JP2010244738A - Electron emission element and its manufacturing method - Google Patents

Electron emission element and its manufacturing method Download PDF

Info

Publication number
JP2010244738A
JP2010244738A JP2009089660A JP2009089660A JP2010244738A JP 2010244738 A JP2010244738 A JP 2010244738A JP 2009089660 A JP2009089660 A JP 2009089660A JP 2009089660 A JP2009089660 A JP 2009089660A JP 2010244738 A JP2010244738 A JP 2010244738A
Authority
JP
Japan
Prior art keywords
electron
fine particles
emitting device
metal fine
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009089660A
Other languages
Japanese (ja)
Inventor
Hisahiro Tamura
壽宏 田村
Shigeru Nishio
茂 西尾
Chikao Ichii
愛雄 一井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009089660A priority Critical patent/JP2010244738A/en
Publication of JP2010244738A publication Critical patent/JP2010244738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electron emission element for efficiently generating ballistic electron, and, as a result, for improving efficiency of an electron emission element. <P>SOLUTION: The electron emission element emits electron as a first conductive member and a second conductive member are formed face to face with each other and a voltage is impressed between the conductive members. A plurality of aggregates of metal fine particles insulation-coated between the conductive members are formed, in such a size that dielectric breakdown shall not occur in case a voltage is impressed on the first conductive member and the second conductive member. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電圧を印加することにより電子を放出させることができる電子放出素子に関するものである。   The present invention relates to an electron-emitting device that can emit electrons by applying a voltage.

電界放出表示素子としては、従来から、先端を鋭く尖らせたシリコンあるいはモリブデンといったマイクロエミッタが知られている。しかし、導電性ファイバであるカーボンナノチューブ(Carbon Nano-Tube: CNT)は、ナノレベルの径を有し、高アスペクト比、高電流密度、高靱性、発達した黒鉛構造に起因する高耐熱性および高化学的安定性を持つことから、前述の金属性のマイクロエミッタよりも優れた電界放出表示素子として期待されている。   Conventionally, as a field emission display element, a microemitter such as silicon or molybdenum having a sharp tip is known. However, carbon nanotubes (Carbon Nano-Tube: CNT), which are conductive fibers, have a nano-level diameter, high aspect ratio, high current density, high toughness, high heat resistance and high resistance due to the developed graphite structure. Since it has chemical stability, it is expected to be a field emission display device superior to the aforementioned metallic microemitter.

特開2001−35424号公報では、基板101の一方の面に多数の突起102が形成された剣山状部材を作製する。基板101はAl2O3単結晶板であり、突起102は酸化亜鉛である。この剣山状部材の突起102側の表面全体に金属薄膜103を形成することにより、多数の突起状の電子放出体104を得る。突起102の先端部は凸状になっていて、その尖鋭度(頂点部分を所定範囲で2次曲線に近似することにより算出される値)を示す曲率半径は10μm以下であり、冷陰極素子の製造方法がスピント型素子よりも簡単であって、発光効率の高い発光装置を得ている(図10参照)。   In Japanese Patent Laid-Open No. 2001-35424, a sword mountain-like member having a large number of protrusions 102 formed on one surface of a substrate 101 is produced. The substrate 101 is an Al2O3 single crystal plate, and the protrusions 102 are zinc oxide. By forming the metal thin film 103 on the entire surface of the sword-like member on the protrusion 102 side, a large number of protrusion-shaped electron emitters 104 are obtained. The tip of the protrusion 102 has a convex shape, and the radius of curvature indicating the sharpness (a value calculated by approximating the apex portion to a quadratic curve within a predetermined range) is 10 μm or less. A manufacturing method is simpler than that of a Spindt-type element, and a light emitting device with high luminous efficiency is obtained (see FIG. 10).

また、特開2001−236879号公報では、陰極105上にベース層を形成したり、またはしない状態で触媒層106を形成し、スピント法で触媒層上にカーボンナノチューブ107を成長させる方法であって、マイクロキャビティーの外部の触媒層上には非反応層を形成してマイクロキャビティーの内部の触媒層106上にだけカーボンナノチューブ107を成長させることによって、分離層を蝕刻して除去する場合にも外部のカーボンナノチューブ107が存在しないことによりカーボンナノチューブ107がマイクロキャビティー内に流れ込むことはない。これにより、生産収率が高まると同時に生産コストが低くなることが開示されている(図11参照)。   Japanese Patent Application Laid-Open No. 2001-236879 is a method in which a base layer is formed on a cathode 105 or not, a catalyst layer 106 is formed, and a carbon nanotube 107 is grown on the catalyst layer by a Spindt method. When the separation layer is etched and removed by forming a non-reactive layer on the catalyst layer outside the microcavity and growing the carbon nanotubes 107 only on the catalyst layer 106 inside the microcavity. However, since the external carbon nanotube 107 does not exist, the carbon nanotube 107 does not flow into the microcavity. Thereby, it is disclosed that the production yield is increased and the production cost is lowered at the same time (see FIG. 11).

これらの電子放出原理について説明する。固体表面に強い電界がかかると,電子を固体内に閉じ込めている表面のポテンシャル障壁が低くかつ薄くなり,電子がトンネル効果により,真空中に放出される.電子を放出させるには,107V/cmオーダーの強い電界を表面にかけなければならない。このような強電界を実現するために,通常は先端を鋭く尖らせた金属針が用いられる。その針に負の電圧を掛けると,尖った先端に電界が集中し,必要とされる強電界が得られる。スピント型のエミッタは、この針をエッチングなどの半導体加工技術を応用して、作成される。また、カーボンナノチューブ型エミッタは、CNT素子を樹脂などに混練、塗布により製造され、 (1) 鋭い先端と大きなアスペクト比を持ち,(2) 化学的に安定で,(3) 機械的にも強靭で,さらに (4) 原子の拡散がなく高温での安定性に優れており、(5) 導電性をもつなど,電界放出のエミッタ材料として有利な物理化学的性質を備えているとされている。 These electron emission principles will be described. When a strong electric field is applied to the solid surface, the potential barrier on the surface confining the electrons in the solid becomes low and thin, and the electrons are released into the vacuum by the tunnel effect. In order to emit electrons, a strong electric field of the order of 10 7 V / cm must be applied to the surface. In order to realize such a strong electric field, a metal needle having a sharp tip is usually used. When a negative voltage is applied to the needle, the electric field concentrates at the sharp tip and the required strong electric field is obtained. A Spindt-type emitter is produced by applying a semiconductor processing technique such as etching the needle. Carbon nanotube emitters are manufactured by kneading and coating CNT elements in resin, etc. (1) Sharp tip and large aspect ratio, (2) Chemically stable, (3) Mechanically tough (4) It has excellent physicochemical properties as an emitter material for field emission, such as (4) excellent atomic stability and high temperature stability, and (5) conductivity. .


特開2001−35424号公報JP 2001-35424 A 特開2001−236879号公報JP 2001-236879 A

特開2001−35424号公報に示されているスピント型電子放出素子や特開2001−236879号公報に示されているCNT(カーボンナノチューブ)型電子放出素子も製造方法が複雑であった。すなわち、スピント型電極は基板にAlなどの金属を用い、高度なエッチング技術を用いて、先鋭な曲率を有しなければならず、複雑で、高精度の製造技術が必要であった。また、カーボンナノチューブ型の電子放出素子では、カーボンナノチューブを成長させるか、あるいは、成長したカーボンナノチューブをペースト状に塗付し、先鋭な曲率を有するカーボンナノチューブの先端から、電子を放出させていた。しかしながら、カーボンナノチューブを基板上で均一に成長させることが難しく、製造装置も複雑であった。また、カーボンナノチューブをペースト状に塗付する方式では、製造工程は簡単であるが、電子放出位置がばらつくとともに、均一な電子放出電流が得られず、電子放出効率も悪かった。 The spint type electron-emitting device disclosed in Japanese Patent Application Laid-Open No. 2001-35424 and the CNT (carbon nanotube) type electron-emitting device disclosed in Japanese Patent Application Laid-Open No. 2001-236879 also have complicated manufacturing methods. That is, the Spindt-type electrode must have a sharp curvature using a metal such as Al 2 O 3 as a substrate and an advanced etching technique, and a complicated and highly accurate manufacturing technique is required. . In the carbon nanotube type electron-emitting device, carbon nanotubes are grown, or the grown carbon nanotubes are applied in a paste form, and electrons are emitted from the tips of the carbon nanotubes having a sharp curvature. However, it was difficult to grow carbon nanotubes uniformly on the substrate, and the manufacturing apparatus was complicated. In addition, the method of applying carbon nanotubes in a paste form is simple, but the electron emission position varies, a uniform electron emission current cannot be obtained, and the electron emission efficiency is poor.

これらの電子放出素子は、何れも平面的に形成しているため、有効に3次元空間を活用しているとはいえず、投入電力に対する電子放出の効率が悪かった。   Since these electron-emitting devices are all formed in a plane, it cannot be said that the three-dimensional space is effectively utilized, and the efficiency of electron emission with respect to the input power is poor.

上記に記載した課題を鋭意検討した結果、われわれは、常温で金属微粒子を含む溶液を塗布し、乾燥する簡単な工程で、自己組織化作用により電子放出素子を作成し、検討を行なったところ、新しい電子放出原理で電子が放出していることを見出した。その結果、高温で焼成する必要がなく、低消費電力で、大面積のフィールドエミッションディスプレイ(FED)等のディスプレイや、電子線照射装置、光源、電子部品製造装置、電子回路部品のような電子線源として適用できる電子放出素子を提供することにある。   As a result of diligently examining the problems described above, we created an electron-emitting device by self-organization by a simple process of applying and drying a solution containing metal fine particles at room temperature, and conducted a study. We found that electrons were emitted by a new electron emission principle. As a result, there is no need to bake at high temperatures, low power consumption, large area display such as field emission display (FED), electron beam irradiation device, light source, electronic component manufacturing device, electron beam such as electronic circuit components An object of the present invention is to provide an electron-emitting device that can be used as a source.


本発明の電子放出素子は、上記課題を解決するために、第一の導電性部材と、第二の導電性部材が互いに向かい合うように形成され、該導電性部材間に電圧を印加することにより、電子を放出する電子放出素子であって、第一及び第二の導電性部材間に絶縁皮膜された金属微粒子の凝集体を複数形成したことを特徴としている。

In order to solve the above-described problems, the electron-emitting device of the present invention is formed such that the first conductive member and the second conductive member face each other, and a voltage is applied between the conductive members. An electron-emitting device that emits electrons is characterized in that a plurality of agglomerates of fine metal particles coated with an insulating film are formed between the first and second conductive members.

ここで、金属微粒子の周囲に、薄膜の絶縁部材を被覆することで、金属微粒子の酸化生成反応をより起こし難くした状態にでき、大気圧状態での素子の使用を可能にする。また、絶縁性部材の周囲に絶縁皮膜金属微粒子を自己組織化作用により凝集させることが可能となり、それによって、弾道電子を効率的に発生させることができ、その結果、電子放出素子の効率を向上させることができる。   Here, by coating a thin film insulating member around the metal fine particles, it is possible to make the metal fine particle oxidation generation reaction less likely to occur, and the device can be used in an atmospheric pressure state. In addition, it becomes possible to agglomerate the insulating coating metal fine particles around the insulating member by the self-organizing action, thereby generating ballistic electrons efficiently, thereby improving the efficiency of the electron-emitting device. Can be made.

