WO2022149460A1 - Light-absorbing material, recording medium, method for recording information, and method for reading information - Google Patents
Light-absorbing material, recording medium, method for recording information, and method for reading information Download PDFInfo
- Publication number
- WO2022149460A1 WO2022149460A1 PCT/JP2021/047343 JP2021047343W WO2022149460A1 WO 2022149460 A1 WO2022149460 A1 WO 2022149460A1 JP 2021047343 W JP2021047343 W JP 2021047343W WO 2022149460 A1 WO2022149460 A1 WO 2022149460A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- light
- absorbing material
- compound
- light absorbing
- Prior art date
Links
- 239000011358 absorbing material Substances 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims description 38
- 150000001875 compounds Chemical class 0.000 claims abstract description 72
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 9
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 7
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 7
- 229910052794 bromium Inorganic materials 0.000 claims abstract description 6
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 6
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 6
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 6
- 229910052740 iodine Inorganic materials 0.000 claims abstract description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 5
- 230000003287 optical effect Effects 0.000 claims description 44
- 125000000217 alkyl group Chemical group 0.000 claims description 23
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 14
- 125000005843 halogen group Chemical group 0.000 claims description 13
- 125000003545 alkoxy group Chemical group 0.000 claims description 12
- 125000000565 sulfonamide group Chemical group 0.000 claims description 11
- 125000004423 acyloxy group Chemical group 0.000 claims description 10
- 125000005035 acylthio group Chemical group 0.000 claims description 10
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 10
- 125000004390 alkyl sulfonyl group Chemical group 0.000 claims description 10
- 125000004414 alkyl thio group Chemical group 0.000 claims description 10
- 125000003368 amide group Chemical group 0.000 claims description 10
- 125000002521 alkyl halide group Chemical group 0.000 claims description 9
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 9
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 9
- 125000001302 tertiary amino group Chemical group 0.000 claims description 9
- 125000002252 acyl group Chemical group 0.000 claims description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 8
- 125000002560 nitrile group Chemical group 0.000 claims description 8
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 8
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 claims description 8
- 125000000542 sulfonic acid group Chemical group 0.000 claims description 8
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 8
- 229930195735 unsaturated hydrocarbon Natural products 0.000 claims description 8
- 125000006575 electron-withdrawing group Chemical group 0.000 claims description 7
- 125000004429 atom Chemical group 0.000 claims description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 6
- 230000031700 light absorption Effects 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 description 75
- 229940126062 Compound A Drugs 0.000 description 36
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 36
- 239000000463 material Substances 0.000 description 26
- -1 2,3-dimethylhexyl group Chemical group 0.000 description 17
- 230000015654 memory Effects 0.000 description 10
- 239000011342 resin composition Substances 0.000 description 10
- 239000000523 sample Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 6
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 6
- 239000011368 organic material Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000005160 1H NMR spectroscopy Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- LNHGLSRCOBIHNV-UHFFFAOYSA-N 4-[tris(4-aminophenyl)methyl]aniline Chemical compound C1=CC(N)=CC=C1C(C=1C=CC(N)=CC=1)(C=1C=CC(N)=CC=1)C1=CC=C(N)C=C1 LNHGLSRCOBIHNV-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 230000005281 excited state Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- 239000012472 biological sample Substances 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- JNGZXGGOCLZBFB-IVCQMTBJSA-N compound E Chemical compound N([C@@H](C)C(=O)N[C@@H]1C(N(C)C2=CC=CC=C2C(C=2C=CC=CC=2)=N1)=O)C(=O)CC1=CC(F)=CC(F)=C1 JNGZXGGOCLZBFB-IVCQMTBJSA-N 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- ZRSNZINYAWTAHE-UHFFFAOYSA-N p-methoxybenzaldehyde Chemical compound COC1=CC=C(C=O)C=C1 ZRSNZINYAWTAHE-UHFFFAOYSA-N 0.000 description 2
- 238000007637 random forest analysis Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- VAVHMEQFYYBAPR-ITWZMISCSA-N (e,3r,5s)-7-[4-(4-fluorophenyl)-1-phenyl-2-propan-2-ylpyrrol-3-yl]-3,5-dihydroxyhept-6-enoic acid Chemical compound CC(C)C1=C(\C=C\[C@@H](O)C[C@@H](O)CC(O)=O)C(C=2C=CC(F)=CC=2)=CN1C1=CC=CC=C1 VAVHMEQFYYBAPR-ITWZMISCSA-N 0.000 description 1
- KZMAWJRXKGLWGS-UHFFFAOYSA-N 2-chloro-n-[4-(4-methoxyphenyl)-1,3-thiazol-2-yl]-n-(3-methoxypropyl)acetamide Chemical compound S1C(N(C(=O)CCl)CCCOC)=NC(C=2C=CC(OC)=CC=2)=C1 KZMAWJRXKGLWGS-UHFFFAOYSA-N 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- OTXINXDGSUFPNU-UHFFFAOYSA-N 4-tert-butylbenzaldehyde Chemical compound CC(C)(C)C1=CC=C(C=O)C=C1 OTXINXDGSUFPNU-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 1
- 230000005374 Kerr effect Effects 0.000 description 1
- 230000005697 Pockels effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000006612 decyloxy group Chemical group 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003707 hexyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000000879 imine group Chemical group 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 125000002960 margaryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001196 nonadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000006611 nonyloxy group Chemical group 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005447 octyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000001820 oxy group Chemical group [*:1]O[*:2] 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002958 pentadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004115 pentoxy group Chemical group [*]OC([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C251/00—Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
- C07C251/02—Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
- C07C251/24—Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to carbon atoms of six-membered aromatic rings
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/2403—Layers; Shape, structure or physical properties thereof
- G11B7/24035—Recording layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/2403—Layers; Shape, structure or physical properties thereof
- G11B7/24035—Recording layers
- G11B7/24044—Recording layers for storing optical interference patterns, e.g. holograms; for storing data in three dimensions, e.g. volume storage
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
Definitions
- This disclosure relates to a light absorbing material, a recording medium, an information recording method, and an information reading method.
- non-linear optical materials materials having a non-linear optical effect are called non-linear optical materials.
- the nonlinear optical effect means that when a substance is irradiated with strong light such as laser light, an optical phenomenon proportional to the square or the square of the electric field of the irradiation light occurs in the substance.
- Optical phenomena include absorption, reflection, scattering, light emission and the like.
- Examples of the second-order nonlinear optical effect proportional to the square of the electric field of the irradiation light include second harmonic generation (SHG), Pockels effect, and parametric effect.
- Examples of the third-order nonlinear optical effect proportional to the cube of the electric field of the irradiation light include two-photon absorption, multiphoton absorption, third harmonic generation (THG), and the Kerr effect.
- multiphoton absorption such as two-photon absorption may be referred to as non-linear light absorption.
- a material capable of performing non-linear light absorption may be referred to as a non-linear light absorption material.
- a material capable of absorbing two-photons may be referred to as a two-photon absorbing material.
- nonlinear optical materials As a nonlinear optical material, an inorganic material capable of easily preparing a single crystal has been developed. In recent years, the development of nonlinear optical materials made of organic materials is expected. Examples of the nonlinear optical material made of an organic material include an organic dye. Organic materials not only have a high degree of freedom in design compared to inorganic materials, but also have large nonlinear optical constants. Moreover, in organic materials, the non-linear response is fast. In the present specification, a nonlinear optical material including an organic material may be referred to as an organic nonlinear optical material.
- the light absorbing material in one aspect of the present disclosure is It contains a compound represented by the following formula (1) as a main component.
- R 1 to R 28 contain at least one atom selected from the group consisting of H, C, N, O, F, P, S, Cl, I and Br independently of each other. ..
- the present disclosure provides a novel light absorbing material having two-photon absorption characteristics for light having a wavelength in the short wavelength range.
- FIG. 1A is a flowchart relating to a method of recording information using a recording medium including a light absorbing material according to an embodiment of the present disclosure.
- FIG. 1B is a flowchart relating to a method of reading information using a recording medium including a light absorbing material according to an embodiment of the present disclosure.
- FIG. 2 is a graph showing a 1 H-NMR spectrum of the compound of Example 1.
- FIG. 3 is a graph showing a 1 H-NMR spectrum of the compound of Example 2.
- Two-photon absorption means a phenomenon in which a compound absorbs two photons almost simultaneously and transitions to an excited state.
- Non-resonant two-photon absorption and resonant two-photon absorption are known as two-photon absorption.
- Non-resonant two-photon absorption means two-photon absorption in the wavelength range where the absorption band of one photon does not exist.
- the compound absorbs two photons almost simultaneously and transitions to a higher-order excited state.
- the compound In resonant two-photon absorption, the compound absorbs the first photon and then further absorbs the second photon, thereby transitioning to a higher-order excited state. In resonant two-photon absorption, the compound sequentially absorbs two photons.
- the amount of light absorbed by the compound is usually proportional to the square of the irradiation light intensity. Therefore, for example, for the light focused by the lens, two-photon absorption by the compound can be generated only in the vicinity of the focal point where the light intensity is high. That is, in a sample containing a two-photon absorption material, the compound can be excited only at a desired position.
- the compound that causes non-resonant two-photon absorption brings extremely high spatial resolution, its application to applications such as a recording layer of a three-dimensional optical memory and a photocurable resin composition for stereolithography is being studied. ..
- the two-photon absorption cross section (GM value) is used as an index indicating the efficiency of two-photon absorption.
- the unit of the two-photon absorption cross-sectional area is GM (10 -50 cm 4 ⁇ s ⁇ molecule -1 ⁇ photon -1 ). So far, many compounds having a two-photon absorption cross section as large as 500 GM have been reported (for example, Non-Patent Document 1). However, in most reports, the two-photon absorption cross section is measured using laser light with wavelengths longer than 600 nm. In particular, near infrared rays having a wavelength longer than 750 nm may be used as the laser light.
- a material having a large two-photon absorption cross section is required when irradiated with a laser beam having a shorter wavelength.
- laser light having a short wavelength is used in order to realize a finer focused spot from the viewpoint of the diffraction limit of the focused laser light.
- the recording density can be dramatically improved by using a two-photon absorption material having extremely high spatial resolution.
- the Blu-ray (registered trademark) disc standard uses laser light having a center wavelength of 405 nm. Therefore, if a compound having a large two-photon absorption cross section is developed for light in the same wavelength range as this laser light, it can greatly contribute to the development of industry.
- Patent Document 1 discloses a compound having a wavelength of 400 nm or more and 410 nm or less and exhibiting nonlinear light absorption with respect to pulsed laser light having high intensity.
- this compound three aromatic hydrocarbons are bonded to the nitrogen atom. That is, this compound has a tri-branched structure centered on a nitrogen atom.
- this compound has not yet been put into practical use at this stage and is not out of the scope of research.
- the short wavelength region means a wavelength region including 405 nm, and means, for example, a wavelength region of 390 nm or more and 420 nm or less.
- the compound represented by the formula (1) has a large two-photon absorption cross section with respect to light having a wavelength of around 405 nm.
- the light absorbing material according to the first aspect of the present disclosure is It contains a compound represented by the following formula (1) as a main component.
- R 1 to R 28 contain at least one atom selected from the group consisting of H, C, N, O, F, P, S, Cl, I and Br independently of each other. ..
- the light absorbing material has excellent two-photon absorption characteristics with respect to light having a wavelength in the short wavelength range.
- the R 1 to the R 28 are independent of each other, a hydrogen atom, a halogen atom, an alkyl group, an alkyl halide group, and an unsaturated group.
