JP2010197450A - Liquid crystal optical element and optical pickup device - Google Patents

Liquid crystal optical element and optical pickup device Download PDF

Info

Publication number
JP2010197450A
JP2010197450A JP2009039059A JP2009039059A JP2010197450A JP 2010197450 A JP2010197450 A JP 2010197450A JP 2009039059 A JP2009039059 A JP 2009039059A JP 2009039059 A JP2009039059 A JP 2009039059A JP 2010197450 A JP2010197450 A JP 2010197450A
Authority
JP
Japan
Prior art keywords
liquid crystal
optical element
additive
crystal optical
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009039059A
Other languages
Japanese (ja)
Inventor
Ami Akazawa
亜美 赤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Electronics Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2009039059A priority Critical patent/JP2010197450A/en
Publication of JP2010197450A publication Critical patent/JP2010197450A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)
  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive liquid crystal optical element capable of enhancing light resistance without deteriorating light utilizing efficiency to a blue-purple laser to be short wavelength light and to provide an optical pickup device including the same. <P>SOLUTION: In the liquid crystal optical element 100 having a construction wherein a liquid crystal 5 is interposed between two transparent substrates 1a and 1b having organic alignment layers 3a and 3b respectively formed on the inner sides thereof, an additive 6 catching free radicals primarily generated by irradiating the liquid crystal 5 with a blue-purple laser beam or a peroxide decomposing agent for making a peroxide secondarily generated from the radicals innocent is incorporated in the liquid crystal 5 and thereby degradation reaction by the blue-purple laser beam can be made to be hardly generated. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、青紫レーザ光に対する耐光性を有した液晶光学素子およびこの液晶光学素子を搭載した光ピックアップ装置に関する。   The present invention relates to a liquid crystal optical element having light resistance to a blue-violet laser beam and an optical pickup device equipped with the liquid crystal optical element.

情報の大容量化に伴い、光ディスクの記録容量の向上が求められる中、光ピックアップのレーザ光源の短波長化が進んでいる。すなわち、従来のCD波長780nmおよびDVD波長650nmに加え、近紫外波長域である405nm付近の青紫レーザも使用されるようになった。この青紫レーザでは光ピックアップに搭載される光学部品がこれまで以上の耐光性を求められており、さらに読み込みおよび記録の倍速化が伴うと青紫レーザの光強度は強くなると予想される。   Along with the increase in the capacity of information, while the improvement in the recording capacity of the optical disk is required, the wavelength of the laser light source of the optical pickup has been shortened. That is, in addition to the conventional CD wavelength of 780 nm and DVD wavelength of 650 nm, a blue-violet laser having a wavelength near 405 nm in the near ultraviolet wavelength region has come to be used. In this blue-violet laser, optical components mounted on the optical pickup are required to have higher light resistance than before, and it is expected that the light intensity of the blue-violet laser will increase as reading and recording speeds increase.

光ピックアップ装置内に搭載される光学部品のひとつとして、液晶を駆動することにより、レーザ光の波面や光量を制御する液晶光学素子が挙げられる。この液晶光学素子は、透明導電膜と、ポリイミドからなる有機配向膜とが順に形成された2枚の透明基板間に液晶を挟持して構成される。この有機配向膜を用いた液晶光学素子に、レーザ光源から出射される青紫レーザを照射し続けると、照射された配向膜部分が光反応により変化し、結果として、液晶分子の配向状態が乱されるという問題が生ずる。(この液晶分子の配向の乱れを以下「劣化」と記す。)。劣化と判断されるまでの時間(耐光時間)は、レーザ光の強度により異なり、その強度が増すにつれ短時間となる傾向にある。   As one of optical components mounted in the optical pickup device, there is a liquid crystal optical element that controls the wavefront and the amount of light of a laser beam by driving a liquid crystal. This liquid crystal optical element is configured by sandwiching a liquid crystal between two transparent substrates in which a transparent conductive film and an organic alignment film made of polyimide are sequentially formed. If the liquid crystal optical element using this organic alignment film is continuously irradiated with the blue-violet laser emitted from the laser light source, the irradiated alignment film part is changed by the photoreaction, and as a result, the alignment state of the liquid crystal molecules is disturbed. Problem arises. (This disorder of alignment of liquid crystal molecules is referred to as “deterioration” hereinafter.) The time until light is judged to be deteriorated (light resistance time) varies depending on the intensity of the laser beam, and tends to become shorter as the intensity increases.

上記問題を解消するために、光吸収の要因とされている不飽和結合(トラン結合、エステル結合など)を低減した液晶を用いた液晶光学素子をレーザ光源と対物レンズとの間の光路中に配設した光ピックアップ装置が提案されている(下記特許文献1参照)。   In order to solve the above problems, a liquid crystal optical element using liquid crystal in which unsaturated bonds (tolan bonds, ester bonds, etc.), which are factors of light absorption, are reduced is placed in the optical path between the laser light source and the objective lens. An arranged optical pickup device has been proposed (see Patent Document 1 below).

特開2003−90990号公報(第2―4頁、第1―2図)Japanese Unexamined Patent Publication No. 2003-90990 (page 2-4, FIG. 1-2)

また、一般的に、樹脂などの有機物は、光照射により下記反応式(化1)、(化2)のような光劣化反応を生じる。   In general, an organic substance such as a resin undergoes a photodegradation reaction represented by the following reaction formulas (Chemical Formula 1) and (Chemical Formula 2) by light irradiation.

