JP2010267492A - Method for manufacturing electron emitting element, electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display, blower, and cooling device - Google Patents

Method for manufacturing electron emitting element, electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display, blower, and cooling device Download PDF

Info

Publication number
JP2010267492A
JP2010267492A JP2009117866A JP2009117866A JP2010267492A JP 2010267492 A JP2010267492 A JP 2010267492A JP 2009117866 A JP2009117866 A JP 2009117866A JP 2009117866 A JP2009117866 A JP 2009117866A JP 2010267492 A JP2010267492 A JP 2010267492A
Authority
JP
Japan
Prior art keywords
electron
fine particles
emitting device
conductive fine
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009117866A
Other languages
Japanese (ja)
Inventor
Ayae Nagaoka
彩絵 長岡
Tadashi Iwamatsu
正 岩松
Hiroyuki Hirakawa
弘幸 平川
Yasuro Imura
康朗 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009117866A priority Critical patent/JP2010267492A/en
Publication of JP2010267492A publication Critical patent/JP2010267492A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an electron emitting element for making a small amount of conductive particulates exist uniformly simply and at a low cost, and for making stable and excellent electron emission. <P>SOLUTION: The forming process of an electron acceleration layer 4 of the electron emitting element 1 includes a particulate layer forming process in which a particulate layer containing insulator particulates 5 is formed by coating a dispersion liquid in which the insulator particulates 5 are dispersed, and a conductive particulate coating process in which a dispersion liquid of conductive particulates 6 is coated on the particulate layer by an electrostatic spray method. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電圧を印加することにより電子を放出する電子放出素子の製造方法および電子放出素子等に関するものである。   The present invention relates to a method for manufacturing an electron-emitting device that emits electrons by applying a voltage, an electron-emitting device, and the like.

従来の電子放出素子として、スピント(Spindt)型電極、カーボンナノチューブ(CNT)型電極などが知られている。このような電子放出素子は、例えば、FED(Field Emision Display)の分野に応用検討されている。このような電子放出素子は、尖鋭形状部に電圧を印加して約1GV/mの強電界を形成し、トンネル効果により電子放出させる。   As a conventional electron-emitting device, a Spindt type electrode, a carbon nanotube (CNT) type electrode, and the like are known. Such an electron-emitting device has been studied for application in the field of FED (Field Emission Display), for example. In such an electron-emitting device, a voltage is applied to the sharp portion to form a strong electric field of about 1 GV / m, and electrons are emitted by the tunnel effect.

しかしながら、これら2つのタイプの電子放出素子は、電子放出部表面近傍が強電界であるため、放出された電子は電界により大きなエネルギーを得て気体分子を電離しやすくなる。気体分子の電離により生じた陽イオンは強電界により素子の表面方向に加速衝突し、スパッタリングによる素子破壊が生じるという問題がある。また、大気中の酸素は電離エネルギーより解離エネルギーが低いため、イオンの発生より先にオゾンを発生する。オゾンは人体に有害である上、その強い酸化力により様々なものを酸化することから、素子の周囲の部材にダメージを与えるという問題が存在し、これを避けるために周辺部材には耐オゾン性の高い材料を用いなければならないという制限が生じている。   However, since these two types of electron-emitting devices have a strong electric field in the vicinity of the surface of the electron-emitting region, the emitted electrons easily obtain a large energy by the electric field and easily ionize gas molecules. There is a problem that cations generated by ionization of gas molecules are accelerated and collided in the direction of the surface of the device by a strong electric field, and device destruction occurs due to sputtering. Moreover, since oxygen in the atmosphere has lower dissociation energy than ionization energy, ozone is generated prior to the generation of ions. Since ozone is harmful to the human body and oxidizes various things with its strong oxidizing power, there is a problem of damaging members around the element. To avoid this, the surrounding members are ozone resistant. There is a restriction that high material must be used.

他方、上記とは別のタイプの電子放出素子として、MIM(Metal Insulator Metal)型やMIS(Metal Insulator Semiconductor)型の電子放出素子が知られている。これらは素子内部の量子サイズ効果及び強電界を利用して電子を加速し、平面状の素子表面から電子を放出させる面放出型の電子放出素子である。これらは素子内部の電子加速層で加速した電子を放出するため、素子外部に強電界を必要としない。従って、MIM型及びMIS型の電子放出素子においては、上記スピント型やCNT型、BN型の電子放出素子のように気体分子の電離によるスパッタリングで破壊されるという問題やオゾンが発生するという問題を克服できる。   On the other hand, MIM (Metal Insulator Metal) and MIS (Metal Insulator Semiconductor) type electron-emitting devices are known as other types of electron-emitting devices. These are surface emission type electron-emitting devices that use the quantum size effect and strong electric field inside the device to accelerate electrons and emit electrons from the planar device surface. Since these emit electrons accelerated by the electron acceleration layer inside the device, a strong electric field is not required outside the device. Therefore, the MIM type and MIS type electron-emitting devices have a problem that they are destroyed by sputtering due to ionization of gas molecules, and ozone is generated, like the Spindt-type, CNT-type, and BN-type electron-emitting devices. It can be overcome.

例えば、特許文献1には、対向する2枚の電極間に、電子加速層として微粒子が分散した絶縁体膜を有するMIM型の電子放出素子が開示されている。特許文献1では、微粒子が絶縁体膜中に分散されていることにより電子放出素子に10V以上の電圧を印加することができ、絶縁体膜の絶縁破壊が生じにくく、歩留まりや再現性が向上すると報告されている。   For example, Patent Document 1 discloses an MIM type electron-emitting device having an insulator film in which fine particles are dispersed as an electron acceleration layer between two opposing electrodes. In Patent Document 1, when fine particles are dispersed in an insulator film, a voltage of 10 V or more can be applied to the electron-emitting device, and the dielectric breakdown of the insulator film hardly occurs, and the yield and reproducibility are improved. It has been reported.

特開平1−298623号公報(平成1年12月1日公開)JP-A-1-298623 (published on December 1, 1991)

しかし、特許文献1の電子放出素子では、微粒子を絶縁体コーティング液中に分散させ、電極基板上に塗布した後に焼成することで絶縁体膜を形成するため、焼成のための設備や時間コスト等が必要となる。また、絶縁体膜に分散される微粒子は平均粒径1000×10−10m以下のものを用いている。微粒子は、これを形成する材料によって融点は異なるが、粒子径が小さくなるほど溶融が早い。そのため、特許文献1の電子放出素子では、上記焼成工程において絶縁体膜が形成されるよりも早く微粒子が溶融し、凝集や偏析を起こして、想定されているような効果が望めない場合がある。 However, in the electron-emitting device of Patent Document 1, fine particles are dispersed in an insulator coating liquid, and the insulator film is formed by baking after being applied on the electrode substrate. Is required. The fine particles dispersed in the insulator film are those having an average particle size of 1000 × 10 −10 m or less. The fine particles have different melting points depending on the material forming the fine particles, but the smaller the particle diameter, the faster the melting. For this reason, in the electron-emitting device disclosed in Patent Document 1, fine particles are melted earlier than the formation of the insulator film in the firing step, causing aggregation and segregation, and the expected effect may not be expected. .

また、特許文献1の電子放出素子では、導電微粒子を分散させた絶縁体コーティング液を塗布するが、この塗布を、回転塗布やディッピング法にて行うと、電子放出部の場所や量を制御することや、薄膜を形成することは難しい。   In addition, in the electron-emitting device of Patent Document 1, an insulating coating liquid in which conductive fine particles are dispersed is applied. When this application is performed by spin coating or dipping, the location and amount of the electron-emitting portion are controlled. It is difficult to form a thin film.

そのため、焼成工程を無くし、電子放出素子中において微粒子を少量かつ均一に存在させる必要がある。   For this reason, it is necessary to eliminate the firing step and make the fine particles exist in a small amount and uniformly in the electron-emitting device.

また、複数の電子放出素子を共通の基板上に形成することは、これまでにも行われてきたが、従来の方法では、複数の電子放出素子を平面の基板上にしか形成できないという問題を抱えていた。また、電子放出素子において電子が放出される箇所である電子放出部の位置を制御することも、従来から行われており、真空蒸着法などが知られている。しかしながら、真空蒸着法では、真空設備などの大掛かりな装置が必要である上に、製造コストも高くなるという課題を有している。   In addition, forming a plurality of electron-emitting devices on a common substrate has been performed so far, but the conventional method has a problem that a plurality of electron-emitting devices can be formed only on a flat substrate. I had it. In addition, controlling the position of an electron emission portion, which is a location where electrons are emitted from an electron-emitting device, has been conventionally performed, and a vacuum deposition method or the like is known. However, the vacuum deposition method has a problem that a large-scale apparatus such as a vacuum facility is required and the manufacturing cost is increased.

本発明は、上記課題に鑑みなされたものであり、簡易かつ低コストで、少量の導電微粒子を均一に存在させることができ、安定かつ良好な電子放出ができる電子放出素子を製造する方法、および電子放出素子等を提供することを目的とする。また、複数の電子放出素子をまとめて形成することを目的とする。さらに、電子放出部の位置を制御できる電子放出素子を提供することを目的とする。   The present invention has been made in view of the above problems, and a method for producing an electron-emitting device capable of uniformly presenting a small amount of conductive fine particles at a simple and low cost and capable of emitting stable and good electrons, and An object is to provide an electron-emitting device or the like. Another object is to collectively form a plurality of electron-emitting devices. Furthermore, it aims at providing the electron emission element which can control the position of an electron emission part.

本発明の電子放出素子の製造方法は、上記課題を解決するために、電極基板と、薄膜電極と、該電極基板および該薄膜電極に挟持され導電微粒子と絶縁体微粒子とを含む電子加速層と、を有し、上記電極基板と上記薄膜電極との間に電圧が印加されると、上記電子加速層で電子を加速させて、上記薄膜電極から該電子を放出させる電子放出素子の製造方法であって、上記電子加速層の形成工程は、上記電極基板上に、上記絶縁体微粒子が分散溶媒に分散された絶縁体微粒子分散液を塗布して絶縁体微粒子を含む微粒子層を形成する微粒子層形成工程と、上記微粒子層に、上記導電微粒子が分散溶媒に分散された導電微粒子分散液を、静電噴霧法を用いて塗布する導電微粒子塗布工程とを含むことを特徴としている。   In order to solve the above problems, an electron-emitting device manufacturing method according to the present invention includes an electrode substrate, a thin film electrode, an electron acceleration layer including conductive fine particles and insulating fine particles sandwiched between the electrode substrate and the thin film electrode, When the voltage is applied between the electrode substrate and the thin film electrode, the electron acceleration layer accelerates the electrons and emits the electrons from the thin film electrode. The step of forming the electron acceleration layer includes the step of applying an insulating fine particle dispersion in which the insulating fine particles are dispersed in a dispersion solvent to form a fine particle layer containing the insulating fine particles on the electrode substrate. The method includes a forming step and a conductive fine particle coating step in which the conductive fine particle dispersion in which the conductive fine particles are dispersed in a dispersion solvent is applied to the fine particle layer using an electrostatic spraying method.

ここで、電子放出素子の電子放出量は、電子加速層中の導電微粒子の量に比例して電子放出量が増加するのではなく、電子加速層内が弾道電子となって電子が放出されるだけの半導電性になればよいのである。そのため、電子加速層中に必要な導電微粒子の量は少量でよい。一方、均一な性能の素子を得るためには、導電微粒子が導入される領域である電子放出部が偏在してはならない。そのため、素子製造には、微粒子ごとに分散性のよい分散媒を選択し、絶縁体微粒子を含む微粒子層上に少量の導電微粒子分散液を均一に塗布して、微粒子層の上部または内部、もしくは上部および内部の、導電微粒子が導入された領域において、導電微粒子を均一に存在させることが要求される。   Here, the electron emission amount of the electron-emitting device does not increase in proportion to the amount of conductive fine particles in the electron acceleration layer, but rather the electrons are emitted as ballistic electrons in the electron acceleration layer. It only needs to be semiconductive. Therefore, the amount of conductive fine particles required in the electron acceleration layer may be small. On the other hand, in order to obtain a device with uniform performance, the electron emission portion, which is a region where conductive fine particles are introduced, must not be unevenly distributed. Therefore, for device production, a dispersion medium with good dispersibility is selected for each fine particle, and a small amount of conductive fine particle dispersion is uniformly applied on the fine particle layer containing the insulating fine particles, and the upper part or the inside of the fine particle layer, or It is required that the conductive fine particles exist uniformly in the upper and inner regions where the conductive fine particles are introduced.

上記方法によると、電子加速層の形成工程は、絶縁体微粒子を含む微粒子層を形成し、この微粒子層上に導電微粒子分散液を静電噴霧法を用いて塗布する。この方法により、微粒子層の上部または内部、もしくは上部および内部の、導電微粒子が導入された領域において、導電微粒子を少量かつ均一に存在させることができる。そのため、電子放出部が均一に存在し、安定かつ良好な電子放出ができる電子放出素子を製造することができる。また、微粒子層形成後の電極基板と噴霧針とに電圧を加えて導電微粒子分散溶液を静電噴霧させることで、導電微粒子が拡散することなく微粒子層に到達し、無駄な導電微粒子の消費を抑えることができる。また、静電噴霧法を用いるため、微粒子層がどのような形状であっても導電微粒子を均一に導入でき、導電微粒子が導入された領域である電子放出部を曲面にも形成できるため、電子放出素子の形状を限定せずに製造することができる。   According to the above method, in the step of forming the electron acceleration layer, a fine particle layer containing insulating fine particles is formed, and a conductive fine particle dispersion is applied onto the fine particle layer using an electrostatic spray method. By this method, the conductive fine particles can be present in a small amount and uniformly in the upper part or inside of the fine particle layer, or in the upper and inner regions where the conductive fine particles are introduced. Therefore, it is possible to manufacture an electron-emitting device that has an electron-emitting portion uniformly and can stably and satisfactorily emit electrons. In addition, by applying a voltage to the electrode substrate and the spray needle after the formation of the fine particle layer and electrostatically spraying the conductive fine particle dispersion solution, the conductive fine particles reach the fine particle layer without diffusing, and wasteful conductive fine particles are consumed. Can be suppressed. In addition, since the electrostatic spraying method is used, the conductive fine particles can be uniformly introduced regardless of the shape of the fine particle layer, and the electron emission portion, which is the region where the conductive fine particles are introduced, can be formed on the curved surface. The shape of the emitting element can be manufactured without limitation.

さらに、上記方法によると、絶縁体微粒子分散溶液と導電微粒子分散溶液とをそれぞれ用意し、別々に電極基板上に塗布するため、絶縁体微粒子分散溶液と導電微粒子分散溶液の混合時に凝集体が発生するといった不具合を防ぐことができる。   Furthermore, according to the above method, since the insulating fine particle dispersion solution and the conductive fine particle dispersion solution are prepared separately and applied onto the electrode substrate, aggregates are generated when the insulating fine particle dispersion solution and the conductive fine particle dispersion solution are mixed. It is possible to prevent problems such as

よって、電極基板上に絶縁体微粒子分散液を塗布して絶縁体微粒子を含む微粒子層を形成した後に、導電微粒子分散液を塗布することで、微粒子の凝集体が少なく、微粒子が均一に分散された電子加速層を形成できる。かつ、微粒子の分散液を塗布するという簡易な製造プロセスにより、簡易かつ低コストで電子放出素子を得ることができる。   Therefore, after applying the insulating fine particle dispersion on the electrode substrate to form a fine particle layer containing the insulating fine particles, the conductive fine particle dispersion is applied, so that there are few aggregates of fine particles and the fine particles are uniformly dispersed. An electron acceleration layer can be formed. In addition, an electron-emitting device can be obtained easily and at low cost by a simple manufacturing process of applying a fine particle dispersion.

このように、本発明の方法によると、微粒子の凝集体が発生することを回避でき、均一に分散した絶縁体微粒子を含む微粒子層の上部または内部、もしくは上部および内部の、導電微粒子が導入された領域に、電子放出部が均一に存在した電子加速層を、簡易かつ低コストで形成でき、安定かつ良好に電子放出する電子放出素子を製造できる。   As described above, according to the method of the present invention, it is possible to avoid the generation of aggregates of fine particles, and conductive fine particles are introduced into the upper part or the inner part of the fine particle layer including the uniformly dispersed insulating fine particles, or the upper part and the inner part. An electron acceleration layer in which electron emission portions are uniformly present in the region can be formed easily and at low cost, and an electron-emitting device that emits electrons stably and satisfactorily can be manufactured.

また、本発明の電子放出素子の製造方法では、上記方法に加え、上記絶縁体微粒子分散液と上記導電微粒子分散液とは、それぞれ異なる分散溶媒を含んでもよい。   In the method for manufacturing an electron-emitting device of the present invention, in addition to the above method, the insulating fine particle dispersion and the conductive fine particle dispersion may contain different dispersion solvents.

ここで、絶縁体微粒子と導電微粒子とにおいて、それぞれ分散させやすい分散溶媒が異なる場合、次のような問題が発生する。絶縁体微粒子分散液と導電微粒子分散液とが異なる分散溶媒を含む場合には、両微粒子混合時に凝集体の発生が起こり易くなる。そこで、この両微粒子混合時の凝集体の発生を防ぐために、絶縁体微粒子と導電微粒子とでどちらか一方の分散性のよい分散溶媒に揃えると、他方の微粒子では分散性が低下し凝集体が発生する。よって、結局凝集体の発生の解決にはならない。   Here, the following problems occur when the insulating fine particles and the conductive fine particles have different dispersion solvents that are easy to disperse. In the case where the insulating fine particle dispersion and the conductive fine particle dispersion contain different dispersion solvents, agglomerates are likely to occur when both fine particles are mixed. Therefore, in order to prevent the formation of aggregates when both fine particles are mixed, if one of the insulating fine particles and the conductive fine particles is aligned with a dispersion solvent having good dispersibility, the dispersibility of the other fine particles is reduced and aggregates are formed. appear. Therefore, it does not solve the generation of aggregates after all.

しかし、本発明に係る上記方法によると、絶縁体微粒子と導電微粒子とで分散させやすい分散溶媒とが異なっても、両者を混合せずに、絶縁体微粒子分散液を塗布して絶縁体微粒子を含む微粒子層を形成した後に、導電微粒子分散液を塗布することにより、両微粒子の分散性を保ったまま電子加速層を形成できる。つまり、絶縁体微粒子と導電微粒子とで分散性の高い分散溶媒が異なっても、絶縁体微粒子の凝集体、導電微粒子の凝集体、および絶縁体微粒子と導電微粒子の凝集体を含まない均一な電子加速層を形成することができる。   However, according to the above method according to the present invention, the insulating fine particle dispersion is applied by coating the insulating fine particle dispersion without mixing both, even if the insulating fine particles and the conductive fine particles are different in dispersion solvent. After forming the fine particle layer, the electron acceleration layer can be formed while maintaining the dispersibility of both fine particles by applying the conductive fine particle dispersion. That is, even if the insulating fine particles and the conductive fine particles have different dispersion solvents with high dispersibility, the insulating fine particles aggregates, the conductive fine particle aggregates, and the uniform electrons not including the insulating fine particle and conductive fine particle aggregates An acceleration layer can be formed.

また、本発明の電子放出素子の製造方法では、上記方法に加え、上記絶縁体微粒子分散液は、バインダー成分が含有されていてもよい。   In the method for manufacturing an electron-emitting device of the present invention, in addition to the above method, the insulating fine particle dispersion may contain a binder component.

バインダー成分および絶縁体微粒子が含まれる微粒子層では絶縁体微粒子の分散状態が保持されているため、静電噴霧法を用いて導電微粒子分散液を塗布しても、微粒子層中の絶縁体微粒子の分散状態が変化することはない。したがって、より一層、電子放出部を均一に制御した電子加速層を形成でき、安定かつ良好な電子放出が可能な電子放出素子を製造することができる。さらに、バインダー成分は電極基板との接着性が高く、素子の機械的強度を高めることができる。   In the fine particle layer containing the binder component and the insulating fine particles, the dispersed state of the insulating fine particles is maintained. Therefore, even if the conductive fine particle dispersion is applied by electrostatic spraying, the insulating fine particles in the fine particle layer The distributed state does not change. Therefore, an electron acceleration layer in which the electron emission portion is uniformly controlled can be formed, and an electron-emitting device capable of stable and good electron emission can be manufactured. Furthermore, the binder component has high adhesiveness with the electrode substrate, and can increase the mechanical strength of the element.

また、本発明の電子放出素子の製造方法では、上記方法に加え、上記導電微粒子分散液は、上記導電微粒子のナノコロイド液であってもよい。   In the method for manufacturing an electron-emitting device of the present invention, in addition to the above method, the conductive fine particle dispersion may be a nanocolloid liquid of the conductive fine particles.

上記方法によると、絶縁体微粒子を含む微粒子層に導電微粒子のナノコロイド液を塗布する。ここで、ナノコロイド液を液体の状態で使用しているため、導電微粒子が凝集することなく均一に分散した分散液を塗布することができる。よって、微粒子層上に、導電微粒子をより一層均一に存在させた電子加速層を形成して、安定かつ良好な電子放出が可能な電子放出素子を製造することができる。   According to the above method, the nano colloid liquid of conductive fine particles is applied to the fine particle layer containing the insulating fine particles. Here, since the nanocolloid liquid is used in a liquid state, it is possible to apply a dispersion in which the conductive fine particles are uniformly dispersed without aggregation. Therefore, an electron accelerating layer in which conductive fine particles are present more uniformly is formed on the fine particle layer, and an electron-emitting device capable of stable and good electron emission can be manufactured.