また、ナノ粒子として抗酸化力が高い導電体を用いることから、大気中の酸素による酸化に伴う素子劣化を発生し難いため、大気圧中でも安定して動作させることができる。   In addition, since a conductor having a high anti-oxidation power is used as the nanoparticle, it is difficult to cause element deterioration due to oxidation by oxygen in the atmosphere, and thus it can be stably operated even at atmospheric pressure.

また、上記絶縁性部材および絶縁皮膜ナノ粒子は、電子加速層における抵抗値および電子の生成量を調整することができるため、電子加速層を流れる電流値と電子放出量の制御を可能とする。さらに、上記絶縁性部材は、電子加速層を流れる電流により生じるジュール熱を効率良く逃がす役割も有することができるため、電子放出素子が熱で破壊されるのを防ぐことができる。   In addition, since the insulating member and the insulating coating nanoparticles can adjust the resistance value and the amount of electrons generated in the electron acceleration layer, the value of the current flowing through the electron acceleration layer and the amount of electron emission can be controlled. Furthermore, since the insulating member can also have a role of efficiently releasing Joule heat generated by the current flowing through the electron acceleration layer, the electron-emitting device can be prevented from being destroyed by heat.

本発明の電子放出素子は、上記構成を有するため、真空中だけでなく大気圧中で動作させても放電を伴わないためオゾンやNOx等の有害物質をほぼ生成せず、電子放出素子が酸化劣化しない。そのため、本発明の電子放出素子は、寿命が長く大気中でも長時間連続動作をさせることができる。よって、本発明により、真空中だけでなく大気圧中でも安定して電子を放出でき、オゾンやNOx等の有害物質の発生を抑制した電子放出素子を提供することができる。   Since the electron-emitting device of the present invention has the above-described configuration, it does not generate a discharge even when operated not only in a vacuum but also in an atmospheric pressure, and therefore hardly generates harmful substances such as ozone and NOx, and the electron-emitting device is oxidized. Does not deteriorate. Therefore, the electron-emitting device of the present invention has a long life and can be operated continuously for a long time even in the atmosphere. Therefore, according to the present invention, it is possible to provide an electron-emitting device that can stably emit electrons not only in a vacuum but also in an atmospheric pressure and suppress generation of harmful substances such as ozone and NOx.

本発明の電子放出素子では、上記構成に加え、形成されている絶縁皮膜ナノ粒子の一部が、絶縁破壊が起こらないような大きさに、凝集し凝集体を複数形成していることを特徴としている。すなわち、絶縁性部材に絶縁皮膜ナノ粒子が形成されているのが好ましいが、第一の導電性部材と第二の導電性部材に電圧を印加した場合に絶縁破壊が起こらないような大きさに絶縁皮膜ナノ粒子が凝集していてもよい。   In the electron-emitting device of the present invention, in addition to the above-described configuration, a part of the formed insulating coating nanoparticles are aggregated to a size that does not cause dielectric breakdown, and a plurality of aggregates are formed. It is said. That is, it is preferable that the insulating coating nanoparticles are formed on the insulating member, but the size is such that dielectric breakdown does not occur when voltage is applied to the first conductive member and the second conductive member. The insulating coating nanoparticles may be aggregated.

上記構成によると、上記効果に加え、凝集している絶縁皮膜ナノ粒子間では、より多くのエネルギーを持った電子が放出されることもあり、絶縁破壊が起こらない程度の凝集度合いであればよい。   According to the above configuration, in addition to the above effects, electrons having more energy may be emitted between the agglomerated insulating coating nanoparticles, and the degree of aggregation may be such that dielectric breakdown does not occur. .

本発明の電子放出素子では、上記構成に加え、上記ナノ粒子を成す導電体は、金、銀、白金、パラジウム、及びニッケルの少なくとも1つを含んでいてもよい。このように、上記ナノ粒子を成す導電体が、金、銀、白金、パラジウム、及びニッケルの少なくとも1つを含んでいることで、ナノ粒子の、大気中の酸素による酸化などをはじめとする素子劣化を、より効果的に防ぐことができる。よって、電子放出素子の長寿命化をより効果的に図ることができる。   In the electron-emitting device of the present invention, in addition to the above configuration, the conductor constituting the nanoparticles may include at least one of gold, silver, platinum, palladium, and nickel. As described above, since the conductor that forms the nanoparticles includes at least one of gold, silver, platinum, palladium, and nickel, elements such as oxidation of the nanoparticles by oxygen in the atmosphere are included. Deterioration can be prevented more effectively. Therefore, the lifetime of the electron-emitting device can be extended more effectively.

本発明の電子放出素子では、上記構成に加え、上記ナノ粒子の平均径は、導電性を制御する必要から、上記絶縁性部材の大きさよりも小さくなければならず、3〜20nmであるのが好ましい。このように、上記ナノ粒子の平均径を、上記絶縁性部材の微粒子径よりも小さく、好ましくは3〜20nmとすることにより、電子加速層内で、ナノ粒子による導電パスが形成されず、電子加速層内での絶縁破壊が起こり難くなる。また原理的には不明確な点が多いが、粒子径が上記範囲内のナノ粒子を用いることで、電子が効率よく生成される。   In the electron-emitting device of the present invention, in addition to the above configuration, the average diameter of the nanoparticles must be smaller than the size of the insulating member because it is necessary to control conductivity, and is 3 to 20 nm. preferable. Thus, by setting the average diameter of the nanoparticles to be smaller than the particle diameter of the insulating member, preferably 3 to 20 nm, a conductive path by the nanoparticles is not formed in the electron acceleration layer, and the electrons Dielectric breakdown is less likely to occur in the acceleration layer. Although there are many unclear points in principle, electrons are efficiently generated by using nanoparticles having a particle diameter in the above range.

本発明の電子放出素子では、上記構成に加え、上記絶縁性部材は、SiO、Al、及びTiOの少なくとも1つを含んでいてもよい。または有機ポリマーを含んでいてもよい。上記絶縁性部材が、SiO、Al、及びTiOの少なくとも1つを含んでいる、あるいは、有機ポリマーを含んでいると、これら物質の絶縁性が高いことにより、上記電子加速層の抵抗値を任意の範囲に調整することが可能となる。特に、絶縁性部材として酸化物(SiO、Al、及びTiO)を用い、ナノ粒子として抗酸化力が高い導電体を用いる場合には、大気中の酸素による酸化に伴う素子劣化をより一層発生し難くなるため、大気圧中でも安定して動作させる効果をより顕著に発現させることができる。 In the electron-emitting device of the present invention, in addition to the above configuration, the insulating member may include at least one of SiO 2 , Al 2 O 3 , and TiO 2 . Or it may contain an organic polymer. When the insulating member contains at least one of SiO 2 , Al 2 O 3 , and TiO 2 , or contains an organic polymer, the insulating property of these substances is high, and thus the electron acceleration layer It is possible to adjust the resistance value to an arbitrary range. In particular, when an oxide (SiO 2 , Al 2 O 3 , and TiO 2 ) is used as an insulating member, and a conductor having high anti-oxidation power is used as a nanoparticle, device deterioration due to oxidation by oxygen in the atmosphere Therefore, the effect of stably operating even at atmospheric pressure can be more remarkably exhibited.

ここで、上記絶縁性部材は微粒子であってもよく、その平均径が10〜1000nmであるのが好ましく、12〜110nmであるのがより好ましい。この場合、粒子径の分散状態は平均粒径に対してブロードであっても良く、例えば平均粒径50nmの微粒子は、20〜100nmの領域にその粒子径分布を有していても問題ない。上記微粒子である絶縁性部材の平均径を好ましくは10〜1000nm、より好ましくは12〜110nmとすることにより、上記絶縁性部材の大きさよりも小さい上記ナノ粒子の内部から外部へと効率よく熱伝導させて、素子内を電流が流れる際に発生するジュール熱を効率よく逃がすことができ、電子放出素子が熱で破壊されることを防ぐことができる。さらに、上記電子加速層における抵抗値の調整を行いやすくすることができる。   Here, the insulating member may be fine particles, and the average diameter is preferably 10 to 1000 nm, and more preferably 12 to 110 nm. In this case, the dispersion state of the particle diameter may be broad with respect to the average particle diameter. For example, fine particles having an average particle diameter of 50 nm may have a particle diameter distribution in the region of 20 to 100 nm. By making the average diameter of the insulating member, which is the fine particle, preferably 10 to 1000 nm, more preferably 12 to 110 nm, heat conduction can be efficiently conducted from the inside of the nanoparticles smaller than the size of the insulating member to the outside. Thus, Joule heat generated when current flows in the device can be efficiently released, and the electron-emitting device can be prevented from being destroyed by heat. Furthermore, the resistance value in the electron acceleration layer can be easily adjusted.

本発明の電子放出素子では、上記構成に加え、上記電子加速層における上記絶縁性部材と絶縁皮膜金属微粒子の割合が、重量比で4:1〜19:1であるのが好ましい。上記重量比率の範囲内であると、上記電子加速層内の抵抗値を適度に上げることができ、大量の電子が一度に流れることで電子放出素子が破壊されるのを防ぐことができる。   In the electron-emitting device of the present invention, in addition to the above configuration, the ratio of the insulating member to the insulating coating metal fine particles in the electron acceleration layer is preferably 4: 1 to 19: 1 by weight. When the weight ratio is within the range, the resistance value in the electron acceleration layer can be appropriately increased, and the electron-emitting device can be prevented from being destroyed by a large amount of electrons flowing at a time.

本発明の電子放出素子では、上記構成に加え、上記電子加速層の層厚は、12〜6000nmであるのが好ましく、300〜6000nmであるのがより好ましい。上記電子加速層の層厚を、好ましくは12〜6000nm、より好ましくは300〜6000nmとすることにより、電子加速層の層厚を均一化すること、また層厚方向における電子加速層の抵抗調整が可能となる。この結果、電子放出素子表面の全面から一様に電子を放出させることが可能となり、かつ素子外へ効率よく電子を放出させることができる。   In the electron-emitting device of the present invention, in addition to the above configuration, the thickness of the electron acceleration layer is preferably 12 to 6000 nm, and more preferably 300 to 6000 nm. By making the layer thickness of the electron acceleration layer preferably 12 to 6000 nm, more preferably 300 to 6000 nm, the electron acceleration layer can be made uniform, and the resistance of the electron acceleration layer can be adjusted in the layer thickness direction. It becomes possible. As a result, electrons can be uniformly emitted from the entire surface of the electron-emitting device, and electrons can be efficiently emitted outside the device.

