine particle solution dispersed in an organic solvent. The organic solvent can be used without particular limitation as long as the conductive fine particles 6 can be dispersed and dried after coating, and examples thereof include hexane and toluene. The content of the conductive fine particles is preferably 0.5 to 30% by weight. When the amount is less than 1% by weight, the effect of increasing the current in the device as conductive fine particles is not exhibited, and when the amount is more than 30% by weight, aggregation of the conductive fine particles occurs. Especially, it is more preferable that it is 2 to 20 weight%.

上記のように形成した絶縁体物質および導電微粒子混合溶液を、電極基板2上に、スピンコート法を用いて塗布することで、電子加速層4を形成する。スピンコート法による成膜、乾燥、を複数回繰り返すことで所定の膜厚にすることができる。電子加速層4は、スピンコート法以外に、例えば、滴下法、スプレーコート法等の方法でも成膜することができる。そして、電子加速層4上に薄膜電極3を成膜する。薄膜電極3の成膜には、例えば、マグネトロンスパッタ法を用いればよい。また、薄膜電極3は、例えば、インクジェット法、スピンコート法、蒸着法等を用いて成膜してもよい。   The electron acceleration layer 4 is formed by applying the insulating material and the conductive fine particle mixed solution formed as described above onto the electrode substrate 2 by using a spin coating method. A predetermined film thickness can be obtained by repeating film formation and drying by a spin coating method a plurality of times. The electron acceleration layer 4 can be formed by a method such as a dropping method or a spray coating method in addition to the spin coating method. Then, the thin film electrode 3 is formed on the electron acceleration layer 4. For forming the thin film electrode 3, for example, a magnetron sputtering method may be used. The thin film electrode 3 may be formed by using, for example, an ink jet method, a spin coat method, a vapor deposition method, or the like.

(実施例)
以下の実施例では、本発明に係る電子放出素子を用いて電流測定した実験について説明する。なお、この実験は実施の一例であって、本発明の内容を制限するものではない。
(Example)
In the following examples, an experiment in which current measurement is performed using the electron-emitting device according to the present invention will be described. In addition, this experiment is an example of implementation and does not limit the content of the present invention.

まず実施例1〜4の電子放出素子を以下のように作製した。そして、作成した実施例1〜4の電子放出素子について、図3に示す実験系を用いて単位面積あたりの電子放出電流の測定実験を行った。図3の実験系では、電子放出素子1の薄膜電極3側に、絶縁体スペーサ9を挟んで対向電極8を配置させる。そして、電子放出素子1および対向電極8は、それぞれ、電源7に接続されており、電子放出素子1にはV1の電圧、対向電極8にはV2の電圧が印加されるようになっている。このような実験系を1×10−8ATMの真空中に配置して電子放出実験を行った。また、実験では、絶縁体スペーサ9を挟んで、電子放出素子と対向電極との距離は5mmとした。 First, the electron-emitting devices of Examples 1 to 4 were produced as follows. And about the created electron emission element of Examples 1-4, the measurement experiment of the electron emission current per unit area was conducted using the experimental system shown in FIG. In the experimental system of FIG. 3, the counter electrode 8 is disposed on the thin film electrode 3 side of the electron-emitting device 1 with the insulator spacer 9 interposed therebetween. The electron-emitting device 1 and the counter electrode 8 are each connected to a power source 7, and a voltage V1 is applied to the electron-emitting device 1 and a voltage V2 is applied to the counter electrode 8. An electron emission experiment was conducted by placing such an experimental system in a vacuum of 1 × 10 −8 ATM. In the experiment, the distance between the electron-emitting device and the counter electrode was 5 mm with the insulator spacer 9 interposed therebetween.

(実施例1)
まず、10mLの試薬瓶にエタノール溶媒2.0gとテトラメトキシシランKBM−04(信越化学工業株式会社製)0.5gを入れ、絶縁体物質5として平均径12nmの球状シリカ粒子AEROSIL R8200(エボニックエグサジャパン株式会社製)を0.5g投入し、試薬瓶を超音波分散器にかけ、絶縁体物質含有樹脂バインダー分散液Aを調製した。分散液Aに占める絶縁体物質の含有率は17重量%であった。
Example 1
First, 2.0 g of ethanol solvent and 0.5 g of tetramethoxysilane KBM-04 (manufactured by Shin-Etsu Chemical Co., Ltd.) are placed in a 10 mL reagent bottle, and spherical silica particles AEROSIL R8200 (Evonik EXASA) having an average diameter of 12 nm are used as the insulator material 5. (Japan Co., Ltd.) was introduced in an amount of 0.5 g, and the reagent bottle was put on an ultrasonic dispersing device to prepare an insulating substance-containing resin binder dispersion A. The content of the insulator substance in the dispersion A was 17% by weight.

このようにして得られた分散液Aと、導電微粒子6を含む導電微粒子溶液を混合した。この導電微粒子6を含む導電微粒子溶液としては、銀ナノ粒子含有ヘキサン分散溶液(応用ナノ粒子研究所製、銀微粒子の平均粒径4.5nm、銀微粒子固形分濃度7%)を用いた。絶縁体物質含有樹脂バインダー分散液A1.0g中に銀ナノ粒子含有ヘキサン分散溶液1.0gを投入し、常温で攪拌し、絶縁体物質および導電微粒子混合溶液Bを得た。混合溶液Bに占める導電微粒子6の含有率は4.5重量%であった。   The dispersion A thus obtained and the conductive fine particle solution containing the conductive fine particles 6 were mixed. As the conductive fine particle solution containing the conductive fine particles 6, a silver nanoparticle-containing hexane dispersion solution (manufactured by Applied Nanoparticles Laboratory, average particle diameter of silver fine particles 4.5 nm, silver fine particle solid content concentration 7%) was used. 1.0 g of a hexane dispersion containing silver nanoparticles was added to 1.0 g of an insulating substance-containing resin binder dispersion A and stirred at room temperature to obtain an insulating substance and conductive fine particle mixed solution B. The content of the conductive fine particles 6 in the mixed solution B was 4.5% by weight.

電極基板2として30mm角のSUS基板上に、上記で得られた混合液Bを滴下後、スピンコート法を用いて8000rpm、10sで絶縁体物質および導電微粒子含有樹脂バインダーを堆積させ、電子加速層4を得た。電子加速層4の膜厚は約0.81μmであった。   On the 30 mm square SUS substrate as the electrode substrate 2, after dropping the mixed solution B obtained above, an insulator material and a conductive fine particle-containing resin binder are deposited at 8000 rpm for 10 s using a spin coating method, and an electron acceleration layer 4 was obtained. The film thickness of the electron acceleration layer 4 was about 0.81 μm.

電子加速層4の表面には、マグネトロンスパッタ装置を用いて薄膜電極3を成膜することにより、実施例2の電子放出素子を得た。薄膜電極3の成膜材料として金を使用し、薄膜電極3の層厚は30nm、同面積は0.014cmとした。 An electron-emitting device of Example 2 was obtained by forming a thin film electrode 3 on the surface of the electron acceleration layer 4 using a magnetron sputtering apparatus. Gold was used as the film forming material for the thin film electrode 3, the layer thickness of the thin film electrode 3 was 30 nm, and the area was 0.014 cm 2 .

この電子放出素子を用いた図3の実験系を、1×10−8ATMの真空中において、薄膜電極への印加電圧V1=27.4V、対抗電極への印加電圧V2=100Vとしたところ、単位面積当たりの電子放出電流0.21mA/cmが確認された。 When the experimental system of FIG. 3 using this electron-emitting device was set to an applied voltage V1 = 27.4V to the thin film electrode and an applied voltage V2 = 100V to the counter electrode in a vacuum of 1 × 10 −8 ATM, An electron emission current of 0.21 mA / cm 2 per unit area was confirmed.