また、本発明の電子放出素子の製造方法では、上記方法に加え、上記導電微粒子塗布工程では、上記微粒子層上にマスクを設置し、導電微粒子分散液を、静電噴霧法を用いて塗布してもよい。   In addition to the above method, in the method for manufacturing an electron-emitting device of the present invention, in the conductive fine particle application step, a mask is placed on the fine particle layer, and the conductive fine particle dispersion is applied using an electrostatic spraying method. May be.

上記方法によると、マスクを設置することによって、静電噴霧法を用いて導電微粒子分散液を塗布後、マスクを外すと、マスクがされていなかった箇所に導電微粒子が偏在されており、マスクがあった箇所には導電微粒子があまり分散されていない。よって、微粒子層中の任意の箇所に導電微粒子の分散液を塗布することができる。ここで、用いるマスクはメタルマスクであってもよいし、別のマスクであってもよく、特に限定されない。そのため、マスクのサイズやマスクがされていない箇所のサイズを制御することで、共通の電極基板上における電子加速層の配置をパターニングすることや、各素子ごとに導電微粒子が導入された領域である電子放出部をパターニングすることができる。なお、共通の電極基板上にパターニングされた電子加速層に、それぞれ薄膜電極を互いに絶縁させて形成することで、それぞれが電子放出素子となり、よって、共通の電極基板上に複数の電子放出素子を一度に作成することができる。また、静電噴霧法を用いているため、導電微粒子が導入された領域において、導電微粒子は均一に分散される。   According to the above method, when the mask is installed, the conductive fine particle dispersion is applied using the electrostatic spraying method, and then the mask is removed. The conductive fine particles are not so dispersed in the place. Therefore, the dispersion liquid of conductive fine particles can be applied to any location in the fine particle layer. Here, the mask to be used may be a metal mask or another mask, and is not particularly limited. Therefore, by controlling the size of the mask and the size of the unmasked area, the arrangement of the electron acceleration layer on the common electrode substrate can be patterned, or conductive fine particles are introduced for each element. The electron emission portion can be patterned. In addition, by forming the thin film electrodes on the electron acceleration layer patterned on the common electrode substrate so as to be insulated from each other, each becomes an electron-emitting device. Therefore, a plurality of electron-emitting devices are formed on the common electrode substrate. Can be created at once. Further, since the electrostatic spraying method is used, the conductive fine particles are uniformly dispersed in the region where the conductive fine particles are introduced.

本発明に係る電子放出素子は、上記課題を解決するために、上記いずれか1つの電子放出素子の製造方法によって製造されることを特徴としている。   In order to solve the above-mentioned problems, an electron-emitting device according to the present invention is manufactured by any one of the above-described methods for manufacturing an electron-emitting device.

本発明に係る方法で製造された電子放出素子では、電極基板と薄膜電極との間の電子加速層は、絶縁体微粒子と導電微粒子とを含む層であり、半導電性を有する。この半導電性の電子加速層に電圧を印加すると、電子加速層内に電流が流れ、その一部は印加電圧の形成する強電界により弾道電子となって放出される。この電子放出素子は、簡易かつ低コストで製造され、また少量の導電微粒子が均一に電子放出部に存在している。よって、安定かつ良好な電子放出量にて電子放出することができる。また、素子において導電微粒子が導入された領域である電子放出部は静電噴霧法により形成されるので、この電子放出部は曲面にも得られ、電子放出素子の形状は限定されない。よって、本願発明の電子放出素子は、様々な形状の装置に設置することができ、応用できる装置の範囲が広い。   In the electron-emitting device manufactured by the method according to the present invention, the electron acceleration layer between the electrode substrate and the thin film electrode is a layer containing insulating fine particles and conductive fine particles, and has semiconductivity. When a voltage is applied to the semiconductive electron acceleration layer, a current flows in the electron acceleration layer, and a part thereof is emitted as ballistic electrons by the strong electric field formed by the applied voltage. This electron-emitting device is manufactured easily and at low cost, and a small amount of conductive fine particles are present uniformly in the electron-emitting portion. Therefore, electrons can be emitted with a stable and good electron emission amount. Moreover, since the electron emission part which is an area | region where the conductive fine particle was introduce | transduced in the element is formed by an electrostatic spraying method, this electron emission part is obtained also on a curved surface, and the shape of an electron emission element is not limited. Therefore, the electron-emitting device of the present invention can be installed in devices having various shapes, and the range of devices that can be applied is wide.

本発明に係る電子放出素子は、電極基板と薄膜電極と該電極基板および該薄膜電極に挟持された電子加速層とを有し、上記電極基板と上記薄膜電極との間に電圧が印加されると、上記電子加速層で電子を加速させて、上記薄膜電極から該電子を放出させる電子放出素子であって、上記電子加速層は、絶縁体微粒子を含む微粒子層で構成され、かつ、少なくとも該微粒子層の表面には導電微粒子が離散配置されていることを特徴としている。   The electron-emitting device according to the present invention includes an electrode substrate, a thin film electrode, the electrode substrate and an electron acceleration layer sandwiched between the electrode substrate, and a voltage is applied between the electrode substrate and the thin film electrode. And an electron-emitting device for accelerating electrons in the electron acceleration layer and emitting the electrons from the thin film electrode, wherein the electron acceleration layer is composed of a fine particle layer containing insulating fine particles, and at least the Conductive fine particles are discretely arranged on the surface of the fine particle layer.

上記構成によると、導電微粒子が少なくとも絶縁体微粒子で構成される微粒子層の表面に離散的に配置されているので、その配置箇所が電子放出部となる。よって、上記電子放出素子は、電子放出部がパターニングされた電子放出素子となっている。そのため、電子放出部の位置制御が可能となり、電子加速層の上に形成される薄膜電極の構成材料が放出される電子により消失する現象を防ぐことができる。また、各電子放出部からの電子放出量を独立して制御することができる。   According to the above configuration, since the conductive fine particles are discretely arranged on the surface of the fine particle layer composed of at least the insulating fine particles, the arrangement location becomes the electron emission portion. Therefore, the electron-emitting device is an electron-emitting device in which the electron-emitting portion is patterned. Therefore, the position of the electron emission portion can be controlled, and the phenomenon that the constituent material of the thin film electrode formed on the electron acceleration layer disappears due to the emitted electrons can be prevented. Moreover, the amount of electron emission from each electron emission part can be controlled independently.

本発明に係る電子放出素子は、電極基板と薄膜電極と該電極基板および該薄膜電極に挟持された電子加速層とを有し、上記電極基板と上記薄膜電極との間に電圧が印加されると、上記電子加速層で電子を加速させて、上記薄膜電極から該電子を放出させる電子放出素子であって、上記電子加速層には、絶縁体微粒子と導電微粒子とが含まれており、かつ、平面または曲面を含む電極基板上に複数個作成されることを特徴としている。   The electron-emitting device according to the present invention includes an electrode substrate, a thin film electrode, the electrode substrate and an electron acceleration layer sandwiched between the electrode substrate, and a voltage is applied between the electrode substrate and the thin film electrode. And an electron-emitting device for accelerating electrons in the electron acceleration layer and emitting the electrons from the thin film electrode, wherein the electron acceleration layer includes insulator fine particles and conductive fine particles, and A plurality of electrode substrates are formed on a flat or curved electrode substrate.

上記構成によると、共通の電極基板上に複数の電子放出素子を作成することができ、電子放出素子が複数必要な装置において、好適に利用できる。   According to the above configuration, a plurality of electron-emitting devices can be formed on a common electrode substrate, and can be suitably used in an apparatus that requires a plurality of electron-emitting devices.

また、本発明の電子放出素子では、上記導電微粒子の平均粒径は、3〜10nmであるのが好ましい。導電微粒子の平均粒径を3〜10nmとすることにより、電子加速層内で、導電微粒子による導電パスが形成されず、電子加速層内での絶縁破壊が起こり難くなる。また原理的には不明確な点が多いが、平均粒径が上記範囲内の導電微粒子を用いることで、弾道電子が効率よく生成される。   In the electron-emitting device of the present invention, the conductive fine particles preferably have an average particle size of 3 to 10 nm. By setting the average particle diameter of the conductive fine particles to 3 to 10 nm, a conductive path due to the conductive fine particles is not formed in the electron acceleration layer, and dielectric breakdown does not easily occur in the electron acceleration layer. Although there are many unclear points in principle, ballistic electrons are efficiently generated by using conductive fine particles having an average particle diameter within the above range.

また、本発明の電子放出素子では、上記構成に加え、上記絶縁体微粒子の平均粒径は、上記導電微粒子の平均粒径よりも大きく、10〜500nmであるのが好ましい。この場合、粒子径の分散状態は平均粒径に対してブロードであってもよく、例えば平均粒径50nmの微粒子が、20〜100nmの領域にその粒子径分布を有していても問題ない。絶縁体微粒子の平均粒径が導電微粒子の平均粒径よりも大きいことで、絶縁体微粒子の平均粒径よりも小さい導電微粒子の内部から外部へと効率よく熱を伝導させて、素子内を電流が流れる際に発生するジュール熱を効率よく逃がすことができ、電子放出素子が熱で破壊されることを防ぐことができる。さらに、電子加速層における抵抗値の調整を行いやすくすることができる。   In the electron-emitting device of the present invention, in addition to the above configuration, the average particle size of the insulating fine particles is preferably 10 to 500 nm, which is larger than the average particle size of the conductive fine particles. In this case, the dispersion state of the particle diameter may be broad with respect to the average particle diameter. For example, fine particles having an average particle diameter of 50 nm may have a particle diameter distribution in the region of 20 to 100 nm. Since the average particle size of the insulating fine particles is larger than the average particle size of the conductive fine particles, heat can be efficiently conducted from the inside to the outside of the conductive fine particles smaller than the average particle size of the insulating fine particles, and the current inside the device Joule heat generated when flowing can be efficiently released, and the electron-emitting device can be prevented from being destroyed by heat. Furthermore, the resistance value in the electron acceleration layer can be easily adjusted.

ここで、導電微粒子の絶縁体微粒子を含む微粒子層への浸透度合いは、絶縁体微粒子の種類および/または平均粒径、導電微粒子の種類および/または平均粒径、絶縁体微粒子および導電微粒子の組合せなどに依存する。すなわち、絶縁体微粒子の平均粒径が小さいと、塗布した導電微粒子の大部分が、微粒子層内部に浸透せず、上部に堆積する。他方、絶縁体微粒子の平均粒径が大きいと、微粒子層の粒子間の隙間が大きくなりすぎ、微粒子層内に留まる導電微粒子が少なくなる。よって、平均粒径3〜10nmの導電微粒子を用いる場合に導電微粒子の微粒子層中への浸透度合いを制御するためには、絶縁体微粒子の平均粒径は、10〜500nmであるのが好ましい。   Here, the degree of penetration of the conductive fine particles into the fine particle layer containing the insulating fine particles depends on the type and / or average particle size of the insulating fine particles, the type and / or average particle size of the conductive fine particles, and the combination of the insulating fine particles and the conductive fine particles. Depends on etc. That is, when the average particle diameter of the insulating fine particles is small, most of the applied conductive fine particles do not penetrate into the fine particle layer but deposit on the upper part. On the other hand, if the average particle size of the insulating fine particles is large, the gaps between the particles of the fine particle layer become too large, and the conductive fine particles staying in the fine particle layer are reduced. Therefore, when using conductive fine particles having an average particle diameter of 3 to 10 nm, the average particle diameter of the insulating fine particles is preferably 10 to 500 nm in order to control the degree of penetration of the conductive fine particles into the fine particle layer.

なお、電子加速層にバインダー成分が含まれる場合には、絶縁体微粒子の平均粒径が200nmよりも大きいと、塗布した平均粒径3〜10nmの導電微粒子の大部分が、絶縁体微粒子を含むバインダー成分の層の上部に留まらない。よって、電子加速層にバインダー成分が含まれ、平均粒径3〜10nmの導電微粒子を用いる場合、絶縁体微粒子の平均粒径は、10〜200nmであるのが好ましい。   When the binder component is included in the electron acceleration layer, if the average particle size of the insulating fine particles is larger than 200 nm, most of the applied conductive fine particles having an average particle size of 3 to 10 nm include the insulating fine particles. Does not stay on top of the binder component layer. Therefore, when the electron acceleration layer contains a binder component and conductive fine particles having an average particle diameter of 3 to 10 nm are used, the average particle diameter of the insulating fine particles is preferably 10 to 200 nm.

また、本発明の電子放出素子では、上記構成に加え、上記導電微粒子は、抗酸化力が高い導電体であってもよい。ここで言う抗酸化力が高いとは、酸化物形成反応の低いことを指す。一般的に熱力学計算より求めた、酸化物生成自由エネルギーの変化量ΔG[kJ/mol]値が負で大きい程、酸化物の生成反応が起こり易いことを表す。本発明ではΔG>−450[kJ/mol]以上に該当する金属元素が、抗酸化力の高い導電微粒子として該当する。また、該当する導電微粒子の周囲に、その導電微粒子の平均粒径よりも小さい絶縁体物質を付着、または被覆することで、酸化物の生成反応をより起こし難くした状態の導電微粒子も、抗酸化力が高い導電微粒子に含まれる。   In the electron-emitting device of the present invention, in addition to the above configuration, the conductive fine particles may be a conductor having high anti-oxidation power. Here, the high antioxidant power means that the oxide forming reaction is low. In general, the larger the negative value ΔG [kJ / mol] value of the oxide formation free energy obtained by thermodynamic calculation, the easier the oxide formation reaction occurs. In the present invention, a metal element corresponding to ΔG> −450 [kJ / mol] or more corresponds to conductive fine particles having a high antioxidant power. In addition, the conductive fine particles in a state in which an oxide generation reaction is more difficult to occur by attaching or covering an insulating material smaller than the average particle diameter of the conductive fine particles around the corresponding conductive fine particles are also anti-oxidant. Included in conductive particles with high strength.

上記構成によると、導電微粒子として抗酸化力が高い導電体を用いることから、大気中の酸素による酸化に伴う素子劣化を発生し難いため、電子放出素子を大気圧中でもより安定して動作させることができる。よって、寿命を長くでき、大気中でも長時間連続動作をさせることができる。   According to the above configuration, since a conductive material having high anti-oxidation power is used as the conductive fine particles, it is difficult to cause device deterioration due to oxidation by oxygen in the atmosphere, so that the electron-emitting device can be operated more stably even at atmospheric pressure. Can do. Therefore, the lifetime can be extended and continuous operation can be performed for a long time even in the atmosphere.

本発明の電子放出素子では、上記構成に加え、上記導電微粒子は、貴金属であってもよい。このように、上記導電微粒子が、貴金属であることで、導電微粒子の、大気中の酸素による酸化などをはじめとする素子劣化を防ぐことができる。よって、電子放出素子の長寿命化を図ることができる。   In the electron-emitting device of the present invention, in addition to the above configuration, the conductive fine particles may be a noble metal. As described above, since the conductive fine particles are precious metals, it is possible to prevent element deterioration such as oxidation of the conductive fine particles by oxygen in the atmosphere. Therefore, the lifetime of the electron-emitting device can be extended.

本発明の電子放出素子では、上記構成に加え、上記導電微粒子を成す導電体は、金、銀、白金、パラジウム、及びニッケルの少なくとも1つを含んでいてもよい。このように、上記導電微粒子を成す導電体が、金、銀、白金、パラジウム、及びニッケルの少なくとも1つを含んでいることで、導電微粒子の、大気中の酸素による酸化などをはじめとする素子劣化を、より効果的に防ぐことができる。よって、電子放出素子の長寿命化をより効果的に図ることができる。   In the electron-emitting device of the present invention, in addition to the above configuration, the conductor constituting the conductive fine particles may include at least one of gold, silver, platinum, palladium, and nickel. As described above, the conductive material forming the conductive fine particles contains at least one of gold, silver, platinum, palladium, and nickel, so that the conductive fine particles are oxidized by oxygen in the atmosphere. Deterioration can be prevented more effectively. Therefore, the lifetime of the electron-emitting device can be extended more effectively.

本発明の電子放出素子では、上記構成に加え、上記絶縁体微粒子は、SiO、Al、及びTiOの少なくとも1つを含んでいてもよい。または有機ポリマーを含んでいてもよい。上記絶縁体微粒子が、SiO、Al、及びTiOの少なくとも1つを含んでいる、あるいは、有機ポリマーを含んでいると、これら物質の絶縁性が高いことにより、上記電子加速層の抵抗値を任意の範囲に調整することが可能となる。特に、絶縁体微粒子として酸化物(SiO、Al、及びTiOの)を用い、導電微粒子として抗酸化力が高い導電体を用いる場合には、大気中の酸素による酸化に伴う素子劣化をより一層発生し難くなるため、大気圧中でも安定して動作させる効果をより顕著に発現させることができる。 In the electron-emitting device of the present invention, in addition to the above configuration, the insulating fine particles may include at least one of SiO 2 , Al 2 O 3 , and TiO 2 . Or it may contain an organic polymer. If the insulating fine particles contain at least one of SiO 2 , Al 2 O 3 , and TiO 2 , or contain an organic polymer, the insulating properties of these substances are high, so that the electron acceleration layer It is possible to adjust the resistance value to an arbitrary range. In particular, when an oxide (SiO 2 , Al 2 O 3 , and TiO 2 ) is used as the insulating fine particles and a conductive material having high anti-oxidation power is used as the conductive fine particles, an element accompanying oxidation by oxygen in the atmosphere. Since the deterioration is less likely to occur, the effect of stably operating even at atmospheric pressure can be exhibited more significantly.

本発明の電子放出素子では、上記構成に加え、上記電子加速層における上記導電微粒子の割合が、重量比で0.5〜30%が好ましい。0.5%より少ない場合は導電微粒子として素子内電流を増加させる効果を発揮せず、30%より多い場合は導電微粒子の凝集が発生する。中でも、1〜10%であるのがより好ましい。   In the electron-emitting device of the present invention, in addition to the above configuration, the ratio of the conductive fine particles in the electron acceleration layer is preferably 0.5 to 30% by weight. When the amount is less than 0.5%, the effect of increasing the current in the device as conductive fine particles is not exhibited, and when the amount is more than 30%, aggregation of the conductive fine particles occurs. Among these, 1 to 10% is more preferable.

本発明の電子放出素子では、上記構成に加え、上記電子加速層の層厚は、12〜6000nmであるのが好ましく、300〜6000nmであるのがより好ましい。上記電子加速層の層厚を、好ましくは12〜6000nm、より好ましくは300〜6000nmとすることにより、電子加速層の層厚を均一化すること、また層厚方向における電子加速層の抵抗調整が可能となる。この結果、電子放出素子表面の全面から一様に電子を放出させることが可能となり、かつ素子外へ効率よく電子を放出させることができる。   In the electron-emitting device of the present invention, in addition to the above configuration, the thickness of the electron acceleration layer is preferably 12 to 6000 nm, and more preferably 300 to 6000 nm. By making the layer thickness of the electron acceleration layer preferably 12 to 6000 nm, more preferably 300 to 6000 nm, the electron acceleration layer can be made uniform, and the resistance of the electron acceleration layer can be adjusted in the layer thickness direction. It becomes possible. As a result, electrons can be uniformly emitted from the entire surface of the electron-emitting device, and electrons can be efficiently emitted outside the device.

本発明の電子放出素子では、上記構成に加え、上記薄膜電極は、金、銀、炭素、タングステン、チタン、アルミ、及びパラジウムの少なくとも1つを含んでいてもよい。上記薄膜電極に、金、銀、炭素、タングステン、チタン、アルミ、及びパラジウムの少なくとも1つが含まれることによって、これら物質の仕事関数の低さから、電子加速層で発生させた電子を効率よくトンネルさせ、電子放出素子外に高エネルギーの電子をより多く放出させることができる。   In the electron-emitting device of the present invention, in addition to the above configuration, the thin film electrode may include at least one of gold, silver, carbon, tungsten, titanium, aluminum, and palladium. By containing at least one of gold, silver, carbon, tungsten, titanium, aluminum, and palladium in the thin film electrode, electrons generated in the electron acceleration layer are efficiently tunneled due to the low work function of these materials. Thus, more high-energy electrons can be emitted outside the electron-emitting device.

本発明の電子放出素子では、上記構成に加え、上記導電微粒子の周囲に、該導電微粒子の大きさよりも小さい絶縁体物質である小絶縁体物質が存在してもよい。このように、上記導電微粒子の周囲に、該導電微粒子の大きさよりも小さい小絶縁体物質が存在することは、素子作成時の導電微粒子の分散液中での分散性向上に貢献する他、導電微粒子の、大気中の酸素による酸化などをはじめとする素子劣化を、より効果的に防ぐことができる。よって、電子放出素子の長寿命化をより効果的に図ることができる。   In the electron-emitting device of the present invention, in addition to the above configuration, a small insulator material that is an insulator material smaller than the size of the conductive fine particles may exist around the conductive fine particles. As described above, the presence of a small insulating material smaller than the size of the conductive fine particles around the conductive fine particles contributes to the improvement of the dispersibility of the conductive fine particles in the dispersion liquid at the time of device fabrication. It is possible to more effectively prevent device deterioration such as oxidation of fine particles by oxygen in the atmosphere. Therefore, the lifetime of the electron-emitting device can be extended more effectively.