Figure 2010197450
Figure 2010197450

Figure 2010197450
Figure 2010197450

この光劣化反応を抑制するために、UV吸収剤、錯体配位子、光安定化剤、過酸化分解剤、の添加剤を樹脂に加える方法が知られている。   In order to suppress this photodegradation reaction, a method of adding an additive of a UV absorber, a complex ligand, a light stabilizer, and a peroxide decomposer to a resin is known.

特許文献1に記載の液晶光学素子の液晶材料として、芳香環以外の不飽和結合(トラン
結合、エステル結合など)を減少させた液晶は、レーザ光源から出射されるレーザ光の近紫外波長域での光吸収低減という点で効果的であるが、表示用液晶パネルで使用される一般的な液晶材料を使用することができず高価な素子となる。
As a liquid crystal material of the liquid crystal optical element described in Patent Document 1, a liquid crystal in which unsaturated bonds other than an aromatic ring (trans bond, ester bond, etc.) are reduced is in the near ultraviolet wavelength region of laser light emitted from a laser light source. Although it is effective in terms of reducing light absorption, a general liquid crystal material used in a display liquid crystal panel cannot be used, resulting in an expensive element.

また、液晶光学素子に主として使用するネマチック液晶は、樹脂に混合される一般的な添加剤を使うと光利用効率の低下や着色が起こる。具体的には、耐光時間に効果を及ぼす量のUV安定化剤を液晶へ添加すると、UV安定化剤の光吸収スペクトルが青紫レーザのスペクトルと一部重なるため、レーザ光源から出射される光の一部が液晶光学素子に吸収され、光利用効率が悪化するという問題が生じる。また、耐光時間に効果を及ぼす量の錯体配位子を液晶へ添加すると、溶解した錯体配位子により液晶が着色する。この着色により、液晶光学素子を通過する光量は減少し、結果として光利用効率を低下させるという問題が生じる。   In addition, nematic liquid crystal mainly used for the liquid crystal optical element causes a decrease in light utilization efficiency and coloring when a general additive mixed with a resin is used. Specifically, when an amount of UV stabilizer that has an effect on lightfastness is added to the liquid crystal, the light absorption spectrum of the UV stabilizer partially overlaps the spectrum of the blue-violet laser, so that the light emitted from the laser light source A part of the light is absorbed by the liquid crystal optical element, resulting in a problem that light utilization efficiency deteriorates. Further, when an amount of the complex ligand having an effect on the light resistance time is added to the liquid crystal, the liquid crystal is colored by the dissolved complex ligand. Due to this coloring, the amount of light passing through the liquid crystal optical element is reduced, resulting in a problem that the light use efficiency is lowered.

そこで、本発明の目的は、短波長光である青紫レーザに対して光利用効率を低下させずに耐光性を向上させることが可能で、かつ安価な液晶光学素子およびこれを搭載した光ピックアップ装置を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide an inexpensive liquid crystal optical element capable of improving light resistance without deteriorating light utilization efficiency with respect to a blue-violet laser, which is a short wavelength light, and an optical pickup device equipped with the liquid crystal optical element. Is to provide.

上記目的を達成するために、本発明の液晶光学素子および光ピックアップ装置は、基本的に下記の構成を採用するものである。   In order to achieve the above object, the liquid crystal optical element and the optical pickup device of the present invention basically adopt the following configuration.

本発明は、内側に配向膜が形成された2枚の透明基板間に液晶を挟持し、レーザ光を透過する液晶光学素子において、液晶に青紫のレーザ光が照射されることで一次的に生じるフリーラジカルを捕捉する添加剤、またはラジカルから二次的に発生する過酸化物を無害化するための添加剤を液晶に含有させることを特徴とする。   The present invention is primarily generated by irradiating a liquid crystal with blue-violet laser light in a liquid crystal optical element that sandwiches liquid crystal between two transparent substrates having an alignment film formed on the inside and transmits laser light. The liquid crystal contains an additive for trapping free radicals or an additive for detoxifying peroxides secondarily generated from radicals.

上記フリーラジカルを捕捉する添加剤は、HALS(Hindered Amine Light Stabilizer)であることが好ましい。   The additive for scavenging free radicals is preferably HALS (Hindered Amine Light Stabilizer).

また、上記過酸化物を無害化するための添加剤は、リン系酸化防止剤であることが好ましい。   Moreover, it is preferable that the additive for detoxifying the peroxide is a phosphorus-based antioxidant.

好ましくは、液晶光学素子を透過するレーザ光の波長領域は400から800nmである。   Preferably, the wavelength region of the laser light transmitted through the liquid crystal optical element is 400 to 800 nm.

また、本発明の光ピックアップ装置は、上記の液晶光学素子を搭載することを特徴とするものである。   Moreover, an optical pickup device of the present invention is characterized by mounting the above-described liquid crystal optical element.

本発明によれば、短波長光である青紫レーザに対して光利用効率を低下させずに耐光性を向上させることが可能で、かつ安価な液晶光学素子およびこれを搭載した光ピックアップ装置を提供することが可能となる。   According to the present invention, there is provided an inexpensive liquid crystal optical element capable of improving light resistance without deteriorating light utilization efficiency with respect to a blue-violet laser that is short wavelength light, and an optical pickup device equipped with the liquid crystal optical element. It becomes possible to do.