(実施例2)
実施例1と同様にして得られた分散液Aと、導電微粒子6を含む導電微粒子溶液を混合した。この導電微粒子6を含む導電微粒子溶液としては金ナノ粒子含有ナフテン分散溶液(ハリマ化成株式会社製、金微粒子の平均粒径5.0nm、金微粒子固形分濃度52%)を用いた。分散液A3.0g中に金ナノ粒子含有ナフテン分散溶液液0.68gを投入し、常温で攪拌し、絶縁体物質および導電微粒子混合溶液Cを得た。混合溶液Cに占める導電微粒子6の含有率は9.6重量%であった。
(Example 2)
Dispersion A obtained in the same manner as in Example 1 was mixed with a conductive fine particle solution containing conductive fine particles 6. As the conductive fine particle solution containing the conductive fine particles 6, a gold nanoparticle-containing naphthene dispersion solution (manufactured by Harima Chemicals Co., Ltd., average particle diameter of gold fine particles of 5.0 nm, solid concentration of gold fine particles of 52%) was used. 0.68 g of a gold nanoparticle-containing naphthene dispersion solution was added to 3.0 g of dispersion A and stirred at room temperature to obtain an insulator substance and conductive fine particle mixed solution C. The content of the conductive fine particles 6 in the mixed solution C was 9.6% by weight.

電極基板2として30mm角のSUS基板上に、上記で得られた混合溶液Cを滴下後、スピンコート法を用いて3000rpm、10sで絶縁体物質および導電微粒子含有樹脂バインダーを堆積させ、電子加速層4を得た。電子加速層4の膜厚は約1.6μmであった。   After the mixed solution C obtained above was dropped onto a 30 mm square SUS substrate as the electrode substrate 2, the insulator material and the conductive fine particle-containing resin binder were deposited at 3000 rpm and 10 s using a spin coating method, and the electron acceleration layer 4 was obtained. The film thickness of the electron acceleration layer 4 was about 1.6 μm.

電子加速層4の表面には、マグネトロンスパッタ装置を用いて薄膜電極3を成膜することにより、実施例3の電子放出素子を得た。薄膜電極3の成膜材料として金を使用し、薄膜電極3の層厚は40nm、同面積は0.014cmとした。 An electron-emitting device of Example 3 was obtained by forming a thin film electrode 3 on the surface of the electron acceleration layer 4 using a magnetron sputtering apparatus. Gold was used as a film forming material for the thin film electrode 3, the layer thickness of the thin film electrode 3 was 40 nm, and the area was 0.014 cm 2 .

この電子放出素子を用いた図3の実験系を、1×10−8ATMの真空中において、薄膜電極への印加電圧V1=27.5V、対抗電極への印加電圧V2=100Vとしたところ、単位面積当たりの電子放出電流0.39mA/cmが確認された。 When the experimental system of FIG. 3 using this electron-emitting device was applied in a vacuum of 1 × 10 −8 ATM, the applied voltage V1 = 27.5V to the thin film electrode and the applied voltage V2 = 100V to the counter electrode were: An electron emission current of 0.39 mA / cm 2 per unit area was confirmed.

(実施例3)
10mLの試薬瓶にメタノール溶媒2.5gとメチルトリメトキシシランKBM−13(信越化学工業株式会社製)0.5mLを入れ、絶縁体物質5として平均径12nmの球状シリカ粒子AEROSIL RX200(エボニックエグサジャパン株式会社製)を0.5g投入し、試薬瓶を超音波分散器にかけ、絶縁体物質含有樹脂バインダー分散液Dを調製した。分散液Dに占める絶縁体物質の含有率は14重量%であった。
(Example 3)
Into a 10 mL reagent bottle, 2.5 g of methanol solvent and 0.5 mL of methyltrimethoxysilane KBM-13 (manufactured by Shin-Etsu Chemical Co., Ltd.) are added, and spherical silica particles AEROSIL RX200 having an average diameter of 12 nm as an insulator material 5 (Evonik EXA Japan) 0.5 g of Co., Ltd. was added, the reagent bottle was put on an ultrasonic disperser, and an insulating substance-containing resin binder dispersion D was prepared. The content of the insulating material in the dispersion D was 14% by weight.

10mLの試薬瓶にトルエン溶媒2.5gを入れ、導電微粒子6として銀ナノ粒子(応用ナノ粒子研究所製、銀微粒子の平均粒径10nm)を0.5g投入し、試薬瓶を超音波分散器にかけ、導電微粒子溶液Eを調製した。   Into a 10 mL reagent bottle, 2.5 g of toluene solvent is added, 0.5 g of silver nanoparticles (Applied Nanoparticles Laboratory, average particle diameter of silver fine particles 10 nm) are added as conductive fine particles 6, and the reagent bottle is an ultrasonic disperser. And conductive fine particle solution E was prepared.

上記得られた分散液D1.0gに、導電微粒子溶液E1.0gを投入し、常温で攪拌し、絶縁体物質および導電微粒子混合溶液Fを得た。混合溶液Fに占める導電微粒子6の含有率は8.3重量%であった。   The conductive fine particle solution E1.0 g was added to the obtained dispersion D1.0 g and stirred at room temperature to obtain an insulating material and a conductive fine particle mixed solution F. The content of the conductive fine particles 6 in the mixed solution F was 8.3% by weight.

電極基板2として30mm角のSUS基板上に、上記で得られた混合液Fを滴下後、スピンコート法を用いて6000rpm、10sで絶縁体物質および導電微粒子含有樹脂バインダーを堆積させ、電子加速層4を得た。電子加速層4の膜厚は約1.2μmであった。   On the 30 mm square SUS substrate as the electrode substrate 2, after dropping the mixed solution F obtained above, an insulator material and a conductive fine particle-containing resin binder are deposited at 6000 rpm for 10 s by using a spin coating method, and an electron acceleration layer is formed. 4 was obtained. The film thickness of the electron acceleration layer 4 was about 1.2 μm.

電子加速層4の表面には、マグネトロンスパッタ装置を用いて薄膜電極3を成膜することにより、実施例4の電子放出素子を得た。薄膜電極3の成膜材料として金を使用し、薄膜電極3の層厚は40nm、同面積は0.014cmとした。 An electron-emitting device of Example 4 was obtained by forming a thin film electrode 3 on the surface of the electron acceleration layer 4 using a magnetron sputtering apparatus. Gold was used as a film forming material for the thin film electrode 3, the layer thickness of the thin film electrode 3 was 40 nm, and the area was 0.014 cm 2 .

この電子放出素子を用いた図3の実験系を、1×10−8ATMの真空中において、薄膜電極への印加電圧V1=20.0V、対抗電極への印加電圧V2=100Vとしたところ、単位面積当たりの電子放出電流1.00mA/cmが確認された。 When the experimental system of FIG. 3 using this electron-emitting device was set to an applied voltage V1 = 20.0 V to the thin film electrode and an applied voltage V2 = 100 V to the counter electrode in a vacuum of 1 × 10 −8 ATM, An electron emission current of 1.00 mA / cm 2 per unit area was confirmed.