本発明の電子放出素子では、上記構成に加え、上記小絶縁体物質は、アルコラート、脂肪酸、及びアルカンチオールの少なくとも1つを含んでいてもよい。このように、上記小絶縁体物質が、アルコラート、脂肪酸、及びアルカンチオールの少なくとも1つを含んでいることで、素子作成時の導電微粒子の分散液中での分散性向上に貢献するため、導電微粒子の凝集体が元と成る電流の異常パス形成を生じ難くする他、絶縁体微粒子の周囲に存在する導電微粒子自身の酸化に伴う粒子の組成変化を生じないため、電子放出特性に影響を与えることがない。よって、電子放出素子の長寿命化をより効果的に図ることができる。   In the electron-emitting device of the present invention, in addition to the above configuration, the small insulator material may contain at least one of alcoholate, fatty acid, and alkanethiol. As described above, since the small insulator material contains at least one of alcoholate, fatty acid, and alkanethiol, it contributes to improvement in dispersibility of the conductive fine particles in the dispersion liquid at the time of device creation. In addition to making it difficult to form abnormal current paths due to the aggregate of fine particles, it does not cause changes in the composition of the particles due to oxidation of the conductive fine particles themselves around the insulating fine particles, thus affecting the electron emission characteristics. There is nothing. Therefore, the lifetime of the electron-emitting device can be extended more effectively.

ここで、本発明の電子放出素子では、上記小絶縁体物質は、上記導電微粒子表面に付着して付着物質として存在するものであり、該付着物質は、上記導電微粒子の平均粒径よりも小さい形状の集合体として、上記導電微粒子表面を被膜していてもよい。このように、上記小絶縁体物質が、上記導電微粒子表面に付着あるいは、上記導電微粒子の平均粒径よりも小さい形状の集合体として、上記導電微粒子表面を被膜していることで、素子作成時の導電微粒子の分散液中での分散性向上に貢献するため、導電微粒子の凝集体が元と成る電流の異常パス形成を生じ難くする他、絶縁体微粒子の周囲に存在する導電微粒子自身の酸化に伴う粒子の組成変化を生じないため、電子放出特性に影響を与えることがない。よって、電子放出素子の長寿命化をさらに効果的に図ることができる。   Here, in the electron-emitting device of the present invention, the small insulator substance is attached to the surface of the conductive fine particles and exists as an attached substance, and the attached substance is smaller than the average particle diameter of the conductive fine particles. The conductive fine particle surface may be coated as an aggregate of shapes. In this way, the small insulating material adheres to the surface of the conductive fine particles or coats the surface of the conductive fine particles as an aggregate having a shape smaller than the average particle diameter of the conductive fine particles, so that the element can be formed. In order to contribute to improving the dispersibility of the conductive fine particles in the dispersion liquid, the aggregate of the conductive fine particles makes it difficult to form an abnormal current path based on the current, and also oxidizes the conductive fine particles themselves existing around the insulating fine particles. As a result, no change in the composition of the particles is caused, so that the electron emission characteristics are not affected. Therefore, the lifetime of the electron-emitting device can be further effectively increased.

本発明の電子放出装置は、上記いずれか1つの電子放出素子と、上記電極基板と上記薄膜電極との間に電圧を印加する電源部と、を備えたことを特徴としている。   The electron-emitting device of the present invention includes any one of the above-described electron-emitting devices and a power supply unit that applies a voltage between the electrode substrate and the thin-film electrode.

上記構成によると、簡易かつ低コストで製造でき、安定かつ良好な電子放出することができる。   According to the said structure, it can manufacture simply and at low cost, and can discharge | emit stable and favorable electron.

また、本発明の電子放出装置を、帯電装置、及びこの帯電装置を備えた画像形成装置に用いることにより、安定かつ良好に電子放出できるので、安定かつ良好に帯電することができる。さらに、放電を伴わず、オゾンやNOxを始めとする有害な物質を発生させることなく、長期間安定して、被帯電体を帯電させることができる。   Further, by using the electron emission device of the present invention in a charging device and an image forming apparatus equipped with this charging device, electrons can be stably and satisfactorily emitted, so that stable and favorable charging can be achieved. Furthermore, the object to be charged can be stably charged for a long period of time without generating harmful substances such as ozone and NOx without discharging.

また、本発明の電子放出装置を、電子線硬化装置に用いることにより、安定かつ良好に電子放出できるので、高安定かつ良好に電子線を照射することができる。また、面積的に電子線硬化でき、マスクレス化が図れ、低価格化・高スループット化を実現することができる。   Further, by using the electron emission device of the present invention in an electron beam curing device, it is possible to emit electrons stably and satisfactorily, so that an electron beam can be irradiated with high stability and goodness. In addition, the electron beam can be cured in terms of area, masklessness can be achieved, and low cost and high throughput can be realized.

さらに、本発明の電子放出装置を自発光デバイス、及びこの自発光デバイスを備えた画像表示装置に用いることにより、安定かつ良好に電子放出できるので、高効率で発光させることができる。また、安定で良好な面発光を実現する自発光デバイスを提供することができる。   Further, by using the electron emitting device of the present invention for a self-luminous device and an image display device equipped with the self-luminous device, electrons can be emitted stably and satisfactorily, and light can be emitted with high efficiency. In addition, it is possible to provide a self-luminous device that realizes stable and good surface light emission.

また、本発明の電子放出装置を、送風装置あるいは冷却装置に用いることにより、安定かつ良好に電子放出できるので、安定かつ良好に冷却することができる。また、放電を伴わず、オゾンやNOxを始めとする有害な物質の発生がなく、被冷却体表面でのスリップ効果を利用することにより効率よく冷却することができる。   Further, by using the electron emission device of the present invention for a blower device or a cooling device, electrons can be emitted stably and satisfactorily, so that it can be cooled stably and satisfactorily. Further, no harmful substances such as ozone and NOx are generated without discharge, and cooling can be efficiently performed by utilizing the slip effect on the surface of the object to be cooled.

本発明の電子放出素子の製造方法では、上記のように、上記電子加速層の形成工程は、上記電極基板上に、上記絶縁体微粒子が分散溶媒に分散された絶縁体微粒子分散液を塗布して絶縁体微粒子を含む微粒子層を形成する微粒子層形成工程と、上記微粒子層に、上記導電微粒子が分散溶媒に分散された導電微粒子分散液を、静電噴霧法を用いて塗布する導電微粒子塗布工程とを含む。   In the method for manufacturing an electron-emitting device according to the present invention, as described above, in the step of forming the electron acceleration layer, an insulator fine particle dispersion in which the insulator fine particles are dispersed in a dispersion solvent is applied onto the electrode substrate. A fine particle layer forming step for forming a fine particle layer containing insulating fine particles, and a conductive fine particle application in which a conductive fine particle dispersion in which the conductive fine particles are dispersed in a dispersion solvent is applied to the fine particle layer by using an electrostatic spray method Process.

上記方法によると、電子加速層の形成工程は、絶縁体微粒子を含む微粒子層を形成し、この微粒子層上に導電微粒子分散液を静電噴霧法を用いて塗布する。この方法により、微粒子層の上部または内部、もしくは上部および内部の、導電微粒子が導入された領域において、導電微粒子を少量かつ均一に存在させることができる。そのため、電子放出部が均一に存在し、安定かつ良好な電子放出ができる電子放出素子を製造することができる。また、微粒子層形成後の電極基板と噴霧針とに電圧を加えて導電微粒子分散溶液を静電噴霧させることで、導電微粒子が拡散することなく微粒子層に到達し、無駄な導電微粒子の消費を抑えることができる。また、静電噴霧法を用いるため、微粒子層がどのような形状であっても導電微粒子を均一に導入でき、導電微粒子が導入された領域である電子放出部を曲面にも形成できるため、電子放出素子の形状を限定せずに製造することができる。   According to the above method, in the step of forming the electron acceleration layer, a fine particle layer containing insulating fine particles is formed, and a conductive fine particle dispersion is applied onto the fine particle layer using an electrostatic spray method. By this method, the conductive fine particles can be present in a small amount and uniformly in the upper part or inside of the fine particle layer, or in the upper and inner regions where the conductive fine particles are introduced. Therefore, it is possible to manufacture an electron-emitting device that has an electron-emitting portion uniformly and can stably and satisfactorily emit electrons. In addition, by applying a voltage to the electrode substrate and the spray needle after the formation of the fine particle layer and electrostatically spraying the conductive fine particle dispersion solution, the conductive fine particles reach the fine particle layer without diffusing, and wasteful conductive fine particles are consumed. Can be suppressed. In addition, since the electrostatic spraying method is used, the conductive fine particles can be uniformly introduced regardless of the shape of the fine particle layer, and the electron emission portion, which is the region where the conductive fine particles are introduced, can be formed on the curved surface. The shape of the emitting element can be manufactured without limitation.

さらに、上記方法によると、絶縁体微粒子分散溶液と導電微粒子分散溶液とをそれぞれ用意し、別々に電極基板上に塗布するため、絶縁体微粒子分散溶液と導電微粒子分散溶液の混合時に凝集体が発生するといった不具合を防ぐことができる。   Furthermore, according to the above method, since the insulating fine particle dispersion solution and the conductive fine particle dispersion solution are prepared separately and applied onto the electrode substrate, aggregates are generated when the insulating fine particle dispersion solution and the conductive fine particle dispersion solution are mixed. It is possible to prevent problems such as

よって、電極基板上に絶縁体微粒子分散液を塗布して絶縁体微粒子を含む微粒子層を形成した後に、導電微粒子分散液を塗布することで、微粒子の凝集体が少なく、微粒子が均一に分散された電子加速層を形成できる。かつ、微粒子の分散液を塗布するという簡易な製造プロセスにより、簡易かつ低コストで電子放出素子を得ることができる。   Therefore, after applying the insulating fine particle dispersion on the electrode substrate to form a fine particle layer containing the insulating fine particles, the conductive fine particle dispersion is applied, so that there are few aggregates of fine particles and the fine particles are uniformly dispersed. An electron acceleration layer can be formed. In addition, an electron-emitting device can be obtained easily and at low cost by a simple manufacturing process of applying a fine particle dispersion.

このように、本発明の方法によると、微粒子の凝集体が発生することを回避でき、均一に分散した絶縁体微粒子を含む微粒子層の上部または内部、もしくは上部および内部の、導電微粒子が導入された領域に、電子放出部が均一に存在した電子加速層を、簡易かつ低コストで形成でき、安定かつ良好に電子放出する電子放出素子を製造できる。   As described above, according to the method of the present invention, it is possible to avoid the generation of aggregates of fine particles, and conductive fine particles are introduced into the upper part or the inner part of the fine particle layer including the uniformly dispersed insulating fine particles, or the upper part and the inner part. An electron acceleration layer in which electron emission portions are uniformly present in the region can be formed easily and at low cost, and an electron-emitting device that emits electrons stably and satisfactorily can be manufactured.

本発明の電子放出素子を有する電子放出装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the electron emission apparatus which has the electron emission element of this invention. 複数の電子放出部を有する電子放出装置を帯電装置として利用して感光体を帯電することを説明する図である。It is a figure explaining charging a photoreceptor using an electron emission device having a plurality of electron emission portions as a charging device. 電子放出実験の測定系を示す図である。It is a figure which shows the measurement system of an electron emission experiment. 本発明の電子放出装置を用いた帯電装置の一例を示す図である。It is a figure which shows an example of the charging device using the electron emission apparatus of this invention. 本発明の電子放出装置を用いた電子線硬化装置の一例を示す図である。It is a figure which shows an example of the electron beam hardening apparatus using the electron emission apparatus of this invention. 本発明の電子放出装置を用いた自発光デバイスの一例を示す図である。It is a figure which shows an example of the self-light-emitting device using the electron emission apparatus of this invention. 本発明の電子放出装置を用いた自発光デバイスの他の一例を示す図である。It is a figure which shows another example of the self-light-emitting device using the electron emission apparatus of this invention. 本発明の電子放出装置を用いた自発光デバイスの更に別の一例を示す図である。It is a figure which shows another example of the self-light-emitting device using the electron emission apparatus of this invention. 本発明の電子放出装置を用いた自発光デバイスを具備する画像表示装置の他の一例を示す図である。It is a figure which shows another example of the image display apparatus which comprises the self-light-emitting device using the electron emission apparatus of this invention. 本発明の電子放出装置を用いた送風装置及びそれを具備した冷却装置の一例を示す図である。It is a figure which shows an example of the air blower using the electron emission apparatus of this invention, and a cooling device provided with the same. 本発明の電子放出装置を用いた送風装置及びそれを具備した冷却装置の別の一例を示す図である。It is a figure which shows another example of the air blower using the electron-emitting apparatus of this invention, and a cooling device provided with the same.

以下、本発明の電子放出素子およびその製造方法の実施形態および実施例について、図1〜11を参照しながら具体的に説明する。なお、以下に記述する実施の形態および実施例は本発明の具体的な一例に過ぎず、本発明はこれらよって限定されるものではない。   Hereinafter, embodiments and examples of an electron-emitting device and a method for manufacturing the same according to the present invention will be specifically described with reference to FIGS. Note that the embodiments and examples described below are merely specific examples of the present invention, and the present invention is not limited thereto.

〔実施の形態1〕
図1は、本発明の製造方法によって製造される本発明の電子放出素子の一実施形態の構成を示す模式図である。図示すように、本実施形態の電子放出素子1は、下部電極となる電極基板2と、上部電極となる薄膜電極3と、その間に挟まれて存在する電子加速層4とからなる。また、電極基板2と薄膜電極3とは電源7に繋がっており、互いに対向して配置された電極基板2と薄膜電極3との間に電圧を印加できるようになっている。電子放出素子1は、電極基板2と薄膜電極3との間に電圧を印加することで、電極基板2と薄膜電極3との間、つまり、電子加速層4に電流を流し、その一部を印加電圧の形成する強電界により弾道電子として、薄膜電極3を透過および/あるいは薄膜電極3の隙間から放出させる。なお、電子放出素子1と電源7とから電子放出装置10が成る。
[Embodiment 1]
FIG. 1 is a schematic diagram showing the configuration of an embodiment of an electron-emitting device of the present invention manufactured by the manufacturing method of the present invention. As shown in the figure, the electron-emitting device 1 of the present embodiment includes an electrode substrate 2 serving as a lower electrode, a thin film electrode 3 serving as an upper electrode, and an electron acceleration layer 4 that is sandwiched therebetween. In addition, the electrode substrate 2 and the thin film electrode 3 are connected to a power source 7 so that a voltage can be applied between the electrode substrate 2 and the thin film electrode 3 arranged to face each other. The electron-emitting device 1 applies a voltage between the electrode substrate 2 and the thin film electrode 3, thereby passing a current between the electrode substrate 2 and the thin film electrode 3, that is, the electron acceleration layer 4. The thin film electrode 3 is transmitted and / or emitted from the gap between the thin film electrodes 3 as ballistic electrons by the strong electric field formed by the applied voltage. The electron emission device 10 is composed of the electron emission element 1 and the power source 7.

下部電極となる電極基板2は、電子放出素子の支持体の役割を担う。そのため、ある程度の強度を有し、直に接する物質との接着性が良好で、適度な導電性を有するものであれば、特に制限なく用いることができる。例えばSUSやTi、Cu等の金属基板、SiやGe、GaAs等の半導体基板、ガラス基板のような絶縁体基板、プラスティック基板等が挙げられる。例えばガラス基板のような絶縁体基板を用いるのであれば、その電子加速層4との界面に金属などの導電性物質を電極として付着させることによって、下部電極となる電極基板2として用いることができる。上記導電性物質としては、導電性に優れた材料を、マグネトロンスパッタ等を用いて薄膜形成できれば、その構成材料は特に問わない。ただし、大気中での安定動作を所望するのであれば、抗酸化力の高い導電体を用いることが好ましく、貴金属を用いることがより好ましい。また、酸化物導電材料として、透明電極に広く利用されているITO薄膜も有用である。また、強靭な薄膜を形成できるという点で、例えば、ガラス基板表面にTiを200nm成膜し、さらに重ねてCuを1000nm成膜した金属薄膜を用いてもよいが、これら材料および数値に限定されることはない。   The electrode substrate 2 serving as the lower electrode serves as a support for the electron-emitting device. Therefore, any material can be used without particular limitation as long as it has a certain degree of strength, has good adhesion to a directly contacting substance, and has appropriate conductivity. Examples thereof include metal substrates such as SUS, Ti, and Cu, semiconductor substrates such as Si, Ge, and GaAs, insulator substrates such as glass substrates, and plastic substrates. For example, if an insulator substrate such as a glass substrate is used, it can be used as the electrode substrate 2 to be the lower electrode by attaching a conductive material such as a metal as an electrode to the interface with the electron acceleration layer 4. . The conductive material is not particularly limited as long as a material having excellent conductivity can be formed into a thin film using magnetron sputtering or the like. However, if a stable operation in the air is desired, it is preferable to use a conductor with high antioxidation power, and it is more preferable to use a noble metal. An ITO thin film widely used for transparent electrodes is also useful as an oxide conductive material. In addition, for example, a metal thin film in which a Ti film is formed to 200 nm on a glass substrate surface and a Cu film is further formed to a 1000 nm thickness may be used in that a tough thin film can be formed. Never happen.

薄膜電極3は、電子加速層4内に電圧を印加させるものである。そのため、電圧の印加が可能となるような材料であれば特に制限なく用いることができる。ただし、電子加速層4内で加速され高エネルギーとなった電子をなるべくエネルギーロス無く透過させて放出させるという観点から、仕事関数が低くかつ薄膜を形成することが可能な材料であれば、より高い効果が期待できる。このような材料として、例えば、仕事関数が4〜5eVに該当する金、銀、炭素、タングステン、チタン、アルミ、パラジウムなどが挙げられる。中でも大気圧中での動作を想定した場合、酸化物および硫化物形成反応のない金が、最良な材料となる。また、酸化物形成反応の比較的小さい銀、パラジウム、タングステンなども問題なく実使用に耐える材料である。また薄膜電極3の膜厚は、電子放出素子1から外部へ電子を効率良く放出させる条件として重要であり、10〜100nmの範囲とすることが好ましい。薄膜電極3を平面電極として機能させるための最低膜厚は10nmであり、これ未満の膜厚では、電気的導通を確保できない。一方、電子放出素子1から外部へ電子を放出させるための最大膜厚は100nmであり、これを超える膜厚では弾道電子の透過が起こらず、薄膜電極3で弾道電子の吸収あるいは反射による電子加速層4への再捕獲が生じてしまう。   The thin film electrode 3 applies a voltage in the electron acceleration layer 4. Therefore, any material that can be applied with voltage can be used without particular limitation. However, from the standpoint that electrons accelerated and become high energy in the electron acceleration layer 4 are transmitted with as little energy loss as possible and emitted, a material having a low work function and capable of forming a thin film is higher. The effect can be expected. Examples of such a material include gold, silver, carbon, tungsten, titanium, aluminum, palladium, and the like whose work function corresponds to 4 to 5 eV. In particular, assuming operation at atmospheric pressure, gold without oxide and sulfide formation reaction is the best material. In addition, silver, palladium, tungsten, and the like, which have a relatively small oxide formation reaction, are materials that can withstand actual use without problems. The film thickness of the thin-film electrode 3 is important as a condition for efficiently emitting electrons from the electron-emitting device 1 to the outside, and is preferably in the range of 10 to 100 nm. The minimum film thickness for causing the thin film electrode 3 to function as a planar electrode is 10 nm. If the film thickness is less than this, electrical conduction cannot be ensured. On the other hand, the maximum film thickness for emitting electrons from the electron-emitting device 1 to the outside is 100 nm. If the film thickness exceeds this value, no ballistic electrons are transmitted, and the thin-film electrode 3 accelerates electrons by absorbing or reflecting ballistic electrons. Recapture into layer 4 will occur.

電子加速層4は、図1に示すように、導電微粒子6と絶縁体微粒子5とが分散されている。さらに、電子加速層4にバインダー成分15が含まれていてもよい。   In the electron acceleration layer 4, as shown in FIG. 1, conductive fine particles 6 and insulator fine particles 5 are dispersed. Furthermore, the electron acceleration layer 4 may contain a binder component 15.

また、電子加速層4は、絶縁体微粒子5を含む微粒子層で構成され、かつ、少なくとも該微粒子層の表面には導電微粒子6が離散配置されていてもよい。ここで、微粒子層は、絶縁体微粒子5の他に導電微粒子6を含んでいてもよい。微粒子層に導電微粒子6が含まれると、導電微粒子6によって絶縁体微粒子5の表面の電気伝導を変えることができるため、素子の導電性制御が容易になる。   Further, the electron acceleration layer 4 may be composed of a fine particle layer including the insulating fine particles 5, and the conductive fine particles 6 may be discretely arranged on at least the surface of the fine particle layer. Here, the fine particle layer may include conductive fine particles 6 in addition to the insulating fine particles 5. If the fine particle layer contains the conductive fine particles 6, the conductive fine particles 6 can change the electric conduction of the surface of the insulator fine particles 5, so that the conductivity of the element can be easily controlled.