本発明の電子放出素子では、上記構成に加え、上記薄膜電極は、金、銀、炭素、タングステン、チタン、アルミ、及びパラジウムの少なくとも1つを含んでいてもよい。上記薄膜電極に、金、銀、炭素、タングステン、チタン、アルミ、及びパラジウムの少なくとも1つが含まれることによって、これら物質の仕事関数の低さから、電子加速層で発生させた電子を効率よくトンネルさせ、電子放出素子外に高エネルギーの電子をより多く放出させることができる。   In the electron-emitting device of the present invention, in addition to the above configuration, the thin film electrode may include at least one of gold, silver, carbon, tungsten, titanium, aluminum, and palladium. By containing at least one of gold, silver, carbon, tungsten, titanium, aluminum, and palladium in the thin film electrode, electrons generated in the electron acceleration layer are efficiently tunneled due to the low work function of these materials. Thus, more high-energy electrons can be emitted outside the electron-emitting device.

本発明の電子放出素子の絶縁皮膜ナノ粒子の絶縁被膜は、上記構成に加え、電子をトンネルさせることが可能な厚みであることを特徴としている。電子がトンネル可能な厚みでなければ、電子を導体から外部に放出させることはできず、電子放出素子としての基本的機能が実現できないためである。   In addition to the above structure, the insulating film of the insulating film nanoparticles of the electron-emitting device of the present invention is characterized in that it has a thickness capable of tunneling electrons. This is because electrons cannot be emitted from the conductor to the outside unless the thickness allows electrons to tunnel, and the basic function as an electron-emitting device cannot be realized.

本発明の電子放出素子では、上記構成に加え、絶縁皮膜ナノ粒子の絶縁被膜は、アルカン、アルコール、脂肪酸、アルカンチオール、炭化水素系シラン化合物、有機系界面活性剤の少なくとも1つを含んでいてもよい。このような有機材料で、絶縁皮膜されていることで、素子作成時のナノ粒子の分散液中での分散性向上に貢献するため、ナノ粒子の凝集体が元と成る電流の異常パス形成を生じ難くする他、絶縁性部材の周囲に存在するナノ粒子自身の酸化に伴う粒子の組成変化を生じないため、電子放出特性に影響を与えることがない。よって、電子放出素子の長寿命化をより効果的に図ることができる。   In the electron-emitting device of the present invention, in addition to the above configuration, the insulating coating of the insulating coating nanoparticles includes at least one of alkane, alcohol, fatty acid, alkanethiol, hydrocarbon-based silane compound, and organic surfactant. Also good. An insulating film made of such an organic material contributes to improving the dispersibility of the nanoparticles in the dispersion during device creation. Therefore, abnormal path formation of current based on the aggregates of nanoparticles is formed. In addition to making it difficult to occur, the composition of the particles due to oxidation of the nanoparticles present around the insulating member itself does not change, so that the electron emission characteristics are not affected. Therefore, the lifetime of the electron-emitting device can be extended more effectively.

本発明の電子放出素子の製造方法によれば、第一の導電性部材上に絶縁体部材と絶縁皮膜ナノ粒子を形成する工程と、第一の導電性部材に絶縁体と絶縁皮膜金属微粒子を形成する工程と、一部の絶縁皮膜金属微粒子を凝集させる工程を有することを特徴としている。このような製造方法にすることにより、自己組織的に絶縁性部材上に形成することができ、高温の焼成工程を経ることなく、最小の使用エネルギーで効率よく電子放出素子を作成できる。   According to the method for manufacturing an electron-emitting device of the present invention, the step of forming an insulator member and insulating coating nanoparticles on the first conductive member, and the insulator and insulating coating metal fine particles on the first conductive member. It is characterized by having a step of forming and a step of agglomerating some of the insulating coating metal fine particles. By using such a manufacturing method, it can be formed on an insulating member in a self-organizing manner, and an electron-emitting device can be efficiently produced with a minimum use energy without going through a high-temperature firing step.

また、第一の導電性部材に絶縁体と絶縁皮膜金属微粒子を形成する工程と、一部の絶縁皮膜金属微粒子を凝集させる工程は自己組織的作用による工程である。絶縁体部材と絶縁皮膜ナノ粒子を溶媒中で混合して溶液とし、前記分散溶液中の粒子を分散させる工程を含み、室温で放置するあるいは溶媒の沸点以下の温度で加熱後に放置することで、自己組織化を有効に発現させることができる。   In addition, the step of forming the insulator and the insulating coating metal fine particles on the first conductive member and the step of aggregating some of the insulating coating metal fine particles are steps by a self-organizing action. Insulator member and insulating film nanoparticles are mixed in a solvent to form a solution, and the step of dispersing the particles in the dispersion solution is allowed to stand at room temperature or after heating at a temperature below the boiling point of the solvent, Self-organization can be effectively expressed.

以上説明したように、本発明の電子放出素子によれば、電極間に電子加速層を塗布・常温で乾燥させるだけで簡単に電子放出素子が作成でき、また電子放出効率も格段に高く、大面積化の容易なデバイスを提供できる。   As described above, according to the electron-emitting device of the present invention, an electron-emitting device can be easily prepared by simply applying an electron acceleration layer between electrodes and drying at room temperature, and the electron-emitting efficiency is remarkably high. It is possible to provide a device with an easy area.

本発明の電子放出素子は、上記のように、第一の導電性部材と第二の導電性部材との間には、導電性部材間に絶縁皮膜された金属微粒子の凝集体を複数形成した構成となっている。この絶縁皮膜ナノ粒子は、自己組織化作用により絶縁性部材上に凝集されて形成されている。したがって、第一の導電性部材と第二の導電性部材との間の3次元空間にほぼ均一に形成されている構成になっている。これは薄膜の層であり、この電子加速層に電圧を印加すると、電子加速層内に電流が流れ、その一部は印加電圧の形成する強電界により電子がナノ金属粒子内から放出され、絶縁皮膜されたナノ粒子が凝集していることから、絶縁皮膜を電子がトンネルし繰り返され、弾道電子となって放出される。このように構成された電子放出素子は、投入電力に対する電子放出量の効率がよく、ディスプレイや光源に用いた場合に、低電力化が図れる。また、金属微粒子として抗酸化力が高い導電体を用いることから、大気中の酸素による酸化に伴う素子劣化を発生し難いため、大気圧中でも安定して動作させることができる。   In the electron-emitting device of the present invention, as described above, a plurality of agglomerates of metal fine particles having an insulating film between the conductive members are formed between the first conductive member and the second conductive member. It has a configuration. The insulating coating nanoparticles are aggregated and formed on the insulating member by a self-organizing action. Accordingly, the three-dimensional space between the first conductive member and the second conductive member is substantially uniformly formed. This is a thin film layer. When a voltage is applied to the electron acceleration layer, a current flows in the electron acceleration layer, and a part of the electron is emitted from the nano metal particles by the strong electric field formed by the applied voltage, and is insulated. Since the coated nanoparticles are agglomerated, electrons tunnel through the insulating film and are repeated to be emitted as ballistic electrons. The electron-emitting device configured as described above is efficient in the amount of electron emission with respect to the input power, and can be reduced in power when used for a display or a light source. In addition, since a conductor having high anti-oxidation power is used as the metal fine particles, it is difficult to cause element degradation due to oxidation by oxygen in the atmosphere, and therefore it can be stably operated even under atmospheric pressure.

また、上記絶縁性部材および絶縁皮膜ナノ微粒子は、電子加速層における抵抗値および電子の生成量を調整することができるため、電子加速層を流れる電流値と電子放出量の制御を可能とする。さらに、上記絶縁性部材は、電子加速層を流れる電流により生じるジュール熱を効率良く逃がす役割も有することができるため、電子放出素子が熱で破壊されるのを防ぐことができる。   In addition, since the insulating member and the insulating coating nanoparticle can adjust the resistance value and the amount of electrons generated in the electron acceleration layer, it is possible to control the value of the current flowing through the electron acceleration layer and the amount of electron emission. Furthermore, since the insulating member can also have a role of efficiently releasing Joule heat generated by the current flowing through the electron acceleration layer, the electron-emitting device can be prevented from being destroyed by heat.

本発明の電子放出素子は、上記構成を有するため、真空中だけでなく大気圧中で動作させても放電を伴わないためオゾンやNOx等の有害物質をほぼ生成せず、電子放出素子が酸化劣化しない。そのため、本発明の電子放出素子は、寿命が長く大気中でも長時間連続動作をさせることができる。よって、本発明により、真空中だけでなく大気圧中でも安定して電子を放出でき、オゾンやNOx等の有害物質の発生を抑制した電子放出素子を提供することができる。   Since the electron-emitting device of the present invention has the above-described configuration, it does not generate a discharge even when operated not only in a vacuum but also in an atmospheric pressure, and therefore hardly generates harmful substances such as ozone and NOx, and the electron-emitting device is oxidized. Does not deteriorate. Therefore, the electron-emitting device of the present invention has a long life and can be operated continuously for a long time even in the atmosphere. Therefore, according to the present invention, it is possible to provide an electron-emitting device that can stably emit electrons not only in a vacuum but also in an atmospheric pressure and suppress generation of harmful substances such as ozone and NOx.

本発明の一実施形態の電子放出素子の構成を示す模式図である。It is a schematic diagram which shows the structure of the electron-emitting element of one Embodiment of this invention. 図1の電子放出素子における微粒子層付近の断面の拡大図である。FIG. 2 is an enlarged view of a cross section in the vicinity of a fine particle layer in the electron-emitting device of FIG. 1. 絶縁性部材に絶縁皮膜ナノ粒子を形成させる工程を説明した説明図である。It is explanatory drawing explaining the process of forming an insulating film nanoparticle in an insulating member. 電子放出実験の測定系を示す図である。It is a figure which shows the measurement system of an electron emission experiment. 真空中における電子放出電流を示すグラフを表す図である。It is a figure showing the graph which shows the electron emission current in a vacuum. 真空中における電子放出時の素子内電流を示すグラフを表す図である。It is a figure showing the graph which shows the electric current in an element at the time of the electron emission in a vacuum. 大気中における電子放出電流及び素子内電流を示すグラフを表す図である。It is a figure showing the graph which shows the electron emission current and the element internal current in air | atmosphere. 大気中における電子放出電流及び素子内電流の経時変化を示す図である。It is a figure which shows the time-dependent change of the electron emission current in air | atmosphere, and the element internal current. 電子放出性能が最も良好であった電子加速層の断面TEM写真である。It is a cross-sectional TEM photograph of the electron acceleration layer with the best electron emission performance. 従来技術を示す説明図である。It is explanatory drawing which shows a prior art. 従来技術を示す説明図である。It is explanatory drawing which shows a prior art.

以下、本発明の電子放出素子の実施形態について、図1〜9を参照しながら具体的に説明する。なお、以下に記述する実施の形態および実施例は本発明の具体的な一例に過ぎず、本発明はこれらよって限定されるものではない。
(電子放出素子の構成)
本発明の電子放出素子の構成について説明する。
Hereinafter, embodiments of the electron-emitting device of the present invention will be specifically described with reference to FIGS. Note that the embodiments and examples described below are merely specific examples of the present invention, and the present invention is not limited thereto.
(Configuration of electron-emitting device)
The configuration of the electron-emitting device of the present invention will be described.