(実施例4)
10mLの試薬瓶にエタノール溶媒2.5gとテトラメトキシシランKBM−04(信越化学工業株式会社製)0.5gを入れ、絶縁体物質5として平均径50nmの球状シリカ粒子EP−C413(キャボット株式会社製)を0.5g投入し、試薬瓶を超音波分散器にかけ、絶縁体物質含有樹脂バインダー分散液Gを調製した。分散液Gに占める絶縁体物質5の含有率は14重量%であった。
Example 4
Ethanol solvent 2.5 g and tetramethoxysilane KBM-04 (manufactured by Shin-Etsu Chemical Co., Ltd.) 0.5 g are put into a 10 mL reagent bottle, and spherical silica particles EP-C413 (Cabot Corporation) having an average diameter of 50 nm are used as the insulator material 5. Product) was put in, and the reagent bottle was put on an ultrasonic dispersing device to prepare an insulating substance-containing resin binder dispersion G. The content of the insulating material 5 in the dispersion G was 14% by weight.

導電微粒子6を含む導電微粒子溶液として、金ナノ粒子含有ナフテン分散溶液(ハリマ化成株式会社製、金微粒子の平均粒径5.0nm、銀微粒子固形分濃度52%)を用いた。分散液G3.0g中に金ナノ粒子含有ナフテン分散溶液0.68gを投入し、常温で攪拌し、絶縁体物質および導電微粒子混合溶液Hを得た。混合溶液Hに占める導電微粒子の含有率は9.6重量%であった。   As the conductive fine particle solution containing the conductive fine particles 6, a gold nanoparticle-containing naphthene dispersion solution (manufactured by Harima Chemicals Co., Ltd., average particle diameter of gold fine particles of 5.0 nm, solid concentration of silver fine particles of 52%) was used. 0.68 g of a gold nanoparticle-containing naphthene dispersion solution was added to 3.0 g of dispersion G and stirred at room temperature to obtain an insulator substance and conductive fine particle mixed solution H. The content of the conductive fine particles in the mixed solution H was 9.6% by weight.

電極基板2として30mm角のSUS基板上に、上記で得られた混合液Hを滴下後、スピンコート法を用いて3000rpm、10sで絶縁体物質および導電微粒子含有樹脂バインダーを堆積させ、電子加速層4を得た。電子加速層4の膜厚は約1.7μmであった。   On the 30 mm square SUS substrate as the electrode substrate 2, after dropping the mixed solution H obtained above, an insulator material and a conductive fine particle-containing resin binder are deposited at 3000 rpm for 10 s using a spin coating method, and an electron acceleration layer 4 was obtained. The film thickness of the electron acceleration layer 4 was about 1.7 μm.

電子加速層4の表面には、マグネトロンスパッタ装置を用いて薄膜電極3を成膜することにより、実施例5の電子放出素子を得た。薄膜電極3の成膜材料として金を使用し、薄膜電極の層厚は40nm、同面積は0.014cmとした。 An electron-emitting device of Example 5 was obtained by forming a thin film electrode 3 on the surface of the electron acceleration layer 4 using a magnetron sputtering apparatus. Gold was used as a film forming material for the thin film electrode 3, the layer thickness of the thin film electrode was 40 nm, and the area was 0.014 cm 2 .

この電子放出素子を用いた図3の実験系を、1×10−8ATMの真空中において、薄膜電極への印加電圧V1=18.5V、対抗電極への印加電圧V2=100Vとしたところ、単位面積当たりの電子放出電流1.17mA/cmが確認された。 When the experimental system of FIG. 3 using this electron-emitting device was applied in a vacuum of 1 × 10 −8 ATM, the applied voltage V1 = 18.5V to the thin film electrode and the applied voltage V2 = 100V to the counter electrode, An electron emission current of 1.17 mA / cm 2 per unit area was confirmed.

ここで、上記実施例1〜4の電子放出素子は、電子加速層4に絶縁体物質と導電微粒子とが分散されたバインダー樹脂を含んでいたが、その変形例である、絶縁体物質のみが分散されたバインダー樹脂を含む電子加速層4’についても電子放出が確認された。そこで、この変形例について以下で説明する。   Here, the electron-emitting devices of Examples 1 to 4 described above include the binder resin in which the insulator material and the conductive fine particles are dispersed in the electron acceleration layer 4, but only the insulator material, which is a modified example thereof, is included. Electron emission was also confirmed for the electron acceleration layer 4 ′ containing the dispersed binder resin. Therefore, this modification will be described below.

(変形例)
電極基板2として30mm角のSUS基板上に、実施例1と同様にして得られた分散液Aを滴下後、スピンコート法を用いて3000rpm、10sで絶縁体物質含有樹脂バインダーを堆積させ電子加速層4’を得た。電子加速層4’の膜厚は約1.5nmであった。
(Modification)
Electron acceleration was performed by dropping the dispersion A obtained in the same manner as in Example 1 onto a 30 mm square SUS substrate as the electrode substrate 2 and then depositing an insulator substance-containing resin binder at 3000 rpm for 10 s using a spin coating method. Layer 4 ′ was obtained. The film thickness of the electron acceleration layer 4 ′ was about 1.5 nm.

電子加速層4’の表面には、マグネトロンスパッタ装置を用いて薄膜電極3を成膜することにより、変形例の電子放出素子を得た。薄膜電極3の成膜材料として金を使用し、薄膜電極3の層厚は40nm、同面積は0.014cmとした。 A thin film electrode 3 was formed on the surface of the electron acceleration layer 4 ′ by using a magnetron sputtering apparatus to obtain a modified electron-emitting device. Gold was used as a film forming material for the thin film electrode 3, the layer thickness of the thin film electrode 3 was 40 nm, and the area was 0.014 cm 2 .

この変形例の電子放出素子を用いた図3の実験系を、1×10−8ATMの真空中において、薄膜電極への印加電圧V1=17.2V、対抗電極への印加電圧V2=100Vとしたところ、単位面積当たりの電子放出電流は、0.05mA/cmが確認された。 The experimental system shown in FIG. 3 using the electron-emitting device of this modification is as follows: in a vacuum of 1 × 10 −8 ATM, the applied voltage V1 = 17.2V to the thin film electrode and the applied voltage V2 = 100V to the counter electrode. As a result, the electron emission current per unit area was confirmed to be 0.05 mA / cm 2 .

〔実施の形態2〕
図4に、実施の形態1で説明した本発明に係る電子放出素子1を用いた本発明に係る帯電装置90の一例を示す。帯電装置90は、電子放出素子1とこれに電圧を印加する電源7とからなり、感光体11を帯電させるものである。本発明に係る画像形成装置は、この帯電装置90を具備している。本発明に係る画像形成装置において、帯電装置90を成す電子放出素子1は、被帯電体である感光体11に対向して設置され、電圧を印加することにより、電子を放出させ、感光体11を帯電させる。なお、本発明に係る画像形成装置では、帯電装置90以外の構成部材は、従来公知のものを用いればよい。ここで、帯電装置90として用いる電子放出素子1は、感光体11から、例えば3〜5mm隔てて配置するのが好ましい。また、電子放出素子1への印加電圧は25V程度が好ましく、電子放出素子1の電子加速層の構成は、例えば、25Vの電圧印加で、単位時間当たり1μA/cmの電子が放出されるようになっていればよい。
[Embodiment 2]
FIG. 4 shows an example of a charging device 90 according to the present invention using the electron-emitting device 1 according to the present invention described in the first embodiment. The charging device 90 includes the electron-emitting device 1 and a power source 7 that applies a voltage to the electron-emitting device 1, and charges the photoconductor 11. The image forming apparatus according to the present invention includes the charging device 90. In the image forming apparatus according to the present invention, the electron-emitting device 1 constituting the charging device 90 is installed facing the photosensitive member 11 that is a member to be charged, and emits electrons by applying a voltage to the photosensitive member 11. Is charged. In the image forming apparatus according to the present invention, conventionally known members may be used other than the charging device 90. Here, it is preferable that the electron-emitting device 1 used as the charging device 90 is disposed 3 to 5 mm away from the photoreceptor 11, for example. The applied voltage to the electron-emitting device 1 is preferably about 25V, and the electron acceleration layer of the electron-emitting device 1 is configured such that, for example, 1 μA / cm 2 of electrons is emitted per unit time when a voltage of 25V is applied. It only has to be.