絶縁微体粒子5は、その材料は絶縁性を持つものであれば特に制限なく用いることができる。ただし、電子加速層4を構成する微粒子全体における絶縁体微粒子5の重量割合は80〜95%であるのが好ましい。絶縁体微粒子5の材料はSiO、Al、TiOといったものが実用的となる。ただし、表面処理が施された小粒径シリカ粒子を用いると、それよりも粒子径の大きな球状シリカ粒子を用いるときと比べて、溶媒中に占めるシリカ粒子の表面積が増加し、溶液粘度が上昇するため、電子加速層4の膜厚が若干増加する傾向にある。また、絶縁体微粒子5の材料には、有機ポリマーから成る微粒子を用いてもよく、例えば、JSR株式会社の製造販売するスチレン/ジビニルベンゼンから成る高架橋微粒子(SX8743)、または日本ペイント株式会社の製造販売するスチレン・アクリル微粒子のファインスフェアシリーズが利用可能である。ここで、絶縁体微粒子5は、2種類以上の異なる粒子を用いてもよく、また、粒径のピークが異なる粒子を用いてもよく、あるいは、単一粒子で粒径がブロードな分布のものを用いてもよい。 The insulating fine particles 5 can be used without particular limitation as long as the material has insulating properties. However, the weight ratio of the insulating fine particles 5 to the whole fine particles constituting the electron acceleration layer 4 is preferably 80 to 95%. Materials of the insulating fine particles 5 such thing as SiO 2, Al 2 O 3, TiO 2 becomes practical. However, using small-sized silica particles with surface treatment increases the surface area of the silica particles in the solvent and increases the solution viscosity compared to using spherical silica particles with a larger particle diameter. Therefore, the film thickness of the electron acceleration layer 4 tends to increase slightly. The material of the insulating fine particles 5 may be fine particles made of an organic polymer. For example, highly crosslinked fine particles (SX8743) made of styrene / divinylbenzene manufactured and sold by JSR Corporation, or manufactured by Nippon Paint Corporation. The fine sphere series of styrene / acrylic fine particles to be sold is available. Here, the insulating fine particles 5 may use two or more kinds of different particles, may use particles having different particle size peaks, or have a single particle and a broad distribution of particle sizes. May be used.

また絶縁体微粒子5の平均粒径は、導電微粒子6に対して優位な放熱効果を得るため、導電微粒子6の平均粒径よりも大きいことが好ましい。この場合、粒子径の分散状態は平均粒径に対してブロードであってもよく、例えば平均粒径50nmの微粒子が、20〜100nmの領域にその粒子径分布を有していても問題ない。絶縁体微粒子5が導電微粒子6の平均粒径よりも大きいと、絶縁体微粒子5の平均粒径よりも小さい導電微粒子6の内部から外部へと効率よく熱伝導させて、素子内を電流が流れる際に発生するジュール熱を効率よく逃がすことができ、電子放出素子が熱で破壊されることを防ぐことができる。さらに、電子加速層4における抵抗値の調整を行いやすくすることができる。   The average particle diameter of the insulating fine particles 5 is preferably larger than the average particle diameter of the conductive fine particles 6 in order to obtain a heat radiation effect superior to that of the conductive fine particles 6. In this case, the dispersion state of the particle diameter may be broad with respect to the average particle diameter. For example, fine particles having an average particle diameter of 50 nm may have a particle diameter distribution in the region of 20 to 100 nm. If the insulating fine particles 5 are larger than the average particle size of the conductive fine particles 6, the conductive fine particles 6 smaller than the average particle size of the insulating fine particles 5 are efficiently conducted from the inside to the outside, and a current flows in the element. Joule heat generated at the time can be efficiently released, and the electron-emitting device can be prevented from being destroyed by heat. Furthermore, the resistance value in the electron acceleration layer 4 can be easily adjusted.

さらに、電子加速層4を、後述のように絶縁体微粒子5を含む微粒子層上に導電微粒子6を塗布して作成する場合、導電微粒子6の微粒子層への浸透度合いは、絶縁体微粒子5の種類および/または平均粒径、導電微粒子6の種類および/または平均粒径、絶縁体微粒子5および導電微粒子6の組合せなどに依存する。すなわち、絶縁体微粒子5の平均粒径が小さいと、塗布した導電微粒子6の大部分が、微粒子層内部に浸透せず、上部に堆積する。他方、絶縁体微粒子5の平均粒径が大きいと、微粒子層の粒子間の隙間が大きくなりすぎ、微粒子層内に留まる導電微粒子6が少なくなる。よって、平均粒径3〜10nmの導電微粒子6を用いる場合に導電微粒子の微粒子層中への浸透度合いを制御するためには、絶縁体微粒子5の平均粒径は、10〜500nmであるのが好ましい。   Further, when the electron acceleration layer 4 is formed by applying the conductive fine particles 6 on the fine particle layer including the insulating fine particles 5 as described later, the degree of penetration of the conductive fine particles 6 into the fine particle layer is determined by the insulating fine particles 5. It depends on the type and / or average particle size, the type and / or average particle size of the conductive fine particles 6, the combination of the insulating fine particles 5 and the conductive fine particles 6, and the like. That is, when the average particle diameter of the insulating fine particles 5 is small, most of the applied conductive fine particles 6 do not penetrate into the fine particle layer and deposit on the upper part. On the other hand, when the average particle diameter of the insulating fine particles 5 is large, the gaps between the particles of the fine particle layer become too large, and the conductive fine particles 6 staying in the fine particle layer are reduced. Therefore, in order to control the degree of penetration of the conductive fine particles into the fine particle layer when using the conductive fine particles 6 having an average particle diameter of 3 to 10 nm, the average particle diameter of the insulating fine particles 5 is 10 to 500 nm. preferable.

また、後述のように、電子加速層4にバインダー成分が含まれる場合、絶縁体微粒子5の平均粒径が200nmよりも大きいと、塗布した平均粒径3〜10nmの導電微粒子の大部分が、絶縁体微粒子5を含むバインダー成分の層の上部に留まらない。よって、電子加速層4にバインダー成分が含まれ、平均粒径3〜10nmの導電微粒子6を用いる場合、絶縁体微粒子5の平均粒径は、10〜200nmであるのが好ましい。   As will be described later, when the electron acceleration layer 4 contains a binder component, if the average particle size of the insulating fine particles 5 is larger than 200 nm, most of the applied conductive fine particles having an average particle size of 3 to 10 nm It does not stay on top of the binder component layer containing the insulating fine particles 5. Therefore, when the electron acceleration layer 4 contains a binder component and the conductive fine particles 6 having an average particle diameter of 3 to 10 nm are used, the average particle diameter of the insulating fine particles 5 is preferably 10 to 200 nm.

導電微粒子6の材料としては、弾道電子を生成するという動作原理の上ではどのような導電体でも用いることができる。ただし、抗酸化力が高い導電体であると、大気圧動作させた時の酸化劣化を避けることができる。ここで言う抗酸化力が高いとは、酸化物形成反応の低いことを指す。一般的に熱力学計算より求めた、酸化物生成自由エネルギーの変化量ΔG[kJ/mol]値が負で大きい程、酸化物の生成反応が起こり易いことを表す。本発明ではΔG>−450[kJ/mol]以上に該当する金属元素が、抗酸化力の高い導電微粒子として該当する。また、該当する導電微粒子の周囲に、その導電微粒子の大きさよりも小さい絶縁体物質を付着、または被覆することで、酸化物の生成反応をより起こし難くした状態の導電微粒子も、抗酸化力が高い導電微粒子に含まれる。抗酸化力が高い導電微粒子であることで、導電微粒子の、大気中の酸素による酸化などをはじめとする素子劣化を防ぐことができる。よって、電子放出素子の長寿命化を図ることができる。   As the material of the conductive fine particles 6, any conductor can be used on the principle of operation of generating ballistic electrons. However, if the conductor has a high anti-oxidation power, it is possible to avoid oxidative degradation when operated at atmospheric pressure. Here, the high antioxidant power means that the oxide forming reaction is low. In general, the larger the negative value ΔG [kJ / mol] value of the oxide formation free energy obtained by thermodynamic calculation, the easier the oxide formation reaction occurs. In the present invention, a metal element corresponding to ΔG> −450 [kJ / mol] or more corresponds to conductive fine particles having a high antioxidant power. In addition, the conductive fine particles in a state in which an oxide generation reaction is more difficult to occur by attaching or coating an insulating material smaller than the size of the conductive fine particles around the corresponding conductive fine particles have anti-oxidation power. Included in high conductive particles. The conductive fine particles having high anti-oxidation power can prevent device deterioration such as oxidation of the conductive fine particles by oxygen in the atmosphere. Therefore, the lifetime of the electron-emitting device can be extended.

抗酸化力が高い導電微粒子としては、貴金属、例えば、金、銀、白金、パラジウム、ニッケルといった材料が挙げられる。このような導電微粒子6は、公知の微粒子製造技術であるスパッタ法や噴霧加熱法を用いて作成可能であり、応用ナノ研究所が製造販売する銀ナノ粒子等の市販の金属微粒子粉体も利用可能である。弾道電子の生成の原理については後段で記載する。   Examples of the conductive fine particles having high anti-oxidation power include materials such as noble metals such as gold, silver, platinum, palladium, and nickel. Such conductive fine particles 6 can be prepared using a known fine particle production technique such as sputtering or spray heating, and also use commercially available metal fine particle powders such as silver nanoparticles produced and sold by Applied Nano Laboratory. Is possible. The principle of ballistic electron generation will be described later.

ここで、導電微粒子6の平均粒径は、3〜10nmであるのがより好ましい。このように、導電微粒子6の平均粒径を、好ましくは3〜10nmとすることにより、電子加速層4内で、導電微粒子6による導電パスが形成されず、電子加速層4内での絶縁破壊が起こり難くなる。また原理的には不明確な点が多いが、平均粒径が上記範囲内の導電微粒子6を用いることで、弾道電子が効率よく生成される。   Here, the average particle diameter of the conductive fine particles 6 is more preferably 3 to 10 nm. Thus, by setting the average particle diameter of the conductive fine particles 6 to preferably 3 to 10 nm, a conductive path by the conductive fine particles 6 is not formed in the electron acceleration layer 4, and dielectric breakdown in the electron acceleration layer 4 is achieved. Is less likely to occur. Although there are many unclear points in principle, ballistic electrons are efficiently generated by using the conductive fine particles 6 having an average particle diameter within the above range.

また、電子加速層4全体における導電微粒子6の割合は、0.5〜30重量%が好ましい。0.5重量%より少ない場合は導電微粒子として素子内電流を増加させる効果を発揮せず、30重量%より多い場合は導電微粒子の凝集が発生する。中でも、1〜10重量%であることがより好ましい。   The proportion of the conductive fine particles 6 in the entire electron acceleration layer 4 is preferably 0.5 to 30% by weight. When the amount is less than 0.5% by weight, the effect of increasing the current in the device as conductive fine particles is not exhibited, and when the amount is more than 30% by weight, aggregation of the conductive fine particles occurs. Especially, it is more preferable that it is 1 to 10 weight%.

なお、導電微粒子6の周囲には、導電微粒子6の大きさより小さい絶縁体物質である小絶縁体物質が存在していてもよく、この小絶縁体物質は、導電微粒子6の表面に付着する付着物質であってもよく、付着物質は、導電微粒子6の平均粒径より小さい形状の集合体として、導電微粒子6の表面を被膜する絶縁被膜であってもよい。小絶縁体物質としては、弾道電子を生成するという動作原理の上ではどのような絶縁体物質でも用いることができる。ただし、導電微粒子6の大きさより小さい絶縁体物質が導電微粒子6を被膜する絶縁被膜であり、絶縁被膜を導電微粒子6の酸化被膜によって賄った場合、大気中での酸化劣化により酸化皮膜の厚さが所望の膜厚以上に厚くなってしまう恐れがあるため、大気圧動作させた時の酸化劣化を避ける目的から、有機材料による絶縁被膜が好ましく、例えば、アルコラート、脂肪酸、アルカンチオールといった材料が挙げられる。この絶縁被膜の厚さは薄い方が有利であることが言える。   Note that a small insulator material, which is an insulator material smaller than the size of the conductive fine particles 6, may exist around the conductive fine particles 6, and the small insulator material adheres to the surface of the conductive fine particles 6. The substance may be a substance, and the attached substance may be an insulating film that coats the surface of the conductive fine particles 6 as an aggregate having a shape smaller than the average particle diameter of the conductive fine particles 6. As the small insulator material, any insulator material can be used on the principle of operation of generating ballistic electrons. However, when the insulating material smaller than the size of the conductive fine particle 6 is an insulating film that coats the conductive fine particle 6, and the insulating film is covered by the oxide film of the conductive fine particle 6, the thickness of the oxide film due to oxidative degradation in the atmosphere. In order to avoid oxidative degradation when operated at atmospheric pressure, an insulating film made of an organic material is preferable. For example, materials such as alcoholate, fatty acid, and alkanethiol are listed. It is done. It can be said that the thinner the insulating coating, the more advantageous.

また、導電微粒子6は、後述の製造方法において導電微粒子の分散液を作成する際の分散性の向上のために、表面処理を施されているのが好ましく、その表面処理が上記の絶縁被膜物質を被膜することであってもよい。   In addition, the conductive fine particles 6 are preferably subjected to a surface treatment in order to improve dispersibility when preparing a dispersion of conductive fine particles in the production method described later, and the surface treatment is performed on the above insulating coating substance. It may be to coat.

また、電子加速層4は薄いほど強電界がかかるため低電圧印加で電子を加速させることができるが、層厚を均一化できること、また層厚方向における電子加速層の抵抗調整が可能となることなどから、電子加速層4の層厚は、12〜6000nmが好ましく、300〜6000nmがより好ましい。   In addition, the thinner the electron acceleration layer 4 is, the stronger the electric field is applied, so that electrons can be accelerated by applying a low voltage, but the layer thickness can be made uniform and the resistance of the electron acceleration layer in the layer thickness direction can be adjusted. Therefore, the layer thickness of the electron acceleration layer 4 is preferably 12 to 6000 nm, and more preferably 300 to 6000 nm.

また、電子加速層4は、バインダー成を含んでいてもよい。この場合、絶縁体微粒子5および導電微粒子6は、バインダー成分に分散される。このようなバインダー成分として、例えば、電極基板2との接着性がよく、絶縁体微粒子5や導電微粒子6を分散でき、絶縁性を有するバインダー樹脂を用いればよい。このようなバインダー樹脂として、例えば、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、加水分解性基含有シロキサン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2−(3、4エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシシラン、3−アクリロキシプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1、3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3−イソシアネートプロピルトリエトキシシラン、などが挙げられる。これらのバインダー樹脂は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。   The electron acceleration layer 4 may contain a binder component. In this case, the insulating fine particles 5 and the conductive fine particles 6 are dispersed in the binder component. As such a binder component, for example, adhesiveness with the electrode substrate 2 is good, and the insulating fine particles 5 and the conductive fine particles 6 can be dispersed, and an insulating binder resin may be used. Examples of such binder resins include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, phenyltriethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, hydrolyzable group-containing siloxane, vinyl Trimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyl Triethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, -2 (aminoethyl) 3-aminopropyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl -N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane Bis (triethoxysilylpropyl) tetrasulfide, 3-isocyanatopropyltriethoxysilane, and the like. These binder resins can be used alone or in combination of two or more.

バインダー成分が含まれる微粒子層では絶縁体微粒子5の分散状態が保持されているため、後述のように静電噴霧法を用いて導電微粒子分散液を塗布しても、微粒子層中の絶縁体微粒子5の分散状態が変化することはない。したがって、より一層、電子放出部を均一に制御した電子加速層4を形成でき、安定かつ良好な電子放出が可能な電子放出素子1を製造することができる。さらに、バインダー成分は電極基板との接着性が高く、素子の機械的強度を高めることができる。   In the fine particle layer containing the binder component, the dispersed state of the insulating fine particles 5 is maintained, so that the insulating fine particles in the fine particle layer can be applied even when the conductive fine particle dispersion is applied using an electrostatic spraying method as will be described later. The dispersion state of 5 does not change. Therefore, the electron acceleration layer 4 in which the electron emission portion is uniformly controlled can be formed, and the electron-emitting device 1 capable of stable and good electron emission can be manufactured. Furthermore, the binder component has high adhesiveness with the electrode substrate, and can increase the mechanical strength of the element.

ここで、電子加速層4が、絶縁体微粒子を含む微粒子層で構成され、かつ、少なくとも該微粒子層の表面には導電微粒子が離散配置されていると、その配置箇所が電子放出部となる。よって、電子放出素子1は、電子放出部がパターニングされた構造となる。そのため、電子放出部の位置制御が可能となり、電子加速層4の上に形成される薄膜電極3の構成材料が放出される電子により消失する現象を防ぐことができる。また、各電子放出部からの電子放出量を独立して制御することができる。   Here, when the electron acceleration layer 4 is composed of a fine particle layer containing insulating fine particles and conductive fine particles are discretely arranged on at least the surface of the fine particle layer, the arrangement location becomes an electron emission portion. Therefore, the electron-emitting device 1 has a structure in which the electron-emitting portion is patterned. Therefore, the position of the electron emission portion can be controlled, and the phenomenon that the constituent material of the thin film electrode 3 formed on the electron acceleration layer 4 disappears due to the emitted electrons can be prevented. Moreover, the amount of electron emission from each electron emission part can be controlled independently.

微粒子層の表面に導電微粒子が離散的に配置されている素子は、微粒子層を形成した後に、例えば、後述のように、マスクを用いた静電噴霧法を用いて導電微粒子分散液を塗布して作製する。その際、バインダー成分が含まれる微粒子層では絶縁体微粒子の分散状態が保持されているため、後から導電微粒子分散液を塗布しても、微粒子層中の絶縁体微粒子の分散状態が変化することはない。したがって、電子放出位置の制御性が向上したされた電子加速層を形成でき、安定かつ良好な電子放出が可能な電子放出素子とすることができる。   In an element in which conductive fine particles are discretely arranged on the surface of the fine particle layer, after forming the fine particle layer, for example, as described later, a conductive fine particle dispersion is applied using an electrostatic spray method using a mask. To make. At that time, since the dispersed state of the insulating fine particles is maintained in the fine particle layer containing the binder component, even if the conductive fine particle dispersion is applied later, the dispersed state of the insulating fine particles in the fine particle layer may change. There is no. Therefore, an electron acceleration layer with improved controllability of electron emission positions can be formed, and an electron-emitting device capable of stable and good electron emission can be obtained.

さらに、電子加速層4の内部にも導電微粒子が存在する場合、導電微粒子6は、微粒子層表面における導電微粒子の着地箇所の下方にのみ存在する、すなわち、電子加速層4の内部においても導電微粒子の離散状態が保持されることになる。   Further, when conductive fine particles are also present inside the electron acceleration layer 4, the conductive fine particles 6 are present only below the landing position of the conductive fine particles on the surface of the fine particle layer. That is, the conductive fine particles are also present inside the electron acceleration layer 4. These discrete states are held.

なお、導電微粒子を微粒子層の表面に離散配置させる際、微粒子層にバインダー成分が含まれると、導電微粒子の微粒子層中への浸透度合いを制御する一因子となるが、別の方法によって離散配置させてもよい。導電微粒子を微粒子層の表面に離散配置させるには、例えば、(1)径の小さい絶縁体微粒子を最密充填させた微粒子層の上から、絶縁体微粒子とあまり径の変わらない導電微粒子を塗布する、(2)比較的高粘度の絶縁体微粒子分散液を用いて微粒子層を形成し、その上から導電微粒子を塗布する、(3)導電微粒子分散液の乾燥速度を制御する、などの方法も考えられる。   In addition, when the conductive fine particles are discretely arranged on the surface of the fine particle layer, if the fine particle layer contains a binder component, it is a factor for controlling the degree of penetration of the conductive fine particles into the fine particle layer. You may let them. In order to disperse the conductive fine particles on the surface of the fine particle layer, for example, (1) From the fine particle layer in which the insulating fine particles having a small diameter are closely packed, the conductive fine particles having the same diameter as the insulating fine particles are applied. (2) Forming a fine particle layer using a relatively high-viscosity insulator fine particle dispersion, and applying conductive fine particles thereon, (3) Controlling the drying rate of the conductive fine particle dispersion, etc. Is also possible.

さらに、電子放出素子1は、平面または曲面を含む共通の電極基板上に複数個作成されてもよい。このように、共通の電極基板上に複数の電子放出素子を作成することができると、電子放出素子が複数必要な装置において、好適に利用できる。   Furthermore, a plurality of electron-emitting devices 1 may be formed on a common electrode substrate including a flat surface or a curved surface. Thus, if a plurality of electron-emitting devices can be formed on a common electrode substrate, it can be suitably used in an apparatus that requires a plurality of electron-emitting devices.

次に、電子放出の原理について説明する。電子加速層4は、その大部分を絶縁体微粒子5を含む微粒子層で構成され、微粒子層の上部のみ、もしくは上部および内部に導電微粒子6が存在している。電子加速層4における絶縁体微粒子5および導電微粒子6の比率は、絶縁体微粒子5および導電微粒子6の総重量に対する絶縁体微粒子5の重量比率が80%に相当する状態であり、絶縁体微粒子5一粒子当たりに付着する導電微粒子6は六粒子程度となる。電子加速層4は絶縁体微粒子5と少数の導電微粒子6とを含む層であり、半導電性を有する。   Next, the principle of electron emission will be described. Most of the electron acceleration layer 4 is composed of a fine particle layer including the insulating fine particles 5, and the conductive fine particles 6 exist only in the upper part of the fine particle layer or in the upper part and the inside. The ratio of the insulating fine particles 5 and the conductive fine particles 6 in the electron acceleration layer 4 is such that the weight ratio of the insulating fine particles 5 to the total weight of the insulating fine particles 5 and the conductive fine particles 6 corresponds to 80%. The conductive fine particles 6 attached per particle are about six particles. The electron acceleration layer 4 is a layer including the insulating fine particles 5 and a small number of conductive fine particles 6 and has semiconductivity.

また、電子加速層4にバインダー成分が含まれる場合には、その大部分を絶縁体微粒子5およびバインダー成分を含む微粒子層で構成され、微粒子層の上部のみ、もしくは上部および内部に導電微粒子6が存在している。電子加速層4は絶縁体微粒子5およびバインダー成分を含む微粒子層と少数の導電微粒子6とを含み、半導電性を有する。   When the binder component is included in the electron acceleration layer 4, most of the electron acceleration layer 4 is composed of the insulating fine particles 5 and the fine particle layer containing the binder component, and the conductive fine particles 6 are formed only on the upper portion of the fine particle layer or on the upper portion and the inside thereof. Existing. The electron acceleration layer 4 includes insulating fine particles 5 and a fine particle layer containing a binder component and a small number of conductive fine particles 6 and has semiconductivity.