図1に示すように、電子放出素子1は、第一の導電性部材2上に絶縁体とコロイド結晶化した絶縁皮膜金属微粒子群(以下電子加速層4という)と、第一の導電性部材2に対向するように第二の導電性部材3を備えるとともに、電源7と、対向電極3とが配置されている。   As shown in FIG. 1, an electron-emitting device 1 includes an insulating film metal fine particle group (hereinafter referred to as an electron acceleration layer 4) that is colloidally crystallized with an insulator on a first conductive member 2, and a first conductive member. A second conductive member 3 is provided so as to face 2, and a power source 7 and a counter electrode 3 are arranged.

電子加速層4は、第一の導電性部材2と第二の導電性部材3とにより挟持されている。また、電源7は、第一の導電性部材2と第二の導電性部材3との間に電圧を印加する。電子加速層4は、後述するように少なくとも絶縁皮膜された金属微粒子の凝集体が複数個所に形成されている。電子放出素子4は、第一の導電性部材2と第二の導電性部材3との間に電圧が印加されることで、第一の導電性部材2と第二の導電性部材3との間(すなわち、電子加速層4)で電子を加速し、対向電極3に向かって第二の導電性部材3から電子を放出させる。   The electron acceleration layer 4 is sandwiched between the first conductive member 2 and the second conductive member 3. The power source 7 applies a voltage between the first conductive member 2 and the second conductive member 3. As will be described later, the electron acceleration layer 4 has at least a plurality of aggregates of fine metal particles coated with an insulating film. The electron-emitting device 4 has a voltage applied between the first conductive member 2 and the second conductive member 3 so that the first conductive member 2 and the second conductive member 3 The electrons are accelerated in the interval (that is, the electron acceleration layer 4), and the electrons are emitted from the second conductive member 3 toward the counter electrode 3.

以上のような基本構成を基に、それぞれの部材および電子放出原理について、図1の電子加速層4の内部をモデル化した状態を図2に示して詳細に説明を行なう。
(第一の導電性部材)
第一の導電性部材となる基板2は、電子放出素子の支持体の役割を担う。そのため、ある程度の強度を有し、直に接する物質との接着性が良好で、適度な導電性を有するものであれば、特に制限なく用いることができる。例えばSUSやTi、Cu等の金属基板、SiやGe、GaAs等の半導体基板、ガラス基板のような絶縁体基板、プラスティック基板等が挙げられる。例えばガラス基板のような絶縁体基板を用いるのであれば、その電子加速層4との界面に金属などの導電性物質を電極として付着させることによって、第一の導電性部材となる基板2として用いることができる。上記導電性物質としては、導電性に優れた貴金属系材料を、マグネトロンスパッタ等を用いて薄膜形成できれば、その構成材料は特に問わない。また、酸化物導電材料として、透明電極に広く利用されているITO薄膜も有用である。また、強靭な薄膜を形成できるという点で、例えば、ガラス基板表面にTiを200nm成膜し、さらに重ねてCuを1000nm成膜した金属薄膜を用いてもよいが、これら材料および数値に限定されることはない。
(第二の導電性部材)
第二の導電性部材3は、電子加速層4内に電圧を印加させるものである。そのため、電圧の印加が可能となるような材料であれば特に制限なく用いることができる。ただし、電子加速層4内で加速され高エネルギーとなった電子をなるべくエネルギーロス無く透過させて放出させるという観点から、仕事関数が低くかつ薄膜を形成することが可能な材料であれば、より高い効果が期待できる。このような材料として、例えば、仕事関数が4〜5eVに該当する金、銀、炭素、タングステン、チタン、アルミ、パラジウムなどが挙げられる。中でも大気圧中での動作を想定した場合、酸化物および硫化物形成反応のない金が、最良な材料となる。また、酸化物形成反応の比較的小さい銀、パラジウム、タングステンなども問題なく実使用に耐える材料である。また第二の導電性部材3の膜厚は、電子放出素子1から外部へ電子を効率良く放出させる条件として重要であり、10〜55nmの範囲とすることが好ましい。第二の導電性部材3を平面電極として機能させるための最低膜厚は10nmであり、これ未満の膜厚では、電気的導通を確保できない。一方、電子放出素子1から外部へ電子を放出させるための最大膜厚は100nm程度であり、これを超える膜厚では第二の導電性部材3で電子の吸収あるいは反射による電子加速層4への再捕獲が多く発生することになり、低消費電力で素子駆動ができなくなる。
(金属微粒子)
金属微粒子6の金属種としては、電子を生成するという動作原理の上ではどのような金属種でも用いることができる。ただし、大気圧動作させた時の酸化劣化を避ける目的から、抗酸化力が高い金属である必要があり、貴金属が好ましく、例えば、金、銀、白金、パラジウム、ニッケルといった材料が挙げられる。このような金属微粒子6は、公知の微粒子製造技術であるスパッタ法や噴霧加熱法を用いて作成可能であり、応用ナノ研究所が製造販売する銀金属微粒子等の市販の金属微粒子粉体も利用可能である。
Based on the basic configuration as described above, each member and the principle of electron emission will be described in detail with reference to FIG. 2 showing a state where the inside of the electron acceleration layer 4 in FIG. 1 is modeled.
(First conductive member)
The board | substrate 2 used as a 1st electroconductive member plays the role of the support body of an electron emission element. Therefore, any material can be used without particular limitation as long as it has a certain degree of strength, has good adhesion to a directly contacting substance, and has appropriate conductivity. Examples thereof include metal substrates such as SUS, Ti, and Cu, semiconductor substrates such as Si, Ge, and GaAs, insulator substrates such as glass substrates, and plastic substrates. For example, if an insulating substrate such as a glass substrate is used, a conductive material such as a metal is attached to the interface with the electron acceleration layer 4 as an electrode, and used as the substrate 2 that becomes the first conductive member. be able to. The conductive material is not particularly limited as long as a noble metal material excellent in conductivity can be formed into a thin film using magnetron sputtering or the like. An ITO thin film widely used for transparent electrodes is also useful as an oxide conductive material. In addition, for example, a metal thin film in which a Ti film is formed to 200 nm on a glass substrate surface and a Cu film is further formed to a 1000 nm thickness may be used in that a tough thin film can be formed. Never happen.
(Second conductive member)
The second conductive member 3 applies a voltage in the electron acceleration layer 4. Therefore, any material that can be applied with voltage can be used without particular limitation. However, from the viewpoint of transmitting electrons that have been accelerated and become high energy in the electron acceleration layer 4 and transmit them with as little energy loss as possible, a material having a low work function and capable of forming a thin film is higher. The effect can be expected. Examples of such a material include gold, silver, carbon, tungsten, titanium, aluminum, palladium, and the like whose work function corresponds to 4 to 5 eV. In particular, assuming operation at atmospheric pressure, gold without oxide and sulfide formation reaction is the best material. In addition, silver, palladium, tungsten, and the like, which have a relatively small oxide formation reaction, are materials that can withstand actual use without problems. The film thickness of the second conductive member 3 is important as a condition for efficiently emitting electrons from the electron-emitting device 1 to the outside, and is preferably in the range of 10 to 55 nm. The minimum film thickness for causing the second conductive member 3 to function as a planar electrode is 10 nm. If the film thickness is less than this, electrical conduction cannot be ensured. On the other hand, the maximum film thickness for emitting electrons from the electron-emitting device 1 to the outside is about 100 nm. If the film thickness exceeds this value, the second conductive member 3 can absorb or reflect electrons to the electron acceleration layer 4. Many recaptures occur, and the device cannot be driven with low power consumption.
(Metal fine particles)
Any metal species can be used as the metal species of the metal fine particles 6 on the principle of operation of generating electrons. However, for the purpose of avoiding oxidative degradation when operated at atmospheric pressure, it is necessary to be a metal with high antioxidation power, and a noble metal is preferable, and examples thereof include materials such as gold, silver, platinum, palladium, and nickel. Such metal fine particles 6 can be prepared by using a known fine particle production technique such as sputtering or spray heating, and commercially available metal fine particle powders such as silver metal fine particles manufactured and sold by Applied Nano Laboratory are also used. Is possible.

また、金属微粒子6の平均径は、導電性を制御する必要から、以下で説明する絶縁体の微粒子5の大きさよりも小さくなければならず、3〜10nmであるのがより好ましい。このように、金属微粒子6の平均径を、絶縁体の微粒子5の粒子径よりも小さく、好ましくは3〜20nmとすることにより、微粒子層4内で、金属微粒子6による導電パスが形成されず、微粒子層4内での絶縁破壊が起こり難く、電子が効率よく生成される。
(絶縁体)
絶縁体の微粒子5に関しては、その材料は絶縁性を持つものであれば特に制限なく用いることができる。ただし、後述の実験結果の通り微粒子層4を構成する微粒子全体における絶縁体の微粒子5の重量割合は80〜95%、すなわち金属微粒子との割合は4:1〜19:1が好ましい。またその大きさは、金属微粒子6に対して優位な放熱効果を得るため、金属微粒子6の直径よりも大きいことが好ましく、絶縁体の微粒子5の直径(平均径)は10〜1000nmであることが好ましく、12〜110nmがより好ましい。従って、絶縁体の微粒子5の材料はSiO、Al、TiOといったものが実用的となる。ただし、表面処理が施された小粒径シリカ粒子を用いると、それよりも粒子径の大きな球状シリカ粒子を用いるときと比べて、溶媒中に占めるシリカ粒子の表面積が増加し、溶液粘度が上昇するため、微粒子層4の膜厚が若干増加する傾向にある。また、絶縁体の微粒子5の材料には、有機ポリマーから成る微粒子を用いてもよく、例えば、JSR株式会社の製造販売するスチレン/ジビニルベンゼンから成る高架橋微粒子(SX8743)、または日本ペイント株式会社の製造販売するスチレン・アクリル微粒子のファインスフェアシリーズが利用可能である。ここで、絶縁体の微粒子5は、2種類以上の異なる粒子を用いてもよく、また、粒径のピークが異なる粒子を用いてもよく、あるいは、単一粒子で粒径がブロードな分布のものを用いてもよい。
The average diameter of the metal fine particles 6 must be smaller than the size of the insulating fine particles 5 described below, and more preferably 3 to 10 nm. Thus, by setting the average diameter of the metal fine particles 6 to be smaller than the particle diameter of the insulating fine particles 5, preferably 3 to 20 nm, no conductive path is formed by the metal fine particles 6 in the fine particle layer 4. Insulation breakdown in the fine particle layer 4 hardly occurs and electrons are generated efficiently.
(Insulator)
The insulating fine particles 5 can be used without particular limitation as long as the material has insulating properties. However, the weight ratio of the insulating fine particles 5 to the whole fine particles constituting the fine particle layer 4 is preferably 80 to 95%, that is, the ratio to the metal fine particles is preferably 4: 1 to 19: 1 as will be described later in the experimental results. The size is preferably larger than the diameter of the metal fine particle 6 in order to obtain a heat dissipation effect superior to that of the metal fine particle 6, and the diameter (average diameter) of the fine particle 5 of the insulator is 10 to 1000 nm. Is preferable, and 12 to 110 nm is more preferable. Therefore, the material of the insulating fine particles 5 is practically SiO 2 , Al 2 O 3 , or TiO 2 . However, using small-sized silica particles with surface treatment increases the surface area of the silica particles in the solvent and increases the solution viscosity compared to using spherical silica particles with a larger particle diameter. Therefore, the film thickness of the fine particle layer 4 tends to increase slightly. The material of the insulating fine particles 5 may be fine particles made of an organic polymer. For example, highly crosslinked fine particles (SX8743) made of styrene / divinylbenzene manufactured and sold by JSR Corporation, or made by Nippon Paint Co., Ltd. The fine sphere series of styrene / acrylic fine particles manufactured and sold can be used. Here, two or more different types of particles may be used as the insulating fine particles 5, particles having different particle size peaks may be used, or a single particle having a broad particle size distribution. A thing may be used.