- Hydrocarbon group hydroxyl group, carboxyl group, alkoxycarbonyl group, acyl group, amide group, nitrile group, alkoxy group, acyloxy group, thiol group, alkylthio group, sulfonic acid group, acylthio group, alkylsulfonyl group, sulfonamide group, It may be a primary amino group, a secondary amino group, a tertiary amino group or a nitro group.
- At least one selected from the group consisting of R 24 to R 26 may be an electron donating group or an electron withdrawing group.
- the electron donating group may be an alkyl group or an alkoxy group.
- the electron donating group may be -C (CH 3 ) 3 or -OCH 3 .
- the compound in the light absorbing material according to the first or second aspect, may be represented by the following formula (2).
- at least one selected from the group consisting of R 9 , R 14 , R 19 and R 24 is a hydrogen atom, a halogen atom, an alkyl group, an alkyl halide group, a hydroxyl group, an alkoxycarbonyl group, and the like.
- Acrylic group amide group, nitrile group, alkoxy group, acyloxy group, thiol group, alkylthio group, sulfonic acid group, acylthio group, alkylsulfonyl group, sulfonamide group, primary amino group, secondary amino group, tertiary amino group. Or it is a nitro group.
- the compound has a light absorbing effect.
- the light absorbing material according to any one of the first to seventh aspects may be used for a device using light having a wavelength of 390 nm or more and 420 nm or less.
- the light absorbing material has excellent two-photon absorption characteristics with respect to light having a wavelength in the short wavelength range.
- This light absorbing material is suitable for applications of devices that utilize light having a wavelength of 390 nm or more and 420 nm or less.
- the recording medium according to the ninth aspect of the present disclosure is A recording layer including a light absorbing material according to any one of the first to eighth embodiments is provided.
- the light absorbing material has excellent two-photon absorption characteristics with respect to light having a wavelength in the short wavelength range.
- a recording medium containing such a light absorbing material can record information at a high recording density.
- the method for recording information according to the tenth aspect of the present disclosure is as follows. Preparing a light source that emits light with a wavelength of 390 nm or more and 420 nm or less, By condensing the light from the light source and irradiating the recording layer in the recording medium according to the ninth aspect, including.
- the light absorbing material has excellent two-photon absorption characteristics with respect to light having a wavelength in the short wavelength range. According to the information recording method using a recording medium including such a light absorbing material, information can be recorded with a high recording density.
- the method for reading information according to the eleventh aspect of the present disclosure is, for example, a method for reading information recorded by the recording method according to the tenth aspect.
- the reading method is By irradiating the recording layer in the recording medium with light, the optical characteristics of the recording layer can be measured. Determining whether or not information is recorded in the recording area based on the optical characteristics. including.
- the optical characteristic may be the intensity of light reflected by the recording layer.
- the recording layer in which the information is recorded can be easily identified.
- the light absorbing material of the present embodiment contains the compound A represented by the following formula (1).
- R 1 to R 28 contain at least one atom selected from the group consisting of H, C, N, O, F, P, S, Cl, I and Br independently of each other.
- R 1 to R 28 are independent of each other and have a hydrogen atom, a halogen atom, an alkyl group, an alkyl halide group, an unsaturated hydrocarbon group, a hydroxyl group, a carboxyl group, an alkoxycarbonyl group, an acyl group, an amide group and a nitrile group.
- R 1 to R 28 are independent of each other, and have a hydrogen atom, a halogen atom, an alkyl group, an alkyl halide group, an alkoxycarbonyl group, an acyl group, an amide group, a nitrile group, an alkoxy group, an acyloxy group, an alkylthio group and a sulfonic acid.
- It may be a group, an acylthio group, an alkylsulfonyl group, a sulfonamide group, a primary amino group, a secondary amino group, a tertiary amino group or a nitro group.
- halogen atom examples include F, Cl, Br, I and the like.
- a halogen atom may be referred to as a halogen group.
- the number of carbon atoms of the alkyl group is not particularly limited, and is, for example, 1 or more and 20 or less.
- the number of carbon atoms of the alkyl group may be 1 or more and 10 or less, or 1 or more and 5 or less, from the viewpoint that compound A can be easily synthesized.
- the alkyl group may be linear, branched chain, or cyclic.
- the at least one hydrogen atom contained in the alkyl group may be substituted with a group containing at least one atom selected from the group consisting of N, O, P and S.
- the alkyl group includes a methyl group, an ethyl group, a propyl group, a butyl group, a 2-methylbutyl group, a pentyl group, a hexyl group, a 2,3-dimethylhexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group and an undecyl group.
- Dodecyl group tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group, 2-methoxybutyl group, 6-methoxyhexyl group and the like.
- the halogenated alkyl group means a group in which at least one hydrogen atom contained in the alkyl group is substituted with a halogen atom.
- the alkyl halide group may be a group in which all hydrogen atoms contained in the alkyl group are substituted with halogen atoms. Examples of the alkyl group include those described above. A specific example of an alkyl halide group is -CF 3 .
- Unsaturated hydrocarbon groups include unsaturated bonds such as carbon-carbon double bonds and carbon-carbon triple bonds.
- the number of unsaturated bonds contained in the unsaturated hydrocarbon group is, for example, 1 or more and 5 or less.
- the number of carbon atoms of the unsaturated hydrocarbon group is not particularly limited, and may be, for example, 2 or more and 20 or less, 2 or more and 10 or less, or 2 or more and 5 or less.
- the unsaturated hydrocarbon group may be linear, branched or cyclic, or cyclic.
- the at least one hydrogen atom contained in the unsaturated hydrocarbon group may be substituted with a group containing at least one atom selected from the group consisting of N, O, P and S. Examples of the unsaturated hydrocarbon group include a vinyl group and an ethynyl group.
- the hydroxyl group is represented by -OH.
- the carboxyl group is represented by -COOH.
- the alkoxycarbonyl group is represented by -COOR a .
- the acyl group is represented by -COR b .
- the amide group is represented by -CONR c R d .
- the nitrile group is represented by -CN.
- the alkoxy group is represented by ⁇ OR e .
- the acyloxy group is represented by -OCOR f .
- the thiol group is represented by -SH.
- the alkylthio group is represented by -SR g .
- the sulfonic acid group is represented by -SO 3H .
- the acylthio group is represented by -SCOR h .
- the alkylsulfonyl group is represented by -SO 2 Ri.
- the sulfonamide group is represented by ⁇ SO 2 NR j R k .
- the primary amino group is represented by -NH 2 .
- the secondary amino group is represented by -NHR l .
- the tertiary amino group is represented by ⁇ NR m R n .
- the nitro group is represented by -NO 2 .
- R a to R n are alkyl groups independent of each other. Examples of the alkyl group include those described above. However, the amide groups R c and R d and the sulfonamide groups R j and R k may be hydrogen atoms independently of each other.
- alkoxycarbonyl group examples are -COOCH 3 , -COO (CH 2 ) 3 CH 3 and -COO (CH 2 ) 7 CH 3 .
- a specific example of an acyl group is -COCH 3 .
- a specific example of an amide group is -CONH 2 .
- Specific examples of the alkoxy group include methoxy group, ethoxy group, 2-methoxyethoxy group, butoxy group, 2-methylbutoxy group, 2-methoxybutoxy group, 4-ethylthiobutoxy group, pentyloxy group, hexyloxy group and heptyl.
- a specific example of the acyloxy group is -OCOCH 3 .
- a specific example of an alkylthio group is -SCH 3 .
- a specific example of an acylthio group is -SCOCH 3 .
- a specific example of an alkylsulfonyl group is -SO 2 CH 3 .
- a specific example of a sulfonamide group is -SO 2 NH 2 .
- a specific example of a tertiary amino group is -N (CH 3 ) 2 .
- each of R 1 to R 8 , R 12 , R 13 , R 17 , R 18 , R 22 , R 23 , R 27 and R 28 may have a small volume. At this time, steric hindrance is less likely to occur in R 1 , R 8 , R 12 , R 13 , R 17 , R 18 , R 22 , R 23 , R 27 , and R 28 . Therefore, in compound A, the flatness of the ⁇ -electron conjugated system is improved, so that compound A tends to have a large two-photon absorption cross section.
- Each of R 1 to R 8 , R 12 , R 13 , R 17 , R 18 , R 22 , R 23 , R 27 and R 28 may be a hydrogen atom.
- At least one selected from the group consisting of R 9 to R 11 , R 14 to R 16 , R 19 to R 21 , and R 24 to R 26 is an electron donating group or an electron withdrawing group. May be.
- R 9 to R 11 , R 14 to R 16 , R 19 to R 21 , and R 24 to R 26 the greater the electron donating or electron withdrawing property, the greater the electron bias in compound A. ..
- the electron bias in the compound A is large, the electrons tend to move significantly in the compound A when the compound A is excited. Such compound A may have better two-photon absorption properties.
- each of R 10 , R 11 , R 15 , R 16 , R 20 , R 21 , R 25 and R 26 may be a hydrogen atom.
- At least one selected from the group consisting of R 9 , R 14 , R 19 and R 24 may be an electron donating group or an electron withdrawing group.
- the electron-withdrawing group means, for example, a substituent in which the ⁇ p value, which is a substituent constant in the Hammett equation, is a positive value.
- the electron-withdrawing group includes a halogen atom, a carboxyl group, a nitro group, a thiol group, a sulfonic acid group, an acyloxy group, an alkylthio group, an alkylsulfonyl group, a sulfonamide group, an acyl group, an acylthio group, an alkoxycarbonyl group and an alkyl halide.
- the group etc. can be mentioned.
- the electron donating group means, for example, a substituent in which the above ⁇ p value is a negative value.
- Examples of the electron donating group include an alkyl group, an alkoxy group, a hydroxyl group and an amino group.
- the electron donating group may be an alkyl group or an alkoxy group, and may be —C (CH 3 ) 3 or —OCH 3 .
- Compound A may be compound B represented by the following formula (2).
- At least one selected from the group consisting of R 9 , R 14 , R 19 and R 24 is a hydrogen atom, a halogen atom, an alkyl group, an alkyl halide group, a hydroxyl group, an alkoxycarbonyl group and an acyl.
- compound A includes compound C represented by the following formula (3).
- the plurality of Z's are the same as each other.
- the plurality of Zs correspond to R 9 , R 14 , R 19 and R 24 of the equation (1), respectively.
- a specific example of Z in the formula (3) is shown in Table 1 below.
- the plurality of Zs may be -C (CH 3 ) 3 or -OCH 3 .
- the method for synthesizing the compound C represented by the formula (3) is not particularly limited.
- Compound C can be synthesized, for example, by the following method.
- compound D represented by the following formula (4) is prepared.
- Compound D is tetrakis (4-aminophenyl) methane.
- the compound D is subjected to a dehydration condensation reaction with the compound E having an aldehyde group.
- the structure of compound E is determined according to the structure of the target compound.
- the conditions of the dehydration condensation reaction can be appropriately adjusted according to, for example, compounds D and E.
- Compound A represented by the formula (1) has excellent two-photon absorption characteristics with respect to light having a wavelength in the short wavelength range. As an example, when compound A is irradiated with light having a wavelength of 405 nm, two-photon absorption occurs remarkably in compound A.
- the two-photon absorption cross section of compound A for light having a wavelength of 405 nm may be 2000 GM or more, 4000 GM or more, 10000 GM or more, 15000 GM or more, 20000 GM or more. It may be the above.
- the upper limit of the two-photon absorption cross section of compound A is not particularly limited, and is, for example, 300,000 GM.
- the two-photon absorption cross section can be measured by, for example, the Z scan method described in J. Opt. Soc. Am. B, 2003, Vol. 20, p. 529. The Z-scan method is widely used as a method for measuring nonlinear optical constants.
