JP2010272259A - Method of manufacturing electron emitting element, electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, and cooling device - Google Patents

Method of manufacturing electron emitting element, electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, and cooling device Download PDF

Info

Publication number
JP2010272259A
JP2010272259A JP2009121461A JP2009121461A JP2010272259A JP 2010272259 A JP2010272259 A JP 2010272259A JP 2009121461 A JP2009121461 A JP 2009121461A JP 2009121461 A JP2009121461 A JP 2009121461A JP 2010272259 A JP2010272259 A JP 2010272259A
Authority
JP
Japan
Prior art keywords
electron
fine particles
emitting device
conductive fine
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009121461A
Other languages
Japanese (ja)
Inventor
Yasuro Imura
康朗 井村
Hiroyuki Hirakawa
弘幸 平川
Ayae Nagaoka
彩絵 長岡
Tadashi Iwamatsu
正 岩松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009121461A priority Critical patent/JP2010272259A/en
Publication of JP2010272259A publication Critical patent/JP2010272259A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cold Cathode And The Manufacture (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an electron emitting element easily manufacturable in the atmosphere, and capable of stably and satisfactorily emitting electrons. <P>SOLUTION: After applying conductive particulate dispersion liquid in which conductive particulates 6 are dispersed in a dispersion solvent, insulator particulate dispersion liquid in which insulator particulates 5 each having an average particle diameter larger than that of the conductive particulate 6 are dispersed is applied onto an electrode substrate 2 to form the electron accelerating layer 4 of this electron emitting element 1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電圧を印加することにより電子を放出する電子放出素子の製造方法および電子放出素子等に関するものである。   The present invention relates to a method for manufacturing an electron-emitting device that emits electrons by applying a voltage, an electron-emitting device, and the like.

従来の電子放出素子として、スピント(Spindt)型電極、カーボンナノチューブ(CNT)型電極などが知られている。このような電子放出素子は、例えば、FED(Field Emision Display)の分野に応用検討されている。このような電子放出素子は、尖鋭形状部に電圧を印加して約1GV/mの強電界を形成し、トンネル効果により電子放出させる。   As a conventional electron-emitting device, a Spindt type electrode, a carbon nanotube (CNT) type electrode, and the like are known. Such an electron-emitting device has been studied for application in the field of FED (Field Emission Display), for example. In such an electron-emitting device, a voltage is applied to the sharp portion to form a strong electric field of about 1 GV / m, and electrons are emitted by the tunnel effect.

しかしながら、これら2つのタイプの電子放出素子は、電子放出部表面近傍が強電界であるため、放出された電子は電界により大きなエネルギーを得て気体分子を電離しやすくなる。気体分子の電離により生じた陽イオンは強電界により素子の表面方向に加速衝突し、スパッタリングによる素子破壊が生じるという問題がある。また、大気中の酸素は電離エネルギーより解離エネルギーが低いため、イオンの発生より先にオゾンを発生する。オゾンは人体に有害である上、その強い酸化力により様々なものを酸化することから、素子の周囲の部材にダメージを与えるという問題が存在し、これを避けるために周辺部材には耐オゾン性の高い材料を用いなければならないという制限が生じている。   However, since these two types of electron-emitting devices have a strong electric field in the vicinity of the surface of the electron-emitting region, the emitted electrons easily obtain a large energy by the electric field and easily ionize gas molecules. There is a problem that cations generated by ionization of gas molecules are accelerated and collided in the direction of the surface of the device by a strong electric field, and device destruction occurs due to sputtering. Moreover, since oxygen in the atmosphere has lower dissociation energy than ionization energy, ozone is generated prior to the generation of ions. Since ozone is harmful to the human body and oxidizes various things with its strong oxidizing power, there is a problem of damaging members around the element. To avoid this, the surrounding members are ozone resistant. There is a restriction that high material must be used.

他方、上記とは別のタイプの電子放出素子として、MIM(Metal Insulator Metal)型やMIS(Metal Insulator Semiconductor)型の電子放出素子が知られている。これらは素子内部の量子サイズ効果及び強電界を利用して電子を加速し、平面状の素子表面から電子を放出させる面放出型の電子放出素子である。これらは素子内部の電子加速層で加速した電子を放出するため、素子外部に強電界を必要としない。従って、MIM型及びMIS型の電子放出素子においては、上記スピント型やCNT型、BN型の電子放出素子のように気体分子の電離によるスパッタリングで破壊されるという問題やオゾンが発生するという問題を克服できる。   On the other hand, MIM (Metal Insulator Metal) and MIS (Metal Insulator Semiconductor) type electron-emitting devices are known as other types of electron-emitting devices. These are surface emission type electron-emitting devices that use the quantum size effect and strong electric field inside the device to accelerate electrons and emit electrons from the planar device surface. Since these emit electrons accelerated by the electron acceleration layer inside the device, a strong electric field is not required outside the device. Therefore, the MIM type and MIS type electron-emitting devices have a problem that they are destroyed by sputtering due to ionization of gas molecules, and ozone is generated, like the Spindt-type, CNT-type, and BN-type electron-emitting devices. It can be overcome.

例えば、特許文献1には、基板上に、下部電極、導電層、絶縁層、上部電極が形成された電子放出素子であって、上記絶縁層内に絶縁層を構成する元素の一部またはすべてから成る微粒子または欠陥構造を含有する電子放出素子が開示されている。この電子放出素子では、上部電極と下部電極との間に所定電圧を印加すると、電子が下部電極から導電層を通り、絶縁層内の微粒子または欠陥構造を伝わり加速され、上部電極より真空中に電子が放出される。特許文献1の電子放出素子は、上記のような積層構造を取ることにより、電子放出軌道が基板面に対してほぼ垂直になるため、電子の直進性が良く、画像表示装置に適していると報告されている。   For example, Patent Document 1 discloses an electron-emitting device in which a lower electrode, a conductive layer, an insulating layer, and an upper electrode are formed on a substrate, and a part or all of elements constituting the insulating layer in the insulating layer. An electron-emitting device containing a fine particle or a defect structure consisting of is disclosed. In this electron-emitting device, when a predetermined voltage is applied between the upper electrode and the lower electrode, electrons pass from the lower electrode through the conductive layer, are transmitted through the fine particles or defect structure in the insulating layer, and are accelerated into the vacuum from the upper electrode. Electrons are emitted. The electron-emitting device disclosed in Patent Document 1 has a stacked structure as described above, so that the electron-emitting trajectory is substantially perpendicular to the substrate surface, so that the straightness of electrons is good and suitable for an image display device. It has been reported.

特開平11−297190号公報(平成11年11月29日公開)JP 11-297190 A (published November 29, 1999)

しかし、特許文献1の電子放出素子では、実施例の記載に従って製造すると、一般的に真空系で製造する必要があり、製造装置も大掛かりなものとなる。   However, when the electron-emitting device of Patent Document 1 is manufactured according to the description of the embodiments, it is generally necessary to manufacture it in a vacuum system, and the manufacturing apparatus becomes large.

本発明は、上記課題に鑑みなされたものであり、その目的は、大気中で容易に製造することが可能であり、安定かつ良好に電子放出可能な電子放出素子の製造方法等を提供することである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing an electron-emitting device that can be easily manufactured in the air and can emit electrons stably and satisfactorily. It is.

本発明の電子放出素子の製造方法は、上記課題を解決するために、電極基板と、薄膜電極と、該電極基板と該薄膜電極との間の電子加速層と、を有し、上記電極基板と上記薄膜電極との間に電圧が印加されると、上記電子加速層で電子を加速させて、上記薄膜電極から該電子を放出させる電子放出素子の製造方法であって、上記電極基板上に、導電微粒子が分散溶媒に分散された導電微粒子分散液を塗布した後、平均粒径が上記導電微粒子のそれより大きい絶縁体微粒子が分散溶媒に分散された絶縁体微粒子分散液を塗布して、上記電子加速層を形成する電子加速層形成工程を含むことを特徴としている。   In order to solve the above-described problems, a method for manufacturing an electron-emitting device of the present invention includes an electrode substrate, a thin film electrode, and an electron acceleration layer between the electrode substrate and the thin film electrode. When the voltage is applied between the thin film electrode and the thin film electrode, the electron acceleration layer accelerates the electron to emit the electron from the thin film electrode. Then, after applying a conductive fine particle dispersion in which conductive fine particles are dispersed in a dispersion solvent, an insulating fine particle dispersion in which insulator fine particles having an average particle size larger than that of the conductive fine particles is dispersed in a dispersion solvent is applied. An electron acceleration layer forming step for forming the electron acceleration layer is included.

上記方法によると、電極基板と薄膜電極との間に、絶縁体微粒子と導電微粒子とが含まれる電子加速層を有する電子放出素子は、両微粒子を電極基板上に塗布するという簡易な製造プロセスにより、大気中で素子を製造することができる。しかしながら、ここで、電子加速層が微粒子から成ることから、電極基板と微粒子との接点が電極と電子加速層の導電経路となるために電流経路が制限される。そこで、電極基板上に導電微粒子分散液を塗布した後に、絶縁体微粒子分散液を塗布して電子加速層を形成することで、電極基板と電子加速層との界面に導電微粒子を多く存在させることができる。これにより、電極基板と電子加速層との導電経路を多く確保できるため、安定かつ良好な電子放出量を得ることが可能な電子放出素子を製造することができる。   According to the above method, the electron-emitting device having the electron acceleration layer including the insulating fine particles and the conductive fine particles between the electrode substrate and the thin film electrode is obtained by a simple manufacturing process in which both fine particles are applied on the electrode substrate. The device can be manufactured in the atmosphere. However, since the electron acceleration layer is made of fine particles, the contact between the electrode substrate and the fine particles serves as a conductive path between the electrode and the electron acceleration layer, so that the current path is limited. Therefore, after applying the conductive fine particle dispersion on the electrode substrate, the insulator fine particle dispersion is applied to form an electron acceleration layer, so that many conductive fine particles exist at the interface between the electrode substrate and the electron acceleration layer. Can do. As a result, a large number of conductive paths between the electrode substrate and the electron acceleration layer can be secured, so that an electron-emitting device capable of obtaining a stable and good electron emission amount can be manufactured.

なお、導電微粒子層の上から絶縁体微粒子分散液を塗布したときに、導電微粒子の大半は電極基板上で層を形成したままであるが、一部の導電微粒子が絶縁体微粒子分散液を滴下した際の衝撃で舞い上がり、絶縁体微粒子分散液中に混ざり込み、絶縁体微粒子分散液中の分散溶媒が揮発した後も絶縁体粒子の層内に残留することで、絶縁体微粒子層に導電微粒子が少し混在した電子加速層ができると考えられる。   When the insulating fine particle dispersion is applied from above the conductive fine particle layer, most of the conductive fine particles remain formed on the electrode substrate, but some of the conductive fine particles drop the insulating fine particle dispersion. So that it is mixed in the insulator fine particle dispersion and remains in the insulator particle layer even after the dispersion solvent in the insulator fine particle volatilizes. It is thought that an electron acceleration layer with a little mixed is made.

よって、上記方法によると、大気中で容易に製造することが可能であり、安定かつ良好に電子放出可能な電子放出素子の大気中で容易に製造することが可能であり、安定かつ良好に電子放出可能な電子放出素子を製造することができる。   Therefore, according to the above method, it is possible to easily manufacture in the atmosphere, and it is possible to easily manufacture in the atmosphere an electron-emitting device capable of emitting electrons stably and satisfactorily. A dischargeable electron-emitting device can be manufactured.

また、本発明の電子放出素子の製造方法では、上記方法に加え、上記絶縁体微粒子分散液と上記導電微粒子分散液とは、それぞれ異なる分散溶媒を含んでもよい。   In the method for manufacturing an electron-emitting device of the present invention, in addition to the above method, the insulating fine particle dispersion and the conductive fine particle dispersion may contain different dispersion solvents.

ここで、絶縁体微粒子と導電微粒子とにおいて、それぞれ分散させやすい分散溶媒が異なる場合、次のような問題が発生する。絶縁体微粒子分散液と導電微粒子分散液とが異なる分散溶媒を含む場合には、両微粒子混合時に凝集体の発生が起こり易くなる。そこで、この両微粒子混合時の凝集体の発生を防ぐために、絶縁体微粒子と導電微粒子とでどちらか一方の分散性のよい分散溶媒に揃えると、他方の分散液では微粒子の分散性が低下し凝集体が発生する。よって、結局凝集体の発生の解決にはならない。   Here, the following problems occur when the insulating fine particles and the conductive fine particles have different dispersion solvents that are easy to disperse. In the case where the insulating fine particle dispersion and the conductive fine particle dispersion contain different dispersion solvents, agglomerates are likely to occur when both fine particles are mixed. Therefore, in order to prevent the formation of aggregates when both fine particles are mixed, if one of the insulating fine particles and the conductive fine particles is aligned with a dispersion solvent having good dispersibility, the dispersibility of the fine particles is reduced in the other dispersion. Aggregates are generated. Therefore, it does not solve the generation of aggregates after all.

しかし、本発明に係る上記方法によると、絶縁体微粒子と導電微粒子とで分散させやすい分散溶媒とが異なっても、両者を混合せずに、導電微粒子分散液を塗布した後に絶縁体微粒子分散液を塗布することにより、両微粒子の分散性を保ったまま電子加速層を形成できる。つまり、絶縁体微粒子と導電微粒子とで分散性の高い分散溶媒が異なっても、絶縁体微粒子の凝集体や導電微粒子の凝集体を含まない均一な電子加速層を形成することができる。   However, according to the above method according to the present invention, the insulating fine particle dispersion liquid is applied after the conductive fine particle dispersion is applied without mixing both, even if the dispersion fine particles of the insulating fine particles and the conductive fine particles are different. By applying, an electron acceleration layer can be formed while maintaining the dispersibility of both fine particles. That is, a uniform electron acceleration layer that does not contain aggregates of insulating fine particles or conductive fine particles can be formed even if the dispersion solvent having high dispersibility is different between the insulating fine particles and the conductive fine particles.