また絶縁体の成す役割は微粒子形状に依存しないため、上記絶縁性部材に有機ポリマーから成るシート基板や、何らかの方法で絶縁性部材を塗布して形成した絶縁体層を用いてもよい。但しこのシート状基板や絶縁体層には厚さ方向を貫通する複数の微細孔を有する必要がある。このような用件を満たすシート状基板材料として、例えば、ワットマンジャパン株式会社の製造販売するメンブレンフィルターニュークリポア(ポリカーボネート製)が有用である。
(電子加速層)
電子加速層4は、上記絶縁体5および金属微粒子6を含んでいる。薄いほど強電界がかかるため低電圧印加で電子を加速させることができるが、電子加速層の層厚を均一化できること、また層厚方向における電子加速層の抵抗調整が可能となることなどから、微粒子層4の層厚は、100〜1000nm、より好ましくは300〜6000nmであるとよい。100nm未満では、電極間の接触あるいは高電圧印加による絶縁破壊が生じることがあり、6000nm以上では、電子放出に必要な高電界を印加することができなくなり、高電界を印加すれば消費電力が高くなる。
(電子放出原理)
電子放出の原理について、電子加速層4をモデル化した状態の図2により説明する。コロイド結晶化した絶縁皮膜された金属微粒子群6は自己組織化によって形成される。その原理を以下に示す。
Further, since the role of the insulator does not depend on the shape of the fine particles, a sheet substrate made of an organic polymer may be used for the insulating member, or an insulating layer formed by applying an insulating member by any method. However, the sheet-like substrate or the insulator layer needs to have a plurality of fine holes penetrating in the thickness direction. As a sheet-like substrate material satisfying such requirements, for example, a membrane filter new clipper (made of polycarbonate) manufactured and sold by Whatman Japan Co., Ltd. is useful.
(Electron acceleration layer)
The electron acceleration layer 4 includes the insulator 5 and the metal fine particles 6. Electrons can be accelerated by applying a low voltage as a thinner electric field is applied, but the thickness of the electron acceleration layer can be made uniform and the resistance of the electron acceleration layer in the layer thickness direction can be adjusted. The layer thickness of the fine particle layer 4 is 100 to 1000 nm, more preferably 300 to 6000 nm. If the thickness is less than 100 nm, contact between the electrodes or dielectric breakdown due to application of a high voltage may occur. If the thickness is 6000 nm or more, a high electric field necessary for electron emission cannot be applied. Become.
(Electron emission principle)
The principle of electron emission will be described with reference to FIG. 2 in which the electron acceleration layer 4 is modeled. The colloidally crystallized metal fine particle group 6 having an insulating film is formed by self-organization. The principle is shown below.

図3に電子加速層の作成プロセスを示す。絶縁体及び絶縁皮膜金属微粒子を溶媒に溶かし、超音波洗浄器により金属微粒子を分散させ、第一の導電性部材上に塗布を行なう。その後、室温で放置し、ゆっくりと溶媒を蒸発させると、溶媒の蒸発時に自己組織化作用により、絶縁皮膜された金属微粒子が絶縁体上にコロイド状に形成される。以上のような簡単なプロセスで、高温処理が必要なく電子加速層が形成できる。   FIG. 3 shows a process for creating the electron acceleration layer. Insulator and insulating coating metal fine particles are dissolved in a solvent, and the metal fine particles are dispersed by an ultrasonic cleaner, and coating is performed on the first conductive member. Thereafter, when left at room temperature and slowly evaporating the solvent, metal fine particles coated with an insulating film are formed in a colloidal form on the insulator by a self-organizing action when the solvent evaporates. With the simple process as described above, an electron acceleration layer can be formed without the need for high-temperature treatment.

絶縁皮膜金属微粒子を溶媒に溶かした直後は、絶縁皮膜された金属微粒子同士が間隔を保って雑然と配置したアモルファス状態となっており、粒子間の静電斥力によって粒子同士が反発し、互いに距離を置くよう分布している。   Immediately after the insulating coated metal fine particles are dissolved in the solvent, the insulating coated metal fine particles are in an amorphous state in which the finely spaced metal particles are spaced apart from each other. Is distributed to put.

そして、ブラウン揺動力と静電斥力によって粒子の再配置がおこなわれ、系の内部エネルギーを最小化するようコロイド結晶化が進行し、一群の絶縁皮膜された金属微粒子が形成される。このような順序で自己組織化による絶縁皮膜金属微粒子のコロイド結晶ができる。このようなプロセスを経て、第一の導電性部材と第二の導電性部材の間に、複数のコロイド結晶化した絶縁皮膜された金属微粒子群が形成される。   Then, the particles are rearranged by Brownian rocking force and electrostatic repulsive force, colloidal crystallization proceeds to minimize the internal energy of the system, and a group of metal particles with an insulating film is formed. In this order, a colloidal crystal of insulating coating metal fine particles is formed by self-organization. Through such a process, a plurality of colloidally crystallized metal particles having an insulating film formed between the first conductive member and the second conductive member are formed.

具体的には、まず、基板2上に、絶縁体の微粒子5と、金属微粒子6とを分散させた分散溶液をスピンコート法を用いて塗布することで、微粒子層4を形成する。ここで、分散溶液に用いる溶媒としては、絶縁体の微粒子5と、金属微粒子6とを分散でき、かつ塗布後に乾燥できれば、特に制限なく用いることができ、例えば、トルエン、ベンゼン、キシレン、ヘキサン、テトラデカン等を用いることができる。   Specifically, first, the fine particle layer 4 is formed on the substrate 2 by applying a dispersion solution in which the insulating fine particles 5 and the metal fine particles 6 are dispersed using a spin coating method. Here, the solvent used in the dispersion solution can be used without particular limitation as long as the insulating fine particles 5 and the metal fine particles 6 can be dispersed and dried after coating. For example, toluene, benzene, xylene, hexane, Tetradecane or the like can be used.

特に、絶縁皮膜金属微粒子を分散するためには、無極性溶媒(比誘電率の小さな溶媒。ヘキサンなど)の方が好ましい。ただし、水などは極性溶媒の代表格であるが、コストメリットがあるので、使用することができる。無極性溶媒を使用する理由としては、溶媒中で、金属微粒子がもつ電荷等で引き合わないようにするためには、金属微粒子がもつ電荷を遮蔽するような状態の方がよいからである。また、溶媒の粘度も金属微粒子の動きやすさに影響してくるので、分散性に影響する。特に、比誘電率が5以下の溶媒(ヘキサン 1.9、トルエン 2.3、キシレン 2.3)が好ましい。   In particular, in order to disperse the insulating coating metal fine particles, a nonpolar solvent (a solvent having a small relative dielectric constant, such as hexane) is preferred. However, water and the like are typical polar solvents, but can be used because they have cost merit. The reason for using the nonpolar solvent is that it is better to shield the charge of the metal fine particles in order to avoid attracting the charge of the metal fine particles in the solvent. Also, the viscosity of the solvent affects the ease of movement of the metal fine particles, and therefore affects the dispersibility. In particular, a solvent having a relative dielectric constant of 5 or less (hexane 1.9, toluene 2.3, xylene 2.3) is preferable.

また、金属微粒子6の分散性を向上させる目的で、事前処理としてアルコラート処理を施すとよい。スピンコート法による成膜、乾燥、を複数回繰り返すことで所定の膜厚にすることができる。微粒子層4は、スピンコート法以外に、例えば、滴下法、スプレーコート法等の方法でも成膜することができる。そして、電子加速層4上に薄膜電極3を成膜する。薄膜電極3の成膜には、例えば、マグネトロンスパッタ法を用いればよい。   In addition, for the purpose of improving the dispersibility of the metal fine particles 6, an alcoholate treatment may be performed as a pretreatment. A predetermined film thickness can be obtained by repeating film formation and drying by a spin coating method a plurality of times. The fine particle layer 4 can be formed by a method such as a dropping method or a spray coating method in addition to the spin coating method. Then, the thin film electrode 3 is formed on the electron acceleration layer 4. For forming the thin film electrode 3, for example, a magnetron sputtering method may be used.

すなわち、絶縁体及び絶縁皮膜金属微粒子を溶媒に溶かし、超音波洗浄器により金属微粒子を分散させ、第一の導電性部材上に塗布を行なう。その後、室温で放置し、ゆっくりと溶媒の除去を行なう。以上のような簡単なプロセスで、高温処理が必要なく電子加速層が形成できる。   That is, the insulator and the insulating coating metal fine particles are dissolved in a solvent, the metal fine particles are dispersed by an ultrasonic cleaner, and coating is performed on the first conductive member. Then, it is left at room temperature and the solvent is slowly removed. With the simple process as described above, an electron acceleration layer can be formed without the need for high-temperature treatment.

また、第一の導電性部材付近では電界集中を起こりやすくするため、基板を適度に荒らすほうが良い。電界集中が起こるため、低電圧の素子の作成が可能となるからである。   Further, in order to easily cause electric field concentration in the vicinity of the first conductive member, it is better to moderately roughen the substrate. This is because electric field concentration occurs, so that a low-voltage element can be created.

第一の導電性部材付近で凝集した絶縁皮膜金属微粒子群は空間内でランダムに形成されているが、その絶縁皮膜金属微粒子が任意の直列に連なる1次元構造の集合体によって、絶縁皮膜された金属微粒子内の電子は閉じ込められ、ランダムな運動を禁止されるが、電圧が外部より印加されると絶縁皮膜金属微粒子どうしの接触部分に強電界が発生し、電子は高い確率で隣接する絶縁皮膜された金属微粒子にトンネルすることになる。トンネルは絶縁皮膜された金属微粒子が接する部分に限られるため、連続して層内を伝導できるのは、直進する高いエネルギーをもった電子だけになる。この高エネルギー電子が、外部に電子放出されることになる。   Insulating coating metal fine particles aggregated in the vicinity of the first conductive member are randomly formed in the space, but the insulating coating metal fine particles were insulated by an aggregate of a one-dimensional structure that is connected in series. Electrons in the metal fine particles are confined and random movement is prohibited, but when a voltage is applied from the outside, a strong electric field is generated at the contact part between the metal fine particles, and the electrons are adjacent to each other with a high probability. Tunnel to the fine metal particles. Since the tunnel is limited to the portion where the fine metal particles coated with the insulating film are in contact with each other, only electrons having high energy traveling straight through can continuously conduct in the layer. This high energy electron is emitted to the outside.