- the measurement sample In the Z scan method, the measurement sample is moved along the irradiation direction of the beam in the vicinity of the focal point where the laser beam is focused. At this time, the change in the amount of light transmitted through the measurement sample is recorded.
- the power density of the incident light changes depending on the position of the measurement sample. Therefore, when the measurement sample absorbs non-linear light, the amount of transmitted light is attenuated when the measurement sample is located near the focal point of the laser beam.
- the two-photon absorption cross-sectional area can be calculated by fitting the change in the amount of transmitted light to the theoretical curve predicted from the intensity of the incident light, the thickness of the measurement sample, the concentration of compound A in the measurement sample, and the like. ..
- compound A When compound A absorbs two photons, compound A absorbs about twice as much energy as the light irradiated to compound A.
- the wavelength of light having about twice the energy of light having a wavelength of 405 nm is, for example, 200 nm. That is, when compound A is irradiated with light having a wavelength of around 200 nm, monophoton absorption may occur in compound A. Further, in compound A, one-photon absorption may occur for light having a wavelength near the wavelength range in which two-photon absorption occurs.
- the light absorbing material of the present embodiment may contain compound A represented by the formula (1) as a main component.
- the "main component” means the component contained most in the light absorbing material in terms of weight ratio.
- the light absorbing material is, for example, substantially composed of compound A. By “substantially consisting of” is meant eliminating other components that alter the essential characteristics of the mentioned material. However, the light absorbing material may contain impurities in addition to compound A.
- the light-absorbing material of the present embodiment functions as a multi-photon absorbing material such as a two-photon absorbing material. In particular, since the light absorbing material of the present embodiment contains the compound A represented by the formula (1), it has excellent two-photon absorption characteristics with respect to light having a wavelength in the short wavelength range.
- the light absorbing material of the present embodiment is used, for example, in a device that utilizes light having a wavelength in a short wavelength range. That is, the present disclosure is a light absorption material used for a device using light having a wavelength of 390 nm or more and 420 nm or less, and includes a compound A represented by the formula (1).
- Provide materials. Examples of such a device include a recording medium, a modeling machine, a fluorescence microscope, and the like. Examples of the recording medium include a three-dimensional optical memory. A specific example of a three-dimensional optical memory is a three-dimensional optical disk. Examples of the modeling machine include an optical modeling machine such as a 3D printer. Examples of the fluorescence microscope include a two-photon fluorescence microscope.
- the light utilized in these devices has a high photon density, for example, near its focal point.
- the power density near the focal point of the light used in the device is, for example, 0.1 W / cm 2 or more and 1.0 ⁇ 10 20 W / cm 2 or less.
- the power density near the focal point of this light may be 1.0 W / cm 2 or more, 1.0 ⁇ 10 2 W / cm 2 or more, and 1.0 ⁇ 10 5 W / cm. It may be 2 or more.
- a femtosecond laser such as a titanium sapphire laser or a pulse laser having a pulse width of picoseconds to nanoseconds such as a semiconductor laser can be used.
- the recording medium includes, for example, a thin film called a recording layer.
- information is recorded on the recording layer.
- the thin film as a recording layer contains the light absorbing material of the present embodiment. That is, the present disclosure provides a recording medium provided with a light absorbing material containing the compound A represented by the formula (1) from the other aspect thereof.
- the recording layer may further contain a polymer compound that functions as a binder, in addition to the light absorbing material.
- the recording medium may include a dielectric layer in addition to the recording layer.
- the recording medium includes, for example, a plurality of recording layers and a plurality of dielectric layers. In the recording medium, a plurality of recording layers and a plurality of dielectric layers may be alternately laminated.
- FIG. 1A is a flowchart relating to a method of recording information using the above-mentioned recording medium.
- a light source that emits light having a wavelength of 390 nm or more and 420 nm or less is prepared.
- a femtosecond laser such as a titanium sapphire laser can be used.
- a pulse laser having a pulse width of picoseconds to nanoseconds such as a semiconductor laser may be used.
- step S12 the light from the light source is condensed by a lens or the like and irradiated to the recording layer in the recording medium.
- the light from the light source is condensed by a lens or the like and irradiated to the recording area in the recording medium.
- the power density near the focal point of this light is, for example, 0.1 W / cm 2 or more and 1.0 ⁇ 10 20 W / cm 2 or less.
- the power density near the focal point of this light may be 1.0 W / cm 2 or more, 1.0 ⁇ 10 2 W / cm 2 or more, and 1.0 ⁇ 10 5 W / cm. It may be 2 or more.
- the recording area means a spot that exists in the recording layer and can record information by being irradiated with light.
- Physical or chemical changes occur in the recording area irradiated with the above light. For example, heat is generated when compound A, which has absorbed light, returns from the transition state to the ground state. This heat alters the binder present in the recording area. This changes the optical characteristics of the recording area. For example, the intensity of light reflected in the recording area, the reflectance of light in the recording area, the absorption rate of light in the recording area, the refractive index of light in the recording area, and the like change. In the recording area irradiated with light, the intensity of the fluorescent light emitted from the recording area or the wavelength of the fluorescent light may change. As a result, information can be recorded in the recording layer, specifically, the recording area (step S13).
- FIG. 1B is a flowchart relating to a method of reading information using the above-mentioned recording medium.
- the recording layer on the recording medium is irradiated with light. Specifically, the recording area on the recording medium is irradiated with light.
- the light used in step S21 may be the same as the light used for recording information on the recording medium, or may be different.
- the optical characteristics of the recording layer are measured. Specifically, the optical characteristics of the recording area are measured. In step S22, for example, the intensity of the fluorescent light emitted from the recording area is measured.
- the optical characteristics of the recording area include the intensity of the light reflected in the recording area, the light reflectance in the recording area, the absorption rate of the light in the recording area, the refractive index of the light in the recording area, and the recording area.
- the intensity of the emitted fluorescent light, the wavelength of the fluorescent light, and the like may be measured.
- step S23 information is read from the recording layer, specifically, the recording area.
- the recording area in which the information is recorded can be searched by the following method.
- the optical characteristics of the area irradiated with light are measured.
- the optical characteristics include, for example, the intensity of fluorescent light emitted from the region, the intensity of light reflected in the region, the reflectance of light in the region, the absorption rate of light in the region, and the optical characteristics in the region. Examples thereof include the refractive index of light and the wavelength of fluorescent light emitted from the region. Based on the measured optical characteristics, it is determined whether or not the area irradiated with light is the recording area.
- the intensity of the fluorescent light emitted from the region is equal to or less than a specific value, it is determined that the region is a recording region.
- the intensity of the fluorescent light exceeds a specific value it is determined that the region is not the recording region.
- the method for determining whether or not the area irradiated with light is the recording area is not limited to the above method. For example, when the intensity of the fluorescent light emitted from the region exceeds a specific value, it may be determined that the region is a recording region. Further, when the intensity of the fluorescent light emitted from the region is not more than a specific value, it may be determined that the region is not the recording region. If it is determined that the area is not the recording area, the same operation is performed for other areas of the recording medium. This makes it possible to search for a recording area.
- the information recording method and reading method using the above-mentioned recording medium can be performed by, for example, a known recording device.
- the recording device includes, for example, a light source that irradiates a recording area on a recording medium with light, a measuring instrument that measures the optical characteristics of the recording area, and a controller that controls the light source and the measuring instrument.
- the modeling machine performs modeling by, for example, irradiating a photocurable resin composition with light and curing the resin composition.
- the photocurable resin composition for stereolithography contains the light absorbing material of the present embodiment.
- the photocurable resin composition contains, for example, a polymerizable compound and a polymerization initiator in addition to the light absorbing material.
- the photocurable resin composition may further contain an additive such as a binder resin.
- the photocurable resin composition may contain an epoxy resin.
- a biological sample containing a fluorescent dye material can be irradiated with light, and the fluorescence emitted from the dye material can be observed.
- the fluorescent dye material to be added to the biological sample contains the light absorbing material of the present embodiment.
- the compound used in the examples is referred to as "Compound (X) -Y".
- X means the structural formula of the compound.
- Y means the kind of Z in the formula (X).
- the compound (3) -1 means a compound represented by the formula (3) and in which Z is the substituent 1 ( ⁇ C (CH 3 ) 3 ) shown in Table 1.
- Example 1 corresponds to a compound in which a plurality of Z is ⁇ C (CH 3 ) 3 with respect to the compound C represented by the above-mentioned formula (3).
- the compound of Example 1 was identified by 1 H-NMR.
- FIG. 2 is a graph showing a 1 H-NMR spectrum of the compound of Example 1.
- the 1 H-NMR spectrum of the compound of Example 1 was as follows.
- Example 2 [Compound (3) -2] First, in a 100 mL eggplant-shaped flask, tetrakis (4-aminophenyl) methane (manufactured by Tokyo Chemical Industry Co., Ltd.) and 4-methoxybenzaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.) as raw materials, and ethanol (Fujifilm Wako Junyaku Co., Ltd.) as a solvent. The raw material was dissolved in a solvent. Next, the obtained solution was heated under reflux for 12 hours while stirring with a stirrer. This produced a reactant. Next, solid-liquid separation was performed on this reaction product. The obtained solid was vacuum dried to obtain the compound of Example 2.
- the compound of Example 2 corresponds to a compound in which a plurality of Z is ⁇ OCH 3 with respect to the compound C represented by the above-mentioned formula (3).
- the compound of Example 2 was identified by 1 H-NMR.
- FIG. 3 is a graph showing a 1 H-NMR spectrum of the compound of Example 2.
- the two-photon absorption cross section of the synthesized compound was measured for light having a wavelength of 405 nm.
- the two-photon absorption cross section was measured using the Z scan method described in J. Opt. Soc. Am. B, 2003, Vol. 20, p. 529.
- a titanium sapphire pulse laser was used as a light source for measuring the two-photon absorption cross section.
- the sample was irradiated with a second high frequency of a titanium sapphire pulse laser.
- the pulse width of the laser was 80 fs.
- the laser repeat frequency was 1 kHz.
- the average power of the laser was varied in the range of 0.01 mW or more and 0.08 mW or less.
- the light from the laser was light with a wavelength of 405 nm. Specifically, the light from the laser had a center wavelength of 402 nm or more and 404 nm or less. The full width at half maximum of the light from the laser was 4 nm.
- the two-photon absorption cross section was predicted by machine learning for the synthesized compound and other compounds having a Z type different from that of the synthesized compound. Specifically, first, about 70 kinds of compounds having a known two-photon absorption cross section were prepared as learning data. Half of these compounds were used as training data and the other half were used as test data. Based on these training data, the two-photon absorption cross section was predicted by random forest, and the prediction accuracy was evaluated. Cheminformatics software RDkit was used for the random forest. As a result, a prediction model with a coefficient of determination of R 2 of 0.75 or more was obtained. Using this prediction model, the two-photon absorption cross section was predicted for the synthesized compound and other compounds having a Z type different from that of the synthesized compound.
- Table 2 shows the measured and predicted values of the two-photon absorption cross section obtained by the above method.
- "No Data” means that no data has been acquired.
- the two-photon absorption cross-sectional area for light having a wavelength of 405 nm exceeded 2000 GM.
- the compounds of Examples 1 to 15 had a very large two-photon absorption cross section. From this result, it can be seen that the compound A represented by the formula (1) has excellent two-photon absorption characteristics with respect to light having a wavelength in the short wavelength range.
- the compound A represented by the formula (1) is a tetra-substituted carbon having an expanded ⁇ -electron conjugated system and has an imine group in the molecular skeleton. Due to such a structure, compound A is presumed to have excellent two-photon absorption properties.