また、本発明の電子放出素子の製造方法では、上記方法に加え、上記絶縁体微粒子の平均粒径は、3〜10nmであるのが好ましい。   In the method for manufacturing an electron-emitting device according to the present invention, in addition to the above method, the average particle diameter of the insulating fine particles is preferably 3 to 10 nm.

導電微粒子の平均粒径を3〜10nmとすることにより、電子加速層内で、導電微粒子による導電パスが形成されず、電子加速層内での絶縁破壊が起こり難くなる。また原理的には不明確な点が多いが、平均粒径が上記範囲内の導電微粒子を用いることで、弾道電子が効率よく生成される。   By setting the average particle diameter of the conductive fine particles to 3 to 10 nm, a conductive path due to the conductive fine particles is not formed in the electron acceleration layer, and dielectric breakdown does not easily occur in the electron acceleration layer. Although there are many unclear points in principle, ballistic electrons are efficiently generated by using conductive fine particles having an average particle diameter within the above range.

また、上記絶縁体微粒子の平均粒径は、10〜500nmであるのが好ましい。この場合、粒子径の分散状態は平均粒径に対してブロードであってもよく、例えば平均粒径50nmの微粒子が、20〜100nmの領域にその粒子径分布を有していても問題ない。絶縁体微粒子の平均粒径が導電微粒子の平均粒径よりも大きいことで、絶縁体微粒子の平均粒径よりも小さい導電微粒子の内部から外部へと効率よく熱を伝導させて、素子内を電流が流れる際に発生するジュール熱を効率よく逃がすことができ、電子放出素子が熱で破壊されることを防ぐことができる。さらに、電子加速層における抵抗値の調整を行いやすくすることができる。   The average particle size of the insulating fine particles is preferably 10 to 500 nm. In this case, the dispersion state of the particle diameter may be broad with respect to the average particle diameter. For example, fine particles having an average particle diameter of 50 nm may have a particle diameter distribution in the region of 20 to 100 nm. Since the average particle size of the insulating fine particles is larger than the average particle size of the conductive fine particles, heat can be efficiently conducted from the inside to the outside of the conductive fine particles smaller than the average particle size of the insulating fine particles, and the current inside the device Joule heat generated when flowing can be efficiently released, and the electron-emitting device can be prevented from being destroyed by heat. Furthermore, the resistance value in the electron acceleration layer can be easily adjusted.

ここで、絶縁体微粒子の平均粒径が10nmより小さいと、導電微粒子層と電子加速層の間において、絶縁体微粒子1個に対して接する導電微粒子の個数が少なく、電極基板から電子加速層への導電経路を多く形成するという導電微粒子層としての効果が発揮できない。他方、絶縁体微粒子の平均粒径が500nmより大きい場合には、導電微粒子層と電子加速層の間において、絶縁体微粒子1個に対して接する導電微粒子の個数は多いものの、絶縁体微粒子の隙間が大きいために素子全体として導電経路は少なく、導電微粒子層としての効果が発揮できないという不都合がある。よって、平均粒径3〜10nmの導電微粒子を用いる場合、絶縁体微粒子の平均粒径は、10〜500nmであるのが好ましい。   Here, if the average particle diameter of the insulating fine particles is smaller than 10 nm, the number of conductive fine particles in contact with one insulating fine particle is small between the conductive fine particle layer and the electron accelerating layer, and from the electrode substrate to the electron accelerating layer. The effect as a conductive fine particle layer of forming a large number of conductive paths cannot be exhibited. On the other hand, when the average particle size of the insulating fine particles is larger than 500 nm, the number of conductive fine particles in contact with one insulating fine particle is large between the conductive fine particle layer and the electron acceleration layer, but the gap between the insulating fine particles. Therefore, there are few conductive paths in the entire element, and there is a disadvantage that the effect as the conductive fine particle layer cannot be exhibited. Therefore, when using conductive fine particles having an average particle diameter of 3 to 10 nm, the average particle diameter of the insulating fine particles is preferably 10 to 500 nm.

また、本発明の電子放出素子の製造方法では、上記方法に加え、上記導電微粒子の分散液として、上記導電微粒子のナノコロイド液を液体の状態で用いてもよい。   In addition to the above method, in the method for manufacturing an electron-emitting device of the present invention, the nanoparticle colloid liquid of conductive particles may be used in a liquid state as the dispersion liquid of the conductive particles.

上記方法によると、絶縁体層に導電微粒子のナノコロイド液を塗布する。ここで、ナノコロイド液を液体の状態で使用すると、導電微粒子が分散されていて凝集体となりにくい。よって、粒子間凝集のない分散された導電微粒子を電極基板上に塗布できる。   According to the above method, a nano colloidal solution of conductive fine particles is applied to the insulator layer. Here, when the nanocolloid liquid is used in a liquid state, the conductive fine particles are dispersed, and it is difficult to form an aggregate. Therefore, dispersed conductive fine particles having no interparticle aggregation can be applied on the electrode substrate.

本発明に係る電子放出素子は、上記課題を解決するために、上記いずれか1つの電子放出素子の製造方法によって製造されることを特徴としている。   In order to solve the above-mentioned problems, an electron-emitting device according to the present invention is manufactured by any one of the above-described methods for manufacturing an electron-emitting device.

本発明に係る方法で製造された電子放出素子では、電極基板と薄膜電極との間の電子加速層は、絶縁体微粒子と導電微粒子とが分散された薄膜の層であり、半導電性を有する。この半導電性の電子加速層に電圧を印加すると、電子加速層内に電流が流れ、その一部は印加電圧の形成する強電界により弾道電子となって放出される。ここで、電子放出素子の電子加速層は、電極基板と電子加速層との界面に導電微粒子が多く存在している。これにより、電極基板と電子加速層との導電性が良くなるため(電極基板と電子加速層との導電経路を多く確保できるため)安定かつ良好な電子放出量を得ることが可能である。   In the electron-emitting device manufactured by the method according to the present invention, the electron acceleration layer between the electrode substrate and the thin film electrode is a thin film layer in which insulator fine particles and conductive fine particles are dispersed and has semiconductivity. . When a voltage is applied to the semiconductive electron acceleration layer, a current flows in the electron acceleration layer, and a part thereof is emitted as ballistic electrons by the strong electric field formed by the applied voltage. Here, the electron acceleration layer of the electron-emitting device has many conductive fine particles at the interface between the electrode substrate and the electron acceleration layer. As a result, the conductivity between the electrode substrate and the electron acceleration layer is improved (since many conductive paths between the electrode substrate and the electron acceleration layer can be secured), and a stable and good electron emission amount can be obtained.

本発明の電子放出装置は、上記いずれか1つの電子放出素子と、上記電極基板と上記薄膜電極との間に電圧を印加する電源部と、を備えたことを特徴としている。   The electron-emitting device of the present invention includes any one of the above-described electron-emitting devices and a power supply unit that applies a voltage between the electrode substrate and the thin-film electrode.

上記構成によると、電気的導通を確保して電子放出素子の内部に十分な電流を流し、薄膜電極から弾道電子を安定かつ良好に放出させることができる。   According to the above configuration, it is possible to ensure electrical continuity and to allow a sufficient current to flow inside the electron-emitting device, so that ballistic electrons can be stably and satisfactorily emitted from the thin-film electrode.

また、本発明の電子放出装置を、帯電装置、及びこの帯電装置を備えた画像形成装置に用いることにより、高効率で電子放出できるので、高効率で帯電することができる。さらに、放電を伴わず、オゾンやNOxを始めとする有害な物質を発生させることなく、長期間安定して、被帯電体を帯電させることができる。   Further, by using the electron emission device of the present invention for a charging device and an image forming apparatus equipped with the charging device, electrons can be emitted with high efficiency, so that charging can be performed with high efficiency. Furthermore, the object to be charged can be stably charged for a long period of time without generating harmful substances such as ozone and NOx without discharging.

また、本発明の電子放出装置を、電子線硬化装置に用いることにより、安定かつ良好に電子放出できるので、高安定かつ良好に電子線を照射することができる。また、面積的に電子線硬化でき、マスクレス化が図れ、低価格化・高スループット化を実現することができる。   Further, by using the electron emission device of the present invention in an electron beam curing device, it is possible to emit electrons stably and satisfactorily, so that an electron beam can be irradiated with high stability and goodness. In addition, the electron beam can be cured in terms of area, masklessness can be achieved, and low cost and high throughput can be realized.

さらに、本発明の電子放出装置を自発光デバイス、及びこの自発光デバイスを備えた画像表示装置に用いることにより、安定かつ良好に電子放出できるので、高効率で発光させることができる。また、安定で良好な面発光を実現する自発光デバイスを提供することができる。   Further, by using the electron emitting device of the present invention for a self-luminous device and an image display device equipped with the self-luminous device, electrons can be emitted stably and satisfactorily, and light can be emitted with high efficiency. In addition, it is possible to provide a self-luminous device that realizes stable and good surface light emission.

また、本発明の電子放出装置を、送風装置あるいは冷却装置に用いることにより、安定かつ良好に電子放出できるので、安定かつ良好に冷却することができる。また、放電を伴わず、オゾンやNOxを始めとする有害な物質の発生がなく、被冷却体表面でのスリップ効果を利用することにより効率よく冷却することができる。   Further, by using the electron emission device of the present invention for a blower device or a cooling device, electrons can be emitted stably and satisfactorily, so that it can be cooled stably and satisfactorily. Further, no harmful substances such as ozone and NOx are generated without discharge, and cooling can be efficiently performed by utilizing the slip effect on the surface of the object to be cooled.

本発明の電子放出素子の製造方法は、上記のように、上記電極基板上に、導電微粒子が分散溶媒に分散された導電微粒子分散液を塗布した後、平均粒径が上記導電微粒子のそれより大きい絶縁体微粒子が分散溶媒に分散された絶縁体微粒子分散液を塗布して、上記電子加速層を形成する電子加速層形成工程を含む。   As described above, the method for manufacturing an electron-emitting device according to the present invention includes applying a conductive fine particle dispersion in which conductive fine particles are dispersed in a dispersion solvent to the electrode substrate, and then having an average particle size of that of the conductive fine particles. It includes an electron acceleration layer forming step of forming the electron acceleration layer by applying an insulator fine particle dispersion in which large insulator fine particles are dispersed in a dispersion solvent.

上記方法によると、電極基板と薄膜電極との間に、絶縁体微粒子と導電微粒子とが含まれる電子加速層を有する電子放出素子は、両微粒子を電極基板上に塗布するという簡易な製造プロセスにより、大気中で素子を製造することができる。しかしながら、ここで、電子加速層が微粒子から成ることから、電極基板と微粒子との接点が電極と電子加速層の導電経路となるために電流経路が制限される。そこで、電極基板上に導電微粒子分散液を塗布した後に、絶縁体微粒子分散液を塗布して電子加速層を形成することで、電極基板と電子加速層との界面に導電微粒子を多く存在させることができる。これにより、電極基板と電子加速層との導電経路を多く確保できるため、安定かつ良好な電子放出量を得ることが可能な電子放出素子を製造することができる。   According to the above method, the electron-emitting device having the electron acceleration layer including the insulating fine particles and the conductive fine particles between the electrode substrate and the thin film electrode is obtained by a simple manufacturing process in which both fine particles are applied on the electrode substrate. The device can be manufactured in the atmosphere. However, since the electron acceleration layer is made of fine particles, the contact between the electrode substrate and the fine particles serves as a conductive path between the electrode and the electron acceleration layer, so that the current path is limited. Therefore, after applying the conductive fine particle dispersion on the electrode substrate, the insulator fine particle dispersion is applied to form an electron acceleration layer, so that many conductive fine particles exist at the interface between the electrode substrate and the electron acceleration layer. Can do. As a result, a large number of conductive paths between the electrode substrate and the electron acceleration layer can be secured, so that an electron-emitting device capable of obtaining a stable and good electron emission amount can be manufactured.

なお、導電微粒子層の上から絶縁体粒子分散液を塗布したときに、導電微粒子の大半は電極基板上で層を形成したままであるが、一部の導電微粒子が絶縁体微粒子分散液を滴下した際の衝撃で舞い上がり、絶縁体微粒子分散液中に混ざり込み、絶縁体微粒子分散液中の分散溶媒が揮発した後も絶縁体粒子の層内に残留することで、絶縁体微粒子層に導電微粒子が少し混在した電子加速層ができると考えられる。   When the insulating particle dispersion is applied from above the conductive fine particle layer, most of the conductive fine particles remain formed on the electrode substrate, but some of the conductive fine particles drop the insulating fine particle dispersion. So that it is mixed in the insulator fine particle dispersion and remains in the insulator particle layer even after the dispersion solvent in the insulator fine particle volatilizes. It is thought that an electron acceleration layer with a little mixed is made.

よって、上記方法によると、大気中で容易に製造することが可能であり、安定かつ良好に電子放出可能な電子放出素子の大気中で容易に製造することが可能であり、安定かつ良好に電子放出可能な電子放出素子を製造することができる。   Therefore, according to the above method, it is possible to easily manufacture in the atmosphere, and it is possible to easily manufacture in the atmosphere an electron-emitting device capable of emitting electrons stably and satisfactorily. A dischargeable electron-emitting device can be manufactured.