本発明によれば、青紫レーザ光を含む400から800nmの波長領域のレーザ光を液晶光学素子に透過させることが可能になる。したがって、本発明の液晶光学素子およびこの液晶光学素子を搭載した光ピックアップ装置は、青紫レーザ光、光ディスク規格のBD、DVD、CD全てを統一した3波長レーザ光に対しても十分な効果を発揮できる。   According to the present invention, it is possible to transmit laser light having a wavelength region of 400 to 800 nm including blue-violet laser light to the liquid crystal optical element. Therefore, the liquid crystal optical element of the present invention and the optical pickup device equipped with the liquid crystal optical element exhibit sufficient effects even for blue-violet laser light, three-wavelength laser light that unifies all optical disc standards BD, DVD, and CD. it can.

本発明の実施形態に係る液晶光学素子の断面図である。It is sectional drawing of the liquid crystal optical element which concerns on embodiment of this invention. 本発明の実施形態に係る液晶光学素子の液晶に混入される添加剤の含有量と耐光時間を示す図である。It is a figure which shows content of the additive mixed in the liquid crystal of the liquid crystal optical element which concerns on embodiment of this invention, and light resistance time. 本発明の実施形態に係る液晶光学素子の添加前後の光学特性を示す図である。It is a figure which shows the optical characteristic before and behind the addition of the liquid crystal optical element which concerns on embodiment of this invention. 本発明の実施形態に係る液晶光学素子の添加前後の光学特性を示す図である。It is a figure which shows the optical characteristic before and behind the addition of the liquid crystal optical element which concerns on embodiment of this invention. 本発明の実施形態に係る液晶光学素子の添加前後の光学特性を示す図である。It is a figure which shows the optical characteristic before and behind the addition of the liquid crystal optical element which concerns on embodiment of this invention. 本発明の実施形態に係る光ピックアップ装置を示す図である。It is a figure which shows the optical pick-up apparatus which concerns on embodiment of this invention.

以下の説明では、本発明の実施形態に係る液晶光学素子の構成および作用について説明をし、その後で上述した本発明の実施形態に係る光ピックアップ装置の構成および作用について詳細に説明をする。   In the following description, the configuration and operation of the liquid crystal optical element according to the embodiment of the present invention will be described, and then the configuration and operation of the optical pickup device according to the embodiment of the present invention described above will be described in detail.

まず、本実施形態の液晶光学素子100の構成について説明する。図1は本実施形態に係る液晶光学素子100の断面図を示している。   First, the configuration of the liquid crystal optical element 100 of the present embodiment will be described. FIG. 1 shows a cross-sectional view of a liquid crystal optical element 100 according to this embodiment.

図1に示すように、液晶光学素子100は、透明導電膜2aと有機配向膜3aとを有する透明基板1aと、同様に透明導電膜2bと有機配向膜3bとを有する透明基板1bとを、配向膜3a、3bが内側となるように対向配置し、シール剤4を介して添加剤6を含有した液晶5を挟持する。   As shown in FIG. 1, the liquid crystal optical element 100 includes a transparent substrate 1a having a transparent conductive film 2a and an organic alignment film 3a, and a transparent substrate 1b similarly having a transparent conductive film 2b and an organic alignment film 3b. The alignment films 3a and 3b are arranged so as to face each other, and the liquid crystal 5 containing the additive 6 is sandwiched through the sealant 4.

この液晶光学素子で使用する液晶5として、例えば、屈折率異方性Δnが0.15、誘電率異方性Δεが約+6、N-I点が約100℃のネマチック液晶を用いることができる。この液晶にはフッ素を含有する成分が含まれ、モノフェニル、ビフェニルおよびターフェニルの芳香族成分を主体に構成される。またトラン結合、エステル結合、アルケン側鎖などの、芳香族以外の不飽和結合が全く含まない液晶材料を用いる。   As the liquid crystal 5 used in this liquid crystal optical element, for example, nematic liquid crystal having a refractive index anisotropy Δn of 0.15, a dielectric anisotropy Δε of about +6, and an NI point of about 100 ° C. is used. it can. This liquid crystal contains a component containing fluorine and is composed mainly of aromatic components of monophenyl, biphenyl and terphenyl. In addition, a liquid crystal material containing no unsaturated bonds other than aromatics such as a tolan bond, an ester bond, and an alkene side chain is used.

添加剤6の液晶5への添加方法について説明する。粉末状もしくは液状の添加剤6を液晶5へ適量添加し、90℃に温めながら15分間撹拌する。このときの添加量は、液晶光学素子の使用環境温度の範囲内において、液晶中に溶解した添加剤6が析出しない程度の量に設定する必要がある。   A method for adding the additive 6 to the liquid crystal 5 will be described. An appropriate amount of powdery or liquid additive 6 is added to liquid crystal 5 and stirred for 15 minutes while warming to 90 ° C. The addition amount at this time needs to be set to such an amount that the additive 6 dissolved in the liquid crystal does not precipitate within the range of the environmental temperature of the liquid crystal optical element.