- the light absorbing material of the present disclosure can be used for applications such as a recording layer of a three-dimensional optical memory and a photocurable resin composition for stereolithography.
- the light absorbing material of the present disclosure tends to have excellent two-photon absorption characteristics with respect to light having a wavelength in the short wavelength range. Therefore, the light absorbing material of the present disclosure can realize extremely high spatial resolution in applications such as a three-dimensional optical memory and a modeling machine. According to the light absorbing material of the present disclosure, it is possible to absorb two photons with a laser beam having a smaller light intensity than that of a conventional light absorbing material.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
A light-absorbing material in one embodiment of the present disclosure contains, as a main component, the compound represented by formula 1 below. In formula 1, R1 through R28 contain, independently from one another, at least one atom selected from the group consisting of H, C, N, O, F, P, S, Cl, I, and Br.
Description
本開示は、光吸収材料、記録媒体、情報の記録方法及び情報の読出方法に関する。
This disclosure relates to a light absorbing material, a recording medium, an information recording method, and an information reading method.
光吸収材料などの光学材料のうち、非線形光学(Non-Linear Optical)効果を有する材料は、非線形光学材料と呼ばれる。非線形光学効果とは、レーザー光などの強い光が物質に照射された場合に、その物質において、照射光の電場の2乗又は2乗より高次に比例した光学現象が生じることを意味する。光学現象としては、吸収、反射、散乱、発光などが挙げられる。照射光の電場の2乗に比例する二次の非線形光学効果としては、第二高調波発生(SHG)、ポッケルス効果、パラメトリック効果などが挙げられる。照射光の電場の3乗に比例する三次の非線形光学効果としては、二光子吸収、多光子吸収、第三高調波発生(THG)、カー効果などが挙げられる。本明細書では、二光子吸収などの多光子吸収を非線形光吸収と呼ぶことがある。非線形光吸収を行うことができる材料を非線形光吸収材料と呼ぶことがある。特に、二光子吸収を行うことができる材料を二光子吸収材料と呼ぶことがある。
Among optical materials such as light absorbing materials, materials having a non-linear optical effect are called non-linear optical materials. The nonlinear optical effect means that when a substance is irradiated with strong light such as laser light, an optical phenomenon proportional to the square or the square of the electric field of the irradiation light occurs in the substance. Optical phenomena include absorption, reflection, scattering, light emission and the like. Examples of the second-order nonlinear optical effect proportional to the square of the electric field of the irradiation light include second harmonic generation (SHG), Pockels effect, and parametric effect. Examples of the third-order nonlinear optical effect proportional to the cube of the electric field of the irradiation light include two-photon absorption, multiphoton absorption, third harmonic generation (THG), and the Kerr effect. In the present specification, multiphoton absorption such as two-photon absorption may be referred to as non-linear light absorption. A material capable of performing non-linear light absorption may be referred to as a non-linear light absorption material. In particular, a material capable of absorbing two-photons may be referred to as a two-photon absorbing material.
非線形光学材料について、これまでに多くの研究が盛んに進められている。特に、非線形光学材料として、単結晶を容易に調製できる無機材料が開発されている。近年では、有機材料からなる非線形光学材料の開発が期待されている。有機材料からなる非線形光学材料としては、有機色素などが挙げられる。有機材料は、無機材料と比較して、高い設計自由度を有するだけでなく、大きい非線形光学定数を有する。さらに、有機材料では、非線形応答が高速で行われる。本明細書では、有機材料を含む非線形光学材料を有機非線形光学材料と呼ぶことがある。
A lot of research has been actively carried out so far on nonlinear optical materials. In particular, as a nonlinear optical material, an inorganic material capable of easily preparing a single crystal has been developed. In recent years, the development of nonlinear optical materials made of organic materials is expected. Examples of the nonlinear optical material made of an organic material include an organic dye. Organic materials not only have a high degree of freedom in design compared to inorganic materials, but also have large nonlinear optical constants. Moreover, in organic materials, the non-linear response is fast. In the present specification, a nonlinear optical material including an organic material may be referred to as an organic nonlinear optical material.
短波長域の波長を有する光に対して二光子吸収特性を有する新たな光吸収材料が求められている。
There is a demand for a new light absorbing material having two-photon absorption characteristics for light having a wavelength in the short wavelength range.
本開示の一態様における光吸収材料は、
下記式(1)で表される化合物を主成分として含む。
前記式(1)において、R1からR28は、互いに独立して、H、C、N、O、F、P、S、Cl、I及びBrからなる群より選ばれる少なくとも1つの原子を含む。
The light absorbing material in one aspect of the present disclosure is
It contains a compound represented by the following formula (1) as a main component.
In the formula (1), R 1 to R 28 contain at least one atom selected from the group consisting of H, C, N, O, F, P, S, Cl, I and Br independently of each other. ..
下記式(1)で表される化合物を主成分として含む。
It contains a compound represented by the following formula (1) as a main component.
本開示は、短波長域の波長を有する光に対して二光子吸収特性を有する新たな光吸収材料を提供する。
The present disclosure provides a novel light absorbing material having two-photon absorption characteristics for light having a wavelength in the short wavelength range.
(本開示の基礎となった知見)
有機非線形光学材料では、二光子吸収材料が特に注目を集めている。二光子吸収とは、化合物が二つの光子をほとんど同時に吸収して励起状態へ遷移する現象を意味する。二光子吸収としては、非共鳴二光子吸収及び共鳴二光子吸収が知られている。非共鳴二光子吸収は、一光子の吸収帯が存在しない波長域での二光子吸収を意味する。非共鳴二光子吸収では、化合物は、2つの光子をほとんど同時に吸収し、高次の励起状態に遷移する。共鳴二光子吸収では、化合物が1つ目の光子を吸収してから、2つ目の光子をさらに吸収することによって、より高次の励起状態に遷移する。共鳴二光子吸収では、化合物は、2つの光子を逐次的に吸収する。 (Findings underlying this disclosure)
Among the organic nonlinear optical materials, the two-photon absorption material has attracted particular attention. Two-photon absorption means a phenomenon in which a compound absorbs two photons almost simultaneously and transitions to an excited state. Non-resonant two-photon absorption and resonant two-photon absorption are known as two-photon absorption. Non-resonant two-photon absorption means two-photon absorption in the wavelength range where the absorption band of one photon does not exist. In non-resonant two-photon absorption, the compound absorbs two photons almost simultaneously and transitions to a higher-order excited state. In resonant two-photon absorption, the compound absorbs the first photon and then further absorbs the second photon, thereby transitioning to a higher-order excited state. In resonant two-photon absorption, the compound sequentially absorbs two photons.
有機非線形光学材料では、二光子吸収材料が特に注目を集めている。二光子吸収とは、化合物が二つの光子をほとんど同時に吸収して励起状態へ遷移する現象を意味する。二光子吸収としては、非共鳴二光子吸収及び共鳴二光子吸収が知られている。非共鳴二光子吸収は、一光子の吸収帯が存在しない波長域での二光子吸収を意味する。非共鳴二光子吸収では、化合物は、2つの光子をほとんど同時に吸収し、高次の励起状態に遷移する。共鳴二光子吸収では、化合物が1つ目の光子を吸収してから、2つ目の光子をさらに吸収することによって、より高次の励起状態に遷移する。共鳴二光子吸収では、化合物は、2つの光子を逐次的に吸収する。 (Findings underlying this disclosure)
Among the organic nonlinear optical materials, the two-photon absorption material has attracted particular attention. Two-photon absorption means a phenomenon in which a compound absorbs two photons almost simultaneously and transitions to an excited state. Non-resonant two-photon absorption and resonant two-photon absorption are known as two-photon absorption. Non-resonant two-photon absorption means two-photon absorption in the wavelength range where the absorption band of one photon does not exist. In non-resonant two-photon absorption, the compound absorbs two photons almost simultaneously and transitions to a higher-order excited state. In resonant two-photon absorption, the compound absorbs the first photon and then further absorbs the second photon, thereby transitioning to a higher-order excited state. In resonant two-photon absorption, the compound sequentially absorbs two photons.
非共鳴二光子吸収において、化合物による光の吸収量は、通常、照射光強度の2乗に比例する。そのため、例えば、レンズによって集光された光について、光強度が大きい焦点付近のみで化合物による二光子吸収を生じさせることができる。すなわち、二光子吸収材料を含む試料において、所望の位置のみで化合物を励起することができる。このように、非共鳴二光子吸収が生じる化合物は、極めて高い空間分解能をもたらすため、三次元光メモリの記録層、光造形用の光硬化性樹脂組成物などの用途への応用が検討されている。
In non-resonant two-photon absorption, the amount of light absorbed by the compound is usually proportional to the square of the irradiation light intensity. Therefore, for example, for the light focused by the lens, two-photon absorption by the compound can be generated only in the vicinity of the focal point where the light intensity is high. That is, in a sample containing a two-photon absorption material, the compound can be excited only at a desired position. As described above, since the compound that causes non-resonant two-photon absorption brings extremely high spatial resolution, its application to applications such as a recording layer of a three-dimensional optical memory and a photocurable resin composition for stereolithography is being studied. ..
三次元光メモリの記録層、光造形用の光硬化性樹脂組成物などに用いられる二光子吸収材料の研究は、盛んに行われている。二光子吸収材料では、二光子吸収の効率を示す指標として、二光子吸収断面積(GM値)が用いられる。二光子吸収断面積の単位は、GM(10-50cm4・s・molecule-1・photon-1)である。これまでに、500GMを上回る程度に大きい二光子吸収断面積を有する化合物が多数報告されている(例えば、非特許文献1)。しかし、ほとんどの報告において、二光子吸収断面積は、600nmよりも長い波長を有するレーザー光を用いて測定されている。特に、レーザー光として、750nmよりも長い波長を有する近赤外線が利用されることもある。
Research on two-photon absorption materials used in recording layers of three-dimensional optical memories, photocurable resin compositions for stereolithography, etc. is being actively conducted. In the two-photon absorption material, the two-photon absorption cross section (GM value) is used as an index indicating the efficiency of two-photon absorption. The unit of the two-photon absorption cross-sectional area is GM (10 -50 cm 4 · s · molecule -1 · photon -1 ). So far, many compounds having a two-photon absorption cross section as large as 500 GM have been reported (for example, Non-Patent Document 1). However, in most reports, the two-photon absorption cross section is measured using laser light with wavelengths longer than 600 nm. In particular, near infrared rays having a wavelength longer than 750 nm may be used as the laser light.
しかし、二光子吸収材料を産業用途に応用するためには、より短い波長を有するレーザー光を照射したときに、大きい二光子吸収断面積を有する材料が必要とされる。例えば、光メモリの分野では、集光したレーザー光の回折限界の観点から、より微細な集光スポットを実現するために、短い波長を有するレーザー光が用いられる。多層構造の三次元光メモリでは、極めて高い空間分解能を有する二光子吸収材料を用いることによって、飛躍的に記録密度を向上させることができる。特に、三次元光メモリの用途において、Blu-ray(登録商標)ディスクの規格では、405nmの中心波長を有するレーザー光が用いられる。そのため、このレーザー光と同じ波長域の光に対して、大きい二光子吸収断面積を有する化合物が開発されれば、産業の発展に大きく貢献できる。
However, in order to apply the two-photon absorption material to industrial applications, a material having a large two-photon absorption cross section is required when irradiated with a laser beam having a shorter wavelength. For example, in the field of optical memory, laser light having a short wavelength is used in order to realize a finer focused spot from the viewpoint of the diffraction limit of the focused laser light. In a three-dimensional optical memory having a multi-layer structure, the recording density can be dramatically improved by using a two-photon absorption material having extremely high spatial resolution. In particular, in the application of three-dimensional optical memory, the Blu-ray (registered trademark) disc standard uses laser light having a center wavelength of 405 nm. Therefore, if a compound having a large two-photon absorption cross section is developed for light in the same wavelength range as this laser light, it can greatly contribute to the development of industry.