本発明の電子放出素子の構成を示す模式図である。It is a schematic diagram which shows the structure of the electron-emitting element of this invention. 本発明の電子放出装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the electron emission apparatus of this invention. 電子放出実験の測定系を示す図である。It is a figure which shows the measurement system of an electron emission experiment. 本発明の電子放出装置を用いた帯電装置の一例を示す図である。It is a figure which shows an example of the charging device using the electron emission apparatus of this invention. 本発明の電子放出装置を用いた電子線硬化装置の一例を示す図である。It is a figure which shows an example of the electron beam hardening apparatus using the electron emission apparatus of this invention. 本発明の電子放出装置を用いた自発光デバイスの一例を示す図である。It is a figure which shows an example of the self-light-emitting device using the electron emission apparatus of this invention. 本発明の電子放出装置を用いた自発光デバイスの他の一例を示す図である。It is a figure which shows another example of the self-light-emitting device using the electron emission apparatus of this invention. 本発明の電子放出装置を用いた自発光デバイスの更に別の一例を示す図である。It is a figure which shows another example of the self-light-emitting device using the electron emission apparatus of this invention. 本発明の電子放出装置を用いた自発光デバイスを具備する画像表示装置の他の一例を示す図である。It is a figure which shows another example of the image display apparatus which comprises the self-light-emitting device using the electron emission apparatus of this invention. 本発明の電子放出装置を用いた送風装置及びそれを具備した冷却装置の一例を示す図である。It is a figure which shows an example of the air blower using the electron emission apparatus of this invention, and a cooling device provided with the same. 本発明の電子放出装置を用いた送風装置及びそれを具備した冷却装置の別の一例を示す図である。It is a figure which shows another example of the air blower using the electron-emitting apparatus of this invention, and a cooling device provided with the same.

以下、本発明の電子放出素子の実施形態および実施例について、図1〜11を参照しながら具体的に説明する。なお、以下に記述する実施の形態および実施例は本発明の具体的な一例に過ぎず、本発明はこれらよって限定されるものではない。   Hereinafter, embodiments and examples of the electron-emitting device of the present invention will be specifically described with reference to FIGS. Note that the embodiments and examples described below are merely specific examples of the present invention, and the present invention is not limited thereto.

〔実施の形態1〕
(電子放出素子の構成)
図1は、本発明の一実施形態の電子放出素子の構成の一部を示す模式図である。図1に示すように、本実施形態の電子放出素子1は、下部電極となる電極基板2と、上部電極となる薄膜電極3と、その間に存在する電子加速層4と、電極基板2と電子加速層4との間の導電微粒子層16からなる。また、図2は、電子放出素子1を有する本発明の一実施形態の電子放出装置を示す図である。図2に示すように、電極基板2と薄膜電極3とは電源7に繋がっており、互いに対向して配置された電極基板2と薄膜電極3との間に電圧を印加できるようになっている。電子放出素子1は、電極基板2と薄膜電極3との間に電圧を印加することで、電極基板2と薄膜電極3との間、つまり、電子加速層4に電流を流し、その一部を印加電圧の形成する強電界により弾道電子として、薄膜電極3を透過および/あるいは薄膜電極3の隙間から放出させる。なお、電子放出素子1と電源7とから電子放出装置10が成る。
[Embodiment 1]
(Configuration of electron-emitting device)
FIG. 1 is a schematic diagram showing a part of the configuration of an electron-emitting device according to an embodiment of the present invention. As shown in FIG. 1, an electron-emitting device 1 according to this embodiment includes an electrode substrate 2 serving as a lower electrode, a thin film electrode 3 serving as an upper electrode, an electron acceleration layer 4 existing therebetween, an electrode substrate 2 and an electron. It consists of a conductive fine particle layer 16 between the acceleration layer 4. FIG. 2 is a view showing an electron emission apparatus according to an embodiment of the present invention having the electron emission element 1. As shown in FIG. 2, the electrode substrate 2 and the thin film electrode 3 are connected to a power source 7, and a voltage can be applied between the electrode substrate 2 and the thin film electrode 3 arranged to face each other. . The electron-emitting device 1 applies a voltage between the electrode substrate 2 and the thin film electrode 3, thereby passing a current between the electrode substrate 2 and the thin film electrode 3, that is, the electron acceleration layer 4. The thin film electrode 3 is transmitted and / or emitted from the gap between the thin film electrodes 3 as ballistic electrons by the strong electric field formed by the applied voltage. The electron emission device 10 is composed of the electron emission element 1 and the power source 7.

下部電極となる電極基板2は、電子放出素子の支持体の役割を担う。そのため、ある程度の強度を有し、直に接する物質との接着性が良好で、適度な導電性を有するものであれば、特に制限なく用いることができる。例えばSUSやTi、Cu等の金属基板、SiやGe、GaAs等の半導体基板、ガラス基板のような絶縁体基板、プラスティック基板等が挙げられる。例えばガラス基板のような絶縁体基板を用いるのであれば、その電子加速層4との界面に金属などの導電性物質を電極として付着させることによって、下部電極となる電極基板2として用いることができる。上記導電性物質としては、導電性に優れた材料を、マグネトロンスパッタ等を用いて薄膜形成できれば、その構成材料は特に問わない。ただし、大気中での安定動作を所望するのであれば、抗酸化力の高い導電体を用いることが好ましく、貴金属を用いることがより好ましい。また、酸化物導電材料として、透明電極に広く利用されているITO薄膜も有用である。また、強靭な薄膜を形成できるという点で、例えば、ガラス基板表面にTiを200nm成膜し、さらに重ねてCuを1000nm成膜した金属薄膜を用いてもよいが、これら材料および数値に限定されることはない。   The electrode substrate 2 serving as the lower electrode serves as a support for the electron-emitting device. Therefore, any material can be used without particular limitation as long as it has a certain degree of strength, has good adhesion to a directly contacting substance, and has appropriate conductivity. Examples thereof include metal substrates such as SUS, Ti, and Cu, semiconductor substrates such as Si, Ge, and GaAs, insulator substrates such as glass substrates, and plastic substrates. For example, if an insulator substrate such as a glass substrate is used, it can be used as the electrode substrate 2 to be the lower electrode by attaching a conductive material such as a metal as an electrode to the interface with the electron acceleration layer 4. . The conductive material is not particularly limited as long as a material having excellent conductivity can be formed into a thin film using magnetron sputtering or the like. However, if a stable operation in the air is desired, it is preferable to use a conductor with high antioxidation power, and it is more preferable to use a noble metal. An ITO thin film widely used for transparent electrodes is also useful as an oxide conductive material. In addition, for example, a metal thin film in which a Ti film is formed to 200 nm on a glass substrate surface and a Cu film is further formed to a 1000 nm thickness may be used in that a tough thin film can be formed. Never happen.

薄膜電極3は、電子加速層4内に電圧を印加させるものである。そのため、電圧の印加が可能となるような材料であれば特に制限なく用いることができる。ただし、電子加速層4内で加速され高エネルギーとなった電子をなるべくエネルギーロス無く透過させて放出させるという観点から、仕事関数が低くかつ薄膜を形成することが可能な材料であれば、より高い効果が期待できる。このような材料として、例えば、仕事関数が4〜5eVに該当する金、銀、炭素、タングステン、チタン、アルミ、パラジウムなどが挙げられる。中でも大気圧中での動作を想定した場合、酸化物および硫化物形成反応のない金が、最良な材料となる。また、酸化物形成反応の比較的小さい銀、パラジウム、タングステンなども問題なく実使用に耐える材料である。また薄膜電極3の膜厚は、電子放出素子1から外部へ電子を効率良く放出させる条件として重要であり、10〜55nmの範囲とすることが好ましい。薄膜電極3を平面電極として機能させるための最低膜厚は10nmであり、これ未満の膜厚では、電気的導通を確保できない。一方、電子放出素子1から外部へ電子を放出させるための最大膜厚は55nmであり、これを超える膜厚では弾道電子の透過が起こらず、薄膜電極3で弾道電子の吸収あるいは反射による電子加速層4への再捕獲が生じてしまう。   The thin film electrode 3 applies a voltage in the electron acceleration layer 4. Therefore, any material that can be applied with voltage can be used without particular limitation. However, from the standpoint that electrons accelerated and become high energy in the electron acceleration layer 4 are transmitted with as little energy loss as possible and emitted, a material having a low work function and capable of forming a thin film is higher. The effect can be expected. Examples of such a material include gold, silver, carbon, tungsten, titanium, aluminum, palladium, and the like whose work function corresponds to 4 to 5 eV. In particular, assuming operation at atmospheric pressure, gold without oxide and sulfide formation reaction is the best material. In addition, silver, palladium, tungsten, and the like, which have a relatively small oxide formation reaction, are materials that can withstand actual use without problems. The film thickness of the thin-film electrode 3 is important as a condition for efficiently emitting electrons from the electron-emitting device 1 to the outside, and is preferably in the range of 10 to 55 nm. The minimum film thickness for causing the thin film electrode 3 to function as a planar electrode is 10 nm. If the film thickness is less than this, electrical conduction cannot be ensured. On the other hand, the maximum film thickness for emitting electrons from the electron-emitting device 1 to the outside is 55 nm. If the film thickness exceeds this, no ballistic electrons are transmitted, and the thin-film electrode 3 accelerates electrons by absorbing or reflecting ballistic electrons. Recapture into layer 4 will occur.

電子加速層4は、図1に示すように、絶縁体微粒子5と導電微粒子6とが分散されており、導電微粒子6は電極基板2側に偏在している。つまり、導電微粒子層16を構成する導電微粒子6の一部が電子加速層4に存在する。もしくは、電子加速層4は、導電微粒子6を含まず絶縁体微粒子5を含む微粒子層と導電微粒子層16とに分れて成る。   As shown in FIG. 1, in the electron acceleration layer 4, insulator fine particles 5 and conductive fine particles 6 are dispersed, and the conductive fine particles 6 are unevenly distributed on the electrode substrate 2 side. That is, a part of the conductive fine particles 6 constituting the conductive fine particle layer 16 exists in the electron acceleration layer 4. Alternatively, the electron acceleration layer 4 is divided into a fine particle layer containing the insulating fine particles 5 and no conductive fine particles 6 and a conductive fine particle layer 16.

絶縁体微粒子5は、その材料は絶縁性を持つものであれば特に制限なく用いることができる。絶縁体微粒子5の材料は、例えば、SiO、Al、TiOといったものが実用的となる。ただし、表面処理が施された小粒径シリカ粒子を用いると、それよりも粒子径の大きな球状シリカ粒子を用いるときと比べて、溶媒中に占めるシリカ粒子の表面積が増加し、溶液粘度が上昇するため、電子加速層4の膜厚が若干増加する傾向にある。また、絶縁体微粒子5の材料には、有機ポリマーから成る微粒子を用いてもよく、例えば、JSR株式会社の製造販売するスチレン/ジビニルベンゼンから成る高架橋微粒子(SX8743)、または日本ペイント株式会社の製造販売するスチレン・アクリル微粒子のファインスフェアシリーズが利用可能である。ここで、絶縁体微粒子5は、2種類以上の異なる粒子を用いてもよく、また、粒径のピークが異なる粒子を用いてもよく、あるいは、単一粒子で粒径がブロードな分布のものを用いてもよい。 The insulating fine particles 5 can be used without particular limitation as long as the material has insulating properties. As the material of the insulating fine particles 5, for example, a material such as SiO 2 , Al 2 O 3 , or TiO 2 becomes practical. However, using small-sized silica particles with surface treatment increases the surface area of the silica particles in the solvent and increases the solution viscosity compared to using spherical silica particles with a larger particle diameter. Therefore, the film thickness of the electron acceleration layer 4 tends to increase slightly. The material of the insulating fine particles 5 may be fine particles made of an organic polymer. For example, highly crosslinked fine particles (SX8743) made of styrene / divinylbenzene manufactured and sold by JSR Corporation, or manufactured by Nippon Paint Corporation. The fine sphere series of styrene / acrylic fine particles to be sold is available. Here, the insulating fine particles 5 may use two or more kinds of different particles, may use particles having different particle size peaks, or have a single particle and a broad distribution of particle sizes. May be used.

また絶縁体微粒子5の平均粒径は、導電微粒子6に対して優位な放熱効果を得るため、導電微粒子6の平均粒径よりも大きいことが好ましい。この場合、粒子径の分散状態は平均粒径に対してブロードであってもよく、例えば平均粒径50nmの微粒子が、20〜100nmの領域にその粒子径分布を有していても問題ない。絶縁体微粒子5が導電微粒子6の平均粒径よりも大きいと、絶縁体微粒子5の平均粒径よりも小さい導電微粒子6の内部から外部へと効率よく熱伝導させて、素子内を電流が流れる際に発生するジュール熱を効率よく逃がすことができ、電子放出素子が熱で破壊されることを防ぐことができる。さらに、電子加速層4における抵抗値の調整を行いやすくすることができる。   The average particle diameter of the insulating fine particles 5 is preferably larger than the average particle diameter of the conductive fine particles 6 in order to obtain a heat radiation effect superior to that of the conductive fine particles 6. In this case, the dispersion state of the particle diameter may be broad with respect to the average particle diameter. For example, fine particles having an average particle diameter of 50 nm may have a particle diameter distribution in the region of 20 to 100 nm. If the insulating fine particles 5 are larger than the average particle size of the conductive fine particles 6, the conductive fine particles 6 smaller than the average particle size of the insulating fine particles 5 are efficiently conducted from the inside to the outside, and a current flows in the element. Joule heat generated at the time can be efficiently released, and the electron-emitting device can be prevented from being destroyed by heat. Furthermore, the resistance value in the electron acceleration layer 4 can be easily adjusted.