よって電子加速層4へ電圧を印加すると、極弱い電流が流れる。電子加速層4の電圧電流特性は所謂バリスタ特性を示し、印加電圧の上昇に伴い急激に電流値を増加させる。この電流の一部は、印加電圧が形成する電子加速層4内の強電界により弾道電子となり、薄膜電極3を透過および/あるいはその隙間を通過して電子放出素子1の外部へ放出される。弾道電子の形成過程は、電子が電界方向に加速されつつトンネルすることによるものと考えられるが、断定できていない。   Therefore, when a voltage is applied to the electron acceleration layer 4, a very weak current flows. The voltage-current characteristic of the electron acceleration layer 4 shows a so-called varistor characteristic, and the current value is rapidly increased as the applied voltage increases. Part of this current becomes ballistic electrons due to the strong electric field in the electron acceleration layer 4 formed by the applied voltage, passes through the thin film electrode 3 and / or passes through the gap, and is emitted to the outside of the electron-emitting device 1. The formation process of ballistic electrons is thought to be due to electrons tunneling while being accelerated in the direction of the electric field, but it has not been determined.

また、電子加速層4において、導電微粒子6の全部が絶縁体微粒子で構成される微粒子層の表面に離散的に配置している場合、電子放出素子の電子放出メカニズムは、明確になっていなが、次のようなメカニズムでないかと考える。電極基板2と薄膜電極3との間に電圧が印加されると、電極基板2から絶縁体微粒子5の表面に電子が移る。絶縁体微粒子5の内部は高抵抗であることから電子は絶縁体微粒子5の表面を伝導していく。このとき、絶縁体微粒子5の表面の不純物や表面処理剤、あるいは絶縁体微粒子5間の接点において、電子がトラップされる。このトラップされた電子は固定化された電荷として働く。その結果、電子加速層4の表面では印加電圧とトラップされた電子の作る電界が合わさって高電界となり、その高電界によって電子が加速され、離散的に配置された導電微粒子(電子放出部)を通って、薄膜電極3から電子が放出される。   Further, when all of the conductive fine particles 6 are discretely arranged on the surface of the fine particle layer composed of the insulating fine particles in the electron acceleration layer 4, the electron emission mechanism of the electron-emitting device is not clear. I think that it is the following mechanism. When a voltage is applied between the electrode substrate 2 and the thin film electrode 3, electrons move from the electrode substrate 2 to the surface of the insulating fine particles 5. Since the inside of the insulating fine particles 5 has a high resistance, electrons are conducted through the surface of the insulating fine particles 5. At this time, electrons are trapped at impurities on the surface of the insulating fine particles 5, a surface treatment agent, or contacts between the insulating fine particles 5. The trapped electrons work as fixed charges. As a result, the applied voltage and the electric field created by the trapped electrons are combined on the surface of the electron acceleration layer 4 to form a high electric field. The electrons are accelerated by the high electric field, and conductive fine particles (electron emission portions) arranged discretely are formed. As a result, electrons are emitted from the thin-film electrode 3.

次に、本発明に係る電子放出素子1の製造方法について説明する。   Next, a method for manufacturing the electron-emitting device 1 according to the present invention will be described.

まず、絶縁体微粒子5を分散溶媒に分散させた絶縁体微粒子分散液を得る。例えば、絶縁体微粒子5を分散溶媒に分散させることで得ることができる。分散方法は特に限定されるものではなく、例えば、常温で超音波分散器にかけて分散すればよい。ここで用いられる分散溶媒としては、絶縁体微粒子5を分散でき、かつ塗布後に乾燥できれば、特に制限なく用いることができる。例えば、トルエン、ベンゼン、ヘキサン、メタノール、エタノール等が挙げられる。ここで、絶縁体微粒子5の種類によっても分散に適している分散溶媒が異なり、例えば、絶縁体微粒子5がSiOである場合、メタノールやエタノールが好ましい。また、分散溶媒は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。 First, an insulating fine particle dispersion in which the insulating fine particles 5 are dispersed in a dispersion solvent is obtained. For example, it can be obtained by dispersing the insulating fine particles 5 in a dispersion solvent. The dispersion method is not particularly limited, and for example, it may be dispersed by applying an ultrasonic disperser at room temperature. The dispersion solvent used here can be used without particular limitation as long as the insulating fine particles 5 can be dispersed and dried after coating. For example, toluene, benzene, hexane, methanol, ethanol and the like can be mentioned. Here, the dispersion solvent suitable for dispersion varies depending on the type of the insulating fine particles 5. For example, when the insulating fine particles 5 are SiO 2 , methanol or ethanol is preferable. Moreover, a dispersion | distribution solvent can be used individually or in combination of 2 or more types, respectively.

また、電子加速層4にバインダー成分を含む場合には、絶縁体微粒子5とバインダー成分と分散溶媒中に分散させた絶縁体微粒子含有バインダー成分分散液を得る。ここで用いられる分散溶媒としては、絶縁体微粒子5とバインダー成分とを分散でき、かつ塗布後に乾燥できれば、特に制限なく用いることができ、例えば、メタノール、エタノール、プロパノール、2−プロパノール、ブタノール、2−ブタノールなどが挙げられる。これらの分散溶媒は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。分散方法は特に限定されるものではなく、例えば、常温で超音波分散器にかけることで分散させることができる。絶縁体微粒子の含有率は、1〜50重量%が好ましい。1重量%より少ない場合は絶縁体として電子加速層4の抵抗を調整するという効果を発揮せず、50重量%より多い場合は絶縁体微粒子5の凝集が発生する。中でも、1〜20重量%であることがより好ましい。   Further, when the electron acceleration layer 4 includes a binder component, an insulating fine particle-containing binder component dispersion liquid dispersed in the insulating fine particles 5, the binder component, and the dispersion solvent is obtained. The dispersion solvent used here can be used without particular limitation as long as it can disperse the insulating fine particles 5 and the binder component and can be dried after coating. For example, methanol, ethanol, propanol, 2-propanol, butanol, 2 -Butanol and the like. These dispersion solvents can be used alone or in combination of two or more. The dispersion method is not particularly limited, and for example, it can be dispersed by applying an ultrasonic disperser at room temperature. The content of the insulating fine particles is preferably 1 to 50% by weight. When the amount is less than 1% by weight, the effect of adjusting the resistance of the electron acceleration layer 4 as an insulator is not exerted. When the amount is more than 50% by weight, aggregation of the insulator fine particles 5 occurs. Especially, it is more preferable that it is 1 to 20 weight%.

次に、導電微粒子6を分散溶媒に分散させた導電微粒子分散液を得る。例えば、導電微粒子6を分散溶媒に分散させてもよいし、市販品を使用してもよい。分散方法は特に限定されるものではなく、例えば、常温で超音波分散器を用いて分散すればよい。この分散溶媒としては、導電微粒子6を分散でき、かつ塗布後に乾燥できれば、特に制限なく用いることができる。ここで、分散性の向上のために、導電微粒子6が表面処理を施されている場合、その表面処理方法によって、分散に適した分散溶媒を用いるのがよい。例えば、表面をアルコラート処理された導電微粒子6には、トルエンもしくヘキサンが好ましい。   Next, a conductive fine particle dispersion in which the conductive fine particles 6 are dispersed in a dispersion solvent is obtained. For example, the conductive fine particles 6 may be dispersed in a dispersion solvent, or a commercially available product may be used. The dispersion method is not particularly limited, and for example, it may be dispersed using an ultrasonic disperser at room temperature. Any dispersion solvent can be used without particular limitation as long as the conductive fine particles 6 can be dispersed and dried after coating. Here, in order to improve the dispersibility, when the conductive fine particles 6 are subjected to a surface treatment, it is preferable to use a dispersion solvent suitable for dispersion depending on the surface treatment method. For example, toluene or hexane is preferable for the conductive fine particles 6 whose surface is treated with alcoholate.

また、導電微粒子分散液は、導電微粒子6のナノコロイド液を液体の状態で用いてもよい。導電微粒子6のナノコロイド液を液体の状態で使用すると、導電微粒子6が凝集することなく均一に分散した分散液を塗布することができる。よって、微粒子層上に、導電微粒子6をより一層均一に存在させた電子加速層4を形成して、安定かつ良好な電子放出が可能な電子放出素子1を製造することができる。なお、導電微粒子6はコロイド状態での平均粒径が0.35μm以下となっているのが好ましい。コロイド状態での平均粒径が0.35μm以下の導電微粒子を用いることで、後述の実施例に記載のように電子加速層4での分散性を高めることができる。導電微粒子6のナノコロイド液の例としては、ハリマ化成株式会社が製造販売する金ナノ粒子コロイド液、応用ナノ研究所が製造販売する銀ナノ粒子、株式会社徳力化学研究所が製造販売する白金ナノ粒子コロイド液及びパラジウムナノ粒子コロイド液、株式会社イオックスの製造販売するニッケルナノ粒子ペーストなどが挙げられる。また、導電微粒子6のナノコロイド液の溶媒には、絶縁体微粒子5をコロイド分散でき、かつ塗布後に乾燥できれば、特に制限なく用いることができ、例えば、トルエン、ベンゼン、キシレン、ヘキサン、テトラデカン等を用いることができる。   Further, as the conductive fine particle dispersion, a nano colloid liquid of conductive fine particles 6 may be used in a liquid state. When the nano colloidal liquid of the conductive fine particles 6 is used in a liquid state, a dispersion in which the conductive fine particles 6 are uniformly dispersed can be applied without agglomeration. Therefore, the electron accelerating layer 4 in which the conductive fine particles 6 are present more uniformly exists on the fine particle layer, and the electron-emitting device 1 capable of stable and good electron emission can be manufactured. The conductive fine particles 6 preferably have an average particle size in a colloidal state of 0.35 μm or less. By using conductive fine particles having an average particle size in the colloidal state of 0.35 μm or less, the dispersibility in the electron acceleration layer 4 can be enhanced as described in Examples described later. Examples of the nano colloid liquid of the conductive fine particles 6 include gold nano particle colloid liquid manufactured and sold by Harima Kasei Co., Ltd., silver nano particles manufactured and sold by Applied Nano Laboratory, and platinum nano manufactured and sold by Tokuru Chemical Laboratory Co., Ltd. Examples thereof include a particle colloid solution and a palladium nanoparticle colloid solution, and a nickel nanoparticle paste manufactured and sold by IOX Co., Ltd. In addition, as the solvent of the nano colloid liquid of the conductive fine particles 6, the insulating fine particles 5 can be used without particular limitation as long as the fine particles can be colloidally dispersed and dried after coating. For example, toluene, benzene, xylene, hexane, tetradecane, etc. Can be used.

そして、上記のように作成した絶縁体微粒子分散液または絶縁体微粒子含有バインダー成分分散液を電極基板2上に塗布し、絶縁体微粒子5の層(微粒子層)を得る(微粒子層形成工程)。この塗布は例えば、スピンコート法を用いて行えばよい。微粒子層の形成にスピンコート法を用いる際の条件は特に限定されるものではないが、回転数は1000rpm以上10000rpm未満が好ましく、3000rpm以上8500rpm未満が特に好ましい。この条件で形成した、微粒子層の膜厚は適正で、電子加速層の層厚を均一化すること、また層厚方向における電子加速層の抵抗調整が可能となる。この結果、電子放出素子表面の全面から一様に電子を放出させることが可能となり、かつ素子外へ効率よく電子を放出させることができる。   Then, the insulating fine particle dispersion or the insulating fine particle-containing binder component dispersion prepared as described above is applied onto the electrode substrate 2 to obtain a layer (fine particle layer) of the insulating fine particles 5 (fine particle layer forming step). This coating may be performed using, for example, a spin coating method. The conditions for using the spin coating method for forming the fine particle layer are not particularly limited, but the rotation speed is preferably 1000 rpm or more and less than 10,000 rpm, particularly preferably 3000 rpm or more and less than 8500 rpm. The film thickness of the fine particle layer formed under these conditions is appropriate, and it is possible to make the thickness of the electron acceleration layer uniform and to adjust the resistance of the electron acceleration layer in the layer thickness direction. As a result, electrons can be uniformly emitted from the entire surface of the electron-emitting device, and electrons can be efficiently emitted outside the device.

続けて、微粒子層上に上記のように作成した導電微粒子分散液を塗布する(導電微粒子塗布工程)。ここで、微粒子層が常温で乾燥し、経時変化を起こさなければ、続けて導電微粒子分散液の塗布を行って構わない。   Subsequently, the conductive fine particle dispersion prepared as described above is applied onto the fine particle layer (conductive fine particle application step). Here, if the fine particle layer is dried at normal temperature and does not change with time, the conductive fine particle dispersion may be applied continuously.

導電微粒子分散液の塗布は、静電噴霧法を用いて行う。導電微粒子分散液の塗布に静電噴霧法を用いる際の条件は特に限定されるものではないが、いるシリンジの内径0.11mm以上2.16mm未満が好ましく、0.21mm以上0.51mm未満が特に好ましい。0.11mm未満では、詰まりの発生が多くなる。反対に、2.16mm以上では、微粒子層上に残存する導電微粒子が過度に多くなり、電子加速層と薄膜電極の間に金属層が形成され、加速した電子の散乱が起こり、電子放出量が減少する。また、絶縁体微粒子含有バインダー成分層に導電微粒子の染み込む量が多いために、導電パスが形成され易くなり、素子内に低電圧で大電流が流れ、電子放出量が減少する。また、液体の流量は0.2μL/min以上10mL/min未満が好ましく、1.0μL/min以上1.0mm/min未満が特に好ましい。ここで、導電微粒子の絶縁体微粒子を含む微粒子層への浸透度合いは、絶縁体微粒子の種類および/または平均粒径、導電微粒子の種類および/または平均粒径、絶縁体微粒子および導電微粒子の組合せなどに加えて、導電微粒子分散液の吐出体積にも依存する。すなわち、吐出体積が少なすぎると、液滴が小さく、微粒子層に導電微粒子の染み込む量が少ないために、塗布した導電微粒子の大部分が、絶縁体微粒子5を含む微粒子層内部に浸透せず、上部に堆積する。反対に、吐出体積が多すぎると、微粒子層上に残存する導電微粒子が過度に多くなり、上記と同様の現象により、電子放出量が減少する。また、微粒子層に導電微粒子の染み込む量が多いために、上記の現象と同じように、電子放出量が減少する。   The conductive fine particle dispersion is applied by electrostatic spraying. The conditions for using the electrostatic spray method for applying the conductive fine particle dispersion are not particularly limited, but the inner diameter of the syringe is preferably 0.11 mm or more and less than 2.16 mm, and preferably 0.21 mm or more and less than 0.51 mm. Particularly preferred. If it is less than 0.11 mm, the occurrence of clogging increases. On the other hand, at 2.16 mm or more, the conductive fine particles remaining on the fine particle layer are excessively large, a metal layer is formed between the electron acceleration layer and the thin film electrode, and accelerated electron scattering occurs. Decrease. Further, since the amount of conductive fine particles soaked into the insulating fine particle-containing binder component layer is large, a conductive path is easily formed, a large current flows in the element at a low voltage, and the amount of electron emission decreases. The flow rate of the liquid is preferably 0.2 μL / min or more and less than 10 mL / min, and particularly preferably 1.0 μL / min or more and less than 1.0 mm / min. Here, the degree of penetration of the conductive fine particles into the fine particle layer containing the insulating fine particles depends on the type and / or average particle size of the insulating fine particles, the type and / or average particle size of the conductive fine particles, and the combination of the insulating fine particles and the conductive fine particles. In addition to the above, it also depends on the discharge volume of the conductive fine particle dispersion. That is, if the ejection volume is too small, the droplets are small and the amount of the conductive fine particles soaked into the fine particle layer is small, so that most of the applied conductive fine particles do not penetrate into the fine particle layer including the insulating fine particles 5, Deposit on top. On the other hand, when the discharge volume is too large, the conductive fine particles remaining on the fine particle layer become excessively large, and the amount of electron emission decreases due to the same phenomenon as described above. Further, since the amount of the conductive fine particles soaked into the fine particle layer is large, the amount of electron emission decreases as in the above phenomenon.

以上のように、絶縁体微粒子分散液と導電微粒子分散液とをそれぞれ作製し、絶縁体微粒子5を含む微粒子層上に、導電微粒子6の分散液を静電噴霧法を用いて塗布することで電子加速層4を形成する。   As described above, the insulating fine particle dispersion and the conductive fine particle dispersion are respectively prepared, and the conductive fine particle 6 dispersion is applied onto the fine particle layer including the insulating fine particles 5 by the electrostatic spraying method. The electron acceleration layer 4 is formed.

以上により、電子加速層4が形成される。電子加速層4の形成後、電子加速層4上に薄膜電極3を成膜する。薄膜電極3の成膜には、例えば、マグネトロンスパッタ法を用いればよい。また、薄膜電極3は、例えば、インクジェット法、スピンコート法、蒸着法等を用いて成膜してもよい。   Thus, the electron acceleration layer 4 is formed. After the formation of the electron acceleration layer 4, the thin film electrode 3 is formed on the electron acceleration layer 4. For forming the thin film electrode 3, for example, a magnetron sputtering method may be used. The thin film electrode 3 may be formed by using, for example, an ink jet method, a spin coat method, a vapor deposition method, or the like.

ここで、電子放出素子1の電子放出量は、電子加速層4中の導電微粒子6の量に比例して電子放出量が増加するのではなく、電子加速層4内が弾道電子となって電子が放出されるだけの半導電性になればよいのである。そのため、電子加速層4中に必要な導電微粒子の量は少量でよい。一方、均一な性能の素子を得るためには、導電微粒子が導入される領域である電子放出部が偏在してはならない。そのため、素子製造には、微粒子ごとに分散性のよい分散媒を選択し、絶縁体微粒子を含む微粒子層上に少量の導電微粒子分散液を均一に塗布して、微粒子層の上部または内部、もしくは上部および内部の、導電微粒子が導入された領域において、導電微粒子を均一に存在させることが要求される。   Here, the electron emission amount of the electron-emitting device 1 does not increase in proportion to the amount of the conductive fine particles 6 in the electron acceleration layer 4, but the inside of the electron acceleration layer 4 becomes a ballistic electron. It only needs to be semiconductive so that is released. Therefore, the amount of conductive fine particles required in the electron acceleration layer 4 may be small. On the other hand, in order to obtain a device with uniform performance, the electron emission portion, which is a region where conductive fine particles are introduced, must not be unevenly distributed. Therefore, for device production, a dispersion medium with good dispersibility is selected for each fine particle, and a small amount of conductive fine particle dispersion is uniformly applied on the fine particle layer containing the insulating fine particles, and the upper part or the inside of the fine particle layer, or It is required that the conductive fine particles exist uniformly in the upper and inner regions where the conductive fine particles are introduced.

上記製造方法では、電子加速層4の形成工程は、絶縁体微粒子5を含む微粒子層を形成し、この微粒子層上に導電微粒子分散液を静電噴霧法を用いて塗布する。この方法により、微粒子層の上部または内部、もしくは上部および内部の、導電微粒子が導入された領域において、導電微粒子を少量かつ均一に存在させることができる。そのため、電子放出部が均一に存在し、安定かつ良好な電子放出ができる電子放出素子を製造することができる。また、微粒子層形成後の電極基板2と噴霧針とに電圧を加えて導電微粒子分散溶液を静電噴霧させることで、導電微粒子が拡散することなく微粒子層に到達し、無駄な導電微粒子の消費を抑えることができる。また、静電噴霧法を用いるため、微粒子層がどのような形状であっても導電微粒子を均一に導入でき、導電微粒子が導入された領域である電子放出部を曲面にも形成できるため、電子放出素子の形状を限定せずに製造することができる。   In the manufacturing method described above, in the step of forming the electron acceleration layer 4, a fine particle layer including the insulating fine particles 5 is formed, and a conductive fine particle dispersion is applied onto the fine particle layer by using an electrostatic spray method. By this method, the conductive fine particles can be present in a small amount and uniformly in the upper part or inside of the fine particle layer, or in the upper and inner regions where the conductive fine particles are introduced. Therefore, it is possible to manufacture an electron-emitting device that has an electron-emitting portion uniformly and can stably and satisfactorily emit electrons. In addition, by applying a voltage to the electrode substrate 2 and the spray needle after forming the fine particle layer and electrostatically spraying the conductive fine particle dispersion solution, the conductive fine particles reach the fine particle layer without diffusing, and wasteful conductive fine particles are consumed. Can be suppressed. In addition, since the electrostatic spraying method is used, the conductive fine particles can be uniformly introduced regardless of the shape of the fine particle layer, and the electron emission portion, which is the region where the conductive fine particles are introduced, can be formed on the curved surface. The shape of the emitting element can be manufactured without limitation.

さらに、上記製造方法によると、絶縁体微粒子分散溶液と導電微粒子分散溶液とをそれぞれ用意し、別々に電極基板上に塗布するため、絶縁体微粒子分散溶液と導電微粒子分散溶液の混合時の凝集体の発生や、絶縁体微粒子分散液に導電微粒子を加えた際に凝集体が発生するといった不具合を防ぐことができる。よって、電極基板2上に絶縁体微粒子分散液を塗布して絶縁体微粒子を含む微粒子層を形成した後に、導電微粒子分散液を塗布することで、微粒子の凝集体が少なく、微粒子が均一に分散された電子加速層を形成できる。かつ、微粒子の分散液を塗布するという簡易な製造プロセスにより、簡易かつ低コストで電子放出素子1を得ることができる。   Furthermore, according to the manufacturing method described above, since the insulating fine particle dispersion solution and the conductive fine particle dispersion solution are prepared separately and applied onto the electrode substrate, the aggregate during mixing of the insulating fine particle dispersion solution and the conductive fine particle dispersion solution And the occurrence of agglomerates when conductive fine particles are added to the insulating fine particle dispersion can be prevented. Therefore, after applying the insulating fine particle dispersion on the electrode substrate 2 to form a fine particle layer containing the insulating fine particles, the conductive fine particle dispersion is applied, so that the aggregate of the fine particles is small and the fine particles are uniformly dispersed. The formed electron acceleration layer can be formed. In addition, the electron-emitting device 1 can be obtained simply and at a low cost by a simple manufacturing process of applying a fine particle dispersion.