次に、液晶5に含有する添加剤6の具体的組成について説明する。下記式(化3)は、添加剤6の一つ目の例であるHALSの組成式である。   Next, a specific composition of the additive 6 contained in the liquid crystal 5 will be described. The following formula (Formula 3) is a composition formula of HALS which is the first example of the additive 6.

Figure 2010197450
Figure 2010197450

(化3)において、R1〜R8はHまたはアルキルであり、M1は−O−C(=O)−CnH2n−C(=O)−O−であり、nは整数である。   In (Chemical Formula 3), R 1 to R 8 are H or alkyl, M 1 is —O—C (═O) —CnH 2 n—C (═O) —O—, and n is an integer.

下記式(化4)は、添加剤6の二つ目の例であるリン系酸化防止剤の組成式である。   The following formula (Formula 4) is a composition formula of a phosphorus antioxidant which is a second example of the additive 6.

Figure 2010197450
Figure 2010197450

(化4)において、R1〜R18は、Hまたはアルキルである。   In (Chemical Formula 4), R1 to R18 are H or alkyl.

また、先に触れたが、化学式(化1)、(化2)は、添加剤6を作用させる前の液晶および配向膜の光劣化機構を示している。液晶や配向膜に青紫レーザ等のエネルギーの高い光を照射すると、(化1)、(化2)で示すような光劣化反応が生じる。まず(
化1)の光劣化反応について説明する。光照射により、液晶や配向膜を形成するアルキル基RHがラジカル化されてR・となり(1)、ラジカル化されたR・は酸素と反応して、ROO・となる(2)。このROO・が、液晶や配向膜を形成するRHと反応して、R・を生成し(3)、これらの反応を繰り返すことで、液晶や配向膜のRHは分解され続け、劣化が進行する。
As mentioned above, the chemical formulas (Chemical Formula 1) and (Chemical Formula 2) indicate the photodegradation mechanism of the liquid crystal and the alignment film before the additive 6 is applied. When the liquid crystal or alignment film is irradiated with high energy light such as a blue-violet laser, a photodegradation reaction as shown in (Chemical Formula 1) and (Chemical Formula 2) occurs. First (
The photodegradation reaction of Chemical Formula 1) will be described. By irradiation with light, the alkyl group RH forming the liquid crystal and the alignment film is radicalized to R · (1), and the radicalized R · reacts with oxygen to become ROO · (2). This ROO · reacts with RH forming the liquid crystal and the alignment film to generate R · (3). By repeating these reactions, the RH of the liquid crystal and the alignment film continues to be decomposed and the deterioration proceeds. .

一方、(化2)のように液晶や配向膜にROOH基が存在する場合、ROOHが光照射によりラジカル化されてRO・が生じ(4)、RO・が液晶や配向膜を形成するRHと反応して(5)、さらに、(6)および(7)の反応が進み、液晶や配向膜のRHは分解され、劣化が進行する。   On the other hand, when the ROOH group exists in the liquid crystal or the alignment film as in (Chemical Formula 2), ROOH is radicalized by light irradiation to generate RO (4), and RO. Is an RH that forms the liquid crystal and the alignment film. The reaction (5) and further the reactions (6) and (7) proceed, the RH of the liquid crystal and the alignment film is decomposed, and the deterioration proceeds.

次に、下記式(化5)および(化6)を用いて上述した光劣化反応(化1)および(化2)に対する添加剤の効果を説明する。   Next, the effect of the additive on the above-described photodegradation reactions (Chemical Formula 1) and (Chemical Formula 2) will be described using the following formulas (Chemical Formula 5) and (Chemical Formula 6).

Figure 2010197450
Figure 2010197450

Figure 2010197450
Figure 2010197450

(化1)に対する効果を(化5)に示す。光照射により、HALSのNH基が酸素に置換され、N−O・となる。このラジカルは、(化1)の(1)で示した配向膜や液晶の劣化により生じるR・と反応して、N−ORを生成する。また、このN−ORは、(化1)の(2)に示した、ROO・基と結合して、安定なROORを生成し、またN−
O・へと戻ることで、劣化反応(化1)を抑制する反応(化5)が繰り返される。
The effect on (Chemical Formula 1) is shown in (Chemical Formula 5). By irradiation with light, the NH group of HALS is replaced with oxygen to become NO. This radical reacts with R · produced by the deterioration of the alignment film and liquid crystal shown in (1) of (Chemical Formula 1) to generate N-OR. This N-OR is combined with the ROO group shown in (2) of (Chemical Formula 1) to generate a stable ROOR.
By returning to O., the reaction (chemical formula 5) for suppressing the deterioration reaction (chemical formula 1) is repeated.

(化2)に対する効果を(化6)に示す。光照射により、リン系酸化防止剤P(OR)3が配向膜や液晶のROOHと反応して、安定なROHへと変化させる。この反応により、劣化反応である(化2)の(4)反応を抑止することができる。 The effect on (Chemical 2) is shown in (Chemical 6). By irradiation with light, the phosphorus-based antioxidant P (OR) 3 reacts with the alignment film or ROOH of the liquid crystal to change it into a stable ROH. By this reaction, the (4) reaction of (Chemical Formula 2), which is a deterioration reaction, can be suppressed.