さらに、電子加速層4を、後述のように絶縁体微粒子5を含む微粒子層上に導電微粒子6を塗布して作成する場合、導電微粒子6の微粒子層への浸透度合いは、絶縁体微粒子5の種類および/または平均粒径、導電微粒子6の種類および/または平均粒径、絶縁体微粒子5および導電微粒子6の組合せなどに依存する。すなわち、絶縁体微粒子5の平均粒径が小さいと、塗布した導電微粒子6の大部分が、微粒子層内部に浸透せず、上部に堆積する。他方、絶縁体微粒子5の平均粒径が大きいと、微粒子層の粒子間の隙間が大きくなりすぎ、微粒子層内に留まる導電微粒子6が少なくなる。よって、平均粒径3〜10nmの導電微粒子6を用いる場合に導電微粒子の微粒子層中への浸透度合いを制御するためには、絶縁体微粒子5の平均粒径は、10〜500nmであるのが好ましい。   Further, when the electron acceleration layer 4 is formed by applying the conductive fine particles 6 on the fine particle layer including the insulating fine particles 5 as described later, the degree of penetration of the conductive fine particles 6 into the fine particle layer is determined by the insulating fine particles 5. It depends on the type and / or average particle size, the type and / or average particle size of the conductive fine particles 6, the combination of the insulating fine particles 5 and the conductive fine particles 6, and the like. That is, when the average particle diameter of the insulating fine particles 5 is small, most of the applied conductive fine particles 6 do not penetrate into the fine particle layer and deposit on the upper part. On the other hand, when the average particle diameter of the insulating fine particles 5 is large, the gaps between the particles of the fine particle layer become too large, and the conductive fine particles 6 staying in the fine particle layer are reduced. Therefore, in order to control the degree of penetration of the conductive fine particles into the fine particle layer when using the conductive fine particles 6 having an average particle diameter of 3 to 10 nm, the average particle diameter of the insulating fine particles 5 is 10 to 500 nm. preferable.

導電微粒子6は、その材料としては、弾道電子を生成するという動作原理の上ではどのような導電体でも用いることができる。ただし、抗酸化力が高い導電体であると、大気圧動作させたときの酸化劣化を避けることができる。ここで言う抗酸化力が高いとは、酸化物形成反応の低いことを指す。一般的に熱力学計算より求めた、酸化物生成自由エネルギーの変化量ΔG[kJ/mol]値が負で大きい程、酸化物の生成反応が起こり易いことを表す。本発明ではΔG>−450[kJ/mol]以上に該当する金属元素が、抗酸化力の高い導電微粒子として該当する。また、該当する導電微粒子の周囲に、その導電微粒子の大きさよりも小さい絶縁体物質を付着、または被覆することで、酸化物の生成反応をより起こし難くした状態の導電微粒子も、抗酸化力が高い導電微粒子に含まれる。抗酸化力が高い導電微粒子であることで、導電微粒子の、大気中の酸素による酸化などをはじめとする素子劣化を防ぐことができる。よって、電子放出素子の長寿命化を図ることができる。   As the material of the conductive fine particles 6, any conductor can be used on the principle of operation of generating ballistic electrons. However, if the conductor has a high anti-oxidation power, oxidative deterioration when operating at atmospheric pressure can be avoided. Here, the high antioxidant power means that the oxide forming reaction is low. In general, the larger the negative value ΔG [kJ / mol] value of the oxide formation free energy obtained by thermodynamic calculation, the easier the oxide formation reaction occurs. In the present invention, a metal element corresponding to ΔG> −450 [kJ / mol] or more corresponds to conductive fine particles having a high antioxidant power. In addition, the conductive fine particles in a state in which an oxide generation reaction is more difficult to occur by attaching or coating an insulating material smaller than the size of the conductive fine particles around the corresponding conductive fine particles have anti-oxidation power. Included in high conductive particles. The conductive fine particles having high anti-oxidation power can prevent device deterioration such as oxidation of the conductive fine particles by oxygen in the atmosphere. Therefore, the lifetime of the electron-emitting device can be extended.

抗酸化力が高い導電微粒子としては、貴金属、例えば、金、銀、白金、パラジウム、ニッケルといった材料が挙げられる。このような導電微粒子6は、公知の微粒子製造技術であるスパッタ法や噴霧加熱法を用いて作成可能であり、応用ナノ研究所が製造販売する銀ナノ粒子等の市販の金属微粒子粉体も利用可能である。弾道電子の生成の原理については後段で記載する。   Examples of the conductive fine particles having high anti-oxidation power include materials such as noble metals such as gold, silver, platinum, palladium, and nickel. Such conductive fine particles 6 can be prepared using a known fine particle production technique such as sputtering or spray heating, and also use commercially available metal fine particle powders such as silver nanoparticles produced and sold by Applied Nano Laboratory. Is possible. The principle of ballistic electron generation will be described later.

ここで、導電微粒子6の平均粒径は、3〜10nmであるのがより好ましい。このように、導電微粒子6の平均粒径を、好ましくは3〜10nmとすることにより、電子加速層4内で、導電微粒子6による導電パスが形成されず、電子加速層4内での絶縁破壊が起こり難くなる。また原理的には不明確な点が多いが、平均粒径が上記範囲内の導電微粒子6を用いることで、弾道電子が効率よく生成される。   Here, the average particle diameter of the conductive fine particles 6 is more preferably 3 to 10 nm. Thus, by setting the average particle diameter of the conductive fine particles 6 to preferably 3 to 10 nm, a conductive path by the conductive fine particles 6 is not formed in the electron acceleration layer 4, and dielectric breakdown in the electron acceleration layer 4 is achieved. Is less likely to occur. Although there are many unclear points in principle, ballistic electrons are efficiently generated by using the conductive fine particles 6 having an average particle diameter within the above range.

また、電子加速層4全体における導電微粒子6の割合は、0.5〜30重量%が好ましい。0.5重量%より少ない場合は導電微粒子として素子内電流を増加させる効果を発揮せず、30重量%より多い場合は導電微粒子の凝集が発生する。中でも、1〜10重量%であることがより好ましい。   The proportion of the conductive fine particles 6 in the entire electron acceleration layer 4 is preferably 0.5 to 30% by weight. When the amount is less than 0.5% by weight, the effect of increasing the current in the device as conductive fine particles is not exhibited, and when the amount is more than 30% by weight, aggregation of the conductive fine particles occurs. Especially, it is more preferable that it is 1 to 10 weight%.

なお、導電微粒子6の周囲には、導電微粒子6の大きさより小さい絶縁体物質である小絶縁体物質が存在していてもよく、この小絶縁体物質は、導電微粒子6の表面に付着する付着物質であってもよく、付着物質は、導電微粒子6の平均粒径より小さい形状の集合体として、導電微粒子6の表面を被膜する絶縁被膜であってもよい。小絶縁体物質としては、弾道電子を生成するという動作原理の上ではどのような絶縁体物質でも用いることができる。ただし、導電微粒子6の大きさより小さい絶縁体物質が導電微粒子6を被膜する絶縁被膜であり、絶縁被膜を導電微粒子6の酸化被膜によって賄った場合、大気中での酸化劣化により酸化皮膜の厚さが所望の膜厚以上に厚くなってしまう恐れがあるため、大気圧動作させた時の酸化劣化を避ける目的から、有機材料による絶縁被膜が好ましく、例えば、アルコラート、脂肪酸、アルカンチオールといった材料が挙げられる。この絶縁被膜の厚さは薄い方が有利であることが言える。   Note that a small insulator material, which is an insulator material smaller than the size of the conductive fine particles 6, may exist around the conductive fine particles 6, and the small insulator material adheres to the surface of the conductive fine particles 6. The substance may be a substance, and the attached substance may be an insulating film that coats the surface of the conductive fine particles 6 as an aggregate having a shape smaller than the average particle diameter of the conductive fine particles 6. As the small insulator material, any insulator material can be used on the principle of operation of generating ballistic electrons. However, when the insulating material smaller than the size of the conductive fine particle 6 is an insulating film that coats the conductive fine particle 6, and the insulating film is covered by the oxide film of the conductive fine particle 6, the thickness of the oxide film due to oxidative degradation in the atmosphere. In order to avoid oxidative degradation when operated at atmospheric pressure, an insulating film made of an organic material is preferable. For example, materials such as alcoholate, fatty acid, and alkanethiol are listed. It is done. It can be said that the thinner the insulating coating, the more advantageous.

また、導電微粒子6は、後述の製造方法において導電微粒子の分散液を作成する際の分散性の向上のために、表面処理を施されているのが好ましく、その表面処理が上記の絶縁被膜物質を被膜することであってもよい。   In addition, the conductive fine particles 6 are preferably subjected to a surface treatment in order to improve dispersibility when preparing a dispersion of conductive fine particles in the production method described later, and the surface treatment is performed on the above insulating coating substance. It may be to coat.

また、導電微粒子6は、電子加速層4に含まれる導電微粒子6の一部あるいは全部は、導電微粒子層16になって存在している。導電微粒子層16が形成されていることにより、電極基板2から電子加速層4へ流れる電流経路を多く確保することができる。   In addition, the conductive fine particles 6 partially or entirely of the conductive fine particles 6 included in the electron acceleration layer 4 are present as the conductive fine particle layer 16. By forming the conductive fine particle layer 16, many current paths flowing from the electrode substrate 2 to the electron acceleration layer 4 can be secured.

また、電子加速層4は薄いほど強電界がかかるため低電圧印加で電子を加速させることができるが、層厚を均一化できること、また層厚方向における電子加速層の抵抗調整が可能となることなどから、電子加速層4の層厚は、12〜6000nmが好ましく、300〜6000nmがより好ましい。   In addition, the thinner the electron acceleration layer 4 is, the stronger the electric field is applied, so that electrons can be accelerated by applying a low voltage, but the layer thickness can be made uniform and the resistance of the electron acceleration layer in the layer thickness direction can be adjusted. Therefore, the layer thickness of the electron acceleration layer 4 is preferably 12 to 6000 nm, and more preferably 300 to 6000 nm.

(電子放出原理)
次に、導電微粒子6の一部が電子加速層4に存在する場合の電子放出素子1の電子放出の原理は、次のように考えられる。図1に示すように、電子加速層4は、その大部分を絶縁体微粒子5で構成され、その隙間に導電微粒子6が点在している。絶縁体微粒子5および導電微粒子6の比率は、絶縁体微粒子5および導電微粒子6の総重量に対する絶縁体微粒子5の重量比率は、例えば80%に相当する状態である。このように、電子加速層4は絶縁体微粒子5と少数の導電微粒子6とで構成されるため、半導電性を有する。よって電子加速層4へ電圧を印加すると、極弱い電流が流れる。このとき、導電微粒子6の一部が、導電微粒子層16になっていることで、電極基板2から電子加速層4へ流れる電流経路が多く確保できている。電子加速層4の電圧電流特性は所謂バリスタ特性を示し、印加電圧の上昇に伴い急激に電流値を増加させる。この電流の一部は、印加電圧が形成する電子加速層4内の強電界により弾道電子となり、薄膜電極3を透過あるいはその隙間を通過して電子放出素子1の外部へ放出される。弾道電子の形成過程は、電子が電界方向に加速されつつトンネルすることによるものと考えられるが、断定できていない。
(Electron emission principle)
Next, the principle of electron emission of the electron-emitting device 1 when a part of the conductive fine particles 6 is present in the electron acceleration layer 4 is considered as follows. As shown in FIG. 1, most of the electron acceleration layer 4 is composed of insulating fine particles 5, and conductive fine particles 6 are scattered in the gaps. The ratio between the insulating fine particles 5 and the conductive fine particles 6 is such that the weight ratio of the insulating fine particles 5 to the total weight of the insulating fine particles 5 and the conductive fine particles 6 corresponds to, for example, 80%. As described above, the electron acceleration layer 4 is composed of the insulating fine particles 5 and the small number of conductive fine particles 6, and thus has semiconductivity. Therefore, when a voltage is applied to the electron acceleration layer 4, a very weak current flows. At this time, since a part of the conductive fine particles 6 is the conductive fine particle layer 16, many current paths flowing from the electrode substrate 2 to the electron acceleration layer 4 can be secured. The voltage-current characteristic of the electron acceleration layer 4 shows a so-called varistor characteristic, and the current value is rapidly increased as the applied voltage increases. Part of this current becomes ballistic electrons due to a strong electric field in the electron acceleration layer 4 formed by the applied voltage, and is transmitted through the thin film electrode 3 or passed through the gap and emitted to the outside of the electron-emitting device 1. The formation process of ballistic electrons is thought to be due to electrons tunneling while being accelerated in the direction of the electric field, but it has not been determined.

また、電子加速層4が、導電微粒子6を含まず絶縁体微粒子5を含む微粒子層と導電微粒子層16とに分れて成る場合の電子放出素子1の電子放出の原理は、次のように考えられる。電子放出素子1の電子放出機構は、二つの導電体膜の間に絶縁体層が挿入された、所謂MIM型の電子放出素子における動作機構と類似すると考えられる。MIM型の電子放出素子において、絶縁体層へ電界が印加された時に、電流路が形成されるメカニズムは、一般説として、a)電極材料の絶縁体層中への拡散、b)絶縁体物質の結晶化、c)フィラメントと呼ばれる導電経路の形成、d)絶縁体物質の化学量論的なズレ、e)絶縁体物質の欠陥に起因する電子のトラップと、そのトラップ電子の形成する局所的な強電界領域等、様々な説が考えられているが、明確にはなっていない。いずれの理由にせよ、本発明の電子放出素子1の構成によると、絶縁体層に相当する絶縁体微粒子5を含む微粒子層よりなる電子加速層4へ電界が印加された時にこの様な電流路の形成と、その電流の一部が電界により加速された結果、弾道電子となり、二つの導電体膜に相当する電極基板2と薄膜電極3のうちの一方である薄膜電極3を通過して、電子が素子外へ放出されると考えられる。なお、この場合も、導電微粒子層16により、電極基板2から導電微粒子6を含まない電子加速層4へ流れる電流経路が多く確保できる。   The principle of electron emission of the electron-emitting device 1 when the electron acceleration layer 4 is divided into a fine particle layer not including the conductive fine particles 6 but including the insulating fine particles 5 and a conductive fine particle layer 16 is as follows. Conceivable. The electron emission mechanism of the electron emission element 1 is considered to be similar to the operation mechanism in a so-called MIM type electron emission element in which an insulator layer is inserted between two conductor films. In the MIM type electron-emitting device, when an electric field is applied to the insulator layer, a general mechanism for forming a current path is as follows: a) diffusion of electrode material into the insulator layer, b) insulator material C) formation of a conductive path called a filament, d) stoichiometric deviation of the insulator material, e) trapping of electrons due to defects in the insulator material, and local formation of the trapped electrons Various theories such as a strong electric field region have been considered, but are not clear. For any reason, according to the configuration of the electron-emitting device 1 of the present invention, such an electric current path is applied when an electric field is applied to the electron acceleration layer 4 composed of the fine particle layer including the insulating fine particles 5 corresponding to the insulating layer. And a part of the current is accelerated by the electric field, resulting in ballistic electrons, passing through the thin film electrode 3 which is one of the electrode substrate 2 and the thin film electrode 3 corresponding to two conductor films, It is considered that electrons are emitted out of the device. Also in this case, the conductive fine particle layer 16 can secure a large number of current paths that flow from the electrode substrate 2 to the electron acceleration layer 4 that does not include the conductive fine particles 6.