帯電装置90として用いられる電子放出素子1は、大気中で動作させても放電を伴わず、従って帯電装置90からのオゾンの発生は無い。オゾンは人体に有害であり環境に対する各種規格で規制されているほか、機外に放出されなくとも機内の有機材料、例えば感光体11やベルトなどを酸化し劣化させてしまう。このような問題を、本発明に係る電子放出素子1を帯電装置90に用い、また、このような帯電装置90を画像形成装置が有することで、解決することができる。   The electron-emitting device 1 used as the charging device 90 does not discharge even when operated in the atmosphere, and therefore no ozone is generated from the charging device 90. Ozone is harmful to the human body and regulated by various environmental standards, and even if it is not released outside the machine, it oxidizes and degrades organic materials such as the photoreceptor 11 and the belt. Such a problem can be solved by using the electron-emitting device 1 according to the present invention for the charging device 90 and having the charging device 90 in the image forming apparatus.

さらに帯電装置90として用いられる電子放出素子1は、面電子源として構成されるので、感光体11の回転方向へも幅を持って帯電を行え、感光体11のある箇所への帯電機会を多く稼ぐことができる。よって、帯電装置90は、線状で帯電するワイヤ帯電器などと比べ、均一な帯電が可能である。また、帯電装置90は、数kVの電圧印加が必要なコロナ放電器と比べて、10V程度と印加電圧が格段に低くてすむというメリットもある。   Further, since the electron-emitting device 1 used as the charging device 90 is configured as a surface electron source, it can be charged with a width in the rotation direction of the photoconductor 11 and there are many opportunities for charging to a certain place of the photoconductor 11. You can earn. Therefore, the charging device 90 can be uniformly charged as compared with a wire charger that charges in a linear manner. Further, the charging device 90 has an advantage that the applied voltage can be remarkably reduced to about 10 V as compared with a corona discharger that requires voltage application of several kV.

〔実施の形態3〕
図5に、実施の形態1で説明した本発明に係る電子放出素子1を用いた本発明に係る電子線硬化装置100の一例を示す。電子線硬化装置100は、電子放出素子1とこれに電圧を印加する電源7、さらに電子を加速させる加速電極21を備えている。電子線硬化装置100では、電子放出素子1を電子源とし、放出された電子を加速電極21で加速してレジスト22へと衝突させる。一般的なレジスト22を硬化させるために必要なエネルギーは10eV以下であるため、エネルギーだけに注目すれば加速電極は必要ない。しかし、電子線の浸透深さは電子のエネルギーの関数となるため、例えば厚さ1μmのレジスト22を全て硬化させるには約5kVの加速電圧が必要となる。
[Embodiment 3]
FIG. 5 shows an example of an electron beam curing apparatus 100 according to the present invention using the electron-emitting device 1 according to the present invention described in the first embodiment. The electron beam curing apparatus 100 includes an electron-emitting device 1, a power source 7 that applies a voltage to the electron-emitting device 1, and an acceleration electrode 21 that accelerates electrons. In the electron beam curing apparatus 100, the electron-emitting device 1 is used as an electron source, and the emitted electrons are accelerated by the acceleration electrode 21 and collide with the resist 22. Since the energy required for curing the general resist 22 is 10 eV or less, the acceleration electrode is not necessary if attention is paid only to the energy. However, since the penetration depth of the electron beam is a function of electron energy, for example, an acceleration voltage of about 5 kV is required to cure all the resist 22 having a thickness of 1 μm.

従来からある一般的な電子線硬化装置は、電子源を真空封止し、高電圧印加(50〜100kV)により電子を放出させ、電子窓を通して電子を取り出し、照射する。この電子放出の方法であれば、電子窓を透過させる際に大きなエネルギーロスが生じる。また、レジストに到達した電子も高エネルギーであるため、レジストの厚さを透過してしまい、エネルギー利用効率が低くなる。さらに、一度に照射できる範囲が狭く、点状で描画することになるため、スループットも低い。   A conventional general electron beam curing apparatus seals an electron source in a vacuum, emits electrons by applying a high voltage (50 to 100 kV), takes out electrons through an electron window, and irradiates them. With this electron emission method, a large energy loss occurs when transmitting through the electron window. Further, since electrons reaching the resist also have high energy, they pass through the thickness of the resist, resulting in low energy utilization efficiency. Further, since the range that can be irradiated at one time is narrow and drawing is performed in a dot shape, the throughput is also low.

これに対し、電子放出素子1を用いた本発明に係る電子線硬化装置は、大気中動作可能であるため、真空封止の必要がない。また、電子透過窓を通さないのでエネルギーのロスも無く、印加電圧を下げることができる。さらに面電子源であるためスループットが格段に高くなる。また、パターンに従って電子を放出させれば、マスクレス露光も可能となる。   On the other hand, since the electron beam curing apparatus according to the present invention using the electron-emitting device 1 can operate in the atmosphere, there is no need for vacuum sealing. Further, since the electron transmission window is not passed, there is no energy loss and the applied voltage can be lowered. Further, since it is a surface electron source, the throughput is remarkably increased. Further, if electrons are emitted according to the pattern, maskless exposure can be performed.

〔実施の形態4〕
図6〜8に、実施の形態1で説明した本発明に係る電子放出素子1を用いた本発明に係る自発光デバイスの例をそれぞれ示す。
[Embodiment 4]
FIGS. 6 to 8 show examples of the self-luminous device according to the present invention using the electron-emitting device 1 according to the present invention described in the first embodiment.

図6に示す自発光デバイス31は、電子放出素子1とこれに電圧を印加する電源7と、さらに、電子放出素子1と離れ、対向した位置に、基材となるガラス基板34、ITO膜33、そして蛍光体32が積層構造を有する発光部36と、から成る。   A self-luminous device 31 shown in FIG. 6 includes an electron-emitting device 1, a power source 7 that applies a voltage to the electron-emitting device 1, and a glass substrate 34 and an ITO film 33 that are base materials at positions facing and away from the electron-emitting device 1. The phosphor 32 includes a light emitting unit 36 having a laminated structure.

蛍光体32としては赤、緑、青色発光に対応した電子励起タイプの材料が適しており、例えば、赤色ではY:Eu、(Y,Gd)BO:Eu、緑色ではZnSiO:Mn、BaAl1219:Mn、青色ではBaMgAl1017:Eu2+等が使用可能である。ITO膜33が成膜されたガラス基板34表面に、蛍光体32を成膜する。蛍光体32の厚さ1μm程度が好ましい。また、ITO膜33の膜厚は、導電性を確保できる膜厚であれば問題なく、本実施形態では150nmとした。 As the phosphor 32, an electron excitation type material corresponding to red, green, and blue light emission is suitable, for example, Y 2 O 3 : Eu for red, (Y, Gd) BO 3 : Eu, and Zn 2 SiO for green. 4 : Mn, BaAl 12 O 19 : Mn, blue, BaMgAl 10 O 17 : Eu 2+ and the like can be used. A phosphor 32 is formed on the surface of the glass substrate 34 on which the ITO film 33 is formed. The thickness of the phosphor 32 is preferably about 1 μm. In addition, the thickness of the ITO film 33 is 150 nm in the present embodiment, as long as the film thickness can ensure conductivity.