以上のように、模式的に図2に示すように基板付近の絶縁皮膜された金属微粒子凝集体(A凝集体)に高エネルギーを持った電子が蓄えられる。この高エネルギーを持った電子は、絶縁皮膜金属微粒子の先端部分から電子放出される。大気中の場合、電子の平均自由工程は68nmであるので、絶縁皮膜金属微粒子の凝集体の間隔(A凝集体とB凝集体の距離)は、68nmよりも小さく、さらにエネルギーを損失しないためにはより小さいほうが好ましい。しかしながら小さすぎると、高電界がかかるため、絶縁破壊が発生する場合があり、適度に高エネルギー状態に保持できる凝集体とするのが好ましい。ここでは、A凝集体で金属微粒子群のトンネルを繰り返して高エネルギー状態となった電子は、A凝集体の先端部分から空間に電子が放出される。その後、B凝集体の一部の絶縁皮膜金属微粒子に到達し、その金属微粒子群をトンネルし、さらに電界集中が起こっているB凝集体で高エネルギーを与えられ、B凝集体でもトンネル現象が発生すると考えられる。これらの動作をB凝集体からC凝集体・・・と繰り返すことにより、最終的に高エネルギーを持った電子が得られる。   As described above, as shown schematically in FIG. 2, electrons having high energy are stored in the metal fine particle aggregate (A aggregate) having an insulating film in the vicinity of the substrate. The electrons having high energy are emitted from the tip portion of the insulating coating metal fine particles. In the atmosphere, since the mean free path of electrons is 68 nm, the distance between the aggregates of the insulating coating metal fine particles (the distance between the A aggregate and the B aggregate) is smaller than 68 nm, and further energy is not lost. Is preferably smaller. However, if it is too small, a high electric field is applied, so that dielectric breakdown may occur, and it is preferable to form an aggregate that can be maintained in a moderately high energy state. Here, the electrons that have been in the high energy state by repeating the tunneling of the metal fine particle group in the A aggregate are emitted into the space from the tip of the A aggregate. After that, some of the fine particles of the insulating film of the B aggregate reach the insulating fine particles, tunnel through the group of fine metal particles, and are given high energy by the B aggregate in which electric field concentration occurs, and the tunnel phenomenon also occurs in the B aggregate. It is thought that. By repeating these operations from B aggregates to C aggregates, finally, electrons with high energy can be obtained.

ここで、A凝集体での電界強度はマクロ的には、E=V(印加電圧)/d(素子間距離)で与えられ、ミクロ的には電界集中が起こっているため、電界集中が起こっている部分では高電界状態となっている。またB凝集体が第一の導電性部材と第二の導電性部材の中央に位置していると仮定すると、B凝集体にかかっている電界強度は、A凝集体とB凝集体が同形状であれば、A凝集体の1/2となる。したがって、A凝集体からB凝集体へ突入する高エネルギーを持った電子は、B凝集体で、さらに前記電界集中によるエネルギーを得て、B凝集体を弾道電子としてB凝集体の各絶縁皮膜金属微粒子をトンネルしていくことになる。ここで低電圧の印加で高エネルギーの凝集体を形成するには、切り欠きや突起をもったいわゆる電界集中の発生する形状が好ましい。この電界集中を発生させる突起形状を絶縁皮膜された金属微粒子で形成することができるため、低電圧での電子放出が可能となっている。   Here, the electric field intensity in the A aggregate is given by E = V (applied voltage) / d (distance between elements) on a macro scale, and electric field concentration occurs on a micro scale. In the part where it is, it is in a high electric field state. Assuming that the B aggregate is located at the center of the first conductive member and the second conductive member, the electric field strength applied to the B aggregate is the same for the A aggregate and the B aggregate. Then, it becomes 1/2 of the A aggregate. Therefore, the electrons having high energy entering the B aggregate from the A aggregate are B aggregates, and further obtain energy by the electric field concentration, and each of the insulating coating metals of the B aggregate using the B aggregate as ballistic electrons. It will tunnel the fine particles. Here, in order to form a high-energy aggregate by applying a low voltage, a shape having a so-called electric field concentration having notches and protrusions is preferable. Since the shape of the protrusion that generates the electric field concentration can be formed of metal fine particles with an insulating film, it is possible to emit electrons at a low voltage.

以上の原理により、各々の凝集体で弾道電子が形成され、最終的にはこの第一及び第二の導電性部材間に形成される電子放出素子から電子が放出されることになる。   Based on the above principle, ballistic electrons are formed in each aggregate, and finally, electrons are emitted from the electron-emitting device formed between the first and second conductive members.

ここで、第一の導電性部材と、第二の導電性部材の間隔は絶縁破壊が起こらない程度に短いほうがより効率よく、電子放出が可能となるため好ましい。高電圧を印加でき、電界集中が発生しやすくなり、低消費電力の素子を作成できるからである。   Here, it is preferable that the distance between the first conductive member and the second conductive member be as short as possible without causing dielectric breakdown because electrons can be emitted more efficiently. This is because a high voltage can be applied, electric field concentration easily occurs, and an element with low power consumption can be created.

以下、上記に説明した電子放出の原理に基づいて、本発明の実施例について説明を行なっていく。   The embodiments of the present invention will be described below based on the principle of electron emission described above.

実施例として、本発明に係る電子放出素子を用いた電子放出実験について図4〜図9を用いて説明する。なお、この実験は実施の一例であって、本発明の内容を制限するものではない。   As an example, an electron emission experiment using the electron-emitting device according to the present invention will be described with reference to FIGS. In addition, this experiment is an example of implementation and does not limit the content of the present invention.

本実施例では、微粒子層4における絶縁体の微粒子5と絶縁性部材(付着物質)を表面に付着させた金属微粒子6との配合を変えた5種類の電子放出素子1を作製した。   In this example, five types of electron-emitting devices 1 were prepared by changing the composition of the insulating fine particles 5 in the fine particle layer 4 and the metal fine particles 6 having the insulating member (adhesive substance) attached to the surface.

基板2には30mm角のSUSの基板を使用し、この基板2上にスピンコート法を用いて微粒子層4を堆積させた。スピンコート法に用いた絶縁体の微粒子5及び絶縁性部材を表面に付着させた金属微粒子6を含んだ溶液は、トルエンを溶媒として各粒子を分散したものである。トルエン溶媒中に分散させた絶縁体の微粒子5と絶縁性部材を表面に付着させた金属微粒子6の配合割合は、絶縁体の微粒子5および金属微粒子6の投入総量に対する絶縁体の微粒子5の重量比率を70、80、90、95%と、それぞれ成るようにした。   A 30 mm square SUS substrate was used as the substrate 2, and the fine particle layer 4 was deposited on the substrate 2 using a spin coating method. The solution containing the fine particles 5 of the insulator used in the spin coating method and the fine metal particles 6 having an insulating member attached to the surface is obtained by dispersing each particle using toluene as a solvent. The mixing ratio of the insulating fine particles 5 dispersed in the toluene solvent and the metal fine particles 6 having the insulating member attached to the surface is the weight of the insulating fine particles 5 with respect to the total amount of the insulating fine particles 5 and the metal fine particles 6 charged. The ratio was set to 70, 80, 90, and 95%, respectively.

絶縁性部材を表面に付着させた金属微粒子6として、銀金属微粒子(平均径10nm、うち絶縁被膜アルコラート1nm厚)を用い、絶縁体の微粒子5として、球状シリカ粒子(平均径110nm)を用いた。   Silver metal fine particles (average diameter: 10 nm, of which an insulating coating alcoholate is 1 nm thick) were used as the metal fine particles 6 having an insulating member attached to the surface, and spherical silica particles (average diameter: 110 nm) were used as the insulating fine particles 5. .

各微粒子を分散させた溶液の作成方法を、図3を用いて説明する。10mLの試薬瓶にトルエン溶媒を3mL入れ、その中に0.5gのシリカ粒子を投入する。ここで試薬瓶を超音波分散器にかけ、シリカ粒子の分散を行う。この後0.055gの銀金属微粒子を追加投入し、同様に超音波分散処理を行う。こうして絶縁体の微粒子(シリカ粒子)の配合割合が90%となる分散溶液が得られる。   A method for preparing a solution in which each fine particle is dispersed will be described with reference to FIG. 3 mL of toluene solvent is put into a 10 mL reagent bottle, and 0.5 g of silica particles is put therein. Here, the reagent bottle is put on an ultrasonic disperser to disperse the silica particles. Thereafter, 0.055 g of silver metal fine particles are additionally charged, and ultrasonic dispersion treatment is similarly performed. In this way, a dispersion solution in which the blending ratio of the insulating fine particles (silica particles) is 90% is obtained.

スピンコート法による成膜条件は、分散溶液の基板への滴下後に、500RPMにて5sec続いて3000RPMにて10sec、基板の回転を行う事とした。この成膜条件を3度繰り返し、基板上に3層堆積させた後、室温で自然乾燥させた。膜厚は約1500nmであった。   The film forming condition by the spin coating method was that the substrate was rotated at 500 RPM for 5 seconds and then at 3000 RPM for 10 seconds after the dispersion solution was dropped onto the substrate. This film forming condition was repeated three times, three layers were deposited on the substrate, and then naturally dried at room temperature. The film thickness was about 1500 nm.

基板2の表面に微粒子層4を形成後、マグネトロンスパッタ装置を用いて薄膜電極3を成膜する。成膜材料として金を使用し、薄膜電極3の層厚は12nm、同面積は0.28cmとした。 After the fine particle layer 4 is formed on the surface of the substrate 2, the thin film electrode 3 is formed using a magnetron sputtering apparatus. Gold was used as the film forming material, the layer thickness of the thin film electrode 3 was 12 nm, and the area was 0.28 cm 2 .

上記のように作製した電子放出素子について、図4に示すような測定系を用いて電子放出実験を行った。図4の実験系では、電子放出素子1の薄膜電極3側に、絶縁体スペーサ9を挟んで対向電極8を配置させる。そして、電子放出素子1および対向電極8は、それぞれ、電源7に接続されており、電子放出素子1にはV1の電圧、対向電極8にはV2の電圧がかかるようになっている。このような実験系を1×10−8ATMの真空中に配置して電子放出実験を行い、さらに、このような実験系を大気中に配置して電子放出実験を行った。これらの実験結果を図5〜7に示す。 For the electron-emitting device manufactured as described above, an electron emission experiment was performed using a measurement system as shown in FIG. In the experimental system of FIG. 4, the counter electrode 8 is arranged on the thin film electrode 3 side of the electron-emitting device 1 with the insulator spacer 9 interposed therebetween. The electron-emitting device 1 and the counter electrode 8 are each connected to a power source 7, and a voltage V1 is applied to the electron-emitting device 1 and a voltage V2 is applied to the counter electrode 8. An electron emission experiment was conducted by placing such an experimental system in a vacuum of 1 × 10 −8 ATM, and an electron emission experiment was conducted by placing such an experimental system in the atmosphere. The results of these experiments are shown in FIGS.