ここで、例えば上記e)の解釈を用いると、次のように説明できる。電極基板2と薄膜電極3との間に電圧が印加されると、電極基板2から絶縁体微粒子5の表面に電子が移る。絶縁体微粒子5の内部は高抵抗であることから電子は絶縁体微粒子5の表面を伝導していく。このとき、絶縁体微粒子5の表面の不純物や絶縁体微粒子5が酸化物の場合に発生することのある酸素欠陥、あるいは絶縁体微粒子5間の接点において、電子がトラップされる。このトラップされた電子は固定化された電荷として働く。その結果、電子加速層4の薄膜電極3近傍では印加電圧とトラップされた電子の作る電界が合わさって局所的に高電界領域が形成され、その高電界によって電子が加速され、薄膜電極3から該電子が放出される。   Here, for example, using the interpretation of e), it can be explained as follows. When a voltage is applied between the electrode substrate 2 and the thin film electrode 3, electrons move from the electrode substrate 2 to the surface of the insulating fine particles 5. Since the inside of the insulating fine particles 5 has a high resistance, electrons are conducted through the surface of the insulating fine particles 5. At this time, electrons are trapped in impurities on the surface of the insulating fine particles 5, oxygen defects that may occur when the insulating fine particles 5 are oxides, or contacts between the insulating fine particles 5. The trapped electrons work as fixed charges. As a result, in the vicinity of the thin film electrode 3 of the electron acceleration layer 4, the applied voltage and the electric field generated by the trapped electrons are combined to locally form a high electric field region, and the high electric field accelerates the electrons from the thin film electrode 3. Electrons are emitted.

(製造方法)
次に、本発明の電子放出素子1の製造方法の一実施形態について説明する。
(Production method)
Next, an embodiment of a method for manufacturing the electron-emitting device 1 of the present invention will be described.

まず、絶縁体微粒子5を分散溶媒に分散させた絶縁体微粒子分散液を得る。例えば、絶縁体微粒子5を分散溶媒に分散させることで得ることができる。分散方法は特に限定されるものではなく、例えば、常温で超音波分散器にかけて分散すればよい。ここで用いられる分散溶媒としては、絶縁体微粒子5を分散でき、かつ塗布後に乾燥できれば、特に制限なく用いることができる。例えば、トルエン、ベンゼン、ヘキサン、メタノール、エタノール等が挙げられる。ここで、絶縁体微粒子5の種類によっても分散に適している分散溶媒が異なり、例えば、絶縁体微粒子5がSiOである場合、メタノールやエタノールが好ましい。また、分散溶媒は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。 First, an insulating fine particle dispersion in which the insulating fine particles 5 are dispersed in a dispersion solvent is obtained. For example, it can be obtained by dispersing the insulating fine particles 5 in a dispersion solvent. The dispersion method is not particularly limited, and for example, it may be dispersed by applying an ultrasonic disperser at room temperature. The dispersion solvent used here can be used without particular limitation as long as the insulating fine particles 5 can be dispersed and dried after coating. For example, toluene, benzene, hexane, methanol, ethanol and the like can be mentioned. Here, the dispersion solvent suitable for dispersion varies depending on the type of the insulating fine particles 5. For example, when the insulating fine particles 5 are SiO 2 , methanol or ethanol is preferable. Moreover, a dispersion | distribution solvent can be used individually or in combination of 2 or more types, respectively.

他方、導電微粒子6を分散溶媒に分散させた導電微粒子分散液を得る。例えば、導電微粒子6を分散溶媒に分散させてもよいし、市販品を使用してもよい。分散方法は特に限定されるものではなく、例えば、常温で超音波分散器を用いて分散すればよい。この分散溶媒としては、導電微粒子6を分散でき、かつ塗布後に乾燥できれば、特に制限なく用いることができる。ここで、分散性の向上のために、導電微粒子6が表面処理を施されている場合、その表面処理方法によって、分散に適した分散溶媒を用いるのがよい。例えば、表面をアルコラート処理された導電微粒子6には、トルエンもしくヘキサンが好ましい。   On the other hand, a conductive fine particle dispersion in which the conductive fine particles 6 are dispersed in a dispersion solvent is obtained. For example, the conductive fine particles 6 may be dispersed in a dispersion solvent, or a commercially available product may be used. The dispersion method is not particularly limited, and for example, it may be dispersed using an ultrasonic disperser at room temperature. Any dispersion solvent can be used without particular limitation as long as the conductive fine particles 6 can be dispersed and dried after coating. Here, in order to improve the dispersibility, when the conductive fine particles 6 are subjected to a surface treatment, it is preferable to use a dispersion solvent suitable for dispersion depending on the surface treatment method. For example, toluene or hexane is preferable for the conductive fine particles 6 whose surface is treated with alcoholate.

また、導電微粒子分散液は、導電微粒子6のナノコロイド液を液体の状態で用いてもよい。導電微粒子6のナノコロイド液を液体の状態で使用すると、導電微粒子6が均一分散した電子加速層4を形成することができる。なお、導電微粒子6はコロイド状態での平均粒径が0.35μm以下となっているのが好ましい。コロイド状態での平均粒径が0.35μm以下の導電微粒子を用いることで、後述の実施例に記載のように電子加速層4での分散性を高めることができる。導電微粒子6のナノコロイド液の例としては、ハリマ化成株式会社が製造販売する金ナノ粒子コロイド液、応用ナノ研究所が製造販売する銀ナノ粒子、株式会社徳力化学研究所が製造販売する白金ナノ粒子コロイド液及びパラジウムナノ粒子コロイド液、株式会社イオックスの製造販売するニッケルナノ粒子ペーストなどが挙げられる。また、導電微粒子6のナノコロイド液の溶媒には、絶縁体微粒子5をコロイド分散でき、かつ塗布後に乾燥できれば、特に制限なく用いることができ、例えば、トルエン、ベンゼン、キシレン、ヘキサン、テトラデカン等を用いることができる。   Further, as the conductive fine particle dispersion, a nano colloid liquid of conductive fine particles 6 may be used in a liquid state. When the nanocolloid liquid of the conductive fine particles 6 is used in a liquid state, the electron acceleration layer 4 in which the conductive fine particles 6 are uniformly dispersed can be formed. The conductive fine particles 6 preferably have an average particle size in a colloidal state of 0.35 μm or less. By using conductive fine particles having an average particle size in the colloidal state of 0.35 μm or less, the dispersibility in the electron acceleration layer 4 can be enhanced as described in Examples described later. Examples of the nano colloid liquid of the conductive fine particles 6 include gold nano particle colloid liquid manufactured and sold by Harima Kasei Co., Ltd., silver nano particles manufactured and sold by Applied Nano Laboratory, and platinum nano manufactured and sold by Tokuru Chemical Laboratory Co., Ltd. Examples thereof include a particle colloid solution and a palladium nanoparticle colloid solution, and a nickel nanoparticle paste manufactured and sold by IOX Co., Ltd. In addition, as the solvent of the nano colloid liquid of the conductive fine particles 6, the insulating fine particles 5 can be used without particular limitation as long as the fine particles can be colloidally dispersed and dried after coating. For example, toluene, benzene, xylene, hexane, tetradecane, etc. Can be used.

そして、電極基板2上に、上記導電微粒子分散液を、スピンコート法を用いて塗布することで導電微粒子層を形成する。塗布方法としては、スピンコート法以外に、例えば滴下法を用いてもよい。分散溶媒が揮発・乾燥した後に、導電微粒子層上に、上記絶縁体微粒子分散液または上記絶縁体微粒子含有バインダー成分分散液を塗布し、絶縁体微粒子5を含む微粒子層を得る。塗布方法としては、スピンコート法以外に、例えば滴下法を用いてもよい。上記方法により形成される電子加速層4は、導電微粒子6の一部あるいは全部が電極基板側に存在していることから、電子加速層4に導電性が得られないことが想定される。しかしながら、導電微粒子層の上から絶縁体微粒子分散液を塗布したときに、導電微粒子の大半は基板上で層16を形成したままである。しかし、一部の導電微粒子6が絶縁体微粒子分散液を滴下した際の衝撃で舞い上がり、絶縁体微粒子分散液中に混ざり込み、絶縁体微粒子分散液中の分散溶媒が揮発した後も絶縁体微粒子層内に残留することで、絶縁体微粒子層に導電微粒子が少し混在した電子加速層4ができる。そのため、電子加速層に導電性が付与されるのではないかと考えられる。   Then, the conductive fine particle dispersion is applied on the electrode substrate 2 by using a spin coating method to form a conductive fine particle layer. As a coating method, for example, a dropping method may be used in addition to the spin coating method. After the dispersion solvent is volatilized and dried, the insulating fine particle dispersion or the insulating fine particle-containing binder component dispersion is applied onto the conductive fine particle layer to obtain a fine particle layer containing the insulating fine particles 5. As a coating method, for example, a dropping method may be used in addition to the spin coating method. In the electron acceleration layer 4 formed by the above method, since part or all of the conductive fine particles 6 are present on the electrode substrate side, it is assumed that the electron acceleration layer 4 is not conductive. However, when the insulating fine particle dispersion is applied from above the conductive fine particle layer, most of the conductive fine particles still form the layer 16 on the substrate. However, even after some of the conductive fine particles 6 are swollen by an impact when the insulating fine particle dispersion is dropped, and mixed with the insulating fine particle dispersion, and the dispersion solvent in the insulating fine particle dispersion volatilizes, the insulating fine particles By remaining in the layer, the electron acceleration layer 4 in which the conductive fine particles are mixed a little in the insulator fine particle layer can be formed. Therefore, it is considered that conductivity is imparted to the electron acceleration layer.

以上により、電子加速層4が形成される。電子加速層4の形成後、電子加速層4上に薄膜電極3を成膜する。薄膜電極3の成膜には、例えば、マグネトロンスパッタ法を用いればよい。また、薄膜電極3は、例えば、インクジェット法、スピンコート法、蒸着法等を用いて成膜してもよい。   Thus, the electron acceleration layer 4 is formed. After the formation of the electron acceleration layer 4, the thin film electrode 3 is formed on the electron acceleration layer 4. For forming the thin film electrode 3, for example, a magnetron sputtering method may be used. The thin film electrode 3 may be formed by using, for example, an ink jet method, a spin coat method, a vapor deposition method, or the like.

上記製造方法によると、簡易な製造プロセスにより、大気中で素子を製造することができる。さらに、電極基板2上に導電微粒子分散液を塗布した後に、絶縁体微粒子分散液を塗布して電子加速層4を形成することで、電極基板2と電子加速層4との界面に導電微粒子6を多く存在させることができる。これにより、電極基板2と電子加速層4との導電経路を多く確保できるため、安定かつ良好な電子放出量を得ることが可能な電子放出素子を製造することができる。   According to the above manufacturing method, the device can be manufactured in the atmosphere by a simple manufacturing process. Furthermore, after applying the conductive fine particle dispersion onto the electrode substrate 2, the insulating fine particle dispersion is applied to form the electron acceleration layer 4, whereby the conductive fine particles 6 are formed at the interface between the electrode substrate 2 and the electron acceleration layer 4. There can be many. As a result, a large number of conductive paths between the electrode substrate 2 and the electron acceleration layer 4 can be secured, so that an electron-emitting device capable of obtaining a stable and good electron emission amount can be manufactured.

よって、上記方法によると、大気中で容易に製造することが可能であり、安定かつ良好に電子放出可能な電子放出素子の大気中で容易に製造することが可能であり、安定かつ良好に電子放出可能な電子放出素子を製造することができる。   Therefore, according to the above method, it is possible to easily manufacture in the atmosphere, and it is possible to easily manufacture in the atmosphere an electron-emitting device capable of emitting electrons stably and satisfactorily. A dischargeable electron-emitting device can be manufactured.

さらに、上記方法では、導電微粒子分散溶液と絶縁体微粒子分散溶液とをそれぞれ用意し、別々に電極基板2上に塗布するため、絶縁体微粒子分散溶液と導電微粒子分散溶液の混合時の凝集体の発生や、絶縁体微粒子分散液に導電微粒子を加えた際に凝集体が発生するといった不具合を防ぐことができる。よって、電極基板2上に導電微粒子分散液を塗布した後に、絶縁体微粒子分散液を塗布することで、微粒子の凝集体が少なく、微粒子が均一に分散された電子加速層4を形成できる。   Further, in the above method, since the conductive fine particle dispersion solution and the insulating fine particle dispersion solution are respectively prepared and separately applied onto the electrode substrate 2, the aggregates at the time of mixing the insulating fine particle dispersion solution and the conductive fine particle dispersion solution are reduced. Generation | occurrence | production and the malfunction that an aggregate generate | occur | produces when electrically conductive fine particles are added to the insulator fine particle dispersion can be prevented. Therefore, by applying the insulating fine particle dispersion after applying the conductive fine particle dispersion on the electrode substrate 2, the electron acceleration layer 4 in which the fine particles are uniformly dispersed and the fine particles are uniformly dispersed can be formed.