蛍光体32を成膜するに当たっては、バインダーとなるエポキシ系樹脂と微粒子化した蛍光体粒子との混練物として準備し、バーコーター法或いは滴下法等の公知な方法で成膜するとよい。   In forming the phosphor 32, it is preferable to prepare a kneaded product of an epoxy resin serving as a binder and finely divided phosphor particles and form the film by a known method such as a bar coater method or a dropping method.

ここで、蛍光体32の発光輝度を上げるには、電子放出素子1から放出された電子を蛍光体へ向けて加速する必要があり、その場合は電子放出素子1の電極基板2と発光部36のITO膜33の間に、電子を加速する電界を形成するための電圧印加するために、電源35を設けるとよい。このとき、蛍光体32と電子放出素子1との距離は、0.3〜1mmで、電源7からの印加電圧は18V、電源35からの印加電圧は500〜2000Vにするのが好ましい。   Here, in order to increase the light emission luminance of the phosphor 32, it is necessary to accelerate the electrons emitted from the electron-emitting device 1 toward the phosphor. In this case, the electrode substrate 2 and the light-emitting portion 36 of the electron-emitting device 1 are used. In order to apply a voltage for forming an electric field for accelerating electrons between the ITO films 33, a power source 35 is preferably provided. At this time, the distance between the phosphor 32 and the electron-emitting device 1 is preferably 0.3 to 1 mm, the applied voltage from the power source 7 is preferably 18 V, and the applied voltage from the power source 35 is preferably 500 to 2000 V.

図7に示す自発光デバイス31’は、電子放出素子1とこれに電圧を印加する電源7、さらに、蛍光体32を備えている。自発光デバイス31’では、蛍光体32は平面状であり、電子放出素子1の表面に蛍光体32が配置されている。ここで、電子放出素子1表面に成膜された蛍光体32の層は、前述のように微粒子化した蛍光体粒子との混練物から成る塗布液として準備し、電子放出素子1表面に成膜する。但し、電子放出素子1そのものは外力に対して弱い構造であるため、バーコーター法による成膜手段は利用すると素子が壊れる恐れがある。このため滴下法或いはスピンコート法等の方法を用いるとよい。   A self-luminous device 31 ′ shown in FIG. 7 includes an electron-emitting device 1, a power source 7 that applies a voltage to the electron-emitting device 1, and a phosphor 32. In the self-luminous device 31 ′, the phosphor 32 has a planar shape, and the phosphor 32 is disposed on the surface of the electron-emitting device 1. Here, the phosphor 32 layer formed on the surface of the electron-emitting device 1 is prepared as a coating liquid composed of a kneaded material with the phosphor particles finely divided as described above, and is formed on the surface of the electron-emitting device 1. To do. However, since the electron-emitting device 1 itself has a structure that is weak against external force, there is a risk that the device may be damaged if film forming means by the bar coater method is used. Therefore, a method such as a dropping method or a spin coating method may be used.

図8に示す自発光デバイス31”は、電子放出素子1とこれに電圧を印加する電源7を備えており、さらに、電子放出素子1の電子加速層4に蛍光体32’として蛍光の微粒子が混入されている。この場合、蛍光体32’の微粒子を絶縁体微粒子5と兼用させてもよい。但し前述した蛍光体の微粒子は一般的に電気抵抗が低く、絶縁体微粒子5に比べると明らかに電気抵抗は低い。よって蛍光体の微粒子を絶縁体微粒子5に変えて混合する場合、その蛍光体の微粒子の混合量は少量に抑えなければ成らない。例えば、絶縁体微粒子5として球状シリカ粒子(平均径110nm)、蛍光体微粒子としてZnS:Mg(平均径500nm)を用いた場合、その重量混合比は3:1程度が適切となる。   A self-luminous device 31 ″ shown in FIG. 8 includes an electron-emitting device 1 and a power source 7 that applies a voltage to the electron-emitting device 1, and further, fluorescent fine particles as phosphors 32 ′ are formed on the electron acceleration layer 4 of the electron-emitting device 1. In this case, the fine particles of the phosphor 32 ′ may be used also as the insulator fine particles 5. However, the above-described phosphor fine particles generally have a low electric resistance, and are clear as compared with the insulator fine particles 5. Therefore, when the phosphor fine particles are mixed with the insulator fine particles 5 and mixed, the amount of the phosphor fine particles must be suppressed to a small amount, for example, as the insulator fine particles 5 as spherical silica particles. When ZnS: Mg (average diameter: 500 nm) is used as the phosphor fine particles (average diameter: 110 nm), a weight mixing ratio of about 3: 1 is appropriate.

上記自発光デバイス31,31’,31”では、電子放出素子1より放出させた電子を蛍光体32,32に衝突させて発光させる。なお、自発光デバイス31,31’,31”は、電子放出素子1が大気中で電子を放出できるため、大気中動作可能であるが、真空封止すれば電子放出電流が上がり、より効率よく発光することができる。   In the self-light-emitting devices 31, 31 ', 31 ", the electrons emitted from the electron-emitting device 1 collide with the phosphors 32, 32 to emit light. The self-light-emitting devices 31, 31', 31" Since the emission element 1 can emit electrons in the atmosphere, it can be operated in the atmosphere. However, if it is vacuum-sealed, the electron emission current is increased and light can be emitted more efficiently.

さらに、図9に、本発明に係る自発光デバイスを備えた本発明に係る画像表示装置の一例を示す。図9に示す画像表示装置140は、図8で示した自発光デバイス31”と、液晶パネル330とを供えている。画像表示装置140では、自発光デバイス31”を液晶パネル330の後方に設置し、バックライトとして用いている。画像表示装置140に用いる場合、自発光デバイス31”への印加電圧は、20〜35Vが好ましく、この電圧にて、例えば、単位時間当たり10μA/cmの電子が放出されるようになっていればよい。また、自発光デバイス31”と液晶パネル330との距離は、0.1mm程度が好ましい。 Furthermore, FIG. 9 shows an example of an image display device according to the present invention provided with the self-luminous device according to the present invention. An image display device 140 shown in FIG. 9 includes the self-light emitting device 31 ″ shown in FIG. 8 and a liquid crystal panel 330. In the image display device 140, the self-light emitting device 31 ″ is installed behind the liquid crystal panel 330. And used as a backlight. When used in the image display device 140, the applied voltage to the self-luminous device 31 ″ is preferably 20 to 35 V, and for example, 10 μA / cm 2 of electrons are emitted per unit time at this voltage. The distance between the self-light emitting device 31 ″ and the liquid crystal panel 330 is preferably about 0.1 mm.

また、本発明に係る画像表示装置として、図6に示す自発光デバイス31を用いる場合、自発光デバイス31をマトリックス状に配置して、自発光デバイス31そのものによるFEDとして画像を形成させて表示する形状とすることもできる。この場合、自発光デバイス31への印加電圧は、20〜35Vが好ましく、この電圧にて、例えば、単位時間当たり10μA/cmの電子が放出されるようになっていればよい。 Further, when the self-luminous device 31 shown in FIG. 6 is used as the image display device according to the present invention, the self-luminous devices 31 are arranged in a matrix, and an image is formed and displayed as an FED by the self-luminous device 31 itself. It can also be a shape. In this case, the applied voltage to the self-luminous device 31 is preferably 20 to 35 V, and it is sufficient that, for example, 10 μA / cm 2 of electrons are emitted per unit time at this voltage.