次に、液晶中に混入される添加剤の含有量と、青紫レーザを照射した際の耐光時間(ライフタイム)との関係について説明する。図2は、本実施形態の液晶光学素子における液晶に含有される添加剤含有量と耐光時間を示す図である。   Next, the relationship between the content of the additive mixed in the liquid crystal and the light resistance time (lifetime) when irradiated with the blue-violet laser will be described. FIG. 2 is a diagram showing the additive content and light resistance time contained in the liquid crystal in the liquid crystal optical element of the present embodiment.

図2で示す様に、液晶光学素子100に、70mW/mm2の中心光強度を放つ青紫レーザを照射し、液晶の配向が乱れるまですなわち劣化するまでの時間を耐光時間として縦軸に示す。液晶の配向の乱れは偏光顕微鏡により観察し、数十μmの配向乱れが生じた点を劣化点とした。また、液晶光学素子は上述した構成とし、配向膜にポリイミドを用い、液晶に含有する添加剤は、HALSを用いた。また、青紫レーザを照射したときの外部環境温度は70℃とし、液晶5に対する添加剤重量率xを、0wt%≦x≦4wt%の間に設定した。 As shown in FIG. 2, the liquid crystal optical element 100 is irradiated with a blue-violet laser emitting a central light intensity of 70 mW / mm 2 , and the time until the alignment of the liquid crystal is disturbed, that is, the deterioration is shown on the vertical axis as the light resistance time. The disorder of the alignment of the liquid crystal was observed with a polarizing microscope, and the point where the alignment disorder of several tens of μm occurred was defined as the deterioration point. The liquid crystal optical element has the above-described configuration, polyimide is used for the alignment film, and HALS is used as the additive contained in the liquid crystal. The external environment temperature when the blue-violet laser was irradiated was 70 ° C., and the additive weight ratio x with respect to the liquid crystal 5 was set between 0 wt% ≦ x ≦ 4 wt%.

図2に示す様に、添加剤濃度に対する耐光時間を示す曲線は、添加剤濃度0wt%時には160時間の耐光時間であったが、添加剤を混合すると上昇し、1wt%では2倍強の440時間まで向上した。それ以上の濃度では耐光時間に変化はなく、本液晶では添加剤濃度1wt%が、最大効果を発揮する最小濃度である事が分かる。   As shown in FIG. 2, the curve indicating the light resistance time with respect to the additive concentration was 160 hours when the additive concentration was 0 wt%. Improved up to time. At higher concentrations, there is no change in the light resistance time, and in this liquid crystal, it can be seen that the additive concentration of 1 wt% is the minimum concentration that exhibits the maximum effect.

このような耐光性についての効果は、HALSの代わりにリン系酸化防止剤を添加剤とし用いても同様に得ることができる。   Such an effect on light resistance can be obtained in the same manner by using a phosphorus-based antioxidant as an additive instead of HALS.

なお、これまで、特に効果が大きいポリイミドからなる有機配向膜を使用した液晶光学素子を例に挙げて説明してきたが、他の有機材料として、例えばアクリル系の有機配向膜
等を用いても、上述したと同様の効果を得ることができる。
In the above, a liquid crystal optical element using an organic alignment film made of polyimide, which has a particularly large effect, has been described as an example, but as another organic material, for example, using an acrylic organic alignment film, The same effect as described above can be obtained.

また、有機配向膜3a、3bに代えて、無機材料を用いた形態であっても、耐光性に対する効果を得ることができる。   Moreover, it can replace with the organic alignment films 3a and 3b, and the effect with respect to light resistance can be acquired even if it is a form using an inorganic material.

次に、図3〜5を用いて、液晶に添加剤としてHALSを含有させた場合の光学特性について説明する。   Next, with reference to FIGS. 3 to 5, optical characteristics when HALS is added as an additive to the liquid crystal will be described.

図3は、液晶光学素子100に青紫レーザ光の付近領域400〜500nmの光を照射し、分光器にて透過率を測定した結果である。添加剤を添加する前の透過率曲線と添加剤を添加した後の透過率曲線とを比較すると、同等な特性が得られており、添加剤による光学特性の変化は観測されなかった。上述した結果より、HALSを液晶に添加することにより、光学特性を変化させずに、耐光性を向上させることが可能であると言える。なお、図中、透過率曲線は上下に細かく振動する波形となっているが、これは電極など液晶光学素子の層部材による干渉に起因している。図に示す2つの透過率曲線は、その振動が互いにズレており全く同じ曲線とはなっていない。しかし、隣接する極大値と極小値の中間値を結んだ線で比較評価すれば、添加剤添加前後での透過率の変動傾向は同様の振る舞いを示し互いに同等の特性と言える。   FIG. 3 shows the results of measuring the transmittance with a spectroscope by irradiating the liquid crystal optical element 100 with light in the vicinity region of blue-violet laser light of 400 to 500 nm. When the transmittance curve before the addition of the additive and the transmittance curve after the addition of the additive were compared, equivalent characteristics were obtained, and no change in optical characteristics due to the additive was observed. From the results described above, it can be said that by adding HALS to the liquid crystal, it is possible to improve the light resistance without changing the optical characteristics. In the figure, the transmittance curve is a waveform that vibrates finely up and down, which is due to interference by the layer members of the liquid crystal optical element such as electrodes. The two transmittance curves shown in the figure are not exactly the same because the vibrations are shifted from each other. However, if a comparative evaluation is performed using a line connecting adjacent maximum and minimum values, the variation tendency of the transmittance before and after the addition of the additive exhibits the same behavior and can be said to have the same characteristics.