(実施例)
以下の実施例では、本発明に係る製造方法を用いて作製した電子放出素子を用いて電流測定した実験について説明する。なお、この実験は実施の一例であって、本発明の内容を制限するものではない。
(Example)
In the following examples, an experiment in which current is measured using an electron-emitting device manufactured using the manufacturing method according to the present invention will be described. In addition, this experiment is an example of implementation and does not limit the content of the present invention.

まず実施例1の電子放出素子と比較例1の電子放出素子とを以下のように作製した。そして、作製した電子放出素子について、図3に示す実験系を用いて単位面積あたりの電子放出電流の測定実験を行った。図3の実験系では、電子放出素子1の薄膜電極3側に、絶縁体スペーサ9を挟んで対向電極8を配置させる。そして、電子放出素子1および対向電極8は、それぞれ、電源7に接続されており、電子放出素子1にはV1の電圧、対向電極8にはV2の電圧が印加されるようになっている。このような実験系を真空中に配置して、V1を段階的に上げていき、電子放出実験を行った。また、各実験では、絶縁体スペーサ9を挟んで、電子放出素子と対向電極との距離は5mmとした。また、対抗電極への印加電圧V2=50Vにて測定した。   First, the electron-emitting device of Example 1 and the electron-emitting device of Comparative Example 1 were produced as follows. And about the produced electron emission element, the measurement experiment of the electron emission current per unit area was conducted using the experimental system shown in FIG. In the experimental system of FIG. 3, the counter electrode 8 is disposed on the thin film electrode 3 side of the electron-emitting device 1 with the insulator spacer 9 interposed therebetween. The electron-emitting device 1 and the counter electrode 8 are each connected to a power source 7, and a voltage V1 is applied to the electron-emitting device 1 and a voltage V2 is applied to the counter electrode 8. Such an experimental system was placed in a vacuum, and V1 was raised stepwise to conduct an electron emission experiment. In each experiment, the distance between the electron-emitting device and the counter electrode was 5 mm across the insulator spacer 9. Moreover, it measured by the applied voltage V2 = 50V to a counter electrode.

(実施例1)
試薬瓶に分散溶媒としてエタノール溶媒を3mL入れ、その中に絶縁体微粒子5として球状シリカ粒子(平均粒径110nm)を0.5g投入し、この試薬瓶を超音波分散器にかけ、シリカ粒子分散液を作製した。
Example 1
3 mL of ethanol solvent as a dispersion solvent is put in a reagent bottle, and 0.5 g of spherical silica particles (average particle size 110 nm) are charged as insulator fine particles 5 in the reagent bottle. Was made.

また、分散溶媒に導電微粒子6を分散させた導電微粒子分散液として、応用ナノ粒子研究所製の銀ナノ粒子コロイド液(銀微粒子の平均粒径4.5nm、微粒子固形分濃度10%のヘキサン分散溶液)を用意した。   In addition, as a conductive fine particle dispersion in which conductive fine particles 6 are dispersed in a dispersion solvent, a silver nanoparticle colloid liquid manufactured by Applied Nanoparticles Laboratory (a hexane dispersion having an average particle diameter of silver fine particles of 4.5 nm and a fine particle solid concentration of 10% Solution) was prepared.

次に、電極基板2となる30mm角のSUS基板上に、スピンコート法を用いて、上記導電微粒子分散液を、500rpm、10secで回転させて塗布することを1回繰り返すことで導電微粒子層を堆積させた。これを、自然乾燥させた。   Next, on the 30 mm square SUS substrate to be the electrode substrate 2, the conductive fine particle layer is formed by repeating the application of the conductive fine particle dispersion by rotating at 500 rpm for 10 seconds using a spin coating method. Deposited. This was naturally dried.

次いで導電微粒子層の上に上記シリカ粒子分散液を、3000rpm、10secで回転させて塗布することを2回繰り返すことで電子加速層4を形成した。その後、常温で溶媒が完全に揮発するまで乾燥させた。   Next, the electron acceleration layer 4 was formed by repeating applying the silica particle dispersion on the conductive fine particle layer by rotating it at 3000 rpm for 10 seconds twice. Then, it was dried until the solvent was completely volatilized at room temperature.

このように形成した電子加速層4の表面に、マグネトロンスパッタ装置を用いて薄膜電極3を成膜することにより、実施例1の電子放出素子を得た。薄膜電極3の成膜材料として金を使用し、薄膜電極3の層厚は40nm、同面積は0.014cmとした。 An electron-emitting device of Example 1 was obtained by forming the thin film electrode 3 on the surface of the electron acceleration layer 4 thus formed by using a magnetron sputtering apparatus. Gold was used as a film forming material for the thin film electrode 3, the layer thickness of the thin film electrode 3 was 40 nm, and the area was 0.014 cm 2 .

本実施例の電子放出素子について電子放出電流を測定したところ、1×10−8ATMの真空中において、薄膜電極3への印加電圧V1=15Vにて、電子放出電流は0.2mA/cmであった。 When the electron emission current of the electron-emitting device of this example was measured, the electron emission current was 0.2 mA / cm 2 at a voltage of V1 = 15 V applied to the thin film electrode 3 in a vacuum of 1 × 10 −8 ATM. Met.

また、本実施例の電子放出素子の電子加速層を、エポキシ樹脂中に包埋処理し、薄膜電極および電子加速層を電極基板であるSUS基板より剥がした。そして、薄膜電極および電子加速層が包埋された樹脂を、ミクロトームにより薄切片にし、TEMにより電子加速層の断面を観察したところ、導電微粒子が電極基板側に偏在していることが確認された。   Further, the electron acceleration layer of the electron-emitting device of this example was embedded in an epoxy resin, and the thin film electrode and the electron acceleration layer were peeled off from the SUS substrate, which was an electrode substrate. The resin in which the thin film electrode and the electron acceleration layer were embedded was made into a thin slice by a microtome, and the cross section of the electron acceleration layer was observed by TEM. As a result, it was confirmed that the conductive fine particles were unevenly distributed on the electrode substrate side. .

(比較例1)
試薬瓶に分散溶媒としてヘキサンを3mL入れ、その中に絶縁体微粒子として球状シリカ粒子(平均粒径110nm)を0.5g投入し、試薬瓶を超音波分散器にかけ、シリカ粒子分散液を作製した。次に、この試薬瓶に、応用ナノ粒子研究所製の銀ナノ粒子コロイド液(銀微粒子の平均粒径4.5nm、微粒子固形分濃度7%のヘキサン分散溶液)を0.125g(固形分重量)追加投入し、同様に超音波分散処理を行って、微粒子混合分散液を得た。
(Comparative Example 1)
3 mL of hexane was added to the reagent bottle as a dispersion solvent, and 0.5 g of spherical silica particles (average particle size: 110 nm) were charged therein as insulator fine particles. . Next, 0.125 g (solid content weight) of silver nanoparticle colloid liquid (hexane fine particle average particle diameter 4.5 nm, fine particle solid content concentration 7%) manufactured by Applied Nanoparticles Lab. ) Was added, and ultrasonic dispersion treatment was performed in the same manner to obtain a fine particle mixed dispersion.

電極基板となる30mm角のSUSの基板上に、スピンコート法を用いて、500rpmで5secの後、3000rpmで10secの条件で2回塗布し、上記微粒子混合分散液を塗布することにより比較例の電子加速層を形成した。   On a 30 mm square SUS substrate to be an electrode substrate, using a spin coat method, after applying for 5 sec at 500 rpm and twice at 3000 rpm for 10 sec, and applying the above fine particle mixed dispersion, An electron acceleration layer was formed.

この比較例の電子加速層の表面には、マグネトロンスパッタ装置を用いて薄膜電極を成膜することにより、比較例1の電子放出素子を得た。薄膜電極の成膜材料として金を使用し、上部電極の層厚は40nm、同面積は0.014cmとした。 On the surface of the electron acceleration layer of this comparative example, a thin film electrode was formed using a magnetron sputtering apparatus, whereby the electron-emitting device of comparative example 1 was obtained. Gold was used as the film forming material for the thin film electrode, the layer thickness of the upper electrode was 40 nm, and the area was 0.014 cm 2 .

この比較例の電子放出素子について電子放出電流を測定したところ、1×10−8ATMの真空中において、薄膜電極への印加電圧15Vにて、電子放出電流が0.02mA/cmであった。 The electron emission current of this comparative example was measured. The electron emission current was 0.02 mA / cm 2 at a voltage of 15 V applied to the thin film electrode in a vacuum of 1 × 10 −8 ATM. .

また、本比較例の電子放出素子の電子加速層を、エポキシ樹脂中に包埋処理し、薄膜電極および電子加速層を基板より剥がした。そして、薄膜電極および電子加速層が包埋された樹脂を、ミクロトームにより薄切片にし、TEMにより電子加速層の断面を観察したところ、導電微粒子が電子加速層中に分散していることが確認された。   Further, the electron acceleration layer of the electron-emitting device of this comparative example was embedded in an epoxy resin, and the thin film electrode and the electron acceleration layer were peeled off from the substrate. Then, the resin in which the thin film electrode and the electron acceleration layer were embedded was made into a thin slice by a microtome, and the cross section of the electron acceleration layer was observed by TEM. As a result, it was confirmed that the conductive fine particles were dispersed in the electron acceleration layer. It was.

以上から、導電微粒子分散液を塗布した後、絶縁体微粒子分散液を塗布して、電子加速層を形成することで、導電微粒子を電極基板側に偏在させ、より多くの電子放出量を得ることができることがわかる。   From the above, the conductive fine particle dispersion is applied, and then the insulating fine particle dispersion is applied to form the electron acceleration layer, whereby the conductive fine particles are unevenly distributed on the electrode substrate side to obtain a larger amount of electron emission. You can see that

〔実施の形態2〕
図4に、実施の形態1で説明した本発明に係る電子放出装置10を利用した本発明に係る帯電装置90の一例を示す。帯電装置90は、電子放出素子1とこれに電圧を印加する電源7とを有する電子放出装置10から成り、感光体11を帯電させるものである。本発明に係る画像形成装置は、この帯電装置90を具備している。本発明に係る画像形成装置において、帯電装置90を成す電子放出素子1は、被帯電体である感光体11に対向して設置され、電圧を印加することにより、電子を放出させ、感光体11を帯電させる。なお、本発明に係る画像形成装置では、帯電装置90以外の構成部材は、従来公知のものを用いればよい。ここで、帯電装置90として用いる電子放出素子1は、感光体11から、例えば3〜5mm隔てて配置するのが好ましい。また、電子放出素子1への印加電圧は25V程度が好ましく、電子放出素子1の電子加速層の構成は、例えば、25Vの電圧印加で、単位時間当たり1μA/cmの電子が放出されるようになっていればよい。
[Embodiment 2]
FIG. 4 shows an example of a charging device 90 according to the present invention using the electron emission device 10 according to the present invention described in the first embodiment. The charging device 90 includes an electron-emitting device 10 having the electron-emitting device 1 and a power source 7 that applies a voltage to the electron-emitting device 1, and charges the photoconductor 11. The image forming apparatus according to the present invention includes the charging device 90. In the image forming apparatus according to the present invention, the electron-emitting device 1 constituting the charging device 90 is installed facing the photosensitive member 11 that is a member to be charged, and emits electrons by applying a voltage to the photosensitive member 11. Is charged. In the image forming apparatus according to the present invention, conventionally known members may be used other than the charging device 90. Here, it is preferable that the electron-emitting device 1 used as the charging device 90 is disposed 3 to 5 mm away from the photoreceptor 11, for example. The applied voltage to the electron-emitting device 1 is preferably about 25V, and the electron acceleration layer of the electron-emitting device 1 is configured such that, for example, 1 μA / cm 2 of electrons is emitted per unit time when a voltage of 25V is applied. It only has to be.

帯電装置90として用いられる電子放出装置10は、放電を伴わず、従って帯電装置90からのオゾンの発生は無い。オゾンは人体に有害であり環境に対する各種規格で規制されているほか、機外に放出されなくとも機内の有機材料、例えば感光体11やベルトなどを酸化し劣化させてしまう。このような問題を、本発明に係る電子放出装置10を帯電装置90に用い、また、このような帯電装置90を画像形成装置が有することで、解決することができる。また、電子放出素子1は安定かつ良好に電子放出できるため、帯電装置90は、効率よく帯電できる。   The electron emission device 10 used as the charging device 90 is not accompanied by discharge, and therefore no ozone is generated from the charging device 90. Ozone is harmful to the human body and regulated by various environmental standards, and even if it is not released outside the machine, it oxidizes and degrades organic materials such as the photoreceptor 11 and the belt. Such a problem can be solved by using the electron emission device 10 according to the present invention for the charging device 90 and having the charging device 90 in the image forming apparatus. Further, since the electron-emitting device 1 can emit electrons stably and satisfactorily, the charging device 90 can be charged efficiently.

さらに帯電装置90として用いられる電子放出装置10は、面電子源として構成されるので、感光体11の回転方向へも幅を持って帯電を行え、感光体11のある箇所への帯電機会を多く稼ぐことができる。よって、帯電装置90は、線状で帯電するワイヤ帯電器などと比べ、均一な帯電が可能である。また、帯電装置90は、数kVの電圧印加が必要なコロナ放電器と比べて、10V程度と印加電圧が格段に低くてすむというメリットもある。   Further, since the electron emission device 10 used as the charging device 90 is configured as a surface electron source, it can be charged with a width in the rotation direction of the photoconductor 11 and there are many opportunities for charging to a certain place of the photoconductor 11. You can earn. Therefore, the charging device 90 can be uniformly charged as compared with a wire charger that charges in a linear manner. Further, the charging device 90 has an advantage that the applied voltage can be remarkably reduced to about 10 V as compared with a corona discharger that requires voltage application of several kV.