〔実施の形態5〕
図10及び図11に、実施の形態1で説明した本発明に係る電子放出素子1を用いた本発明に係る送風装置の例をそれぞれ示す。以下では、本願発明に係る送風装置を、冷却装置として用いた場合について説明する。しかし、送風装置の利用は冷却装置に限定されることはない。
[Embodiment 5]
10 and 11 show examples of the blower according to the present invention using the electron-emitting device 1 according to the present invention described in the first embodiment. Below, the case where the air blower concerning this invention is used as a cooling device is demonstrated. However, the use of the blower is not limited to the cooling device.

図10に示す送風装置150は、電子放出素子1とこれに電圧を印加する電源7とからなる。送風装置150において、電子放出素子1は、電気的に接地された被冷却体41に向かって電子を放出することにより、イオン風を発生させて被冷却体41を冷却する。冷却させる場合、電子放出素子1に印加する電圧は、18V程度が好ましく、この電圧で、雰囲気下に、例えば、単位時間当たり1μA/cmの電子を放出することが好ましい。 A blower 150 shown in FIG. 10 includes an electron-emitting device 1 and a power source 7 that applies a voltage to the electron-emitting device 1. In the blower 150, the electron-emitting device 1 emits electrons toward the object 41 to be cooled, which is electrically grounded, thereby generating ion wind to cool the object 41 to be cooled. In the case of cooling, the voltage applied to the electron-emitting device 1 is preferably about 18 V, and it is preferable to emit, for example, 1 μA / cm 2 of electrons per unit time at this voltage in the atmosphere.

図11に示す送風装置160は、図10に示す送風装置150に、さらに、送風ファン42が組み合わされている。図11に示す送風装置160は、電子放出素子1が電気的に接地された被冷却体41に向かって電子を放出し、さらに、送風ファン42が被冷却体41に向かって送風することで電子放出素子から放出された電子を被冷却体41に向かって送り、イオン風を発生させて被冷却体41を冷却する。この場合、送風ファン42による風量は、0.9〜2L/分/cmとするのが好ましい。 The blower 160 shown in FIG. 11 is further combined with the blower 150 shown in FIG. The blower 160 shown in FIG. 11 emits electrons toward the cooled object 41 in which the electron-emitting device 1 is electrically grounded, and the blower fan 42 blows air toward the cooled object 41 to generate electrons. Electrons emitted from the emitting element are sent toward the cooled object 41 to generate an ion wind to cool the cooled object 41. In this case, the air volume by the blower fan 42 is preferably 0.9 to 2 L / min / cm 2 .

ここで、送風によって被冷却体41を冷却させようとするとき、従来の送風装置あるいは冷却装置のようにファン等による送風だけでは、被冷却体41の表面の流速が0となり、最も熱を逃がしたい部分の空気は置換されず、冷却効率が悪い。しかし、送風される空気の中に電子やイオンといった荷電粒子を含まれていると、被冷却体41近傍に近づいたときに電気的な力によって被冷却体41表面に引き寄せられるため、表面近傍の雰囲気を入れ替えることができる。ここで、本発明に係る送風装置150,160では、送風する空気の中に電子やイオンといった荷電粒子を含んでいるので、冷却効率が格段に上がる。送風装置150および送風装置106は、大気中動作も可能である。   Here, when the object to be cooled 41 is cooled by air blowing, the flow velocity on the surface of the object to be cooled 41 becomes 0 only by air blowing by a fan or the like as in the conventional air blowing device or cooling device, and the most heat is released. The air in the desired part is not replaced and the cooling efficiency is poor. However, when charged particles such as electrons and ions are contained in the air to be blown, when the vicinity of the object to be cooled 41 is approached, it is attracted to the surface of the object to be cooled 41 by electric force. The atmosphere can be changed. Here, in the air blowers 150 and 160 according to the present invention, since the air to be blown contains charged particles such as electrons and ions, the cooling efficiency is remarkably increased. The blower 150 and the blower 106 can also be operated in the atmosphere.

本発明は上述した各実施形態および実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments and examples, and various modifications are possible within the scope of the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.

本発明に係る電子放出素子は、電気的導通を確保して十分な素子内電流を流し、薄膜電極から弾道電子を放出させることが可能である。よって、例えば、電子写真方式の複写機、プリンタ、ファクシミリ等の画像形成装置の帯電装置や、電子線硬化装置、或いは発光体と組み合わせることにより画像表示装置、または放出された電子が発生させるイオン風を利用することにより冷却装置等に、好適に適用することができる。   The electron-emitting device according to the present invention can ensure electrical continuity, flow a sufficient current in the device, and emit ballistic electrons from the thin film electrode. Therefore, for example, an image display device by combining with an image forming apparatus such as an electrophotographic copying machine, a printer, a facsimile, an electron beam curing device, or a light emitter, or an ion wind generated by emitted electrons. Can be suitably applied to a cooling device or the like.

1 電子放出素子
2 電極基板
3 薄膜電極
4 電子加速層
5 絶縁体微粒子(絶縁体物質)
6 導電微粒子
7 電源(電源部)
8 対向電極
9 絶縁体スペーサ
10 電子放出装置
11 感光体
15 バインダー樹脂
21 加速電極
22 レジスト
31,31’,31” 自発光デバイス
32,32’ 蛍光体
33 ITO膜
34 ガラス基板
35 電源
36 発光部
41 被冷却体
42 送風ファン
90 帯電装置
100 電子線硬化装置
140 画像表示装置
150 送風装置
160 送風装置
330 液晶パネル
DESCRIPTION OF SYMBOLS 1 Electron emission element 2 Electrode substrate 3 Thin film electrode 4 Electron acceleration layer 5 Insulator fine particle (insulator substance)
6 Conductive fine particles 7 Power supply (Power supply part)
8 Counter electrode 9 Insulator spacer 10 Electron emitter 11 Photoreceptor 15 Binder resin 21 Accelerating electrode 22 Resist 31, 31 ′, 31 ″ Self-emitting device 32, 32 ′ Phosphor 33 ITO film 34 Glass substrate 35 Power supply 36 Light emitting part 41 Cooled object 42 Blower fan 90 Charging device 100 Electron beam curing device 140 Image display device 150 Blower device 160 Blower device 330 Liquid crystal panel

Claims (24)