図4は、液晶光学素子100に赤レーザ光の付近領域500〜700nmの光を照射し、分光器にて透過率を測定した結果である。添加剤を添加する前の透過率曲線と添加剤を添加した後の透過率曲線とを比較すると、同等な特性が得られており、添加剤による光学特性の変化は観測されなかった。なお、図中2つの透過率曲線には一部に差(ズレ)が見られるが、2つの透過率曲線の差は概ね0.5%以内であり、添加剤添加前後での透過率の変動傾向は同様の振る舞いを示し互いに同等の特性と言える。添加剤添加前後での測定値の違いは、図3と同じ目盛では確認困難であるほどの微差であるため、その違いを明確に示すべく図4では敢えて図3に比べ縦軸(透過率)の目盛を拡大した。   FIG. 4 shows the result of measuring the transmittance with a spectroscope after irradiating the liquid crystal optical element 100 with light in the vicinity of the red laser beam of 500 to 700 nm. When the transmittance curve before the addition of the additive and the transmittance curve after the addition of the additive were compared, equivalent characteristics were obtained, and no change in optical characteristics due to the additive was observed. In the figure, there are some differences in the two transmittance curves, but the difference between the two transmittance curves is generally within 0.5%, and the variation in transmittance before and after the addition of the additive. The tendency shows the same behavior and can be said to be equivalent to each other. The difference between the measured values before and after the addition of the additive is a slight difference that is difficult to confirm on the same scale as in FIG. 3, so that in FIG. ) Was expanded.

図5は、液晶光学素子100に赤レーザ光の付近領域700〜800nmの光を照射し、分光器にて透過率を測定した結果である。添加剤を添加する前の透過率曲線と添加剤を添加した後の透過率曲線とを比較すると、同等な特性が得られており、添加剤による光学特性の変化は観測されなかった。以上の結果を考慮すると前述の3種類の光ディスク(CD,DVD,BD)用ピックアップに対応可能な素子であると言える。なお、図5においても、図4と同様、添加剤添加前後での測定値の違いを明確にするため、図3に比べ縦軸(透過率)の目盛を拡大している。   FIG. 5 shows the result of measuring the transmittance with a spectroscope after irradiating the liquid crystal optical element 100 with light in the vicinity region of the red laser light of 700 to 800 nm. When the transmittance curve before the addition of the additive and the transmittance curve after the addition of the additive were compared, equivalent characteristics were obtained, and no change in optical characteristics due to the additive was observed. Considering the above results, it can be said that the element can be used for the above-described three types of optical disk (CD, DVD, BD) pickups. In FIG. 5, as in FIG. 4, the scale of the vertical axis (transmittance) is enlarged compared to FIG. 3 in order to clarify the difference in measured values before and after the addition of the additive.

このような光学特性については、液晶に含有させる添加剤としてリン系酸化防止剤を用いても同様の効果が得られる。従って、本実施形態の液晶光学素子によれば、400−800nmの広帯域の波長のレーザ光に対応することが可能となる。   With respect to such optical characteristics, the same effect can be obtained even if a phosphorus-based antioxidant is used as an additive contained in the liquid crystal. Therefore, according to the liquid crystal optical element of the present embodiment, it is possible to cope with laser light having a broad wavelength range of 400 to 800 nm.

なお、ラジカル捕捉剤としてはフェノール系酸化防止剤などもある。しかし、フェルール系は着色しやすく、光の利用効率を低下させるという問題が生じる。また、過酸化分解剤についてはイオウ系酸化防止剤などがあるが、イオウ系酸化物もまた着色しやすく、同様に光の利用効率を低下させるという問題が生じる。それに対し、本実施形態の液晶光学素子ではこのような問題は生じないため、上述したように光利用効率を低下させることなく耐光性を向上させることができる。また、上記実施形態では、ラジカル捕捉剤と過酸化分解剤とをそれぞれ単独に液晶中に添加しているが、混合して添加してもよい。   Examples of radical scavengers include phenolic antioxidants. However, the ferrule system is easy to be colored, and there arises a problem that the light utilization efficiency is lowered. Moreover, although there exist sulfur type antioxidant etc. about a peroxide decomposition agent, a sulfur type oxide also tends to color, and the problem of reducing the utilization efficiency of light similarly arises. On the other hand, the liquid crystal optical element of the present embodiment does not cause such a problem, so that the light resistance can be improved without reducing the light utilization efficiency as described above. Moreover, in the said embodiment, although the radical scavenger and the peroxide decomposition agent are added individually in the liquid crystal, respectively, you may mix and add.

ここで、この液晶光学素子を、収差補正素子として用いる場合の光ピックアップ装置200の具体的な構成例および作用について説明する。図6は、本発明を適用した光ピック
アップ装置200の構成例を示す図面である。
Here, a specific configuration example and operation of the optical pickup device 200 when the liquid crystal optical element is used as an aberration correction element will be described. FIG. 6 is a diagram showing a configuration example of an optical pickup device 200 to which the present invention is applied.