図5は、真空中にて電子放出実験した際の電子放出電流を測定した結果を示すグラフである。ここで、V1=1〜10V、V2=50Vとした。図5に示すように、1×10−8ATMの真空中において、シリカ粒子の重量比率が、70%では電子放出が見られないのに対し、80、90、95%では電子放出による電流が観測された。その値は、10Vの電圧印加で10−7A程度であった。 FIG. 5 is a graph showing a result of measuring an electron emission current when an electron emission experiment is performed in a vacuum. Here, V1 = 1 to 10V and V2 = 50V. As shown in FIG. 5, in a vacuum of 1 × 10 −8 ATM, no electron emission was observed when the weight ratio of silica particles was 70%, whereas currents due to electron emission were 80, 90, and 95%. Observed. The value was about 10 −7 A when a voltage of 10 V was applied.

図6は、上記と同様、真空中において電子放出実験した際の素子内電流を測定した結果を示すグラフである。ここでも、上記と同様、V1=1〜10V、V2=50Vとした。図6から、シリカ粒子の割合が70%では抵抗値が足りずに絶縁破壊を起こしている(電流値が振り切れ、グラフ上部に張り付いている)ことがわかる。金属微粒子の配合比が多くなると、金属微粒子による導電パスが形成され易くなり、微粒子層4に低電圧で大電流が流れてしまう。このため、弾道電子発生の条件が成立しないと考えられる。   FIG. 6 is a graph showing the result of measuring the current in the device when the electron emission experiment was performed in a vacuum as described above. Also here, V1 = 1 to 10V and V2 = 50V as described above. From FIG. 6, it can be seen that when the ratio of silica particles is 70%, the resistance value is insufficient and dielectric breakdown occurs (the current value is shaken out and sticks to the upper part of the graph). When the compounding ratio of the metal fine particles is increased, a conductive path is easily formed by the metal fine particles, and a large current flows through the fine particle layer 4 at a low voltage. For this reason, it is considered that the conditions for generating ballistic electrons are not satisfied.

図7は、シリカ粒子の割合が90%の電子放出素子を用いて、V1=1〜15V,V2=200Vとして、大気中で電子放出実験した際の、電子放出電流および素子内電流を測定した結果を示すグラフである。   FIG. 7 shows the measurement of the electron emission current and the current in the device when an electron emission experiment was performed in the atmosphere with V1 = 1 to 15 V and V2 = 200 V using an electron emitting device having a silica particle ratio of 90%. It is a graph which shows a result.

図7に示すように、大気中で、V1=15Vの電圧印加で10−10A程度の電流が観測された。 As shown in FIG. 7, a current of about 10 −10 A was observed in the atmosphere when a voltage of V1 = 15 V was applied.

さらに、図8は、図7と同様シリカ粒子の割合が90%の電子放出素子を用いて、ここでは、V1=15V,V2=200Vの電圧印加で大気中にて連続駆動させた際の、電子放出電流および素子内電流を測定した結果を示すグラフである。図8に示す通り、6時間経っても安定的に電流を放出し続けた。   Further, FIG. 8 uses an electron-emitting device having a silica particle ratio of 90% as in FIG. 7, and here, when it is continuously driven in the atmosphere by applying voltages of V1 = 15V and V2 = 200V, It is a graph which shows the result of having measured the electron emission current and the element internal current. As shown in FIG. 8, the current was stably released even after 6 hours.

図9に電子放出性能が良好であったシリカ90%の割合で混合した粒子について、電子加速層のTEM写真を示す。原理説明したように、アルコラート皮膜ナノ金属粒子が自己組織化により、シリカに多数付着し、塊(アルコラート皮膜金属微粒子の凝集体)を形成していることがわかる(黒く見えている部分)。シリカの平均径は110nmであり、30nm〜100nm程度のアルコラート皮膜ナノ金属粒子の配列構造は平面状あるいは高さにも積層された3次元的な配列構造であると推定される。この規則正しく整列した構造、すなわち平面状あるいは3次元的に塊を持った配列構造によって弾道電子が放出されているといえる。図4では、点在しているアルコラート皮膜金属微粒子の凝集体と凝集体との間、すなわち矢印の方向に弾道電子が放出されると推定される。   FIG. 9 shows a TEM photograph of the electron acceleration layer with respect to particles mixed at a ratio of 90% silica having good electron emission performance. As explained in principle, it can be seen that a large number of the alcoholate-coated nanometal particles adhere to the silica by self-organization and form a lump (aggregate of the alcoholate-coated metal fine particles) (the part that appears black). The average diameter of silica is 110 nm, and the arrangement structure of the alcoholate-coated nanometal particles of about 30 nm to 100 nm is presumed to be a three-dimensional arrangement structure that is planar or stacked in height. It can be said that ballistic electrons are emitted by this regularly arranged structure, that is, an array structure having a planar or three-dimensional cluster. In FIG. 4, it is presumed that ballistic electrons are emitted between the agglomerates of the alcoholate-coated metal fine particles scattered, that is, in the direction of the arrows.

本実施例では、自己組織化膜の形成時に、室温で放置して凝集体を形成したが、溶媒の沸点以下の温度で加熱後に放置することで形成しても良い。用いる溶媒の蒸気圧によって異なるが、できるだけゆっくりと蒸発させるのが自己組織化膜を形成するのに必要な条件であることがわかった。
(比較例1)
実施例1と同様に、溶媒にはトルエンを用い、絶縁被膜された金属微粒子6として銀金属微粒子(平均径10nm、うち絶縁被膜アルコラート1nm厚)と、絶縁体の微粒子5としてシリカ粒子(平均径100nm)とを、粒子全体(銀金属微粒子およびシリカ粒子)に対するシリカ粒子の比率90w%で混合して分散させ、溶液Aを作成した。また、溶媒にはトルエンを用い、絶縁体の微粒子5としてシリカ粒子(平均径100nm)を溶液Aと同様の重量を投入し、溶液Bを作成した。これらの溶液を用い、スピンコートは500RPM・5sec+3000RPM・10secで溶液Aを1層堆積させ、その後、同様の回転数で溶液Bを2層堆積させた。自己組織化作用を発現させるために、焼成は行わずに室温で自然乾燥させた。膜厚は実施例1と同様約500nmであった。実施例1と同様の方法で電子放出実験を行なったが、電子放出は10Vの電圧印加で10−11程度と実施例1に比べて相当低かった。
(比較例2)
さらに、溶媒にはトルエンを用い、絶縁被膜された金属微粒子6として銀金属微粒子(平均径10nm、うち絶縁被膜アルコラート1nm厚)を溶液Aと同様の重量を投入し、溶液Cを作成した。溶液A、溶液B、溶液Cを用い、スピンコートは500RPM・5sec+3000RPM・10secで溶液Aを1層堆積させ、同様の回転数で溶液Cを2層、最後に溶液Bを2層堆積させた。自己組織化作用を発現させるために、焼成は行わずに室温で自然乾燥させた。膜厚は同様約550nmであった。実施例1と同様の方法で電子放出実験を行なったが、絶縁破壊を起こし、測定できなかった。
In this example, when the self-assembled film was formed, the aggregate was formed by standing at room temperature, but it may be formed by leaving it after heating at a temperature not higher than the boiling point of the solvent. Although it depends on the vapor pressure of the solvent used, it has been found that evaporating as slowly as possible is a necessary condition for forming a self-assembled film.
(Comparative Example 1)
In the same manner as in Example 1, toluene was used as the solvent, silver metal fine particles (average diameter: 10 nm, of which the insulating coat alcoholate was 1 nm thick) as insulating metal fine particles 6 and silica particles (average diameter) as insulating fine particles 5. 100 nm) was mixed and dispersed at a ratio of 90 w% of silica particles to the whole particles (silver metal fine particles and silica particles) to prepare solution A. Further, toluene was used as a solvent, and silica particles (average diameter: 100 nm) as the insulating fine particles 5 were charged in the same weight as the solution A to prepare a solution B. Using these solutions, one layer of solution A was deposited by spin coating at 500 RPM · 5 sec + 3000 RPM · 10 sec, and then two layers of solution B were deposited at the same rotational speed. In order to develop a self-organizing action, it was naturally dried at room temperature without firing. The film thickness was about 500 nm as in Example 1. Although conducted emission experiments in the same manner as in Example 1, the electron emission was considerably lower than in Example 1 and 10 approximately -11 voltage application of 10V.
(Comparative Example 2)
Further, toluene was used as the solvent, and silver metal fine particles (average diameter 10 nm, of which the insulating coat alcoholate was 1 nm thick) were charged as the metal fine particles 6 with insulating coating, and a solution C was prepared. The solution A, the solution B, and the solution C were used, and spin coating was performed by depositing one layer of the solution A at 500 RPM · 5 sec + 3000 RPM · 10 sec. In order to develop a self-organizing action, it was naturally dried at room temperature without firing. The film thickness was about 550 nm as well. An electron emission experiment was performed in the same manner as in Example 1. However, dielectric breakdown occurred and measurement was not possible.

実施例と比較例1、2の結果から、上記電子放出原理が正しいことが推定される。   From the results of Examples and Comparative Examples 1 and 2, it is presumed that the electron emission principle is correct.

本発明は、電子放出素子に関するものである。適用例として、フィールドエミッションディスプレイ(FED)等のディスプレイや、電子線照射装置、光源、電子部品製造装置、電子回路部品のような電子線源として適用できる。   The present invention relates to an electron-emitting device. As an application example, it can be applied as a display such as a field emission display (FED), an electron beam source such as an electron beam irradiation device, a light source, an electronic component manufacturing device, and an electronic circuit component.