電極基板と薄膜電極と該電極基板および該薄膜電極に挟持された電子加速層とを有し、上記電極基板と上記薄膜電極との間に電圧が印加されると、上記電子加速層で電子を加速させて、上記薄膜電極から該電子を放出させる電子放出素子であって、
上記電子加速層は、絶縁体物質および導電微粒子が分散された樹脂バインダーを含むことを特徴とする電子放出素子。
An electrode substrate, a thin film electrode, and an electrode acceleration layer sandwiched between the electrode substrate and the thin film electrode. When a voltage is applied between the electrode substrate and the thin film electrode, electrons are transmitted through the electron acceleration layer. An electron-emitting device that accelerates and emits the electrons from the thin film electrode,
The electron-emitting device, wherein the electron acceleration layer includes a resin binder in which an insulating material and conductive fine particles are dispersed.
上記導電微粒子は、抗酸化力が高い導電体であることを特徴とする請求項1に記載の電子放出素子。   The electron-emitting device according to claim 1, wherein the conductive fine particles are a conductor having high anti-oxidation power. 上記導電微粒子は、貴金属であることを特徴とする請求項1または2に記載の電子放出素子。   The electron-emitting device according to claim 1, wherein the conductive fine particles are a noble metal. 上記導電微粒子を成す導電体は、金、銀、白金、パラジウム、及びニッケルの少なくとも1つを含んでいることを特徴とする請求項1から3のいずれか1項に記載の電子放出素子。   The electron-emitting device according to any one of claims 1 to 3, wherein the conductive material forming the conductive fine particles contains at least one of gold, silver, platinum, palladium, and nickel. 上記導電微粒子の平均径は、3〜10nmであることを特徴とする、請求項1から4のいずれか1項に記載の電子放出素子。   5. The electron-emitting device according to claim 1, wherein the conductive fine particles have an average diameter of 3 to 10 nm. 上記絶縁体物質は、SiO、Al、及びTiOの少なくとも1つを含んでいる、または有機ポリマーを含んでいることを特徴とする、請求項1から5のいずれか1項に記載の電子放出素子。 The insulator material, SiO 2, Al 2 O 3 , and characterized in that it includes the TiO 2 comprises at least one, or an organic polymer, in any one of claims 1 5 The electron-emitting device described. 上記絶縁体物質が微粒子であり、その平均径は、10〜1000nmであることを特徴とする、請求項1から6のいずれか1項に記載の電子放出素子。   The electron-emitting device according to any one of claims 1 to 6, wherein the insulator substance is fine particles, and an average diameter thereof is 10 to 1000 nm. 上記平均径は、12〜110nmであることを特徴とする、請求項7に記載の電子放出素子。   The electron-emitting device according to claim 7, wherein the average diameter is 12 to 110 nm. 上記電子加速層における上記導電微粒子の割合が、重量比で0.5〜30%であることを特徴とする、請求項1から8のいずれか1項に記載の電子放出素子。   9. The electron-emitting device according to claim 1, wherein a ratio of the conductive fine particles in the electron acceleration layer is 0.5 to 30% by weight. 上記電子加速層における上記導電微粒子の割合が、重量比で1〜10%であることを特徴とする、請求項9に記載の電子放出素子。   10. The electron-emitting device according to claim 9, wherein a ratio of the conductive fine particles in the electron acceleration layer is 1 to 10% by weight. 上記電子加速層の層厚は、12〜6000nmであることを特徴とする、請求項1から10のいずれか1項に記載の電子放出素子。   The electron-emitting device according to any one of claims 1 to 10, wherein the electron acceleration layer has a thickness of 12 to 6000 nm. 上記電子加速層の層厚は、300〜6000nmであることを特徴とする、請求項11に記載の電子放出素子。   The electron-emitting device according to claim 11, wherein the electron acceleration layer has a thickness of 300 to 6000 nm. 上記薄膜電極は、金、銀、炭素、タングステン、チタン、アルミ、及びパラジウムの少なくとも1つを含んでいることを特徴とする請求項1から12のいずれか1項に記載の電子放出素子。   The electron-emitting device according to any one of claims 1 to 12, wherein the thin-film electrode includes at least one of gold, silver, carbon, tungsten, titanium, aluminum, and palladium. 上記導電微粒子の周囲に、当該導電微粒子の大きさより小さい絶縁体物質である小絶縁体物質が存在することを特徴とする、請求項1から13のいずれか1項に記載の電子放出素子。   14. The electron-emitting device according to claim 1, wherein a small insulator material, which is an insulator material smaller than the size of the conductive fine particles, is present around the conductive fine particles. 上記小絶縁体物質は、アルコラート、脂肪酸、及びアルカンチオールの少なくとも1つを含んでいること特徴とする、請求項14に記載の電子放出素子。   The electron-emitting device according to claim 14, wherein the small insulator material includes at least one of alcoholate, fatty acid, and alkanethiol. 請求項1から15のいずれか1項に記載の電子放出素子と、上記電極基板と上記薄膜電極との間に電圧を印加する電源部と、を備えたことを特徴とする電子放出装置。   An electron-emitting device comprising: the electron-emitting device according to claim 1; and a power supply unit that applies a voltage between the electrode substrate and the thin-film electrode. 請求項16に記載の電子放出装置と発光体とを備え、該電子放出装置から電子を放出して該発光体を発光させることを特徴とする自発光デバイス。   A self-luminous device comprising the electron-emitting device according to claim 16 and a light emitter, wherein the light-emitting device emits electrons by emitting electrons from the electron-emitting device. 請求項17に記載の自発光デバイスを備えたことを特徴とする画像表示装置。   An image display device comprising the self-luminous device according to claim 17. 請求項16に記載の電子放出装置を備え、該電子放出装置から電子を放出して送風することを特徴とする送風装置。   An air blower comprising the electron emission device according to claim 16, wherein electrons are emitted from the electron emission device to blow air. 請求項16に記載の電子放出装置を備え、該電子放出装置から電子を放出して被冷却体を冷却することを特徴とする冷却装置。   A cooling device comprising the electron-emitting device according to claim 16, wherein the object to be cooled is cooled by emitting electrons from the electron-emitting device. 請求項16に記載の電子放出装置を備え、該電子放出装置から電子を放出して感光体を帯電することを特徴とする帯電装置。   A charging device comprising the electron-emitting device according to claim 16, wherein the photosensitive member is charged by emitting electrons from the electron-emitting device. 請求項21に記載の帯電装置を備えたことを特徴とする画像形成装置。   An image forming apparatus comprising the charging device according to claim 21. 請求項16に記載の電子放出装置を備えることを特徴とする電子線硬化装置。   An electron beam curing device comprising the electron emission device according to claim 16. 電極基板と薄膜電極と該電極基板および該薄膜電極に挟持された電子加速層とを有し、上記電極基板と上記薄膜電極との間に電圧が印加されると、上記電子加速層で電子を加速させて、上記薄膜電極から該電子を放出させる電子放出素子の製造方法であって、
樹脂バインダーに絶縁体物質が分散された分散液を調整する分散液調整工程と、
上記分散液に導電微粒子が分散された混合液を調整する混合液調整工程と、
上記電極基板上に、上記混合液を塗布して上記電子加速層を形成する電子加速層形成工程と、
を含むことを特徴とする電子放出素子の製造方法。
An electrode substrate, a thin film electrode, and an electrode acceleration layer sandwiched between the electrode substrate and the thin film electrode. When a voltage is applied between the electrode substrate and the thin film electrode, electrons are transmitted through the electron acceleration layer. A method of manufacturing an electron-emitting device that accelerates and emits the electrons from the thin-film electrode,
A dispersion adjusting step of adjusting a dispersion in which an insulator substance is dispersed in a resin binder;
A mixed solution adjusting step of adjusting a mixed solution in which conductive fine particles are dispersed in the dispersion;
An electron acceleration layer forming step of forming the electron acceleration layer by applying the mixed solution on the electrode substrate;
A method for manufacturing an electron-emitting device, comprising:
JP2009041150A 2009-02-24 2009-02-24 Electron-emitting device, electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device, and method for manufacturing electron-emitting device Active JP4932864B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009041150A JP4932864B2 (en) 2009-02-24 2009-02-24 Electron-emitting device, electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device, and method for manufacturing electron-emitting device
CN2009102044713A CN101814405B (en) 2009-02-24 2009-09-29 Electron emitting element, method for producing electron emitting element and each device using the same
US12/695,381 US8547007B2 (en) 2009-02-24 2010-01-28 Electron emitting element, electron emitting device, light emitting device, image display device, air blowing device, cooling device, charging device, image forming apparatus, electron-beam curing device, and method for producing electron emitting element
US13/835,133 US8616931B2 (en) 2009-02-24 2013-03-15 Electron emitting element, electron emitting device, light emitting device, image display device, air blowing device, cooling device, charging device, image forming apparatus, electron-beam curing device, and method for producing electron emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041150A JP4932864B2 (en) 2009-02-24 2009-02-24 Electron-emitting device, electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device, and method for manufacturing electron-emitting device