特許文献1には、波長が400nm以上410nm以下であり、かつ高い強度を有するパルスレーザー光に対して非線形光吸収を示す化合物が示されている。この化合物では、3つの芳香族炭化水素が窒素原子と結合している。すなわち、この化合物は、窒素原子を中心とする三分岐構造を有する。しかし、この化合物は、現段階で実用化に至っておらず、研究の域を出ていない。さらに、この化合物の二光子吸収断面積には、改良の余地がある。例えば、小さい二光子吸収断面積を有する化合物を三次元光メモリに用いた場合、レーザー光の光強度を向上させる必要が生じることがある。そのため、産業上の利用可能性をさらに向上させる観点からは、405nm付近の波長を有する光に対して、より大きい二光子吸収断面積を有する化合物が求められている。
Patent Document 1 discloses a compound having a wavelength of 400 nm or more and 410 nm or less and exhibiting nonlinear light absorption with respect to pulsed laser light having high intensity. In this compound, three aromatic hydrocarbons are bonded to the nitrogen atom. That is, this compound has a tri-branched structure centered on a nitrogen atom. However, this compound has not yet been put into practical use at this stage and is not out of the scope of research. Furthermore, there is room for improvement in the two-photon absorption cross section of this compound. For example, when a compound having a small two-photon absorption cross section is used in a three-dimensional optical memory, it may be necessary to improve the light intensity of the laser beam. Therefore, from the viewpoint of further improving industrial applicability, a compound having a larger two-photon absorption cross section than light having a wavelength of around 405 nm is required.
本発明者らは、鋭意検討の結果、後述する式(1)で表される化合物が、短波長域の波長を有する光に対して、優れた二光子吸収特性を有することを新たに見出した。本明細書において、短波長域は、405nmを含む波長域を意味し、例えば、390nm以上420nm以下の波長域を意味する。特に、式(1)で表される化合物は、405nm付近の波長を有する光に対して、大きい二光子吸収断面積を有する。
As a result of diligent studies, the present inventors have newly found that the compound represented by the formula (1) described later has excellent two-photon absorption characteristics with respect to light having a wavelength in the short wavelength range. .. In the present specification, the short wavelength region means a wavelength region including 405 nm, and means, for example, a wavelength region of 390 nm or more and 420 nm or less. In particular, the compound represented by the formula (1) has a large two-photon absorption cross section with respect to light having a wavelength of around 405 nm.
(本開示に係る一態様の概要)
本開示の第1態様にかかる光吸収材料は、
下記式(1)で表される化合物を主成分として含む。
前記式(1)において、R1からR28は、互いに独立して、H、C、N、O、F、P、S、Cl、I及びBrからなる群より選ばれる少なくとも1つの原子を含む。
(Summary of one aspect pertaining to this disclosure)
The light absorbing material according to the first aspect of the present disclosure is
It contains a compound represented by the following formula (1) as a main component.
In the formula (1), R 1 to R 28 contain at least one atom selected from the group consisting of H, C, N, O, F, P, S, Cl, I and Br independently of each other. ..
本開示の第1態様にかかる光吸収材料は、
下記式(1)で表される化合物を主成分として含む。
The light absorbing material according to the first aspect of the present disclosure is
It contains a compound represented by the following formula (1) as a main component.
第1態様によれば、光吸収材料は、短波長域の波長を有する光に対して、優れた二光子吸収特性を有する。
According to the first aspect, the light absorbing material has excellent two-photon absorption characteristics with respect to light having a wavelength in the short wavelength range.
本開示の第2態様において、例えば、第1態様にかかる光吸収材料では、前記R1から前記R28は、互いに独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基、不飽和炭化水素基、ヒドロキシル基、カルボキシル基、アルコキシカルボニル基、アシル基、アミド基、ニトリル基、アルコキシ基、アシルオキシ基、チオール基、アルキルチオ基、スルホン酸基、アシルチオ基、アルキルスルホニル基、スルホンアミド基、1級アミノ基、2級アミノ基、3級アミノ基又はニトロ基であってもよい。
In the second aspect of the present disclosure, for example, in the light absorbing material according to the first aspect, the R 1 to the R 28 are independent of each other, a hydrogen atom, a halogen atom, an alkyl group, an alkyl halide group, and an unsaturated group. Hydrocarbon group, hydroxyl group, carboxyl group, alkoxycarbonyl group, acyl group, amide group, nitrile group, alkoxy group, acyloxy group, thiol group, alkylthio group, sulfonic acid group, acylthio group, alkylsulfonyl group, sulfonamide group, It may be a primary amino group, a secondary amino group, a tertiary amino group or a nitro group.
本開示の第3態様において、例えば、第1又は第2態様にかかる光吸収材料では、前記R9から前記R11、前記R14から前記R16、前記R19から前記R21、及び、前記R24から前記R26からなる群より選ばれる少なくとも1つは、電子供与基又は電子求引基であってもよい。
In the third aspect of the present disclosure, for example, in the light absorbing material according to the first or second aspect, the R 9 to the R 11 , the R 14 to the R 16 , the R 19 to the R 21 , and the above. At least one selected from the group consisting of R 24 to R 26 may be an electron donating group or an electron withdrawing group.
本開示の第4態様において、例えば、第3態様にかかる光吸収材料では、前記電子供与基は、アルキル基又はアルコキシ基であってもよい。
In the fourth aspect of the present disclosure, for example, in the light absorbing material according to the third aspect, the electron donating group may be an alkyl group or an alkoxy group.
本開示の第5態様において、例えば、第3又は第4態様にかかる光吸収材料では、前記電子供与基は、-C(CH3)3又は-OCH3であってもよい。
In the fifth aspect of the present disclosure, for example, in the light absorbing material according to the third or fourth aspect, the electron donating group may be -C (CH 3 ) 3 or -OCH 3 .
本開示の第6態様において、例えば、第1又は第2態様にかかる光吸収材料では、前記化合物が下記式(2)で表されてもよい。
前記式(2)において、R9、R14、R19及びR24からなる群より選ばれる少なくとも1つは、水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基、ヒドロキシル基、アルコキシカルボニル基、アシル基、アミド基、ニトリル基、アルコキシ基、アシルオキシ基、チオール基、アルキルチオ基、スルホン酸基、アシルチオ基、アルキルスルホニル基、スルホンアミド基、1級アミノ基、2級アミノ基、3級アミノ基又はニトロ基である。
In the sixth aspect of the present disclosure, for example, in the light absorbing material according to the first or second aspect, the compound may be represented by the following formula (2).
In the formula (2), at least one selected from the group consisting of R 9 , R 14 , R 19 and R 24 is a hydrogen atom, a halogen atom, an alkyl group, an alkyl halide group, a hydroxyl group, an alkoxycarbonyl group, and the like. Acrylic group, amide group, nitrile group, alkoxy group, acyloxy group, thiol group, alkylthio group, sulfonic acid group, acylthio group, alkylsulfonyl group, sulfonamide group, primary amino group, secondary amino group, tertiary amino group. Or it is a nitro group.
本開示の第7態様において、例えば、第1から第6態様のいずれか1つにかかる光吸収材料では、前記化合物は光吸収効果を有する。
In the seventh aspect of the present disclosure, for example, in the light absorbing material according to any one of the first to sixth aspects, the compound has a light absorbing effect.
本開示の第8態様において、例えば、第1から第7態様のいずれか1つにかかる光吸収材料は、390nm以上420nm以下の波長を有する光を利用するデバイスに用いられてもよい。
In the eighth aspect of the present disclosure, for example, the light absorbing material according to any one of the first to seventh aspects may be used for a device using light having a wavelength of 390 nm or more and 420 nm or less.
第2から第8態様によれば、光吸収材料は、短波長域の波長を有する光に対して、優れた二光子吸収特性を有する。この光吸収材料は、390nm以上420nm以下の波長を有する光を利用するデバイスの用途に適している。
According to the second to eighth aspects, the light absorbing material has excellent two-photon absorption characteristics with respect to light having a wavelength in the short wavelength range. This light absorbing material is suitable for applications of devices that utilize light having a wavelength of 390 nm or more and 420 nm or less.
本開示の第9態様にかかる記録媒体は、
第1から第8態様のいずれか1つにかかる光吸収材料を含む記録層を備える。 The recording medium according to the ninth aspect of the present disclosure is
A recording layer including a light absorbing material according to any one of the first to eighth embodiments is provided.
第1から第8態様のいずれか1つにかかる光吸収材料を含む記録層を備える。 The recording medium according to the ninth aspect of the present disclosure is
A recording layer including a light absorbing material according to any one of the first to eighth embodiments is provided.
第9態様によれば、光吸収材料は、短波長域の波長を有する光に対して、優れた二光子吸収特性を有する。このような光吸収材料を含む記録媒体は、高い記録密度で情報を記録することができる。
According to the ninth aspect, the light absorbing material has excellent two-photon absorption characteristics with respect to light having a wavelength in the short wavelength range. A recording medium containing such a light absorbing material can record information at a high recording density.
本開示の第10態様にかかる情報の記録方法は、
390nm以上420nm以下の波長を有する光を発する光源を準備することと、
前記光源からの前記光を集光して、第9態様にかかる記録媒体における前記記録層に照射することと、
を含む。 The method for recording information according to the tenth aspect of the present disclosure is as follows.
Preparing a light source that emits light with a wavelength of 390 nm or more and 420 nm or less,
By condensing the light from the light source and irradiating the recording layer in the recording medium according to the ninth aspect,
including.
390nm以上420nm以下の波長を有する光を発する光源を準備することと、
前記光源からの前記光を集光して、第9態様にかかる記録媒体における前記記録層に照射することと、
を含む。 The method for recording information according to the tenth aspect of the present disclosure is as follows.
Preparing a light source that emits light with a wavelength of 390 nm or more and 420 nm or less,
By condensing the light from the light source and irradiating the recording layer in the recording medium according to the ninth aspect,
including.
第10態様によれば、光吸収材料は、短波長域の波長を有する光に対して、優れた二光子吸収特性を有する。このような光吸収材料を含む記録媒体を用いた情報の記録方法によれば、高い記録密度で情報を記録することができる。
According to the tenth aspect, the light absorbing material has excellent two-photon absorption characteristics with respect to light having a wavelength in the short wavelength range. According to the information recording method using a recording medium including such a light absorbing material, information can be recorded with a high recording density.
本開示の第11態様にかかる情報の読出方法は、例えば、第10態様にかかる記録方法によって記録された情報の読出方法であって、
前記読出方法は、
前記記録媒体における前記記録層に対して光を照射することによって、前記記録層の光学特性を測定することと、
前記光学特性に基づいて、前記記録領域に情報が記録されているか否かを判定することと、
を含む。 The method for reading information according to the eleventh aspect of the present disclosure is, for example, a method for reading information recorded by the recording method according to the tenth aspect.
The reading method is
By irradiating the recording layer in the recording medium with light, the optical characteristics of the recording layer can be measured.
Determining whether or not information is recorded in the recording area based on the optical characteristics.
including.
前記読出方法は、
前記記録媒体における前記記録層に対して光を照射することによって、前記記録層の光学特性を測定することと、
前記光学特性に基づいて、前記記録領域に情報が記録されているか否かを判定することと、
を含む。 The method for reading information according to the eleventh aspect of the present disclosure is, for example, a method for reading information recorded by the recording method according to the tenth aspect.