1 電子放出素子
2 第一の導電性部材(電極基板)
3 第二の導電性部材(薄膜電極)
4 微粒子層(電子加速層)
5 絶縁体の微粒子(絶縁性部材)
6 金属微粒子(絶縁皮膜ナノ微粒子)
7 電源(電源部)
8 対向電極
9 絶縁体スペーサ
1 Electron-emitting device 2 First conductive member (electrode substrate)
3 Second conductive member (thin film electrode)
4 Fine particle layer (electron acceleration layer)
5 Insulator fine particles (insulating material)
6 Metal fine particles (insulating coating nano-particles)
7 Power supply (power supply section)
8 Counter electrode 9 Insulator spacer

Claims (15)

第一の導電性部材と、第二の導電性部材が互いに向かい合うように形成され、該導電性部材間に電圧を印加することにより、電子を放出する電子放出素子において、
前記導電性部材間に絶縁皮膜された金属微粒子の凝集体を複数形成したことを特徴とする電子放出素子。
In the electron-emitting device in which the first conductive member and the second conductive member are formed so as to face each other, and a voltage is applied between the conductive members to emit electrons.
An electron-emitting device, wherein a plurality of aggregates of metal fine particles having an insulating film formed between the conductive members are formed.
前記凝集体の大きさは、第一の導電性部材と第二の導電性部材に電圧を印加した場合に、絶縁破壊が起こらないような大きさに形成されていることを特徴とする請求項1記載の電子放出素子。   The size of the aggregate is formed such that dielectric breakdown does not occur when a voltage is applied to the first conductive member and the second conductive member. 2. The electron-emitting device according to 1. 上記絶縁皮膜された金属微粒子の凝集体は、絶縁体に付着していることを特徴とする請求項1,2記載の電子放出素子。   3. The electron-emitting device according to claim 1, wherein the agglomerates of metal fine particles coated with an insulating film adhere to the insulator. 上記絶縁皮膜金属微粒子を成す導電体部分は、金、銀、白金、パラジウム、及びニッケルの少なくとも1つの物質を含んでいることを特徴とする請求項1〜3の何れかに記載の電子放出素子。   The electron-emitting device according to any one of claims 1 to 3, wherein the conductor portion forming the insulating coating metal fine particles contains at least one substance of gold, silver, platinum, palladium, and nickel. . 上記絶縁皮膜金属微粒子を成す導電体部分の平均径は、3〜20nmであることを特徴とする、請求項1〜4の何れかに記載の電子放出素子。   5. The electron-emitting device according to claim 1, wherein an average diameter of a conductor portion forming the insulating coating metal fine particles is 3 to 20 nm. 上記絶縁性部材は、SiO、Al、及びTiOの少なくとも1つを含んでいる、または有機ポリマーを含んでいることを特徴とする、請求項1〜5の何れかに記載の電子放出素子。 The insulating member is, SiO 2, Al 2 O 3 , and includes at least one of TiO 2, or characterized in that it comprises an organic polymer, according to any one of claims 1 to 5 Electron emission device. 上記絶縁性部材が微粒子であり、その平均径は、10〜1000nmであることを特徴とする、請求項1〜6の何れかに記載の電子放出素子。   The electron-emitting device according to any one of claims 1 to 6, wherein the insulating member is a fine particle, and an average diameter thereof is 10 to 1000 nm. 上記電子放出素子における上記絶縁性部材と絶縁皮膜金属微粒子の割合が、重量比で4:1〜19:1であることを特徴とする、請求項1〜7の何れかに記載の電子放出素子。   8. The electron-emitting device according to claim 1, wherein a ratio of the insulating member and the insulating coating metal fine particles in the electron-emitting device is 4: 1 to 19: 1 in a weight ratio. . 上記第一の導電性部材と第二の導電性部材の間隔は、100〜6000nmであることを特徴とする、請求項1〜8の何れかに記載の電子放出素子。   The electron-emitting device according to claim 1, wherein a distance between the first conductive member and the second conductive member is 100 to 6000 nm. 上記第二の導電性部材は、金、銀、炭素、タングステン、チタン、アルミ、及びパラジウムの少なくとも1つを含んでいることを特徴とする請求項1〜9の何れかに記載の電子放出素子。   The electron-emitting device according to claim 1, wherein the second conductive member includes at least one of gold, silver, carbon, tungsten, titanium, aluminum, and palladium. . 上記絶縁皮膜金属微粒子の絶縁被膜は、電子をトンネルさせることが可能な厚みであることを特徴とする請求項1〜10の何れかに記載の電子放出素子。   The electron-emitting device according to any one of claims 1 to 10, wherein the insulating coating of the insulating coating metal fine particles has a thickness capable of tunneling electrons. 上記絶縁皮膜金属微粒子の絶縁被膜は、アルカン、アルコール、脂肪酸、アルカンチオール、炭化水素系シラン化合物、有機系界面活性剤の少なくとも1つを含んでいること特徴とする、請求項11に記載の電子放出素子。   The electron according to claim 11, wherein the insulating coating of the insulating coating metal fine particles contains at least one of alkane, alcohol, fatty acid, alkanethiol, hydrocarbon-based silane compound, and organic surfactant. Emitting element. 第一の導電性部材と、第二の導電性部材が互いに向かい合うように形成され、該導電性部材間に電圧を印加することにより、電子を放出する電子放出素子の製造方法であって、
第一の導電性部材に絶縁体と絶縁皮膜金属微粒子を形成する工程と、一部の絶縁皮膜金属微粒子を凝集させる工程を有する電子放出素子の製造方法。
A method of manufacturing an electron-emitting device, wherein a first conductive member and a second conductive member are formed so as to face each other, and a voltage is applied between the conductive members to emit electrons.
A method for manufacturing an electron-emitting device, comprising: forming an insulator and insulating coating metal fine particles on a first conductive member; and aggregating some insulating coating metal fine particles.
上記第一の導電性部材に絶縁体と絶縁皮膜金属微粒子を形成する工程と、一部の絶縁皮膜金属微粒子を凝集させる工程は、ともに自己組織化作用による工程であることを特徴とする請求項13記載の電子放出素子の製造方法。   The step of forming an insulator and insulating coating metal fine particles on the first conductive member and the step of aggregating a part of the insulating coating metal fine particles are both steps by a self-organizing action. 14. A method for producing an electron-emitting device according to item 13. 前記、絶縁皮膜された金属微粒子を凝集させる工程は、溶媒に絶縁皮膜金属微粒子を超音波により分散させる工程と、室温で放置するあるいは溶媒の沸点以下の温度で加熱後に放置する工程とを含むことを特徴とする請求項13あるいは14の何れかに記載の電子放出素子の製造方法。   The step of aggregating the insulating coated metal fine particles includes a step of dispersing the insulating coated metal fine particles in a solvent by ultrasonic waves, and a step of leaving at room temperature or after heating at a temperature below the boiling point of the solvent. The method for manufacturing an electron-emitting device according to claim 13, wherein:
JP2009089660A 2009-04-02 2009-04-02 Electron emission element and its manufacturing method Pending JP2010244738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009089660A JP2010244738A (en) 2009-04-02 2009-04-02 Electron emission element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009089660A JP2010244738A (en) 2009-04-02 2009-04-02 Electron emission element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2010244738A true JP2010244738A (en) 2010-10-28

Family

ID=43097548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009089660A Pending JP2010244738A (en) 2009-04-02 2009-04-02 Electron emission element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2010244738A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298623A (en) * 1988-05-26 1989-12-01 Canon Inc Mim type electron emission element
JPH097499A (en) * 1995-06-14 1997-01-10 Akira Tazaki Min/mis electron source and its manufacture
JPH11297190A (en) * 1998-04-10 1999-10-29 Matsushita Electric Ind Co Ltd Laminated electron emitting element and image display device
JP2002093310A (en) * 2000-09-08 2002-03-29 Toshiba Corp Electron emission source and display device
JP2003173744A (en) * 2001-12-04 2003-06-20 Nippon Hoso Kyokai <Nhk> Field emission electron source and its manufacturing method and display device
JP2005209396A (en) * 2004-01-20 2005-08-04 Toshiba Corp Field emission type electron source
JP2006054162A (en) * 2004-07-15 2006-02-23 Ngk Insulators Ltd Dielectric device
JP2010198850A (en) * 2009-02-24 2010-09-09 Sharp Corp Electron emission element, electron emission device, charging device, image forming device, electron beam curing device self light-emitting device, image device, blower, cooling device, manufacturing method for electron emission element
JP2010211967A (en) * 2009-03-06 2010-09-24 Sharp Corp Electron emitting element, electron emitting device, self-luminous device, image display device, cooling device, and charged device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298623A (en) * 1988-05-26 1989-12-01 Canon Inc Mim type electron emission element
JPH097499A (en) * 1995-06-14 1997-01-10 Akira Tazaki Min/mis electron source and its manufacture
JPH11297190A (en) * 1998-04-10 1999-10-29 Matsushita Electric Ind Co Ltd Laminated electron emitting element and image display device
JP2002093310A (en) * 2000-09-08 2002-03-29 Toshiba Corp Electron emission source and display device
JP2003173744A (en) * 2001-12-04 2003-06-20 Nippon Hoso Kyokai <Nhk> Field emission electron source and its manufacturing method and display device
JP2005209396A (en) * 2004-01-20 2005-08-04 Toshiba Corp Field emission type electron source
JP2006054162A (en) * 2004-07-15 2006-02-23 Ngk Insulators Ltd Dielectric device
JP2010198850A (en) * 2009-02-24 2010-09-09 Sharp Corp Electron emission element, electron emission device, charging device, image forming device, electron beam curing device self light-emitting device, image device, blower, cooling device, manufacturing method for electron emission element
JP2010211967A (en) * 2009-03-06 2010-09-24 Sharp Corp Electron emitting element, electron emitting device, self-luminous device, image display device, cooling device, and charged device

Similar Documents

Publication Publication Date Title
US8616931B2 (en) Electron emitting element, electron emitting device, light emitting device, image display device, air blowing device, cooling device, charging device, image forming apparatus, electron-beam curing device, and method for producing electron emitting element
JP4303308B2 (en) Electron-emitting device, electron-emitting device, self-luminous device, image display device, air blower, cooling device, charging device, image forming device, electron beam curing device, and method for manufacturing electron-emitting device
JP4656557B2 (en) COMPOSITE PARTICLE FOR ELECTRON EMISSION AND METHOD FOR MANUFACTURING THE SAME, ELECTRON EMISSION SOURCE AND METHOD FOR MANUFACTURING THE SAME, COMPOSITION FOR FORMING ELECTRON EMITTING EMITTER
US8299700B2 (en) Electron emitting element having an electron acceleration layer, electron emitting device, light emitting device, image display device, cooling device, and charging device
JP4732534B2 (en) Electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device
JP4777448B2 (en) Electron emitting device, electron emitting device, self-luminous device, image display device, blower device, cooling device, charging device, image forming device, and electron beam curing device
JP4932873B2 (en) Self-light-emitting element, self-light-emitting device, image display device, self-light-emitting element driving method, and method of manufacturing self-light-emitting element
KR20060032402A (en) Carbon nanotube emitter and manufacturing method thereof and field emission device and manufacturing method thereof
JP4880740B2 (en) Electron-emitting device and manufacturing method thereof, and electron-emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, and cooling device
JP5806876B2 (en) Electron emitting device and manufacturing method thereof
JP2010244738A (en) Electron emission element and its manufacturing method
JP4917121B2 (en) Electron-emitting device, electron-emitting device, self-luminous device, image display device, cooling device, and charging device
JP6227401B2 (en) Electron emitting device and electron emitting device
JP2010269372A (en) Method for preparing self-organized film and planar electron-emitting source using the same
JP2010225349A (en) Electron emission element, and method for manufacturing the same
JP2010272209A (en) Electron emission element and manufacturing method of the same
JP2010238470A (en) Mim type electron emitting element and mim type electron emitting device
JP2010267583A (en) Electron emission element and method of manufacturing the same
JP2010244736A (en) Plane electron emission source and its manufacturing method
JP2010244735A (en) Electron emission element and its manufacturing method
JP4680305B2 (en) Electron-emitting device, electron-emitting device, self-luminous device, image display device, cooling device, and charging device
JP2005521217A (en) Field electron emission materials and equipment
KR101564456B1 (en) Field emitter device, method for fabricating paste, and method for forming thin film
JP2008226734A (en) Composition for forming thin film type electron emission material, thin film type electron emission material, its manufacturing method, and field emission type element
Stratakis Hierarchical Field Emission Devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130312