Publications (2)

Publication Number Publication Date
JP2010198850A true JP2010198850A (en) 2010-09-09
JP4932864B2 JP4932864B2 (en) 2012-05-16

Family

ID=42823395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041150A Active JP4932864B2 (en) 2009-02-24 2009-02-24 Electron-emitting device, electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device, and method for manufacturing electron-emitting device

Country Status (1)

Country Link
JP (1) JP4932864B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010244738A (en) * 2009-04-02 2010-10-28 Sharp Corp Electron emission element and its manufacturing method
JP2010244735A (en) * 2009-04-02 2010-10-28 Sharp Corp Electron emission element and its manufacturing method
JP2015081956A (en) * 2013-10-21 2015-04-27 シャープ株式会社 Display device and display method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298623A (en) * 1988-05-26 1989-12-01 Canon Inc Mim type electron emission element
JP2003331712A (en) * 2002-05-10 2003-11-21 Nippon Hoso Kyokai <Nhk> Field emission type electron source and its manufacturing method and display device
JP2004039519A (en) * 2002-07-05 2004-02-05 Matsushita Electric Ind Co Ltd Electron emitting element, its manufacturing method, phosphor light emitting device using it, and image drawing device
JP2004327084A (en) * 2003-04-21 2004-11-18 Sharp Corp Electron emission element and image forming apparatus using same
JP2005209396A (en) * 2004-01-20 2005-08-04 Toshiba Corp Field emission type electron source
JP2005328041A (en) * 2004-04-14 2005-11-24 Mitsubishi Chemicals Corp Etching method and etchant
JP2006054162A (en) * 2004-07-15 2006-02-23 Ngk Insulators Ltd Dielectric device
JP2009019084A (en) * 2007-07-10 2009-01-29 Toyota Boshoku Corp Vehicle interior material and method for producing the same
WO2009066723A1 (en) * 2007-11-20 2009-05-28 Sharp Kabushiki Kaisha Electron emitting element, electron emitting device, light emitting device, image display, blower, cooling device, electrifying device, image forming device, electron beam curing device, and electron emitting element manufacturing method
JP2009146891A (en) * 2007-11-20 2009-07-02 Sharp Corp Electron emission element, electron emission device, self-luminous device, image display device, air-blowing device, cooling device, electrostatic charge device, image forming device, electron beam curing device, and manufacturing method of electron emission element

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298623A (en) * 1988-05-26 1989-12-01 Canon Inc Mim type electron emission element
JP2003331712A (en) * 2002-05-10 2003-11-21 Nippon Hoso Kyokai <Nhk> Field emission type electron source and its manufacturing method and display device
JP2004039519A (en) * 2002-07-05 2004-02-05 Matsushita Electric Ind Co Ltd Electron emitting element, its manufacturing method, phosphor light emitting device using it, and image drawing device
JP2004327084A (en) * 2003-04-21 2004-11-18 Sharp Corp Electron emission element and image forming apparatus using same
JP2005209396A (en) * 2004-01-20 2005-08-04 Toshiba Corp Field emission type electron source
JP2005328041A (en) * 2004-04-14 2005-11-24 Mitsubishi Chemicals Corp Etching method and etchant
JP2006054162A (en) * 2004-07-15 2006-02-23 Ngk Insulators Ltd Dielectric device
JP2009019084A (en) * 2007-07-10 2009-01-29 Toyota Boshoku Corp Vehicle interior material and method for producing the same
WO2009066723A1 (en) * 2007-11-20 2009-05-28 Sharp Kabushiki Kaisha Electron emitting element, electron emitting device, light emitting device, image display, blower, cooling device, electrifying device, image forming device, electron beam curing device, and electron emitting element manufacturing method
JP2009146891A (en) * 2007-11-20 2009-07-02 Sharp Corp Electron emission element, electron emission device, self-luminous device, image display device, air-blowing device, cooling device, electrostatic charge device, image forming device, electron beam curing device, and manufacturing method of electron emission element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010244738A (en) * 2009-04-02 2010-10-28 Sharp Corp Electron emission element and its manufacturing method
JP2010244735A (en) * 2009-04-02 2010-10-28 Sharp Corp Electron emission element and its manufacturing method
JP2015081956A (en) * 2013-10-21 2015-04-27 シャープ株式会社 Display device and display method

Also Published As

Publication number Publication date
JP4932864B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP4732534B2 (en) Electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device
JP4812853B2 (en) Electron-emitting device, electron-emitting device, self-luminous device, image display device, air blower, cooling device, charging device, image forming device, electron beam curing device, and method for manufacturing electron-emitting device
US8616931B2 (en) Electron emitting element, electron emitting device, light emitting device, image display device, air blowing device, cooling device, charging device, image forming apparatus, electron-beam curing device, and method for producing electron emitting element
JP4732533B2 (en) Electron-emitting device and manufacturing method thereof, and electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, and cooling device
JP4777448B2 (en) Electron emitting device, electron emitting device, self-luminous device, image display device, blower device, cooling device, charging device, image forming device, and electron beam curing device
JP5033892B2 (en) Electron-emitting device, electron-emitting device, self-luminous device, image display device, air blower, cooling device, charging device, image forming device, electron beam curing device, and method for manufacturing electron-emitting device
US8299700B2 (en) Electron emitting element having an electron acceleration layer, electron emitting device, light emitting device, image display device, cooling device, and charging device
JP2010267492A (en) Method for manufacturing electron emitting element, electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display, blower, and cooling device
JP5073721B2 (en) Electron-emitting device, electron-emitting device, self-luminous device, image display device, air blower, cooling device, charging device, image forming device, electron beam curing device, and electron-emitting device manufacturing method
JP5133295B2 (en) Electron emission apparatus, self-luminous device, image display apparatus, charging apparatus, image forming apparatus, electron beam curing apparatus, and driving method of electron emission element
JP2012099455A (en) Electron emission element and device provided with it
JP4932864B2 (en) Electron-emitting device, electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device, and method for manufacturing electron-emitting device
JP4917121B2 (en) Electron-emitting device, electron-emitting device, self-luminous device, image display device, cooling device, and charging device
JP4768051B2 (en) Manufacturing method of electron-emitting device, electron-emitting device, electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower device, cooling device
JP4680305B2 (en) Electron-emitting device, electron-emitting device, self-luminous device, image display device, cooling device, and charging device
JP4768050B2 (en) Electron-emitting device, electron-emitting device, self-luminous device, image display device, air blower, cooling device, charging device, image forming device, electron beam curing device, and electron-emitting device manufacturing method
JP5128565B2 (en) Electron-emitting device, electron-emitting device, self-luminous device, image display device, air blower, cooling device, charging device, image forming device, electron beam curing device, and method for manufacturing electron-emitting device
JP5050074B2 (en) Electron emitting device and manufacturing method thereof
JP2010267491A (en) Method of manufacturing electron emitter, electron emitter, electron emission device, charging device, image forming apparatus, electron beam curing device, self-luminous device, image display apparatus, blowing device, and cooling device
JP2010272260A (en) Electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device, and method of manufacturing the electron emitting element
JP5795330B2 (en) Electron emitting device, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device, and method for manufacturing electron emitting device
JP2010272259A (en) Method of manufacturing electron emitting element, electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, and cooling device
JP2011040250A (en) Electron emission element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device, and manufacturing method of electron emission element
JP2012069349A (en) Electron emission element, electron emission device, self-luminous device, blowing device, cooling device, and manufacturing method of electron emission element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120215

R150 Certificate of patent or registration of utility model

Ref document number: 4932864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3