〔実施の形態3〕
図5に、実施の形態1で説明した本発明に係る電子放出装置10を用いた本発明に係る電子線硬化装置100の一例を示す。電子線硬化装置100は、電子放出素子1とこれに電圧を印加する電源7とを有する電子放出装置10と、電子を加速させる加速電極21とを備えている。電子線硬化装置100では、電子放出素子1を電子源とし、放出された電子を加速電極21で加速してレジスト(被硬化物)22へと衝突させる。一般的なレジスト22を硬化させるために必要なエネルギーは10eV以下であるため、エネルギーだけに注目すれば加速電極は必要ない。しかし、電子線の浸透深さは電子のエネルギーの関数となるため、例えば厚さ1μmのレジスト22を全て硬化させるには約5kVの加速電圧が必要となる。
[Embodiment 3]
FIG. 5 shows an example of an electron beam curing apparatus 100 according to the present invention using the electron emission apparatus 10 according to the present invention described in the first embodiment. The electron beam curing device 100 includes an electron emission device 10 having an electron emission element 1 and a power source 7 that applies a voltage to the electron emission device 1, and an acceleration electrode 21 that accelerates electrons. In the electron beam curing apparatus 100, the electron-emitting device 1 is used as an electron source, and the emitted electrons are accelerated by the acceleration electrode 21 and collide with the resist (cured object) 22. Since the energy required for curing the general resist 22 is 10 eV or less, the acceleration electrode is not necessary if attention is paid only to the energy. However, since the penetration depth of the electron beam is a function of electron energy, for example, an acceleration voltage of about 5 kV is required to cure all the resist 22 having a thickness of 1 μm.

従来からある一般的な電子線硬化装置は、電子源を真空封止し、高電圧印加(50〜100kV)により電子を放出させ、電子窓を通して電子を取り出し、照射する。この電子放出の方法であれば、電子窓を透過させる際に大きなエネルギーロスが生じる。また、レジストに到達した電子も高エネルギーであるため、レジストの厚さを透過してしまい、エネルギー利用効率が低くなる。さらに、一度に照射できる範囲が狭く、点状で描画することになるため、スループットも低い。   A conventional general electron beam curing apparatus seals an electron source in a vacuum, emits electrons by applying a high voltage (50 to 100 kV), takes out electrons through an electron window, and irradiates them. With this electron emission method, a large energy loss occurs when transmitting through the electron window. Further, since electrons reaching the resist also have high energy, they pass through the thickness of the resist, resulting in low energy utilization efficiency. Further, since the range that can be irradiated at one time is narrow and drawing is performed in a dot shape, the throughput is also low.

これに対し、電子放出素子1は安定かつ良好に電子放出できるため、本発明に係る電子線硬化装置は、効率よく電子線を照射できる。また、電子透過窓を通さないのでエネルギーのロスも無く、印加電圧を下げることができる。さらに面電子源であるためスループットが格段に高くなる。また、パターンに従って電子を放出させれば、マスクレス露光も可能となる。   On the other hand, since the electron-emitting device 1 can emit electrons stably and satisfactorily, the electron beam curing apparatus according to the present invention can irradiate the electron beam efficiently. Further, since the electron transmission window is not passed, there is no energy loss and the applied voltage can be lowered. Further, since it is a surface electron source, the throughput is remarkably increased. Further, if electrons are emitted according to the pattern, maskless exposure can be performed.

〔実施の形態4〕
図6〜8に、実施の形態1で説明した本発明に係る電子放出装置10を用いた本発明に係る自発光デバイスの例をそれぞれ示す。
[Embodiment 4]
FIGS. 6 to 8 show examples of the self-luminous device according to the present invention using the electron-emitting device 10 according to the present invention described in the first embodiment.

図6に示す自発光デバイス31は、電子放出素子1とこれに電圧を印加する電源7とを有する電子放出装置と、さらに、電子放出素子1と離れ、対向した位置に、基材となるガラス基板34、ITO膜33、および蛍光体32が積層構造を有する発光部36と、から成る。   A self-light-emitting device 31 shown in FIG. 6 includes an electron-emitting device having the electron-emitting device 1 and a power source 7 for applying a voltage to the electron-emitting device 1, and a glass serving as a base material at a position facing away from and The substrate 34, the ITO film 33, and the phosphor 32 include a light emitting unit 36 having a laminated structure.

蛍光体32としては赤、緑、青色発光に対応した電子励起タイプの材料が適しており、例えば、赤色ではY:Eu、(Y,Gd)BO:Eu、緑色ではZnSiO:Mn、BaAl1219:Mn、青色ではBaMgAl1017:Eu2+等が使用可能である。ITO膜33が成膜されたガラス基板34表面に、蛍光体32を成膜する。蛍光体32の厚さ1μm程度が好ましい。また、ITO膜33の膜厚は、導電性を確保できる膜厚であれば問題なく、本実施形態では150nmとした。 As the phosphor 32, an electron excitation type material corresponding to red, green, and blue light emission is suitable, for example, Y 2 O 3 : Eu for red, (Y, Gd) BO 3 : Eu, and Zn 2 SiO for green. 4 : Mn, BaAl 12 O 19 : Mn, blue, BaMgAl 10 O 17 : Eu 2+ and the like can be used. A phosphor 32 is formed on the surface of the glass substrate 34 on which the ITO film 33 is formed. The thickness of the phosphor 32 is preferably about 1 μm. In addition, the thickness of the ITO film 33 is 150 nm in the present embodiment, as long as the film thickness can ensure conductivity.

蛍光体32を成膜するに当たっては、バインダーとなるエポキシ系樹脂と微粒子化した蛍光体粒子との混練物として準備し、バーコーター法或いは滴下法等の公知な方法で成膜するとよい。   In forming the phosphor 32, it is preferable to prepare a kneaded product of an epoxy resin serving as a binder and finely divided phosphor particles and form the film by a known method such as a bar coater method or a dropping method.

ここで、蛍光体32の発光輝度を上げるには、電子放出素子1から放出された電子を蛍光体へ向けて加速する必要があり、その場合は電子放出素子1の電極基板2と発光部36のITO膜33の間に、電子を加速する電界を形成するための電圧印加するために、電源35を設けるとよい。このとき、蛍光体32と電子放出素子1との距離は、0.3〜1mmで、電源7からの印加電圧は18V、電源35からの印加電圧は500〜2000Vにするのが好ましい。   Here, in order to increase the light emission luminance of the phosphor 32, it is necessary to accelerate the electrons emitted from the electron-emitting device 1 toward the phosphor. In this case, the electrode substrate 2 and the light-emitting portion 36 of the electron-emitting device 1 are used. In order to apply a voltage for forming an electric field for accelerating electrons between the ITO films 33, a power source 35 is preferably provided. At this time, the distance between the phosphor 32 and the electron-emitting device 1 is preferably 0.3 to 1 mm, the applied voltage from the power source 7 is preferably 18 V, and the applied voltage from the power source 35 is preferably 500 to 2000 V.

図7に示す自発光デバイス31’は、電子放出素子1とこれに電圧を印加する電源7、さらに、蛍光体32を備えている。自発光デバイス31’では、蛍光体32は平面状であり、電子放出素子1の表面に蛍光体32が配置されている。ここで、電子放出素子1表面に成膜された蛍光体32の層は、前述のように微粒子化した蛍光体粒子との混練物から成る塗布液として準備し、電子放出素子1表面に成膜する。但し、電子放出素子1そのものは外力に対して弱い構造であるため、バーコーター法による成膜手段は利用すると素子が壊れる恐れがある。このため滴下法或いはスピンコート法等の方法を用いるとよい。   A self-luminous device 31 ′ shown in FIG. 7 includes an electron-emitting device 1, a power source 7 that applies a voltage to the electron-emitting device 1, and a phosphor 32. In the self-luminous device 31 ′, the phosphor 32 has a planar shape, and the phosphor 32 is disposed on the surface of the electron-emitting device 1. Here, the phosphor 32 layer formed on the surface of the electron-emitting device 1 is prepared as a coating liquid composed of a kneaded material with the phosphor particles finely divided as described above, and is formed on the surface of the electron-emitting device 1. To do. However, since the electron-emitting device 1 itself has a structure that is weak against external force, there is a risk that the device may be damaged if film forming means by the bar coater method is used. Therefore, a method such as a dropping method or a spin coating method may be used.

図8に示す自発光デバイス31”は、電子放出素子1とこれに電圧を印加する電源7を有する電子放出装置10を備え、さらに、電子放出素子1の電子加速層4に蛍光体32’として蛍光の微粒子が混入されている。この場合、蛍光体32’の微粒子を絶縁体微粒子5と兼用させてもよい。但し前述した蛍光体の微粒子は一般的に電気抵抗が低く、絶縁体微粒子5に比べると明らかに電気抵抗は低い。よって蛍光体の微粒子を絶縁体微粒子5に変えて混合する場合、その蛍光体の微粒子の混合量は少量に抑えなければ成らない。例えば、絶縁体微粒子5として球状シリカ粒子(平均粒径110nm)、蛍光体微粒子としてZnS:Mg(平均粒径500nm)を用いた場合、その重量混合比は3:1程度が適切となる。   A self-luminous device 31 ″ shown in FIG. 8 includes an electron-emitting device 10 having an electron-emitting device 1 and a power source 7 for applying a voltage to the electron-emitting device 1, and further, as a phosphor 32 ′ on the electron acceleration layer 4 of the electron-emitting device 1. In this case, the fine particles of the phosphor 32 'may be used also as the insulator fine particles 5. However, the above-mentioned phosphor fine particles generally have a low electric resistance, and the insulator fine particles 5 are mixed. Therefore, when the phosphor fine particles are mixed with the insulator fine particles 5 and mixed, the amount of the phosphor fine particles must be kept small, for example, the insulator fine particles 5. When using spherical silica particles (average particle size 110 nm) as the phosphor fine particles and ZnS: Mg (average particle size 500 nm) as the phosphor fine particles, a weight mixing ratio of about 3: 1 is appropriate.

上記自発光デバイス31,31’,31”では、電子放出素子1より放出させた電子を蛍光体32,32に衝突させて発光させる。電子放出素子1は安定かつ良好に電子放出できるため、自発光デバイス31,31’,31”は、効率よく発光を行える。なお、自発光デバイス31,31’,31”は、真空封止すれば電子放出電流が上がり、より効率よく発光することができる。   In the self-emitting devices 31, 31 ′, 31 ″, the electrons emitted from the electron-emitting device 1 collide with the phosphors 32, 32 to emit light. The electron-emitting device 1 can emit electrons stably and satisfactorily. The light emitting devices 31, 31 ′, 31 ″ can emit light efficiently. Note that the self-light emitting devices 31, 31 ', 31' 'can emit light more efficiently if they are vacuum-sealed to increase the electron emission current.

さらに、図9に、本発明に係る自発光デバイスを備えた本発明に係る画像表示装置の一例を示す。図9に示す画像表示装置140は、図8で示した自発光デバイス31”と、液晶パネル330とを供えている。画像表示装置140では、自発光デバイス31”を液晶パネル330の後方に設置し、バックライトとして用いている。画像表示装置140に用いる場合、自発光デバイス31”への印加電圧は、20〜35Vが好ましく、この電圧にて、例えば、単位時間当たり10μA/cmの電子が放出されるようになっていればよい。また、自発光デバイス31”と液晶パネル330との距離は、0.1mm程度が好ましい。 Furthermore, FIG. 9 shows an example of an image display device according to the present invention provided with the self-luminous device according to the present invention. An image display device 140 shown in FIG. 9 includes the self-light emitting device 31 ″ shown in FIG. 8 and a liquid crystal panel 330. In the image display device 140, the self-light emitting device 31 ″ is installed behind the liquid crystal panel 330. And used as a backlight. When used in the image display device 140, the applied voltage to the self-luminous device 31 ″ is preferably 20 to 35 V, and for example, 10 μA / cm 2 of electrons are emitted per unit time at this voltage. The distance between the self-light emitting device 31 ″ and the liquid crystal panel 330 is preferably about 0.1 mm.

また、本発明に係る画像表示装置として、図6に示す自発光デバイス31を用いる場合、自発光デバイス31をマトリックス状に配置して、自発光デバイス31そのものによるFEDとして画像を形成させて表示する形状とすることもできる。この場合、自発光デバイス31への印加電圧は、20〜35Vが好ましく、この電圧にて、例えば、単位時間当たり10μA/cmの電子が放出されるようになっていればよい。 Further, when the self-luminous device 31 shown in FIG. 6 is used as the image display device according to the present invention, the self-luminous devices 31 are arranged in a matrix, and an image is formed and displayed as an FED by the self-luminous device 31 itself. It can also be a shape. In this case, the applied voltage to the self-luminous device 31 is preferably 20 to 35 V, and it is sufficient that, for example, 10 μA / cm 2 of electrons are emitted per unit time at this voltage.

〔実施の形態5〕
図10及び図11に、実施の形態1で説明した本発明に係る電子放出装置10を用いた本発明に係る送風装置の例をそれぞれ示す。以下では、本願発明に係る送風装置を、冷却装置として用いた場合について説明する。しかし、送風装置の利用は冷却装置に限定されることはない。
[Embodiment 5]
10 and 11 show examples of the blower device according to the present invention using the electron emission device 10 according to the present invention described in the first embodiment. Below, the case where the air blower concerning this invention is used as a cooling device is demonstrated. However, the use of the blower is not limited to the cooling device.

図10に示す送風装置150は、電子放出素子1とこれに電圧を印加する電源7とを有する電子放出装置10からなる。送風装置150において、電子放出素子1は、電気的に接地された被冷却体41に向かって電子を放出することにより、イオン風を発生させて被冷却体41を冷却する。冷却させる場合、電子放出素子1に印加する電圧は、18V程度が好ましく、この電圧で、雰囲気下に、例えば、単位時間当たり1μA/cmの電子を放出することが好ましい。 A blower 150 shown in FIG. 10 includes an electron emission device 10 having an electron emission element 1 and a power source 7 that applies a voltage to the electron emission element 1. In the blower 150, the electron-emitting device 1 emits electrons toward the object 41 to be cooled, which is electrically grounded, thereby generating ion wind to cool the object 41 to be cooled. In the case of cooling, the voltage applied to the electron-emitting device 1 is preferably about 18 V, and it is preferable to emit, for example, 1 μA / cm 2 of electrons per unit time at this voltage in the atmosphere.