The reading method is
By irradiating the recording layer in the recording medium with light, the optical characteristics of the recording layer can be measured.
Determining whether or not information is recorded in the recording area based on the optical characteristics.
including.
本開示の第12態様において、例えば、第11態様にかかる情報の読出方法では、前記光学特性は、前記記録層で反射した光の強度であってもよい。
In the twelfth aspect of the present disclosure, for example, in the method of reading information according to the eleventh aspect, the optical characteristic may be the intensity of light reflected by the recording layer.
第11又は第12態様によれば、情報が記録された記録層を容易に判別できる。
According to the eleventh or twelfth aspect, the recording layer in which the information is recorded can be easily identified.
以下、本開示の実施形態について、図面を参照しながら説明する。本開示は、以下の実施形態に限定されない。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the following embodiments.
(実施形態)
本実施形態の光吸収材料は、下記式(1)で表される化合物Aを含む。
(Embodiment)
The light absorbing material of the present embodiment contains the compound A represented by the following formula (1).
本実施形態の光吸収材料は、下記式(1)で表される化合物Aを含む。
The light absorbing material of the present embodiment contains the compound A represented by the following formula (1).
式(1)において、R1からR28は、互いに独立して、H、C、N、O、F、P、S、Cl、I及びBrからなる群より選ばれる少なくとも1つの原子を含む。R1からR28は、互いに独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基、不飽和炭化水素基、ヒドロキシル基、カルボキシル基、アルコキシカルボニル基、アシル基、アミド基、ニトリル基、アルコキシ基、アシルオキシ基、チオール基、アルキルチオ基、スルホン酸基、アシルチオ基、アルキルスルホニル基、スルホンアミド基、1級アミノ基、2級アミノ基、3級アミノ基又はニトロ基であってもよい。R1からR28は、互いに独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基、アルコキシカルボニル基、アシル基、アミド基、ニトリル基、アルコキシ基、アシルオキシ基、アルキルチオ基、スルホン酸基、アシルチオ基、アルキルスルホニル基、スルホンアミド基、1級アミノ基、2級アミノ基、3級アミノ基又はニトロ基であってもよい。
In formula (1), R 1 to R 28 contain at least one atom selected from the group consisting of H, C, N, O, F, P, S, Cl, I and Br independently of each other. R 1 to R 28 are independent of each other and have a hydrogen atom, a halogen atom, an alkyl group, an alkyl halide group, an unsaturated hydrocarbon group, a hydroxyl group, a carboxyl group, an alkoxycarbonyl group, an acyl group, an amide group and a nitrile group. , Aalkoxy group, acyloxy group, thiol group, alkylthio group, sulfonic acid group, acylthio group, alkylsulfonyl group, sulfonamide group, primary amino group, secondary amino group, tertiary amino group or nitro group. .. R 1 to R 28 are independent of each other, and have a hydrogen atom, a halogen atom, an alkyl group, an alkyl halide group, an alkoxycarbonyl group, an acyl group, an amide group, a nitrile group, an alkoxy group, an acyloxy group, an alkylthio group and a sulfonic acid. It may be a group, an acylthio group, an alkylsulfonyl group, a sulfonamide group, a primary amino group, a secondary amino group, a tertiary amino group or a nitro group.
ハロゲン原子としては、F、Cl、Br、Iなどが挙げられる。本明細書では、ハロゲン原子をハロゲン基と呼ぶことがある。
Examples of the halogen atom include F, Cl, Br, I and the like. In the present specification, a halogen atom may be referred to as a halogen group.
アルキル基の炭素数は、特に限定されず、例えば1以上20以下である。アルキル基の炭素数は、化合物Aを容易に合成できる観点から、1以上10以下であってもよく、1以上5以下であってもよい。アルキル基の炭素数を調節することによって、化合物Aについて、溶媒又は樹脂組成物に対する溶解性を調節することができる。アルキル基は、直鎖状であってもよく、分岐鎖状であってもよく、環状であってもよい。アルキル基に含まれる少なくとも1つの水素原子は、N、O、P及びSからなる群より選ばれる少なくとも1つの原子を含む基によって置換されていてもよい。アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、2-メチルブチル基、ペンチル基、ヘキシル基、2,3-ジメチルヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基、2-メトキシブチル基、6-メトキシヘキシル基などが挙げられる。
The number of carbon atoms of the alkyl group is not particularly limited, and is, for example, 1 or more and 20 or less. The number of carbon atoms of the alkyl group may be 1 or more and 10 or less, or 1 or more and 5 or less, from the viewpoint that compound A can be easily synthesized. By adjusting the number of carbon atoms of the alkyl group, the solubility of the compound A in the solvent or the resin composition can be adjusted. The alkyl group may be linear, branched chain, or cyclic. The at least one hydrogen atom contained in the alkyl group may be substituted with a group containing at least one atom selected from the group consisting of N, O, P and S. The alkyl group includes a methyl group, an ethyl group, a propyl group, a butyl group, a 2-methylbutyl group, a pentyl group, a hexyl group, a 2,3-dimethylhexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group and an undecyl group. , Dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group, 2-methoxybutyl group, 6-methoxyhexyl group and the like.
ハロゲン化アルキル基とは、アルキル基に含まれる少なくとも1つの水素原子がハロゲン原子によって置換された基を意味する。ハロゲン化アルキル基は、アルキル基に含まれる全ての水素原子がハロゲン原子によって置換された基であってもよい。アルキル基としては、例えば、上述したものが挙げられる。ハロゲン化アルキル基の具体例は、-CF3である。
The halogenated alkyl group means a group in which at least one hydrogen atom contained in the alkyl group is substituted with a halogen atom. The alkyl halide group may be a group in which all hydrogen atoms contained in the alkyl group are substituted with halogen atoms. Examples of the alkyl group include those described above. A specific example of an alkyl halide group is -CF 3 .
不飽和炭化水素基は、炭素-炭素二重結合、炭素-炭素三重結合などの不飽和結合を含む。不飽和炭化水素基に含まれる不飽和結合の数は、例えば1以上5以下である。不飽和炭化水素基の炭素数は、特に限定されず、例えば2以上20以下であり、2以上10以下であってもよく、2以上5以下であってもよい。不飽和炭化水素基は、直鎖状であってもよく、分岐鎖状であってもよく、環状であってもよい。不飽和炭化水素基に含まれる少なくとも1つの水素原子は、N、O、P及びSからなる群より選ばれる少なくとも1つの原子を含む基によって置換されていてもよい。不飽和炭化水素基としては、ビニル基、エチニル基などが挙げられる。
Unsaturated hydrocarbon groups include unsaturated bonds such as carbon-carbon double bonds and carbon-carbon triple bonds. The number of unsaturated bonds contained in the unsaturated hydrocarbon group is, for example, 1 or more and 5 or less. The number of carbon atoms of the unsaturated hydrocarbon group is not particularly limited, and may be, for example, 2 or more and 20 or less, 2 or more and 10 or less, or 2 or more and 5 or less. The unsaturated hydrocarbon group may be linear, branched or cyclic, or cyclic. The at least one hydrogen atom contained in the unsaturated hydrocarbon group may be substituted with a group containing at least one atom selected from the group consisting of N, O, P and S. Examples of the unsaturated hydrocarbon group include a vinyl group and an ethynyl group.
ヒドロキシル基は、-OHで表される。カルボキシル基は、-COOHで表される。アルコキシカルボニル基は、-COORaで表される。アシル基は、-CORbで表される。アミド基は、-CONRcRdで表される。ニトリル基は、-CNで表される。アルコキシ基は、-OReで表される。アシルオキシ基は、-OCORfで表される。チオール基は、-SHで表される。アルキルチオ基は、-SRgで表される。スルホン酸基は、-SO3Hで表される。アシルチオ基は、-SCORhで表される。アルキルスルホニル基は、-SO2Riで表される。スルホンアミド基は、-SO2NRjRkで表される。1級アミノ基は、-NH2で表される。2級アミノ基は、-NHRlで表される。3級アミノ基は、-NRmRnで表される。ニトロ基は、-NO2で表される。RaからRnは、互いに独立して、アルキル基である。アルキル基としては、例えば、上述したものが挙げられる。ただし、アミド基のRc及びRd、並びに、スルホンアミド基のRj及びRkは、互いに独立して、水素原子であってもよい。
The hydroxyl group is represented by -OH. The carboxyl group is represented by -COOH. The alkoxycarbonyl group is represented by -COOR a . The acyl group is represented by -COR b . The amide group is represented by -CONR c R d . The nitrile group is represented by -CN. The alkoxy group is represented by −OR e . The acyloxy group is represented by -OCOR f . The thiol group is represented by -SH. The alkylthio group is represented by -SR g . The sulfonic acid group is represented by -SO 3H . The acylthio group is represented by -SCOR h . The alkylsulfonyl group is represented by -SO 2 Ri. The sulfonamide group is represented by −SO 2 NR j R k . The primary amino group is represented by -NH 2 . The secondary amino group is represented by -NHR l . The tertiary amino group is represented by −NR m R n . The nitro group is represented by -NO 2 . R a to R n are alkyl groups independent of each other. Examples of the alkyl group include those described above. However, the amide groups R c and R d and the sulfonamide groups R j and R k may be hydrogen atoms independently of each other.
アルコキシカルボニル基の具体例は、-COOCH3、-COO(CH2)3CH3及び-COO(CH2)7CH3である。アシル基の具体例は、-COCH3である。アミド基の具体例は、-CONH2である。アルコキシ基の具体例は、メトキシ基、エトキシ基、2-メトキシエトキシ基、ブトキシ基、2-メチルブトキシ基、2-メトキシブトキシ基、4-エチルチオブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ウンデシルオキシ基、ドデシルオキシ基、トリデシルオキシ基、テトラデシルオキシ基、ペンタデシルオキシ基、ヘキサデシルオキシ基、ヘプタデシルオキシ基、オクタデシルオキシ基、ノナデシルオキシ基及びエイコシルオキシ基である。アシルオキシ基の具体例は、-OCOCH3である。アルキルチオ基の具体例は、-SCH3である。アシルチオ基の具体例は、-SCOCH3である。アルキルスルホニル基の具体例は、-SO2CH3である。スルホンアミド基の具体例は、-SO2NH2である。3級アミノ基の具体例は、-N(CH3)2である。
Specific examples of the alkoxycarbonyl group are -COOCH 3 , -COO (CH 2 ) 3 CH 3 and -COO (CH 2 ) 7 CH 3 . A specific example of an acyl group is -COCH 3 . A specific example of an amide group is -CONH 2 . Specific examples of the alkoxy group include methoxy group, ethoxy group, 2-methoxyethoxy group, butoxy group, 2-methylbutoxy group, 2-methoxybutoxy group, 4-ethylthiobutoxy group, pentyloxy group, hexyloxy group and heptyl. Oxy group, octyloxy group, nonyloxy group, decyloxy group, undecyloxy group, dodecyloxy group, tridecyloxy group, tetradecyloxy group, pentadecyloxy group, hexadecyloxy group, heptadecyloxy group, octadecyloxy group , Nonadesyloxy group and Eikosyloxy group. A specific example of the acyloxy group is -OCOCH 3 . A specific example of an alkylthio group is -SCH 3 . A specific example of an acylthio group is -SCOCH 3 . A specific example of an alkylsulfonyl group is -SO 2 CH 3 . A specific example of a sulfonamide group is -SO 2 NH 2 . A specific example of a tertiary amino group is -N (CH 3 ) 2 .