図6に示す様に、本実施形態に係る光ピックアップ装置は、青紫レーザを発振するレーザ光源101、コリメータレンズ102、偏光ビームスプリッタ103、収差補正素子として機能する液晶光学素子104、この液晶光学素子104を駆動するための駆動回路108、1/4波長板105、対物レンズ106a,集光レンズ106b、受光ダイオード107から構成されている。   As shown in FIG. 6, the optical pickup device according to this embodiment includes a laser light source 101 that oscillates a blue-violet laser, a collimator lens 102, a polarization beam splitter 103, a liquid crystal optical element 104 that functions as an aberration correction element, and the liquid crystal optical element. A driving circuit 108 for driving 104, a quarter wavelength plate 105, an objective lens 106 a, a condenser lens 106 b, and a light receiving diode 107 are included.

図6において、レーザ光源101から出射された短波長の青紫レーザ光は、コリメータレンズ102で平行光とされ、偏光ビームスプリッタ103を通過した後、液晶光学素子104に入射する。この液晶光学素子104を通過する際に、青紫レーザ光は、液晶光学素子104で変調されて青紫レーザ光の収差補正が行われる。その後、1/4波長板105を通過して、対物レンズ106aにより高密度光ディスク109に集光される。そして高密度光ディスク109にて反射された青紫レーザ光は、再び対物レンズ106a及び1/4波長板105を経て、偏光ビームスプリッタ103により光路が変更されて、集光レンズ106bを介して受光ダイオード107に集光される。   In FIG. 6, the short wavelength blue-violet laser light emitted from the laser light source 101 is converted into parallel light by the collimator lens 102, passes through the polarization beam splitter 103, and then enters the liquid crystal optical element 104. When passing through the liquid crystal optical element 104, the blue-violet laser light is modulated by the liquid crystal optical element 104, and aberration correction of the blue-violet laser light is performed. Thereafter, the light passes through the quarter-wave plate 105 and is focused on the high-density optical disk 109 by the objective lens 106a. The blue-violet laser light reflected by the high-density optical disk 109 passes through the objective lens 106a and the quarter-wave plate 105 again, the optical path is changed by the polarization beam splitter 103, and the light receiving diode 107 is passed through the condenser lens 106b. It is focused on.

1a、1b 透明基板
2a、2b 透明導電膜
3a、3b 有機配向膜
4 シール剤
5 液晶
6 添加剤
101 レーザ光源
102 コリメータレンズ
103 偏光ビームスプリッタ
104 液晶光学素子
105 1/4波長板
106a 対物レンズ
106b 集光レンズ
107 受光ダイオード
108 駆動回路
109 高密度光ディスク
DESCRIPTION OF SYMBOLS 1a, 1b Transparent substrate 2a, 2b Transparent conductive film 3a, 3b Organic alignment film 4 Sealing agent 5 Liquid crystal 6 Additive 101 Laser light source 102 Collimator lens 103 Polarizing beam splitter 104 Liquid crystal optical element 105 1/4 wavelength plate 106a Objective lens 106b Collection Optical lens 107 Light-receiving diode 108 Drive circuit 109 High-density optical disk

Claims (5)

内側に配向膜が形成された2枚の透明基板間に液晶を挟持しレーザ光を透過する液晶光学素子において、
前記液晶に青紫のレーザ光が照射されることで一次的に生じるフリーラジカルを捕捉する添加剤、またはラジカルから二次的に発生する過酸化物を無害化するための添加剤を前記液晶に含有させることを特徴とする液晶光学素子。
In a liquid crystal optical element that sandwiches liquid crystal between two transparent substrates having an alignment film formed inside and transmits laser light,
The liquid crystal contains an additive for trapping free radicals that are primarily generated by irradiating the liquid crystal with blue-violet laser light, or an additive for detoxifying peroxides that are secondarily generated from radicals. A liquid crystal optical element characterized by comprising:
前記フリーラジカルを捕捉する添加剤は、HALS(Hindered Amine Light Stabilizer)であることを特徴とする請求項1に記載の液晶光学素子。   The liquid crystal optical element according to claim 1, wherein the additive for trapping free radicals is HALS (Hindered Amine Light Stabilizer). 前記過酸化物を無害化するための添加剤は、リン系酸化防止剤であることを特徴とする請求項1に記載の液晶光学素子。   The liquid crystal optical element according to claim 1, wherein the additive for detoxifying the peroxide is a phosphorus-based antioxidant. 前記液晶光学素子を透過するレーザ光の波長領域は、400から800nmであることを特徴とする請求項1から3の何れか1項に記載の液晶光学素子。   4. The liquid crystal optical element according to claim 1, wherein a wavelength region of the laser light transmitted through the liquid crystal optical element is 400 to 800 nm. 請求項1から4の何れか1項に記載の液晶光学素子を搭載した光ピックアップ装置。   5. An optical pickup device on which the liquid crystal optical element according to claim 1 is mounted.
JP2009039059A 2009-02-23 2009-02-23 Liquid crystal optical element and optical pickup device Pending JP2010197450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009039059A JP2010197450A (en) 2009-02-23 2009-02-23 Liquid crystal optical element and optical pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009039059A JP2010197450A (en) 2009-02-23 2009-02-23 Liquid crystal optical element and optical pickup device

Publications (1)