このように、本発明の方法によると、微粒子の凝集体が発生することを回避でき、均一に分散した絶縁体微粒子を含む微粒子層の上部または内部、もしくは上部および内部の、導電微粒子が導入された領域に、電子放出部が均一に存在した電子加速層4を、簡易かつ低コストで形成でき、安定かつ良好に電子放出する電子放出素子1を製造できる。   As described above, according to the method of the present invention, it is possible to avoid the generation of aggregates of fine particles, and conductive fine particles are introduced into the upper part or the inner part of the fine particle layer including the uniformly dispersed insulating fine particles, or the upper part and the inner part. The electron acceleration layer 4 in which the electron emission portions are uniformly present in the region can be formed easily and at low cost, and the electron-emitting device 1 that emits electrons stably and satisfactorily can be manufactured.

また、絶縁体微粒子含有バインダー成分分散液を用いてバインダー成分が含まれる微粒子層を形成後に、導電微粒子を塗布すると、バインダー成分が含まれる微粒子層では絶縁体微粒子の分散状態が保持されているため、静電噴霧法を用いて導電微粒子分散液を塗布しても、微粒子層中の絶縁体微粒子の分散状態が変化することはない。したがって、より一層、電子放出部を均一に制御した電子加速層を形成でき、安定かつ良好な電子放出が可能な電子放出素子を製造することができる。   In addition, when conductive fine particles are applied after forming a fine particle layer containing a binder component using a binder component dispersion containing an insulating fine particle, the dispersed state of the insulating fine particles is maintained in the fine particle layer containing the binder component. Even when the conductive fine particle dispersion is applied using the electrostatic spraying method, the dispersion state of the insulating fine particles in the fine particle layer does not change. Therefore, an electron acceleration layer in which the electron emission portion is uniformly controlled can be formed, and an electron-emitting device capable of stable and good electron emission can be manufactured.

また、素子において導電微粒子6が導入された領域である電子放出部は静電噴霧法により形成されるので、この電子放出部は曲面にも得られ、電子放出素子1の形状は限定されない。よって、電子放出素子1は、様々な形状の装置に設置することができ、応用できる装置の範囲が広い。   Moreover, since the electron emission part which is the area | region where the conductive fine particle 6 was introduce | transduced in the element is formed by an electrostatic spraying method, this electron emission part is obtained also on a curved surface, and the shape of the electron emission element 1 is not limited. Therefore, the electron-emitting device 1 can be installed in devices having various shapes, and the range of devices that can be applied is wide.

さらに、上記製造方法によると、絶縁体微粒子5と導電微粒子6とで分散させやすい分散溶媒とが異なっても、両者を混合せずに、絶縁体微粒子分散液を塗布して微粒子層を形成した後に、導電微粒子分散液を塗布することにより、両微粒子の分散性を保ったまま電子加速層を形成できる。つまり、絶縁体微粒子5と導電微粒子6とで分散性の高い分散溶媒が異なっても、絶縁体微粒子の凝集体、導電微粒子の凝集体、および絶縁体微粒子5と導電微粒子6の凝集体を含まない均一な電子加速層を形成することができる。   Further, according to the above manufacturing method, even when the dispersion solvent that is easily dispersed between the insulating fine particles 5 and the conductive fine particles 6 is different, the fine particle layer is formed by applying the insulating fine particle dispersion without mixing them. Later, by applying a conductive fine particle dispersion, an electron acceleration layer can be formed while maintaining the dispersibility of both fine particles. That is, the insulating fine particles 5 and the conductive fine particles 6 include an aggregate of insulating fine particles, an aggregate of conductive fine particles, and an aggregate of the insulating fine particles 5 and the conductive fine particles 6 even if the dispersion solvent having high dispersibility is different. A uniform electron acceleration layer can be formed.

なお、静電噴霧法に適した分散溶媒は、特に限定しないが、THF、DMF、ヘキサン等である。   In addition, although the dispersion solvent suitable for an electrostatic spraying method is not specifically limited, THF, DMF, hexane, etc. are used.

また、上記製造方法では、上記微粒子層上にマスクを設置し、導電微粒子分散液を、静電噴霧法を用いて塗布してもよい。用いるマスクはメタルマスクであってもよいし、別のマスクであってもよく、特に限定されない。このようにマスクを設置することによって、静電噴霧法を用いて導電微粒子分散液を塗布後、マスクを外すと、マスクがされていなかった箇所に導電微粒子6が偏在されており、マスクがあった箇所には導電微粒子6があまり分散されていない。よって、微粒子層中の任意の箇所に導電微粒子の分散液を塗布することができる。マスクのサイズやマスクがされていない箇所のサイズを制御することで、共通の電極基板上における電子加速層の配置をパターニングすることや、各素子ごとに導電微粒子が導入された領域である電子放出部をパターニングすることができる。また、静電噴霧法を用いているため、導電微粒子6が導入された領域において、導電微粒子6は均一に分散される。   In the manufacturing method, a mask may be installed on the fine particle layer, and the conductive fine particle dispersion may be applied using an electrostatic spraying method. The mask to be used may be a metal mask or another mask, and is not particularly limited. By installing the mask in this way, when the conductive fine particle dispersion is applied using the electrostatic spraying method and then the mask is removed, the conductive fine particles 6 are unevenly distributed in the places where the mask is not formed, and the mask is not present. The conductive fine particles 6 are not very dispersed in the locations. Therefore, the dispersion liquid of conductive fine particles can be applied to any location in the fine particle layer. By controlling the size of the mask and the size of the unmasked area, the arrangement of the electron acceleration layer on the common electrode substrate can be patterned, and the electron emission that is a region where conductive fine particles are introduced for each element The part can be patterned. Further, since the electrostatic spraying method is used, the conductive fine particles 6 are uniformly dispersed in the region where the conductive fine particles 6 are introduced.

また、パターニングされた電子放出部に、それぞれ薄膜電極を互いに絶縁させて形成することで、それぞれが電子放出素子1となり、よって、共通の電極基板2上に複数の電子放出素子1を一度に作成することができる。共通の電極基板2に形成された複数の電子放出素子ぞれぞれは、電子放出量を独立して制御することができる。例えば、図2のような電子放出装置10を帯電装置90に利用した場合おいては、複数の電子放出部を、それぞれ電子放出素子1とすることができ、各電子放出素子の電子放出量を制御することによって、感光体11の帯電の均一性が向上するという効果が得られる。なお、電子放出装置10の帯電装置90への適用については、実施の形態2で説明する。このように、共通の電極基板上に複数の電子放出素子を作成することができると、電子放出素子が複数必要な装置において、好適に利用できる。   Further, by forming the thin film electrodes on the patterned electron emission portions so as to be insulated from each other, each becomes the electron emission device 1. Thus, a plurality of electron emission devices 1 are formed on the common electrode substrate 2 at a time. can do. The plurality of electron-emitting devices formed on the common electrode substrate 2 can independently control the amount of electron emission. For example, in the case where the electron emission device 10 as shown in FIG. 2 is used for the charging device 90, a plurality of electron emission portions can be used as the electron emission devices 1, respectively. By controlling, the effect of improving the uniformity of charging of the photoconductor 11 can be obtained. The application of the electron emission device 10 to the charging device 90 will be described in the second embodiment. Thus, if a plurality of electron-emitting devices can be formed on a common electrode substrate, it can be suitably used in an apparatus that requires a plurality of electron-emitting devices.

(実施例)
以下の実施例では、本発明に係る製造方法を用いて作製した電子放出素子を用いて電流測定した実験について説明する。なお、この実験は実施の一例であって、本発明の内容を制限するものではない。
(Example)
In the following examples, an experiment in which current is measured using an electron-emitting device manufactured using the manufacturing method according to the present invention will be described. In addition, this experiment is an example of implementation and does not limit the content of the present invention.

まず実施例1〜3の電子放出素子を以下のように作製した。そして、作製した電子放出素子について、図3に示す実験系を用いて単位面積あたりの電子放出電流の測定実験を行った。図3の実験系では、電子放出素子1の薄膜電極3側に、絶縁体スペーサ9を挟んで対向電極8を配置させる。そして、電子放出素子1および対向電極8は、それぞれ、電源7に接続されており、電子放出素子1にはV1の電圧、対向電極8にはV2の電圧が印加されるようになっている。このような実験系を1×10−8ATMの真空中に配置して各電子放出実験を行った。また、各実験では、絶縁体スペーサ9を挟んで、電子放出素子と対向電極との距離は5mmとした。また、対抗電極への印加電圧V2=100Vにて測定した。 First, the electron-emitting devices of Examples 1 to 3 were produced as follows. And about the produced electron emission element, the measurement experiment of the electron emission current per unit area was conducted using the experimental system shown in FIG. In the experimental system of FIG. 3, the counter electrode 8 is disposed on the thin film electrode 3 side of the electron-emitting device 1 with the insulator spacer 9 interposed therebetween. The electron-emitting device 1 and the counter electrode 8 are each connected to a power source 7, and a voltage V1 is applied to the electron-emitting device 1 and a voltage V2 is applied to the counter electrode 8. Such an experimental system was placed in a vacuum of 1 × 10 −8 ATM to perform each electron emission experiment. In each experiment, the distance between the electron-emitting device and the counter electrode was 5 mm across the insulator spacer 9. Moreover, it measured by the applied voltage V2 = 100V to a counter electrode.

(実施例1)
10mLの試薬瓶に分散溶媒としてヘキサン2.4gと、絶縁体微粒子5として平均粒子径110nmの球状シリカ粒子を0.5g投入し、この試薬瓶を超音波分散器にかけ、絶縁体微粒子分散液Aを調製した。絶縁体微粒子分散液Aに占める絶縁体微粒子5の含有率は重量比で17%であった。
Example 1
Into a 10 mL reagent bottle, 2.4 g of hexane as a dispersion solvent and 0.5 g of spherical silica particles having an average particle diameter of 110 nm as the insulator fine particles 5 are placed, and this reagent bottle is placed in an ultrasonic disperser to obtain an insulator fine particle dispersion A Was prepared. The content of the insulating fine particles 5 in the insulating fine particle dispersion A was 17% by weight.

次に、電極基板2として30mm角のSUS基板上に、絶縁体微粒子分散液Aを滴下後、スピンコート法を用いて、4500rpm、10sで回転させ微粒子層Iを形成した。その後、常温で1時間乾燥させ、得られた微粒子層I上に、導電微粒子6が分散溶媒に分散された導電微粒子分散液(ここでは、導電微粒子のナノコロイド液)として、銀ナノ粒子含有ヘキサン分散溶液(応用ナノ粒子研究所製、銀微粒子の平均粒径4.5nm、銀微粒子固形分濃度7%)を静電噴霧法により塗布した。静電噴霧における条件は、液体の流量2μL/min、シリンジ内径0.41mm、噴霧針から電極基板2までの距離8cm、電極基板2と噴霧針との間の印加電圧5Vとした。   Next, after the insulator fine particle dispersion A was dropped on a 30 mm square SUS substrate as the electrode substrate 2, the fine particle layer I was formed by spinning at 4500 rpm for 10 seconds using a spin coating method. Then, it is dried at room temperature for 1 hour, and a silver nanoparticle-containing hexane is used as a conductive fine particle dispersion (here, a nanocolloid liquid of conductive fine particles) in which the conductive fine particles 6 are dispersed in a dispersion solvent on the fine particle layer I obtained. A dispersion solution (manufactured by Applied Nanoparticles Laboratory, average particle diameter of silver fine particles 4.5 nm, solid content concentration of silver fine particles 7%) was applied by electrostatic spraying. The conditions for electrostatic spraying were a liquid flow rate of 2 μL / min, a syringe inner diameter of 0.41 mm, a distance from the spray needle to the electrode substrate 2 of 8 cm, and an applied voltage of 5 V between the electrode substrate 2 and the spray needle.

微粒子層I上に静電噴霧法で銀ナノ粒子含有ヘキサン分散溶液を塗布した後、1時間放置し自然乾燥させて銀ナノ粒子を微粒子層Iに浸透させ、電子加速層4を形成した。   The silver nanoparticle-containing hexane dispersion solution was applied onto the fine particle layer I by electrostatic spraying, and then allowed to stand for 1 hour and air-dried to infiltrate the silver nanoparticles into the fine particle layer I, thereby forming the electron acceleration layer 4.

その後、電子加速層4の表面に、マグネトロンスパッタ装置を用いて薄膜電極3を成膜することにより、実施例1の電子放出素子を得た。成膜材料として金を使用し、薄膜電極3の層厚は40nm、同面積は0.014cmであった。 Thereafter, the thin film electrode 3 was formed on the surface of the electron acceleration layer 4 using a magnetron sputtering apparatus, whereby the electron-emitting device of Example 1 was obtained. Gold was used as the film forming material, the layer thickness of the thin film electrode 3 was 40 nm, and the area was 0.014 cm 2 .

この実施例1の電子放出素子は、1×10−8ATMの真空中において、薄膜電極への印加電圧V1=16.8Vにて、単位面積当たりの電子放出電流0.20mA/cm、素子内電流264mA/cm、電子放出効率0.074%が確認された。 The electron-emitting device of Example 1 has an electron emission current of 0.20 mA / cm 2 per unit area at an applied voltage V1 = 16.8 V to the thin film electrode in a vacuum of 1 × 10 −8 ATM. An internal current of 264 mA / cm 2 and an electron emission efficiency of 0.074% were confirmed.

(実施例2)
10mLの試薬瓶に分散溶媒としてエタノール2.0gと、バインダー成分としてメチルトリメトキシシランKBM−13(信越化学工業株式会社製)0.5gとを入れ、さらに、絶縁体微粒子5として平均粒径40nmの球状シリカ粒子AEROSIL RX50(エボニックエグサジャパン株式会社製)を0.5g投入し、試薬瓶を超音波分散器にかけ、絶縁体微粒子含有バインダー成分分散液Bを調製した。絶縁体微粒子含有バインダー成分分散液Bに占める絶縁体微粒子5の含有率は重量比で17%であった。
(Example 2)
In a 10 mL reagent bottle, 2.0 g of ethanol as a dispersion solvent and 0.5 g of methyltrimethoxysilane KBM-13 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a binder component are added, and the insulating fine particles 5 have an average particle size of 40 nm. 0.5 g of spherical silica particles AEROSIL RX50 (manufactured by Evonik Exa Japan Co., Ltd.) were added, and the reagent bottle was put on an ultrasonic dispersing device to prepare a binder component dispersion liquid B containing insulating fine particles. The content of the insulating fine particles 5 in the insulating fine particle-containing binder component dispersion B was 17% by weight.

次に、電極基板2として30mm角のSUS基板上に、絶縁体微粒子含有バインダー成分分散液Bを滴下後、スピンコート法を用いて、3500rpm、10sで回転させ微粒子層IIを形成した。その後、常温で24時間乾燥させ、得られた微粒子層II上に、導電微粒子6が分散溶媒に分散された導電微粒子分散液(ここでは、導電微粒子のナノコロイド液)として、銀ナノ粒子含有ヘキサン分散溶液(応用ナノ粒子研究所製、銀微粒子の平均粒径4.5nm、銀微粒子固形分濃度7%)を静電噴霧法により塗布した。静電噴霧における条件は、液体の流量2μL/min、シリンジ内径0.41mm、噴霧針から電極基板2までの距離8cm、電極基板2と噴霧針との間の印加電圧5Vとした。   Next, an insulating fine particle-containing binder component dispersion liquid B was dropped on a 30 mm square SUS substrate as the electrode substrate 2 and then rotated at 3500 rpm for 10 seconds to form a fine particle layer II using a spin coating method. Thereafter, it is dried at room temperature for 24 hours, and a silver nanoparticle-containing hexane is obtained as a conductive fine particle dispersion (here, a nanocolloid liquid of conductive fine particles) in which the conductive fine particles 6 are dispersed in a dispersion solvent on the obtained fine particle layer II. A dispersion solution (manufactured by Applied Nanoparticles Laboratory, average particle diameter of silver fine particles 4.5 nm, solid content concentration of silver fine particles 7%) was applied by electrostatic spraying. The conditions for electrostatic spraying were a liquid flow rate of 2 μL / min, a syringe inner diameter of 0.41 mm, a distance from the spray needle to the electrode substrate 2 of 8 cm, and an applied voltage of 5 V between the electrode substrate 2 and the spray needle.

微粒子層II上に静電噴霧法で銀ナノ粒子含有ヘキサン分散溶液を塗布した後、1時間放置し自然乾燥させて銀ナノ粒子を微粒子層IIに浸透させ、電子加速層4を形成した。
静電噴霧法で銀ナノ粒子含有ヘキサン分散溶液を塗布させた後、1時間放置し自然乾燥させて銀ナノ粒子を浸透させた。
The silver nanoparticle-containing hexane dispersion solution was applied onto the fine particle layer II by electrostatic spraying, and then allowed to stand for 1 hour and air-dried to infiltrate the silver nanoparticles into the fine particle layer II, thereby forming the electron acceleration layer 4.
The silver nanoparticle-containing hexane dispersion solution was applied by electrostatic spraying, and then allowed to stand for 1 hour and air-dried to infiltrate the silver nanoparticles.

その後、電子加速層4の表面に、マグネトロンスパッタ装置を用いて薄膜電極3を成膜することにより、実施例2の電子放出素子を得た。成膜材料として金を使用し、薄膜電極3の層厚は40nm、同面積は0.014cmであった。 Thereafter, a thin film electrode 3 was formed on the surface of the electron acceleration layer 4 using a magnetron sputtering apparatus, thereby obtaining an electron-emitting device of Example 2. Gold was used as the film forming material, the layer thickness of the thin film electrode 3 was 40 nm, and the area was 0.014 cm 2 .

この実施例2の電子放出素子は、1×10−8ATMの真空中において、薄膜電極への印加電圧V1=23.4Vにて、単位面積当たりの電子放出電流0.10mA/cm、素子内電流25mA/cm、電子放出効率0.40%が確認された。 The electron-emitting device of Example 2 has an electron emission current of 0.10 mA / cm 2 per unit area at a voltage V1 = 23.4 V applied to the thin film electrode in a vacuum of 1 × 10 −8 ATM. An internal current of 25 mA / cm 2 and an electron emission efficiency of 0.40% were confirmed.

(実施例3)
実施例2で得られた微粒子層II(バインダー成分が含まれる)上に、0.10×0.14cmのメタルマスクを設置し、導電微粒子6が分散溶媒に分散された導電微粒子分散液(ここでは、導電微粒子のナノコロイド液)として、銀ナノ粒子含有テトラデカン分散溶液(株式会社アルバック製、銀微粒子の平均粒径5.0nm、銀微粒子固形分濃度54%)を静電噴霧法により塗布した。静電噴霧における条件は、液体の流量2μL/min、シリンジ内径0.41mm、噴霧針から電極基板2までの距離8cm、電極基板2と噴霧針との間の印加電圧5Vとした。
(Example 3)
A conductive fine particle dispersion liquid in which a metal mask of 0.10 × 0.14 cm 2 is placed on the fine particle layer II (containing the binder component) obtained in Example 2 and the conductive fine particles 6 are dispersed in a dispersion solvent ( Here, silver nanoparticle-containing tetradecane dispersion solution (manufactured by ULVAC, Inc., average particle diameter of silver fine particles of 5.0 nm, silver fine particle solid content concentration of 54%) is applied as a conductive fine particle nanocolloid solution by electrostatic spraying. did. The conditions for electrostatic spraying were a liquid flow rate of 2 μL / min, a syringe inner diameter of 0.41 mm, a distance from the spray needle to the electrode substrate 2 of 8 cm, and an applied voltage of 5 V between the electrode substrate 2 and the spray needle.

微粒子層II上に静電噴霧法で銀ナノ粒子含有テトラデカン分散溶液を塗布した後、24時間放置し自然乾燥させて銀ナノ粒子を微粒子層IIに浸透させ、電子加速層4を形成した。   After the silver nanoparticle-containing tetradecane dispersion solution was applied onto the fine particle layer II by electrostatic spraying, it was allowed to stand for 24 hours and air-dried to infiltrate the silver nanoparticles into the fine particle layer II, thereby forming the electron acceleration layer 4.

その後、電子加速層4の表面に、マグネトロンスパッタ装置を用いて薄膜電極3を成膜することにより、実施例3の電子放出素子を得た。成膜材料として金を使用し、薄膜電極3の層厚は40nm、同面積は0.014cmであった。 Thereafter, the thin film electrode 3 was formed on the surface of the electron acceleration layer 4 using a magnetron sputtering apparatus, whereby the electron-emitting device of Example 3 was obtained. Gold was used as the film forming material, the layer thickness of the thin film electrode 3 was 40 nm, and the area was 0.014 cm 2 .

この実施例3の電子放出素子は、1×10−8ATMの真空中において、薄膜電極への印加電圧V1=26.5Vにて、単位面積当たりの電子放出電流0.31mA/cm、素子内電流112mA/cm、電子放出効率0.27%が確認された。 The electron-emitting device of Example 3 has an electron emission current of 0.31 mA / cm 2 per unit area at a voltage of V1 = 26.5 V applied to the thin film electrode in a vacuum of 1 × 10 −8 ATM. An internal current of 112 mA / cm 2 and an electron emission efficiency of 0.27% were confirmed.