式(1)において、R1からR8、R12、R13、R17、R18、R22、R23、R27及びR28のそれぞれは、小さい体積を有していてもよい。このとき、R1からR8、R12、R13、R17、R18、R22、R23、R27及びR28において、立体障害が生じにくい。そのため、化合物Aにおいて、π電子共役系の平面性が向上することによって、化合物Aが大きい二光子吸収断面積を有する傾向がある。R1からR8、R12、R13、R17、R18、R22、R23、R27及びR28のそれぞれは、水素原子であってもよい。
In formula (1), each of R 1 to R 8 , R 12 , R 13 , R 17 , R 18 , R 22 , R 23 , R 27 and R 28 may have a small volume. At this time, steric hindrance is less likely to occur in R 1 , R 8 , R 12 , R 13 , R 17 , R 18 , R 22 , R 23 , R 27 , and R 28 . Therefore, in compound A, the flatness of the π-electron conjugated system is improved, so that compound A tends to have a large two-photon absorption cross section. Each of R 1 to R 8 , R 12 , R 13 , R 17 , R 18 , R 22 , R 23 , R 27 and R 28 may be a hydrogen atom.
式(1)において、R9からR11、R14からR16、R19からR21、及び、R24からR26からなる群より選ばれる少なくとも1つは、電子供与基又は電子求引基であってもよい。R9からR11、R14からR16、R19からR21、及び、R24からR26について、電子供与性又は電子求引性が大きければ大きいほど、化合物A内の電子の偏りが大きい。化合物A内の電子の偏りが大きい場合、化合物Aが励起されたときに、電子が化合物A内を大きく移動する傾向がある。このような化合物Aは、より優れた二光子吸収特性を有することがある。言い換えると、R9からR11、R14からR16、R19からR21、及び、R24からR26からなる群より選ばれる少なくとも1つが電子供与基又は電子求引基であるとき、化合物Aは、大きい二光子吸収断面積を有することがある。ただし、R10、R11、R15、R16、R20、R21、R25及びR26のそれぞれは、水素原子であってもよい。R9、R14、R19及びR24からなる群より選ばれる少なくとも1つが電子供与基又は電子求引基であってもよい。
In formula (1), at least one selected from the group consisting of R 9 to R 11 , R 14 to R 16 , R 19 to R 21 , and R 24 to R 26 is an electron donating group or an electron withdrawing group. May be. For R 9 to R 11 , R 14 to R 16 , R 19 to R 21 , and R 24 to R 26 , the greater the electron donating or electron withdrawing property, the greater the electron bias in compound A. .. When the electron bias in the compound A is large, the electrons tend to move significantly in the compound A when the compound A is excited. Such compound A may have better two-photon absorption properties. In other words, when at least one selected from the group consisting of R 9 to R 11 , R 14 to R 16 , R 19 to R 21 , and R 24 to R 26 is an electron donating group or an electron withdrawing group, the compound. A may have a large two-photon absorption cross section. However, each of R 10 , R 11 , R 15 , R 16 , R 20 , R 21 , R 25 and R 26 may be a hydrogen atom. At least one selected from the group consisting of R 9 , R 14 , R 19 and R 24 may be an electron donating group or an electron withdrawing group.
電子求引基とは、例えば、ハメット式における置換基定数であるσp値が正の値である置換基を意味する。電子求引基としては、ハロゲン原子、カルボキシル基、ニトロ基、チオール基、スルホン酸基、アシルオキシ基、アルキルチオ基、アルキルスルホニル基、スルホンアミド基、アシル基、アシルチオ基、アルコキシカルボニル基、ハロゲン化アルキル基などが挙げられる。
The electron-withdrawing group means, for example, a substituent in which the σ p value, which is a substituent constant in the Hammett equation, is a positive value. The electron-withdrawing group includes a halogen atom, a carboxyl group, a nitro group, a thiol group, a sulfonic acid group, an acyloxy group, an alkylthio group, an alkylsulfonyl group, a sulfonamide group, an acyl group, an acylthio group, an alkoxycarbonyl group and an alkyl halide. The group etc. can be mentioned.
電子供与基とは、例えば、上記のσp値が負の値である置換基を意味する。電子供与基としては、アルキル基、アルコキシ基、ヒドロキシル基、アミノ基などが挙げられる。電子供与基は、アルキル基又はアルコキシ基であってもよく、-C(CH3)3又は-OCH3であってもよい。
The electron donating group means, for example, a substituent in which the above σ p value is a negative value. Examples of the electron donating group include an alkyl group, an alkoxy group, a hydroxyl group and an amino group. The electron donating group may be an alkyl group or an alkoxy group, and may be —C (CH 3 ) 3 or —OCH 3 .
化合物Aは、下記式(2)で表される化合物Bであってもよい。
Compound A may be compound B represented by the following formula (2).
式(2)において、R9、R14、R19及びR24からなる群より選ばれる少なくとも1つは、水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基、ヒドロキシル基、アルコキシカルボニル基、アシル基、アミド基、ニトリル基、アルコキシ基、アシルオキシ基、チオール基、アルキルチオ基、スルホン酸基、アシルチオ基、アルキルスルホニル基、スルホンアミド基、1級アミノ基、2級アミノ基、3級アミノ基又はニトロ基であってもよい。
In formula (2), at least one selected from the group consisting of R 9 , R 14 , R 19 and R 24 is a hydrogen atom, a halogen atom, an alkyl group, an alkyl halide group, a hydroxyl group, an alkoxycarbonyl group and an acyl. Group, amide group, nitrile group, alkoxy group, acyloxy group, thiol group, alkylthio group, sulfonic acid group, acylthio group, alkylsulfonyl group, sulfonamide group, primary amino group, secondary amino group, tertiary amino group or It may be a nitro group.
化合物Aの具体例としては、下記式(3)で表される化合物Cが挙げられる。
Specific examples of the compound A include compound C represented by the following formula (3).
式(3)において、複数のZは、互いに同じである。複数のZは、それぞれ、式(1)のR9、R14、R19及びR24に対応する。式(3)のZの具体例を下記の表1に示す。式(3)において、複数のZは、-C(CH3)3又は-OCH3であってもよい。
In equation (3), the plurality of Z's are the same as each other. The plurality of Zs correspond to R 9 , R 14 , R 19 and R 24 of the equation (1), respectively. A specific example of Z in the formula (3) is shown in Table 1 below. In formula (3), the plurality of Zs may be -C (CH 3 ) 3 or -OCH 3 .
式(3)で表される化合物Cの合成方法は、特に限定されない。化合物Cは、例えば、以下の方法によって合成することができる。まず、下記式(4)で表される化合物Dを準備する。化合物Dは、テトラキス(4-アミノフェニル)メタンである。
The method for synthesizing the compound C represented by the formula (3) is not particularly limited. Compound C can be synthesized, for example, by the following method. First, compound D represented by the following formula (4) is prepared. Compound D is tetrakis (4-aminophenyl) methane.
次に、化合物Dについて、アルデヒド基を有する化合物Eと脱水縮合反応を行う。これにより、化合物Cを合成することができる。化合物Eの構造は、目的の化合物の構造に応じて定まる。脱水縮合反応の条件は、例えば、化合物D及びEに応じて適切に調整することができる。
Next, the compound D is subjected to a dehydration condensation reaction with the compound E having an aldehyde group. This makes it possible to synthesize compound C. The structure of compound E is determined according to the structure of the target compound. The conditions of the dehydration condensation reaction can be appropriately adjusted according to, for example, compounds D and E.
式(1)で表される化合物Aは、短波長域の波長を有する光に対して、優れた二光子吸収特性を有する。一例として、405nmの波長を有する光を化合物Aに照射したときに、化合物Aにおいて、二光子吸収が顕著に生じる。
Compound A represented by the formula (1) has excellent two-photon absorption characteristics with respect to light having a wavelength in the short wavelength range. As an example, when compound A is irradiated with light having a wavelength of 405 nm, two-photon absorption occurs remarkably in compound A.
405nmの波長を有する光に対する化合物Aの二光子吸収断面積は、2000GM以上であってもよく、4000GM以上であってもよく、10000GM以上であってもよく、15000GM以上であってもよく、20000GM以上であってもよい。化合物Aの二光子吸収断面積の上限値は、特に限定されず、例えば300000GMである。二光子吸収断面積は、例えば、J. Opt. Soc. Am. B, 2003, Vol. 20, p. 529.に記載されたZスキャン法によって測定することができる。Zスキャン法は、非線形光学定数を測定するための方法として広く用いられている。Zスキャン法では、レーザービームが集光する焦点付近において、当該ビームの照射方向に沿って測定試料を移動させる。このとき、測定試料を透過した光の光量の変化を記録する。Zスキャン法では、測定試料の位置に応じて、入射光のパワー密度が変化する。そのため、測定試料が非線形光吸収を行う場合、測定試料がレーザービームの焦点付近に位置すると、透過光の光量が減衰する。入射光の強度、測定試料の厚さ、測定試料における化合物Aの濃度などから予測される理論曲線に対して、透過光量の変化についてフィッティングを行うことによって二光子吸収断面積を算出することができる。
The two-photon absorption cross section of compound A for light having a wavelength of 405 nm may be 2000 GM or more, 4000 GM or more, 10000 GM or more, 15000 GM or more, 20000 GM or more. It may be the above. The upper limit of the two-photon absorption cross section of compound A is not particularly limited, and is, for example, 300,000 GM. The two-photon absorption cross section can be measured by, for example, the Z scan method described in J. Opt. Soc. Am. B, 2003, Vol. 20, p. 529. The Z-scan method is widely used as a method for measuring nonlinear optical constants. In the Z scan method, the measurement sample is moved along the irradiation direction of the beam in the vicinity of the focal point where the laser beam is focused. At this time, the change in the amount of light transmitted through the measurement sample is recorded. In the Z scan method, the power density of the incident light changes depending on the position of the measurement sample. Therefore, when the measurement sample absorbs non-linear light, the amount of transmitted light is attenuated when the measurement sample is located near the focal point of the laser beam. The two-photon absorption cross-sectional area can be calculated by fitting the change in the amount of transmitted light to the theoretical curve predicted from the intensity of the incident light, the thickness of the measurement sample, the concentration of compound A in the measurement sample, and the like. ..
化合物Aが二光子吸収するとき、化合物Aは、化合物Aに照射された光の約2倍のエネルギーを吸収する。405nmの波長を有する光の約2倍のエネルギーを有する光の波長は、例えば、200nmである。すなわち、200nm付近の波長を有する光を化合物Aに照射したときに、化合物Aにおいて、一光子吸収が生じてもよい。さらに、化合物Aでは、二光子吸収が生じる波長域の近傍の波長を有する光について、一光子吸収が生じてもよい。
When compound A absorbs two photons, compound A absorbs about twice as much energy as the light irradiated to compound A. The wavelength of light having about twice the energy of light having a wavelength of 405 nm is, for example, 200 nm. That is, when compound A is irradiated with light having a wavelength of around 200 nm, monophoton absorption may occur in compound A. Further, in compound A, one-photon absorption may occur for light having a wavelength near the wavelength range in which two-photon absorption occurs.