Publication Number Publication Date
JP2010197450A true JP2010197450A (en) 2010-09-09

Family

ID=42822261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009039059A Pending JP2010197450A (en) 2009-02-23 2009-02-23 Liquid crystal optical element and optical pickup device

Country Status (1)

Country Link
JP (1) JP2010197450A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102585842A (en) * 2010-12-17 2012-07-18 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display device
KR20130121223A (en) * 2012-04-27 2013-11-06 엘지디스플레이 주식회사 Liquid crystal display device
KR20160058357A (en) * 2014-11-14 2016-05-25 삼성디스플레이 주식회사 Method of driving display panel and display apparatus for performing the same
KR20170041325A (en) * 2015-10-06 2017-04-17 엘지디스플레이 주식회사 Liquid Crystal Display Device And Method Of Fabricating The Same
TWI688729B (en) * 2016-05-13 2020-03-21 日商東芝照明技術股份有限公司 Irradiation body and irradiation device
JPWO2023002533A1 (en) * 2021-07-19 2023-01-26
US11993741B2 (en) 2019-10-10 2024-05-28 santec Holdings Corporation Liquid crystal device, optical system, spatial phase modulator, and method of manufacturing liquid crystal device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102585842B (en) * 2010-12-17 2015-12-09 Jsr株式会社 Liquid crystal aligning agent, liquid crystal orientation film and liquid crystal display device
CN102585842A (en) * 2010-12-17 2012-07-18 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display device
KR20130121223A (en) * 2012-04-27 2013-11-06 엘지디스플레이 주식회사 Liquid crystal display device
KR101947001B1 (en) * 2012-04-27 2019-02-12 엘지디스플레이 주식회사 Liquid Crystal Display Device
KR20160058357A (en) * 2014-11-14 2016-05-25 삼성디스플레이 주식회사 Method of driving display panel and display apparatus for performing the same
KR102287833B1 (en) * 2014-11-14 2021-08-10 삼성디스플레이 주식회사 Method of driving display panel and display apparatus for performing the same
KR102431683B1 (en) 2015-10-06 2022-08-11 엘지디스플레이 주식회사 Liquid Crystal Display Device And Method Of Fabricating The Same
KR20170041325A (en) * 2015-10-06 2017-04-17 엘지디스플레이 주식회사 Liquid Crystal Display Device And Method Of Fabricating The Same
TWI688729B (en) * 2016-05-13 2020-03-21 日商東芝照明技術股份有限公司 Irradiation body and irradiation device
US11993741B2 (en) 2019-10-10 2024-05-28 santec Holdings Corporation Liquid crystal device, optical system, spatial phase modulator, and method of manufacturing liquid crystal device
JPWO2023002533A1 (en) * 2021-07-19 2023-01-26
WO2023002533A1 (en) * 2021-07-19 2023-01-26 サンテック株式会社 Liquid crystal device, optical system, spatial phase modulator, and liquid crystal device manufacturing method
JP7411940B2 (en) 2021-07-19 2024-01-12 santec Holdings株式会社 optical system

Similar Documents

Publication Publication Date Title
JP2010197450A (en) Liquid crystal optical element and optical pickup device
CN106796372B (en) Liquid crystal display device having a plurality of pixel electrodes
WO2018105439A1 (en) Liquid crystal display element
US20170363891A1 (en) Liquid crystal display device
JPWO2009139476A1 (en) Polymerizable compound, photocurable composition, optical element and optical head device
WO2010047904A1 (en) Method for modulating light of photore-fractive composition without external bias voltage
JP5484753B2 (en) Photosensitive material, photosensitive material precursor and method for producing photosensitive material
KR20090025273A (en) Optical component for laser beam
JP2013152439A (en) Liquid crystal alignment film and manufacturing method of the same, and optical element using liquid crystal alignment film and optical recording medium processing apparatus
EP2239629B1 (en) Photolithography method
JP2009025489A (en) Method for manufacturing liquid crystal optical element, and optical head device
Mircea et al. Tuning NLO susceptibility in functionalized DNA
US20170315393A1 (en) Liquid crystal display device and method for manufacturing same
WO2022255066A1 (en) Recording medium, information recording method, information reading method, and composition for producing recording layer
JP2009064495A (en) Optical pickup device and liquid crystal optical element
WO2023002533A1 (en) Liquid crystal device, optical system, spatial phase modulator, and liquid crystal device manufacturing method
WO2022244429A1 (en) Nonlinear light absorption material, recording medium, method for recording information, and method for reading information
KR100753790B1 (en) Optical recording medium and optical recording method
JP7390676B1 (en) Nonlinear light absorption material, recording medium, information recording method, and information reading method
WO2022149460A1 (en) Light-absorbing material, recording medium, method for recording information, and method for reading information
Shih et al. Multimode grating using polymer-stabilized liquid crystals and novel electrodes
JP6994667B1 (en) Non-linear optical material, light absorption material, recording medium, information recording method and information reading method
CN118510743A (en) Compound, light absorbing material, nonlinear light absorbing material, recording medium, information recording method, and information reading method
WO2022149462A1 (en) Light-absorbing material, recording medium, method for recording information, and method for reading out information
WO2022149461A1 (en) Nonlinear light absorption material, recording medium, method for recording information, and method for reading information