〔実施の形態2〕
図4に、実施の形態1で説明した本発明に係る電子放出装置10を利用した本発明に係る帯電装置90の一例を示す。帯電装置90は、電子放出素子1とこれに電圧を印加する電源7とを有する電子放出装置10から成り、感光体11を帯電させるものである。本発明に係る画像形成装置は、この帯電装置90を具備している。本発明に係る画像形成装置において、帯電装置90を成す電子放出素子1は、被帯電体である感光体11に対向して設置され、電圧を印加することにより、電子を放出させ、感光体11を帯電させる。なお、本発明に係る画像形成装置では、帯電装置90以外の構成部材は、従来公知のものを用いればよい。ここで、帯電装置90として用いる電子放出素子1は、感光体11から、例えば3〜5mm隔てて配置するのが好ましい。また、電子放出素子1への印加電圧は25V程度が好ましく、電子放出素子1の電子加速層の構成は、例えば、25Vの電圧印加で、単位時間当たり1μA/cmの電子が放出されるようになっていればよい。
[Embodiment 2]
FIG. 4 shows an example of a charging device 90 according to the present invention using the electron emission device 10 according to the present invention described in the first embodiment. The charging device 90 includes an electron-emitting device 10 having the electron-emitting device 1 and a power source 7 that applies a voltage to the electron-emitting device 1, and charges the photoconductor 11. The image forming apparatus according to the present invention includes the charging device 90. In the image forming apparatus according to the present invention, the electron-emitting device 1 constituting the charging device 90 is installed facing the photosensitive member 11 that is a member to be charged, and emits electrons by applying a voltage to the photosensitive member 11. Is charged. In the image forming apparatus according to the present invention, conventionally known members may be used other than the charging device 90. Here, it is preferable that the electron-emitting device 1 used as the charging device 90 is disposed 3 to 5 mm away from the photoreceptor 11, for example. The applied voltage to the electron-emitting device 1 is preferably about 25V, and the electron acceleration layer of the electron-emitting device 1 is configured such that, for example, 1 μA / cm 2 of electrons is emitted per unit time when a voltage of 25V is applied. It only has to be.

帯電装置90として用いられる電子放出装置10は、放電を伴わず、従って帯電装置90からのオゾンの発生は無い。オゾンは人体に有害であり環境に対する各種規格で規制されているほか、機外に放出されなくとも機内の有機材料、例えば感光体11やベルトなどを酸化し劣化させてしまう。このような問題を、本発明に係る電子放出装置10を帯電装置90に用い、また、このような帯電装置90を画像形成装置が有することで、解決することができる。また、電子放出素子1は電子放出効率が高いため、帯電装置90は、効率よく帯電できる。   The electron emission device 10 used as the charging device 90 is not accompanied by discharge, and therefore no ozone is generated from the charging device 90. Ozone is harmful to the human body and regulated by various environmental standards, and even if it is not released outside the machine, it oxidizes and degrades organic materials such as the photoreceptor 11 and the belt. Such a problem can be solved by using the electron emission device 10 according to the present invention for the charging device 90 and having the charging device 90 in the image forming apparatus. Further, since the electron-emitting device 1 has high electron emission efficiency, the charging device 90 can be charged efficiently.

さらに帯電装置90として用いられる電子放出装置10は、面電子源として構成されるので、感光体11の回転方向へも幅を持って帯電を行え、感光体11のある箇所への帯電機会を多く稼ぐことができる。よって、帯電装置90は、線状で帯電するワイヤ帯電器などと比べ、均一な帯電が可能である。また、帯電装置90は、数kVの電圧印加が必要なコロナ放電器と比べて、10V程度と印加電圧が格段に低くてすむというメリットもある。   Further, since the electron emission device 10 used as the charging device 90 is configured as a surface electron source, it can be charged with a width in the rotation direction of the photoconductor 11 and there are many opportunities for charging to a certain place of the photoconductor 11. You can earn. Therefore, the charging device 90 can be uniformly charged as compared with a wire charger that charges in a linear manner. Further, the charging device 90 has an advantage that the applied voltage can be remarkably reduced to about 10 V as compared with a corona discharger that requires voltage application of several kV.

〔実施の形態3〕
図5に、実施の形態1で説明した本発明に係る電子放出装置10を用いた本発明に係る電子線硬化装置100の一例を示す。電子線硬化装置100は、電子放出素子1とこれに電圧を印加する電源7とを有する電子放出装置10と、電子を加速させる加速電極21とを備えている。電子線硬化装置100では、電子放出素子1を電子源とし、放出された電子を加速電極21で加速してレジスト(被硬化物)22へと衝突させる。一般的なレジスト22を硬化させるために必要なエネルギーは10eV以下であるため、エネルギーだけに注目すれば加速電極は必要ない。しかし、電子線の浸透深さは電子のエネルギーの関数となるため、例えば厚さ1μmのレジスト22を全て硬化させるには約5kVの加速電圧が必要となる。
[Embodiment 3]
FIG. 5 shows an example of an electron beam curing apparatus 100 according to the present invention using the electron emission apparatus 10 according to the present invention described in the first embodiment. The electron beam curing device 100 includes an electron emission device 10 having an electron emission element 1 and a power source 7 that applies a voltage to the electron emission device 1, and an acceleration electrode 21 that accelerates electrons. In the electron beam curing apparatus 100, the electron-emitting device 1 is used as an electron source, and the emitted electrons are accelerated by the acceleration electrode 21 and collide with the resist (cured object) 22. Since the energy required for curing the general resist 22 is 10 eV or less, the acceleration electrode is not necessary if attention is paid only to the energy. However, since the penetration depth of the electron beam is a function of electron energy, for example, an acceleration voltage of about 5 kV is required to cure all the resist 22 having a thickness of 1 μm.

従来からある一般的な電子線硬化装置は、電子源を真空封止し、高電圧印加(50〜100kV)により電子を放出させ、電子窓を通して電子を取り出し、照射する。この電子放出の方法であれば、電子窓を透過させる際に大きなエネルギーロスが生じる。また、レジストに到達した電子も高エネルギーであるため、レジストの厚さを透過してしまい、エネルギー利用効率が低くなる。さらに、一度に照射できる範囲が狭く、点状で描画することになるため、スループットも低い。   A conventional general electron beam curing apparatus seals an electron source in a vacuum, emits electrons by applying a high voltage (50 to 100 kV), takes out electrons through an electron window, and irradiates them. With this electron emission method, a large energy loss occurs when transmitting through the electron window. Further, since electrons reaching the resist also have high energy, they pass through the thickness of the resist, resulting in low energy utilization efficiency. Further, since the range that can be irradiated at one time is narrow and drawing is performed in a dot shape, the throughput is also low.

これに対し、電子放出装置10を用いた本発明に係る電子線硬化装置は、電子放出素子1の電子放出効率が高いため、効率よく電子線を照射できる。また、電子透過窓を通さないのでエネルギーのロスも無く、印加電圧を下げることができる。さらに面電子源であるためスループットが格段に高くなる。また、パターンに従って電子を放出させれば、マスクレス露光も可能となる。   In contrast, the electron beam curing apparatus according to the present invention using the electron emission device 10 can irradiate the electron beam efficiently because the electron emission efficiency of the electron emission element 1 is high. Further, since the electron transmission window is not passed, there is no energy loss and the applied voltage can be lowered. Further, since it is a surface electron source, the throughput is remarkably increased. Further, if electrons are emitted according to the pattern, maskless exposure can be performed.

〔実施の形態4〕
図6〜8に、実施の形態1で説明した本発明に係る電子放出装置10を用いた本発明に係る自発光デバイスの例をそれぞれ示す。
[Embodiment 4]
FIGS. 6 to 8 show examples of the self-luminous device according to the present invention using the electron-emitting device 10 according to the present invention described in the first embodiment.

図6に示す自発光デバイス31は、電子放出素子1とこれに電圧を印加する電源7とを有する電子放出装置と、さらに、電子放出素子1と離れ、対向した位置に、基材となるガラス基板34、ITO膜33、および蛍光体32が積層構造を有する発光部36と、から成る。   A self-light-emitting device 31 shown in FIG. 6 includes an electron-emitting device having the electron-emitting device 1 and a power source 7 for applying a voltage to the electron-emitting device 1, and a glass serving as a base material at a position facing away from and The substrate 34, the ITO film 33, and the phosphor 32 include a light emitting unit 36 having a laminated structure.

蛍光体32としては赤、緑、青色発光に対応した電子励起タイプの材料が適しており、例えば、赤色ではY:Eu、(Y,Gd)BO:Eu、緑色ではZnSiO:Mn、BaAl1219:Mn、青色ではBaMgAl1017:Eu2+等が使用可能である。ITO膜33が成膜されたガラス基板34表面に、蛍光体32を成膜する。蛍光体32の厚さ1μm程度が好ましい。また、ITO膜33の膜厚は、導電性を確保できる膜厚であれば問題なく、本実施形態では150nmとした。 As the phosphor 32, an electron excitation type material corresponding to red, green, and blue light emission is suitable, for example, Y 2 O 3 : Eu for red, (Y, Gd) BO 3 : Eu, and Zn 2 SiO for green. 4 : Mn, BaAl 12 O 19 : Mn, blue, BaMgAl 10 O 17 : Eu 2+ and the like can be used. A phosphor 32 is formed on the surface of the glass substrate 34 on which the ITO film 33 is formed. The thickness of the phosphor 32 is preferably about 1 μm. In addition, the thickness of the ITO film 33 is 150 nm in the present embodiment, as long as the film thickness can ensure conductivity.

蛍光体32を成膜するに当たっては、バインダーとなるエポキシ系樹脂と微粒子化した蛍光体粒子との混練物として準備し、バーコーター法或いは滴下法等の公知な方法で成膜するとよい。   In forming the phosphor 32, it is preferable to prepare a kneaded product of an epoxy resin serving as a binder and finely divided phosphor particles and form the film by a known method such as a bar coater method or a dropping method.

ここで、蛍光体32の発光輝度を上げるには、電子放出素子1から放出された電子を蛍光体へ向けて加速する必要があり、その場合は電子放出素子1の電極基板2と発光部36のITO膜33の間に、電子を加速する電界を形成するための電圧印加するために、電源35を設けるとよい。このとき、蛍光体32と電子放出素子1との距離は、0.3〜1mmで、電源7からの印加電圧は18V、電源35からの印加電圧は500〜2000Vにするのが好ましい。   Here, in order to increase the light emission luminance of the phosphor 32, it is necessary to accelerate the electrons emitted from the electron-emitting device 1 toward the phosphor. In this case, the electrode substrate 2 and the light-emitting portion 36 of the electron-emitting device 1 are used. In order to apply a voltage for forming an electric field for accelerating electrons between the ITO films 33, a power source 35 is preferably provided. At this time, the distance between the phosphor 32 and the electron-emitting device 1 is preferably 0.3 to 1 mm, the applied voltage from the power source 7 is preferably 18 V, and the applied voltage from the power source 35 is preferably 500 to 2000 V.

図7に示す自発光デバイス31’は、電子放出素子1とこれに電圧を印加する電源7、さらに、蛍光体32を備えている。自発光デバイス31’では、蛍光体32は平面状であり、電子放出素子1の表面に蛍光体32が配置されている。ここで、電子放出素子1表面に成膜された蛍光体32の層は、前述のように微粒子化した蛍光体粒子との混練物から成成る塗布液として準備し、電子放出素子1表面に成膜する。但し、電子放出素子1そのものは外力に対して弱い構造であるため、バーコーター法による成膜手段は利用すると素子が壊れる恐れがある。このため滴下法或いはスピンコート法等の方法を用いるとよい。   A self-luminous device 31 ′ shown in FIG. 7 includes an electron-emitting device 1, a power source 7 that applies a voltage to the electron-emitting device 1, and a phosphor 32. In the self-luminous device 31 ′, the phosphor 32 has a planar shape, and the phosphor 32 is disposed on the surface of the electron-emitting device 1. Here, the layer of the phosphor 32 formed on the surface of the electron-emitting device 1 is prepared as a coating liquid composed of a kneaded material with the phosphor particles finely divided as described above, and is formed on the surface of the electron-emitting device 1. Film. However, since the electron-emitting device 1 itself has a structure that is weak against external force, there is a risk that the device may be damaged if film forming means by the bar coater method is used. Therefore, a method such as a dropping method or a spin coating method may be used.

図8に示す自発光デバイス31”は、電子放出素子1とこれに電圧を印加する電源7を有する電子放出装置10を備え、さらに、電子放出素子1の電子加速層4に蛍光体32’として蛍光の微粒子が混入されている。この場合、蛍光体32’の微粒子を絶縁体微粒子5と兼用させてもよい。但し前述した蛍光体の微粒子は一般的に電気抵抗が低く、絶縁体微粒子5に比べると明らかに電気抵抗は低い。よって蛍光体の微粒子を絶縁体微粒子5に変えて混合する場合、その蛍光体の微粒子の混合量は少量に抑えなければ成らない。例えば、絶縁体微粒子5として球状シリカ粒子(平均粒径110nm)、蛍光体微粒子としてZnS:Mg(平均粒径500nm)を用いた場合、その重量混合比は3:1程度が適切となる。   A self-luminous device 31 ″ shown in FIG. 8 includes an electron-emitting device 10 having an electron-emitting device 1 and a power source 7 for applying a voltage to the electron-emitting device 1, and further, as a phosphor 32 ′ on the electron acceleration layer 4 of the electron-emitting device 1. In this case, the fine particles of the phosphor 32 'may be used also as the insulator fine particles 5. However, the above-mentioned phosphor fine particles generally have a low electric resistance, and the insulator fine particles 5 are mixed. Therefore, when the phosphor fine particles are mixed with the insulator fine particles 5 and mixed, the amount of the phosphor fine particles must be kept small, for example, the insulator fine particles 5. When using spherical silica particles (average particle size 110 nm) as the phosphor fine particles and ZnS: Mg (average particle size 500 nm) as the phosphor fine particles, a weight mixing ratio of about 3: 1 is appropriate.

上記自発光デバイス31,31’,31”では、電子放出素子1より放出させた電子を蛍光体32,32に衝突させて発光させる。電子放出素子1は電子放出効率が高いため、自発光デバイス31,31’,31”は、効率よく発光を行える。なお、自発光デバイス31,31’,31”は、真空封止すれば電子放出電流が上がり、より効率よく発光することができる。   In the self-light-emitting devices 31, 31 ′, 31 ″, the electrons emitted from the electron-emitting device 1 collide with the phosphors 32 and 32 to emit light. Since the electron-emitting device 1 has high electron emission efficiency, the self-light-emitting device. 31, 31 ′, 31 ″ can emit light efficiently. Note that the self-light emitting devices 31, 31 ', 31' 'can emit light more efficiently if they are vacuum-sealed to increase the electron emission current.

さらに、図9に、本発明に係る自発光デバイスを備えた本発明に係る画像表示装置の一例を示す。図9に示す画像表示装置140は、図8で示した自発光デバイス31”と、液晶パネル330とを供えている。画像表示装置140では、自発光デバイス31”を液晶パネル330の後方に設置し、バックライトとして用いている。画像表示装置140に用いる場合、自発光デバイス31”への印加電圧は、20〜35Vが好ましく、この電圧にて、例えば、単位時間当たり10μA/cmの電子が放出されるようになっていればよい。また、自発光デバイス31”と液晶パネル330との距離は、0.1mm程度が好ましい。 Furthermore, FIG. 9 shows an example of an image display device according to the present invention provided with the self-luminous device according to the present invention. An image display device 140 shown in FIG. 9 includes the self-light emitting device 31 ″ shown in FIG. 8 and a liquid crystal panel 330. In the image display device 140, the self-light emitting device 31 ″ is installed behind the liquid crystal panel 330. And used as a backlight. When used in the image display device 140, the applied voltage to the self-luminous device 31 ″ is preferably 20 to 35 V, and for example, 10 μA / cm 2 of electrons are emitted per unit time at this voltage. The distance between the self-light emitting device 31 ″ and the liquid crystal panel 330 is preferably about 0.1 mm.

また、本発明に係る画像表示装置として、図6に示す自発光デバイス31を用いる場合、自発光デバイス31をマトリックス状に配置して、自発光デバイス31そのものによるFEDとして画像を形成させて表示する形状とすることもできる。この場合、自発光デバイス31への印加電圧は、20〜35Vが好ましく、この電圧にて、例えば、単位時間当たり10μA/cmの電子が放出されるようになっていればよい。 Further, when the self-luminous device 31 shown in FIG. 6 is used as the image display device according to the present invention, the self-luminous devices 31 are arranged in a matrix, and an image is formed and displayed as an FED by the self-luminous device 31 itself. It can also be a shape. In this case, the applied voltage to the self-luminous device 31 is preferably 20 to 35 V, and it is sufficient that, for example, 10 μA / cm 2 of electrons are emitted per unit time at this voltage.

〔実施の形態5〕
図10及び図11に、実施の形態1で説明した本発明に係る電子放出装置10を用いた本発明に係る送風装置の例をそれぞれ示す。以下では、本願発明に係る送風装置を、冷却装置として用いた場合について説明する。しかし、送風装置の利用は冷却装置に限定されることはない。
[Embodiment 5]
10 and 11 show examples of the blower device according to the present invention using the electron emission device 10 according to the present invention described in the first embodiment. Below, the case where the air blower concerning this invention is used as a cooling device is demonstrated. However, the use of the blower is not limited to the cooling device.

図10に示す送風装置150は、電子放出素子1とこれに電圧を印加する電源7とを有する電子放出装置10からなる。送風装置150において、電子放出素子1は、電気的に接地された被冷却体41に向かって電子を放出することにより、イオン風を発生させて被冷却体41を冷却する。冷却させる場合、電子放出素子1に印加する電圧は、18V程度が好ましく、この電圧で、雰囲気下に、例えば、単位時間当たり1μA/cmの電子を放出することが好ましい。 A blower 150 shown in FIG. 10 includes an electron emission device 10 having an electron emission element 1 and a power source 7 that applies a voltage to the electron emission element 1. In the blower 150, the electron-emitting device 1 emits electrons toward the object 41 to be cooled, which is electrically grounded, thereby generating ion wind to cool the object 41 to be cooled. In the case of cooling, the voltage applied to the electron-emitting device 1 is preferably about 18 V, and it is preferable to emit, for example, 1 μA / cm 2 of electrons per unit time at this voltage in the atmosphere.

図11に示す送風装置160は、図10に示す送風装置150に、さらに、送風ファン42が組み合わされている。図11に示す送風装置160は、電子放出素子1が電気的に接地された被冷却体41に向かって電子を放出し、さらに、送風ファン42が被冷却体41に向かって送風することで電子放出素子から放出された電子を被冷却体41に向かって送り、イオン風を発生させて被冷却体41を冷却する。この場合、送風ファン42による風量は、0.9〜2L/分/cmとするのが好ましい。 The blower 160 shown in FIG. 11 is further combined with the blower 150 shown in FIG. The blower 160 shown in FIG. 11 emits electrons toward the cooled object 41 in which the electron-emitting device 1 is electrically grounded, and the blower fan 42 blows air toward the cooled object 41 to generate electrons. Electrons emitted from the emitting element are sent toward the cooled object 41 to generate an ion wind to cool the cooled object 41. In this case, the air volume by the blower fan 42 is preferably 0.9 to 2 L / min / cm 2 .

ここで、送風によって被冷却体41を冷却させようとするとき、従来の送風装置あるいは冷却装置のようにファン等による送風だけでは、被冷却体41の表面の流速が0となり、最も熱を逃がしたい部分の空気は置換されず、冷却効率が悪い。しかし、送風される空気の中に電子やイオンといった荷電粒子を含まれていると、被冷却体41近傍に近づいたときに電気的な力によって被冷却体41表面に引き寄せられるため、表面近傍の雰囲気を入れ替えることができる。ここで、本発明に係る送風装置150,160では、送風する空気の中に電子やイオンといった荷電粒子を含んでいるので、冷却効率が格段に上がる。さらに、電子放出素子1は電子放出効率が高いため、送風装置150,160は、より効率よく冷却することができる。   Here, when the object to be cooled 41 is cooled by air blowing, the flow velocity on the surface of the object to be cooled 41 becomes 0 only by air blowing by a fan or the like as in the conventional air blowing device or cooling device, and the most heat is released. The air in the desired part is not replaced and the cooling efficiency is poor. However, when charged particles such as electrons and ions are contained in the air to be blown, when the vicinity of the object to be cooled 41 is approached, it is attracted to the surface of the object to be cooled 41 by electric force. The atmosphere can be changed. Here, in the air blowers 150 and 160 according to the present invention, since the air to be blown contains charged particles such as electrons and ions, the cooling efficiency is remarkably increased. Furthermore, since the electron emission element 1 has high electron emission efficiency, the air blowers 150 and 160 can be cooled more efficiently.

本発明は上述した各実施形態および各実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments and examples, and various modifications are possible within the scope of the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.

本発明に係る電子放出素子は、簡易かつ低コストで、少量の導電微粒子を均一に存在させて製造することができ、安定かつ良好な電子放出が可能である。よって、例えば、電子写真方式の複写機、プリンタ、ファクシミリ等の画像形成装置の帯電装置、電子線硬化装置、或いは発光体と組み合わせることにより自発光デバイスや画像表示装置、または放出された電子が発生させるイオン風を利用することにより冷却装置等に、好適に適用することができる。   The electron-emitting device according to the present invention can be manufactured simply and at low cost with a small amount of conductive fine particles uniformly present, and stable and good electron emission is possible. Thus, for example, a self-luminous device, an image display device, or emitted electrons are generated by combining with a charging device, an electron beam curing device, or a light emitter of an image forming apparatus such as an electrophotographic copying machine, a printer, or a facsimile. By using the ion wind to be applied, it can be suitably applied to a cooling device or the like.