図11に示す送風装置160は、図10に示す送風装置150に、さらに、送風ファン42が組み合わされている。図11に示す送風装置160は、電子放出素子1が電気的に接地された被冷却体41に向かって電子を放出し、さらに、送風ファン42が被冷却体41に向かって送風することで電子放出素子から放出された電子を被冷却体41に向かって送り、イオン風を発生させて被冷却体41を冷却する。この場合、送風ファン42による風量は、0.9〜2L/分/cmとするのが好ましい。 The blower 160 shown in FIG. 11 is further combined with the blower 150 shown in FIG. The blower 160 shown in FIG. 11 emits electrons toward the cooled object 41 in which the electron-emitting device 1 is electrically grounded, and the blower fan 42 blows air toward the cooled object 41 to generate electrons. Electrons emitted from the emitting element are sent toward the cooled object 41 to generate an ion wind to cool the cooled object 41. In this case, the air volume by the blower fan 42 is preferably 0.9 to 2 L / min / cm 2 .

ここで、送風によって被冷却体41を冷却させようとするとき、従来の送風装置あるいは冷却装置のようにファン等による送風だけでは、被冷却体41の表面の流速が0となり、最も熱を逃がしたい部分の空気は置換されず、冷却効率が悪い。しかし、送風される空気の中に電子やイオンといった荷電粒子を含まれていると、被冷却体41近傍に近づいたときに電気的な力によって被冷却体41表面に引き寄せられるため、表面近傍の雰囲気を入れ替えることができる。ここで、本発明に係る送風装置150,160では、送風する空気の中に電子やイオンといった荷電粒子を含んでいるので、冷却効率が格段に上がる。さらに、電子放出素子1は安定かつ良好に電子放出できるため、送風装置150,160は、より効率よく冷却することができる。   Here, when the object to be cooled 41 is cooled by air blowing, the flow velocity on the surface of the object to be cooled 41 becomes 0 only by air blowing by a fan or the like as in the conventional air blowing device or cooling device, and the most heat is released. The air in the desired part is not replaced and the cooling efficiency is poor. However, when charged particles such as electrons and ions are contained in the air to be blown, when the vicinity of the object to be cooled 41 is approached, it is attracted to the surface of the object to be cooled 41 by electric force. The atmosphere can be changed. Here, in the air blowers 150 and 160 according to the present invention, since the air to be blown contains charged particles such as electrons and ions, the cooling efficiency is remarkably increased. Furthermore, since the electron-emitting device 1 can emit electrons stably and satisfactorily, the air blowers 150 and 160 can be cooled more efficiently.

本発明は上述した各実施形態および実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments and examples, and various modifications are possible within the scope of the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.

本発明に係る電子放出素子の製造方法では、大気中で容易に製造することが可能であり、安定かつ良好に電子放出可能な電子放出素子を製造できる。よって、例えば、電子写真方式の複写機、プリンタ、ファクシミリ等の画像形成装置の帯電装置、電子線硬化装置、或いは発光体と組み合わせることにより自発光デバイスや画像表示装置、または放出された電子が発生させるイオン風を利用することにより冷却装置等に、好適に適用することができる。   In the method for manufacturing an electron-emitting device according to the present invention, an electron-emitting device that can be easily manufactured in the atmosphere and can emit electrons stably and satisfactorily can be manufactured. Thus, for example, a self-luminous device, an image display device, or emitted electrons are generated by combining with a charging device, an electron beam curing device, or a light emitter of an image forming apparatus such as an electrophotographic copying machine, a printer, or a facsimile. By using the ion wind to be applied, it can be suitably applied to a cooling device or the like.

1 電子放出素子
2 電極基板
3 薄膜電極
4 電子加速層
5 絶縁体微粒子
6 導電微粒子
7 電源(電源部)
8 対向電極
9 絶縁体スペーサ
10 電子放出装置
11 感光体
21 加速電極
22 レジスト(被硬化物)
31,31’,31” 自発光デバイス
32,32’ 蛍光体(発光体)
33 ITO膜
34 ガラス基板
35 電源
36 発光部
41 被冷却体
42 送風ファン
90 帯電装置
100 電子線硬化装置
140 画像表示装置
150 送風装置
160 送風装置
330 液晶パネル
DESCRIPTION OF SYMBOLS 1 Electron emission element 2 Electrode substrate 3 Thin film electrode 4 Electron acceleration layer 5 Insulator fine particle 6 Conductive fine particle 7 Power supply (power supply part)
8 Counter electrode 9 Insulator spacer 10 Electron emission device 11 Photoreceptor 21 Accelerating electrode 22 Resist (cured object)
31, 31 ', 31 "Self-luminous device 32, 32' Phosphor (light emitter)
33 ITO film 34 Glass substrate 35 Power source 36 Light emitting unit 41 Cooled object 42 Blower fan 90 Charging device 100 Electron beam curing device 140 Image display device 150 Blower device 160 Blower device 330 Liquid crystal panel

Claims (14)

電極基板と、薄膜電極と、該電極基板と該薄膜電極との間の電子加速層と、を有し、上記電極基板と上記薄膜電極との間に電圧が印加されると、上記電子加速層で電子を加速させて、上記薄膜電極から該電子を放出させる電子放出素子の製造方法であって、
上記電極基板上に、導電微粒子が分散溶媒に分散された導電微粒子分散液を塗布した後、平均粒径が上記導電微粒子のそれより大きい絶縁体微粒子が分散溶媒に分散された絶縁体微粒子分散液を塗布して、上記電子加速層を形成する電子加速層形成工程を含むことを特徴とする電子放出素子の製造方法。
An electrode substrate, a thin film electrode, and an electron acceleration layer between the electrode substrate and the thin film electrode, and when a voltage is applied between the electrode substrate and the thin film electrode, the electron acceleration layer A method of manufacturing an electron-emitting device that accelerates electrons to emit the electrons from the thin-film electrode,
After applying a conductive fine particle dispersion in which conductive fine particles are dispersed in a dispersion solvent on the electrode substrate, an insulating fine particle dispersion in which insulator fine particles having an average particle size larger than that of the conductive fine particles are dispersed in a dispersion solvent A method for manufacturing an electron-emitting device, comprising: an electron acceleration layer forming step of forming the electron acceleration layer by applying a coating.
上記絶縁体微粒子分散液と上記導電微粒子分散液とは、それぞれ異なる分散溶媒を含むことを特徴とする請求項1に記載の電子放出素子の製造方法。   The method of manufacturing an electron-emitting device according to claim 1, wherein the insulating fine particle dispersion and the conductive fine particle dispersion contain different dispersion solvents. 上記導電微粒子の平均粒径は、3〜10nmであることを特徴とする、請求項1または2に記載の電子放出素子の製造方法。   The method of manufacturing an electron-emitting device according to claim 1 or 2, wherein the conductive fine particles have an average particle size of 3 to 10 nm. 上記絶縁体微粒子の平均粒径は、10〜500nmであることを特徴とする、請求項1から3のいずれか1項に記載の電子放出素子の製造方法。   4. The method for manufacturing an electron-emitting device according to claim 1, wherein the insulating fine particles have an average particle size of 10 to 500 nm. 5. 上記導電微粒子分散液は、上記導電微粒子のナノコロイド液であることを特徴とする請求項1から4のいずれか1項に記載の電子放出素子の製造方法。   5. The method of manufacturing an electron-emitting device according to claim 1, wherein the conductive fine particle dispersion is a nanocolloid liquid of the conductive fine particles. 請求項1から5のいずれか1項に記載の電子放出素子の製造方法によって製造されることを特徴とする電子放出素子。   An electron-emitting device manufactured by the method for manufacturing an electron-emitting device according to claim 1. 請求項6に記載の電子放出素子と、該電子放出素子が有する上記電極基板と上記薄膜電極との間に電圧を印加する電源部と、を備えたことを特徴とする電子放出装置。   An electron-emitting device, comprising: the electron-emitting device according to claim 6; and a power supply unit that applies a voltage between the electrode substrate and the thin-film electrode included in the electron-emitting device. 請求項7に記載の電子放出装置を備え、該電子放出装置から電子を放出して感光体を帯電することを特徴とする帯電装置。   A charging device comprising the electron-emitting device according to claim 7, wherein the photosensitive member is charged by emitting electrons from the electron-emitting device. 請求項8に記載の帯電装置を備えたことを特徴とする画像形成装置。   An image forming apparatus comprising the charging device according to claim 8. 請求項7に記載の電子放出装置を備え、該電子放出装置から電子を放出して被硬化物を硬化させることを特徴とする電子線硬化装置。   An electron beam curing device comprising the electron emission device according to claim 7, wherein the material to be cured is cured by emitting electrons from the electron emission device. 請求項7に記載の電子放出装置と発光体とを備え、該電子放出装置から電子を放出して該発光体を発光させることを特徴とする自発光デバイス。   A self-luminous device comprising the electron-emitting device according to claim 7 and a light emitter, and emitting light from the electron-emitting device to cause the light emitter to emit light. 請求項11に記載の自発光デバイスを備えたことを特徴とする画像表示装置。   An image display device comprising the self-luminous device according to claim 11. 請求項7に記載の電子放出装置を備え、該電子放出装置から電子を放出して送風する
ことを特徴とする送風装置。
A blower comprising the electron emission device according to claim 7, wherein electrons are emitted from the electron emission device and blown.
請求項7に記載の電子放出装置を備え、該電子放出装置から電子を放出して被冷却体を冷却することを特徴とする冷却装置。   A cooling device comprising the electron-emitting device according to claim 7, wherein electrons are emitted from the electron-emitting device to cool an object to be cooled.
JP2009121461A 2009-05-19 2009-05-19 Method of manufacturing electron emitting element, electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, and cooling device Pending JP2010272259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009121461A JP2010272259A (en) 2009-05-19 2009-05-19 Method of manufacturing electron emitting element, electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, and cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009121461A JP2010272259A (en) 2009-05-19 2009-05-19 Method of manufacturing electron emitting element, electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, and cooling device

Publications (1)

Publication Number Publication Date
JP2010272259A true JP2010272259A (en) 2010-12-02

Family

ID=43420140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009121461A Pending JP2010272259A (en) 2009-05-19 2009-05-19 Method of manufacturing electron emitting element, electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, and cooling device

Country Status (1)

Country Link
JP (1) JP2010272259A (en)

Similar Documents

Publication Publication Date Title
JP4812853B2 (en) Electron-emitting device, electron-emitting device, self-luminous device, image display device, air blower, cooling device, charging device, image forming device, electron beam curing device, and method for manufacturing electron-emitting device
JP4777448B2 (en) Electron emitting device, electron emitting device, self-luminous device, image display device, blower device, cooling device, charging device, image forming device, and electron beam curing device
US8547007B2 (en) Electron emitting element, electron emitting device, light emitting device, image display device, air blowing device, cooling device, charging device, image forming apparatus, electron-beam curing device, and method for producing electron emitting element
JP4732534B2 (en) Electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device
US8299700B2 (en) Electron emitting element having an electron acceleration layer, electron emitting device, light emitting device, image display device, cooling device, and charging device
JP4990380B2 (en) Electron emitting device and manufacturing method thereof
JP5033892B2 (en) Electron-emitting device, electron-emitting device, self-luminous device, image display device, air blower, cooling device, charging device, image forming device, electron beam curing device, and method for manufacturing electron-emitting device
JP4732533B2 (en) Electron-emitting device and manufacturing method thereof, and electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, and cooling device
JP2010267492A (en) Method for manufacturing electron emitting element, electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display, blower, and cooling device
JP4880740B2 (en) Electron-emitting device and manufacturing method thereof, and electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, and cooling device
JP5783798B2 (en) ELECTRON EMITTING ELEMENT AND DEVICE EQUIPPED WITH THE SAME
JP5133295B2 (en) Electron emission apparatus, self-luminous device, image display apparatus, charging apparatus, image forming apparatus, electron beam curing apparatus, and driving method of electron emission element
JP4917121B2 (en) Electron-emitting device, electron-emitting device, self-luminous device, image display device, cooling device, and charging device
JP4932864B2 (en) Electron-emitting device, electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device, and method for manufacturing electron-emitting device
JP4680305B2 (en) Electron-emitting device, electron-emitting device, self-luminous device, image display device, cooling device, and charging device
JP4768051B2 (en) Manufacturing method of electron-emitting device, electron-emitting device, electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower device, cooling device
JP5860412B2 (en) Electron-emitting device, electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device, electron-emitting device manufacturing method, and electron-emitting device repair method
JP5050074B2 (en) Electron emitting device and manufacturing method thereof
JP2010267491A (en) Method of manufacturing electron emitter, electron emitter, electron emission device, charging device, image forming apparatus, electron beam curing device, self-luminous device, image display apparatus, blowing device, and cooling device
JP2010272259A (en) Method of manufacturing electron emitting element, electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, and cooling device
JP5128565B2 (en) Electron-emitting device, electron-emitting device, self-luminous device, image display device, air blower, cooling device, charging device, image forming device, electron beam curing device, and method for manufacturing electron-emitting device
JP4768050B2 (en) Electron-emitting device, electron-emitting device, self-luminous device, image display device, air blower, cooling device, charging device, image forming device, electron beam curing device, and electron-emitting device manufacturing method
JP2010272260A (en) Electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device, and method of manufacturing the electron emitting element
JP2011040250A (en) Electron emission element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device, and manufacturing method of electron emission element