1 電子放出素子
2 電極基板
3 薄膜電極
4 電子加速層
5 絶縁体微粒子
6 導電微粒子
7 電源(電源部)
8 対向電極
9 絶縁体スペーサ
10 電子放出装置
11 感光体
15 バインダー成分
21 加速電極
22 レジスト(被硬化物)
31,31’,31” 自発光デバイス
32,32’ 蛍光体(発光体)
33 ITO膜
34 ガラス基板
35 電源
36 発光部
41 被冷却体
42 送風ファン
90 帯電装置
100 電子線硬化装置
140 画像表示装置
150 送風装置
160 送風装置
330 液晶パネル
DESCRIPTION OF SYMBOLS 1 Electron emission element 2 Electrode substrate 3 Thin film electrode 4 Electron acceleration layer 5 Insulator fine particle 6 Conductive fine particle 7 Power supply (power supply part)
8 Counter electrode 9 Insulator spacer 10 Electron emission device 11 Photoreceptor 15 Binder component 21 Accelerating electrode 22 Resist (cured material)
31, 31 ', 31 "Self-luminous device 32, 32' Phosphor (light emitter)
33 ITO film 34 Glass substrate 35 Power source 36 Light emitting unit 41 Cooled object 42 Blower fan 90 Charging device 100 Electron beam curing device 140 Image display device 150 Blower device 160 Blower device 330 Liquid crystal panel

Claims (29)

電極基板と、薄膜電極と、該電極基板と該薄膜電極とに挟持され導電微粒子と絶縁体微粒子とを含む電子加速層と、を有し、上記電極基板と上記薄膜電極との間に電圧が印加されると、上記電子加速層で電子を加速させて、上記薄膜電極から該電子を放出させる電子放出素子の製造方法であって、
上記電子加速層の形成工程は、
上記電極基板上に、上記絶縁体微粒子が分散溶媒に分散された絶縁体微粒子分散液を塗布して絶縁体微粒子を含む微粒子層を形成する微粒子層形成工程と、
上記微粒子層に、上記導電微粒子が分散溶媒に分散された導電微粒子分散液を、静電噴霧法を用いて塗布する導電微粒子塗布工程とを含むことを特徴とする電子放出素子の製造方法。
An electrode substrate, a thin film electrode, and an electron acceleration layer including conductive fine particles and insulator fine particles sandwiched between the electrode substrate and the thin film electrode, and a voltage is applied between the electrode substrate and the thin film electrode. When applied, the electron acceleration layer accelerates electrons in the electron acceleration layer and emits the electrons from the thin film electrode.
The step of forming the electron acceleration layer includes
On the electrode substrate, a fine particle layer forming step of forming a fine particle layer containing insulating fine particles by applying an insulating fine particle dispersion in which the insulating fine particles are dispersed in a dispersion solvent;
A method for manufacturing an electron-emitting device, comprising: applying a conductive fine particle dispersion in which the conductive fine particles are dispersed in a dispersion solvent to the fine particle layer using an electrostatic spray method.
上記絶縁体微粒子分散液と上記導電微粒子分散液とは、それぞれ異なる分散溶媒を含むことを特徴とする請求項1に記載の電子放出素子の製造方法。   The method of manufacturing an electron-emitting device according to claim 1, wherein the insulating fine particle dispersion and the conductive fine particle dispersion contain different dispersion solvents. 上記絶縁体微粒子分散液は、バインダー成分が含有されていることを特徴とする請求項1または2に記載の電子放出素子の製造方法。   3. The method of manufacturing an electron-emitting device according to claim 1, wherein the insulating fine particle dispersion contains a binder component. 上記導電微粒子分散液は、上記導電微粒子のナノコロイド液であることを特徴とする請求項1から3のいずれか1項に記載の電子放出素子の製造方法。   The method for manufacturing an electron-emitting device according to any one of claims 1 to 3, wherein the conductive fine particle dispersion is a nanocolloid liquid of the conductive fine particles. 上記導電微粒子塗布工程では、上記微粒子層上にマスクを設置し、導電微粒子分散液を、静電噴霧法を用いて塗布することを特徴とする請求項1から4のいずれか1項に記載の電子放出素子の製造方法。   5. The conductive fine particle application step according to claim 1, wherein a mask is placed on the fine particle layer, and the conductive fine particle dispersion is applied using an electrostatic spraying method. A method for manufacturing an electron-emitting device. 請求項1から5のいずれか1項に記載の電子放出素子の製造方法によって製造されることを特徴とする電子放出素子。   An electron-emitting device manufactured by the method for manufacturing an electron-emitting device according to claim 1. 電極基板と薄膜電極と該電極基板および該薄膜電極に挟持された電子加速層とを有し、上記電極基板と上記薄膜電極との間に電圧が印加されると、上記電子加速層で電子を加速させて、上記薄膜電極から該電子を放出させる電子放出素子であって、
上記電子加速層は、絶縁体微粒子を含む微粒子層で構成され、かつ、少なくとも該微粒子層の表面には導電微粒子が離散配置されていることを特徴とする電子放出素子。
An electrode substrate, a thin film electrode, and an electrode acceleration layer sandwiched between the electrode substrate and the thin film electrode. When a voltage is applied between the electrode substrate and the thin film electrode, electrons are transmitted through the electron acceleration layer. An electron-emitting device that accelerates and emits the electrons from the thin film electrode,
The electron accelerating layer is composed of a fine particle layer containing insulating fine particles, and conductive fine particles are discretely arranged at least on the surface of the fine particle layer.
電極基板と薄膜電極と該電極基板および該薄膜電極に挟持された電子加速層とを有し、上記電極基板と上記薄膜電極との間に電圧が印加されると、上記電子加速層で電子を加速させて、上記薄膜電極から該電子を放出させる電子放出素子であって、
上記電子加速層には、絶縁体微粒子と導電微粒子とが含まれており、かつ、平面または曲面を含む共通の電極基板上に複数個作成されることを特徴とする電子放出素子。
An electrode substrate, a thin film electrode, and an electrode acceleration layer sandwiched between the electrode substrate and the thin film electrode. When a voltage is applied between the electrode substrate and the thin film electrode, electrons are transmitted through the electron acceleration layer. An electron-emitting device that accelerates and emits the electrons from the thin film electrode,
The electron accelerating layer includes insulating fine particles and conductive fine particles, and a plurality of the electron accelerating layers are formed on a common electrode substrate including a flat surface or a curved surface.
上記導電微粒子の平均粒径は、3〜10nmであることを特徴とする、請求項6から8のいずれか1項に記載の電子放出素子。   The electron-emitting device according to any one of claims 6 to 8, wherein the conductive fine particles have an average particle diameter of 3 to 10 nm. 上記絶縁体微粒子の平均粒径は、上記導電微粒子の平均粒径よりも大きく、10〜500nmであることを特徴とする、請求項6から9のいずれか1項に記載の電子放出素子。   10. The electron-emitting device according to claim 6, wherein an average particle diameter of the insulating fine particles is larger than an average particle diameter of the conductive fine particles and is 10 to 500 nm. 上記導電微粒子は、抗酸化力が高い導電体であることを特徴とする請求項6から10のいずれか1項に記載の電子放出素子。   The electron-emitting device according to any one of claims 6 to 10, wherein the conductive fine particles are a conductor having a high anti-oxidation power. 上記導電微粒子は、貴金属であることを特徴とする請求項6から11のいずれか1項に記載の電子放出素子。   The electron-emitting device according to claim 6, wherein the conductive fine particles are a noble metal. 上記導電微粒子を成す導電体は、金、銀、白金、パラジウム、及びニッケルの少なくとも1つを含んでいることを特徴とする請求項6から12のいずれか1項に記載の電子放出素子。   The electron-emitting device according to any one of claims 6 to 12, wherein the conductive material forming the conductive fine particles contains at least one of gold, silver, platinum, palladium, and nickel. 上記絶縁体微粒子は、SiO、Al、及びTiOの少なくとも1つを含んでいる、または有機ポリマーを含んでいることを特徴とする、請求項6から13のいずれか1項に記載の電子放出素子。 The insulating fine particles is, SiO 2, Al 2 O 3 , and characterized in that it comprises TiO 2 in which at least one, or an organic polymer, in any one of claims 6 13 The electron-emitting device described. 上記電子加速層における上記導電微粒子の割合が、重量比で0.5〜30%であることを特徴とする、請求項6から14のいずれか1項に記載の電子放出素子。   15. The electron-emitting device according to claim 6, wherein a ratio of the conductive fine particles in the electron acceleration layer is 0.5 to 30% by weight. 上記電子加速層における上記導電微粒子の割合が、重量比で1〜10%であることを特徴とする、請求項15に記載の電子放出素子。   The electron-emitting device according to claim 15, wherein a ratio of the conductive fine particles in the electron acceleration layer is 1 to 10% by weight. 上記電子加速層の層厚は、12〜6000nmであることを特徴とする、請求項6から16のいずれか1項に記載の電子放出素子。   The electron-emitting device according to any one of claims 6 to 16, wherein the electron acceleration layer has a thickness of 12 to 6000 nm. 上記電子加速層の層厚は、300〜6000nmであることを特徴とする、請求項17に記載の電子放出素子。   The electron-emitting device according to claim 17, wherein the electron acceleration layer has a thickness of 300 to 6000 nm. 上記薄膜電極は、金、銀、炭素、タングステン、チタン、アルミ、及びパラジウムの少なくとも1つを含んでいることを特徴とする請求項6から18のいずれか1項に記載の電子放出素子。   The electron-emitting device according to any one of claims 6 to 18, wherein the thin-film electrode includes at least one of gold, silver, carbon, tungsten, titanium, aluminum, and palladium. 上記導電微粒子の周囲に、該導電微粒子の大きさより小さい絶縁体物質である小絶縁体物質が存在することを特徴とする、請求項6から19のいずれか1項に記載の電子放出素子。   The electron-emitting device according to any one of claims 6 to 19, wherein a small insulator material, which is an insulator material smaller than the size of the conductive fine particles, is present around the conductive fine particles. 上記小絶縁体物質は、アルコラート、脂肪酸、及びアルカンチオールの少なくとも1つを含んでいること特徴とする、請求項20に記載の電子放出素子。   The electron-emitting device according to claim 20, wherein the small insulator material includes at least one of alcoholate, fatty acid, and alkanethiol. 請求項6から21のいずれか1項に記載の電子放出素子と、該電子放出素子が有する上記電極基板と上記薄膜電極との間に電圧を印加する電源部と、を備えたことを特徴とする電子放出装置。   The electron-emitting device according to any one of claims 6 to 21, and a power supply unit that applies a voltage between the electrode substrate and the thin-film electrode included in the electron-emitting device. Electron emission device. 請求項22に記載の電子放出装置を備え、該電子放出装置から電子を放出して感光体を帯電することを特徴とする帯電装置。   23. A charging device comprising the electron-emitting device according to claim 22, wherein the photosensitive member is charged by emitting electrons from the electron-emitting device. 請求項23に記載の帯電装置を備えたことを特徴とする画像形成装置。   An image forming apparatus comprising the charging device according to claim 23. 請求項22に記載の電子放出装置を備え、該電子放出装置から電子を放出して被硬化物を硬化させることを特徴とする電子線硬化装置。   An electron beam curing device comprising the electron emission device according to claim 22, wherein the material to be cured is cured by emitting electrons from the electron emission device. 請求項22に記載の電子放出装置と発光体とを備え、該電子放出装置から電子を放出して該発光体を発光させることを特徴とする自発光デバイス。   A self-luminous device comprising the electron-emitting device according to claim 22 and a light emitter, wherein the light-emitting device emits electrons by emitting electrons from the electron-emitting device. 請求項26に記載の自発光デバイスを備えたことを特徴とする画像表示装置。   An image display apparatus comprising the self-luminous device according to claim 26. 請求項22に記載の電子放出装置を備え、該電子放出装置から電子を放出して送風する
ことを特徴とする送風装置。
23. A blower device comprising the electron emission device according to claim 22, wherein electrons are emitted from the electron emission device to blow air.
請求項22に記載の電子放出装置を備え、該電子放出装置から電子を放出して被冷却体を冷却することを特徴とする冷却装置。   23. A cooling device comprising the electron-emitting device according to claim 22, wherein the object to be cooled is cooled by emitting electrons from the electron-emitting device.
JP2009117866A 2009-05-14 2009-05-14 Method for manufacturing electron emitting element, electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display, blower, and cooling device Pending JP2010267492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009117866A JP2010267492A (en) 2009-05-14 2009-05-14 Method for manufacturing electron emitting element, electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display, blower, and cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009117866A JP2010267492A (en) 2009-05-14 2009-05-14 Method for manufacturing electron emitting element, electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display, blower, and cooling device

Publications (1)

Publication Number Publication Date
JP2010267492A true JP2010267492A (en) 2010-11-25

Family

ID=43364288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009117866A Pending JP2010267492A (en) 2009-05-14 2009-05-14 Method for manufacturing electron emitting element, electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display, blower, and cooling device

Country Status (1)

Country Link
JP (1) JP2010267492A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009073A (en) * 2009-06-25 2011-01-13 Sharp Corp Electron-emitting element, its manufacturing method and electron-emitting device, self-luminous device, and image display
JP2011009074A (en) * 2009-06-25 2011-01-13 Sharp Corp Electron-emitting element, electron-emitting device, self-luminous device, and image display
US8110971B2 (en) 2009-05-19 2012-02-07 Sharp Kabushiki Kaisha Light emitting element, light emitting device, image display device, method of driving light emitting element, and method of producing light emitting element
US8164247B2 (en) 2009-05-19 2012-04-24 Sharp Kabushiki Kaisha Electron emitting element, electron emitting device, light emitting device, image display device, air blowing device, cooling device, charging device, image forming apparatus, and electron-beam curing device
US8249487B2 (en) 2009-05-19 2012-08-21 Sharp Kabushiki Kaisha Electron emitting element, electron emitting device, charging device, image forming apparatus, electron-beam curing device, light emitting device, image display device, air blowing device, and cooling device
US8378565B2 (en) 2009-06-25 2013-02-19 Sharp Kabushiki Kaisha Electron emitting element having an electron acceleration layer using fine particle layer
US8401430B2 (en) 2007-11-20 2013-03-19 Sharp Kabushiki Kaisha Electron emitting element for accelerating and emitting electrons, and use of electron emitting element
US8476818B2 (en) 2009-05-19 2013-07-02 Sharp Kabushiki Kaisha Electron emitting element including a fine particle layer containing insulating particles, and devices and methods related thereto
US8487521B2 (en) 2009-12-01 2013-07-16 Sharp Kabushiki Kaisha Electron emitting element, method for producing electron emitting element, electron emitting device, charging device, image forming apparatus, electron-beam curing device, light emitting device, image display device, air blowing device, and cooling device
US8547007B2 (en) 2009-02-24 2013-10-01 Sharp Kabushiki Kaisha Electron emitting element, electron emitting device, light emitting device, image display device, air blowing device, cooling device, charging device, image forming apparatus, electron-beam curing device, and method for producing electron emitting element
JP2014532121A (en) * 2011-09-14 2014-12-04 インヴェンテック・ヨーロッパ・エイビーInventech Europe Ab Coating apparatus for coating longitudinal substrates
JP2015114533A (en) * 2013-12-12 2015-06-22 シャープ株式会社 Electron emission element and method of manufacturing the same
JP2020121017A (en) * 2019-01-31 2020-08-13 シャープ株式会社 Tumor treatment apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8401430B2 (en) 2007-11-20 2013-03-19 Sharp Kabushiki Kaisha Electron emitting element for accelerating and emitting electrons, and use of electron emitting element
US8547007B2 (en) 2009-02-24 2013-10-01 Sharp Kabushiki Kaisha Electron emitting element, electron emitting device, light emitting device, image display device, air blowing device, cooling device, charging device, image forming apparatus, electron-beam curing device, and method for producing electron emitting element
US8616931B2 (en) 2009-02-24 2013-12-31 Sharp Kabushiki Kaisha Electron emitting element, electron emitting device, light emitting device, image display device, air blowing device, cooling device, charging device, image forming apparatus, electron-beam curing device, and method for producing electron emitting element
US8164247B2 (en) 2009-05-19 2012-04-24 Sharp Kabushiki Kaisha Electron emitting element, electron emitting device, light emitting device, image display device, air blowing device, cooling device, charging device, image forming apparatus, and electron-beam curing device
US8249487B2 (en) 2009-05-19 2012-08-21 Sharp Kabushiki Kaisha Electron emitting element, electron emitting device, charging device, image forming apparatus, electron-beam curing device, light emitting device, image display device, air blowing device, and cooling device
US8476818B2 (en) 2009-05-19 2013-07-02 Sharp Kabushiki Kaisha Electron emitting element including a fine particle layer containing insulating particles, and devices and methods related thereto
US8110971B2 (en) 2009-05-19 2012-02-07 Sharp Kabushiki Kaisha Light emitting element, light emitting device, image display device, method of driving light emitting element, and method of producing light emitting element
US8378565B2 (en) 2009-06-25 2013-02-19 Sharp Kabushiki Kaisha Electron emitting element having an electron acceleration layer using fine particle layer
JP2011009074A (en) * 2009-06-25 2011-01-13 Sharp Corp Electron-emitting element, electron-emitting device, self-luminous device, and image display
JP2011009073A (en) * 2009-06-25 2011-01-13 Sharp Corp Electron-emitting element, its manufacturing method and electron-emitting device, self-luminous device, and image display
US8487521B2 (en) 2009-12-01 2013-07-16 Sharp Kabushiki Kaisha Electron emitting element, method for producing electron emitting element, electron emitting device, charging device, image forming apparatus, electron-beam curing device, light emitting device, image display device, air blowing device, and cooling device
JP2014532121A (en) * 2011-09-14 2014-12-04 インヴェンテック・ヨーロッパ・エイビーInventech Europe Ab Coating apparatus for coating longitudinal substrates
JP2015114533A (en) * 2013-12-12 2015-06-22 シャープ株式会社 Electron emission element and method of manufacturing the same
JP2020121017A (en) * 2019-01-31 2020-08-13 シャープ株式会社 Tumor treatment apparatus
JP7269597B2 (en) 2019-01-31 2023-05-09 シャープ株式会社 Tumor treatment device

Similar Documents

Publication Publication Date Title
US8616931B2 (en) Electron emitting element, electron emitting device, light emitting device, image display device, air blowing device, cooling device, charging device, image forming apparatus, electron-beam curing device, and method for producing electron emitting element
JP4732534B2 (en) Electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device
JP2010267492A (en) Method for manufacturing electron emitting element, electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display, blower, and cooling device
US8476818B2 (en) Electron emitting element including a fine particle layer containing insulating particles, and devices and methods related thereto
JP4777448B2 (en) Electron emitting device, electron emitting device, self-luminous device, image display device, blower device, cooling device, charging device, image forming device, and electron beam curing device
JP4812853B2 (en) Electron-emitting device, electron-emitting device, self-luminous device, image display device, air blower, cooling device, charging device, image forming device, electron beam curing device, and method for manufacturing electron-emitting device
US8299700B2 (en) Electron emitting element having an electron acceleration layer, electron emitting device, light emitting device, image display device, cooling device, and charging device
JP2011003521A (en) Electron emitting element, electron emitting device, self light-emitting device, image display, blower, cooling device, electrically-charged device, image forming device, electron-beam curing device, and method for manufacturing electron emitting element
JP5783798B2 (en) ELECTRON EMITTING ELEMENT AND DEVICE EQUIPPED WITH THE SAME
JP5133295B2 (en) Electron emission apparatus, self-luminous device, image display apparatus, charging apparatus, image forming apparatus, electron beam curing apparatus, and driving method of electron emission element
JP5784354B2 (en) ELECTRON EMITTING ELEMENT AND ELECTRON EMITTING DEVICE HAVING THE SAME
JP4932864B2 (en) Electron-emitting device, electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device, and method for manufacturing electron-emitting device
JP4917121B2 (en) Electron-emitting device, electron-emitting device, self-luminous device, image display device, cooling device, and charging device
JP4768051B2 (en) Manufacturing method of electron-emitting device, electron-emitting device, electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower device, cooling device
JP4680305B2 (en) Electron-emitting device, electron-emitting device, self-luminous device, image display device, cooling device, and charging device
JP6008594B2 (en) ELECTRON EMITTING ELEMENT AND DEVICE EQUIPPED WITH THE SAME
JP4768050B2 (en) Electron-emitting device, electron-emitting device, self-luminous device, image display device, air blower, cooling device, charging device, image forming device, electron beam curing device, and electron-emitting device manufacturing method
JP5128565B2 (en) Electron-emitting device, electron-emitting device, self-luminous device, image display device, air blower, cooling device, charging device, image forming device, electron beam curing device, and method for manufacturing electron-emitting device
JP5050074B2 (en) Electron emitting device and manufacturing method thereof
JP2010267491A (en) Method of manufacturing electron emitter, electron emitter, electron emission device, charging device, image forming apparatus, electron beam curing device, self-luminous device, image display apparatus, blowing device, and cooling device
JP2010272260A (en) Electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device, and method of manufacturing the electron emitting element
JP2010272259A (en) Method of manufacturing electron emitting element, electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, and cooling device
JP2011040250A (en) Electron emission element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device, and manufacturing method of electron emission element