本実施形態の光吸収材料は、式(1)で表される化合物Aを主成分として含んでいてもよい。「主成分」とは、光吸収材料に重量比で最も多く含まれた成分を意味する。光吸収材料は、例えば、実質的に化合物Aからなる。「実質的に~からなる」は、言及された材料の本質的特徴を変更する他の成分を排除することを意味する。ただし、光吸収材料は、化合物Aの他に不純物を含んでいてもよい。本実施形態の光吸収材料は、例えば、二光子吸収材料などの多光子吸収材料として機能する。特に、本実施形態の光吸収材料は、式(1)で表される化合物Aを含むため、短波長域の波長を有する光に対して、優れた二光子吸収特性を有する。
The light absorbing material of the present embodiment may contain compound A represented by the formula (1) as a main component. The "main component" means the component contained most in the light absorbing material in terms of weight ratio. The light absorbing material is, for example, substantially composed of compound A. By "substantially consisting of" is meant eliminating other components that alter the essential characteristics of the mentioned material. However, the light absorbing material may contain impurities in addition to compound A. The light-absorbing material of the present embodiment functions as a multi-photon absorbing material such as a two-photon absorbing material. In particular, since the light absorbing material of the present embodiment contains the compound A represented by the formula (1), it has excellent two-photon absorption characteristics with respect to light having a wavelength in the short wavelength range.
本実施形態の光吸収材料は、例えば、短波長域の波長を有する光を利用するデバイスに用いられる。すなわち、本開示は、その別の側面から、390nm以上420nm以下の波長を有する光を利用するデバイスに用いられる光吸収材料であって、式(1)で表される化合物Aを含む、光吸収材料を提供する。このようなデバイスとしては、記録媒体、造形機、蛍光顕微鏡などが挙げられる。記録媒体としては、例えば、三次元光メモリが挙げられる。三次元光メモリの具体例は、三次元光ディスクである。造形機としては、例えば、3Dプリンタなどの光造形機が挙げられる。蛍光顕微鏡としては、例えば、二光子蛍光顕微鏡が挙げられる。これらのデバイスで利用される光は、例えば、その焦点付近において、高い光子密度を有する。デバイスで利用される光の焦点付近でのパワー密度は、例えば、0.1W/cm2以上1.0×1020W/cm2以下である。この光の焦点付近でのパワー密度は、1.0W/cm2以上であってもよく、1.0×102W/cm2以上であってもよく、1.0×105W/cm2以上であってもよい。デバイスの光源としては、例えば、チタンサファイアレーザーなどのフェムト秒レーザー、又は、半導体レーザーなどのピコ秒からナノ秒のパルス幅を有するパルスレーザーを用いることができる。
The light absorbing material of the present embodiment is used, for example, in a device that utilizes light having a wavelength in a short wavelength range. That is, the present disclosure is a light absorption material used for a device using light having a wavelength of 390 nm or more and 420 nm or less, and includes a compound A represented by the formula (1). Provide materials. Examples of such a device include a recording medium, a modeling machine, a fluorescence microscope, and the like. Examples of the recording medium include a three-dimensional optical memory. A specific example of a three-dimensional optical memory is a three-dimensional optical disk. Examples of the modeling machine include an optical modeling machine such as a 3D printer. Examples of the fluorescence microscope include a two-photon fluorescence microscope. The light utilized in these devices has a high photon density, for example, near its focal point. The power density near the focal point of the light used in the device is, for example, 0.1 W / cm 2 or more and 1.0 × 10 20 W / cm 2 or less. The power density near the focal point of this light may be 1.0 W / cm 2 or more, 1.0 × 10 2 W / cm 2 or more, and 1.0 × 10 5 W / cm. It may be 2 or more. As the light source of the device, for example, a femtosecond laser such as a titanium sapphire laser or a pulse laser having a pulse width of picoseconds to nanoseconds such as a semiconductor laser can be used.
記録媒体は、例えば、記録層と呼ばれる薄膜を備えている。記録媒体において、記録層に情報が記録される。一例として、記録層としての薄膜が本実施形態の光吸収材料を含んでいる。すなわち、本開示は、その別の側面から、式(1)で表される化合物Aを含む光吸収材料を備えた、記録媒体を提供する。
The recording medium includes, for example, a thin film called a recording layer. In the recording medium, information is recorded on the recording layer. As an example, the thin film as a recording layer contains the light absorbing material of the present embodiment. That is, the present disclosure provides a recording medium provided with a light absorbing material containing the compound A represented by the formula (1) from the other aspect thereof.
記録層は、光吸収材料以外に、バインダーとして機能する高分子化合物をさらに含んでいてもよい。記録媒体は、記録層の他に誘電体層を備えていてもよい。記録媒体は、例えば、複数の記録層と複数の誘電体層とを備える。記録媒体において、複数の記録層と複数の誘電体層とが交互に積層されていてもよい。
The recording layer may further contain a polymer compound that functions as a binder, in addition to the light absorbing material. The recording medium may include a dielectric layer in addition to the recording layer. The recording medium includes, for example, a plurality of recording layers and a plurality of dielectric layers. In the recording medium, a plurality of recording layers and a plurality of dielectric layers may be alternately laminated.
次に、上記の記録媒体を用いた情報の記録方法について説明する。図1Aは、上記の記録媒体を用いた情報の記録方法に関するフローチャートである。まず、ステップS11において、390nm以上420nm以下の波長を有する光を発する光源を準備する。光源としては、例えば、チタンサファイアレーザーなどのフェムト秒レーザーを用いることができる。光源として、半導体レーザーなどのピコ秒からナノ秒のパルス幅を有するパルスレーザーを用いてもよい。次に、ステップS12において、光源からの光をレンズなどで集光して、記録媒体における記録層に照射する。詳細には、光源からの光をレンズなどで集光して、記録媒体における記録領域に照射する。この光の焦点付近でのパワー密度は、例えば、0.1W/cm2以上1.0×1020W/cm2以下である。この光の焦点付近でのパワー密度は、1.0W/cm2以上であってもよく、1.0×102W/cm2以上であってもよく、1.0×105W/cm2以上であってもよい。本明細書において、記録領域とは、記録層に存在し、光が照射されることによって情報を記録できるスポットを意味する。
Next, a method of recording information using the above-mentioned recording medium will be described. FIG. 1A is a flowchart relating to a method of recording information using the above-mentioned recording medium. First, in step S11, a light source that emits light having a wavelength of 390 nm or more and 420 nm or less is prepared. As the light source, for example, a femtosecond laser such as a titanium sapphire laser can be used. As the light source, a pulse laser having a pulse width of picoseconds to nanoseconds such as a semiconductor laser may be used. Next, in step S12, the light from the light source is condensed by a lens or the like and irradiated to the recording layer in the recording medium. Specifically, the light from the light source is condensed by a lens or the like and irradiated to the recording area in the recording medium. The power density near the focal point of this light is, for example, 0.1 W / cm 2 or more and 1.0 × 10 20 W / cm 2 or less. The power density near the focal point of this light may be 1.0 W / cm 2 or more, 1.0 × 10 2 W / cm 2 or more, and 1.0 × 10 5 W / cm. It may be 2 or more. As used herein, the recording area means a spot that exists in the recording layer and can record information by being irradiated with light.
上記の光が照射された記録領域では、物理変化又は化学変化が生じる。例えば、光を吸収した化合物Aが遷移状態から基底状態に戻るときに熱が生じる。この熱によって、記録領域に存在するバインダーが変質する。これにより、記録領域の光学特性が変化する。例えば、記録領域で反射する光の強度、記録領域での光の反射率、記録領域での光の吸収率、記録領域での光の屈折率などが変化する。光が照射された記録領域では、記録領域から放射される蛍光の光の強度、又は蛍光の光の波長が変化することもある。これにより、記録層、詳細には記録領域、に情報を記録することができる(ステップS13)。
Physical or chemical changes occur in the recording area irradiated with the above light. For example, heat is generated when compound A, which has absorbed light, returns from the transition state to the ground state. This heat alters the binder present in the recording area. This changes the optical characteristics of the recording area. For example, the intensity of light reflected in the recording area, the reflectance of light in the recording area, the absorption rate of light in the recording area, the refractive index of light in the recording area, and the like change. In the recording area irradiated with light, the intensity of the fluorescent light emitted from the recording area or the wavelength of the fluorescent light may change. As a result, information can be recorded in the recording layer, specifically, the recording area (step S13).
次に、上記の記録媒体を用いた情報の読出方法について説明する。図1Bは、上記の記録媒体を用いた情報の読出方法に関するフローチャートである。まず、ステップS21において、記録媒体における記録層に対して光を照射する。詳細には、記録媒体における記録領域に対して光を照射する。ステップS21で用いる光は、記録媒体に情報を記録するために利用した光と同じであってもよく、異なっていてもよい。次に、ステップS22において、記録層の光学特性を測定する。詳細には、記録領域の光学特性を測定する。ステップS22では、例えば、記録領域から放射された蛍光の光の強度を測定する。ステップS22では、記録領域の光学特性として、記録領域で反射した光の強度、記録領域での光の反射率、記録領域での光の吸収率、記録領域での光の屈折率、記録領域から放射された蛍光の光の強度、蛍光の光の波長などを測定してもよい。次に、ステップS23において、記録層、詳細には記録領域、から情報を読み出す。
Next, a method of reading information using the above recording medium will be described. FIG. 1B is a flowchart relating to a method of reading information using the above-mentioned recording medium. First, in step S21, the recording layer on the recording medium is irradiated with light. Specifically, the recording area on the recording medium is irradiated with light. The light used in step S21 may be the same as the light used for recording information on the recording medium, or may be different. Next, in step S22, the optical characteristics of the recording layer are measured. Specifically, the optical characteristics of the recording area are measured. In step S22, for example, the intensity of the fluorescent light emitted from the recording area is measured. In step S22, the optical characteristics of the recording area include the intensity of the light reflected in the recording area, the light reflectance in the recording area, the absorption rate of the light in the recording area, the refractive index of the light in the recording area, and the recording area. The intensity of the emitted fluorescent light, the wavelength of the fluorescent light, and the like may be measured. Next, in step S23, information is read from the recording layer, specifically, the recording area.
情報の読出方法において、情報が記録された記録領域は、次の方法によって探すことができる。まず、記録媒体の特定の領域に対して光を照射する。この光は、記録媒体に情報を記録するために利用した光と同じであってもよく、異なっていてもよい。次に、光が照射された領域の光学特性を測定する。光学特性としては、例えば、当該領域から放射された蛍光の光の強度、当該領域で反射した光の強度、当該領域での光の反射率、当該領域での光の吸収率、当該領域での光の屈折率、当該領域から放射された蛍光の光の波長などが挙げられる。測定された光学特性に基づいて、光が照射された領域が記録領域であるか否かを判定する。例えば、当該領域から放射された蛍光の光の強度が特定の値以下である場合に、当該領域が記録領域であると判定する。一方、蛍光の光の強度が特定の値を上回っている場合に、当該領域が記録領域ではないと判定する。なお、光が照射された領域が記録領域であるか否かを判定する方法は、上記の方法に限定されない。例えば、当該領域から放射された蛍光の光の強度が特定の値を上回っている場合に、当該領域が記録領域であると判定してもよい。また、当該領域から放射された蛍光の光の強度が特定の値以下である場合に、当該領域が記録領域ではないと判定してもよい。記録領域ではないと判定した場合、記録媒体の他の領域に対して同様の操作を行う。これにより、記録領域を探すことができる。
In the information reading method, the recording area in which the information is recorded can be searched by the following method. First, light is applied to a specific area of the recording medium. This light may be the same as or different from the light used to record the information on the recording medium. Next, the optical characteristics of the area irradiated with light are measured. The optical characteristics include, for example, the intensity of fluorescent light emitted from the region, the intensity of light reflected in the region, the reflectance of light in the region, the absorption rate of light in the region, and the optical characteristics in the region. Examples thereof include the refractive index of light and the wavelength of fluorescent light emitted from the region. Based on the measured optical characteristics, it is determined whether or not the area irradiated with light is the recording area. For example, when the intensity of the fluorescent light emitted from the region is equal to or less than a specific value, it is determined that the region is a recording region. On the other hand, when the intensity of the fluorescent light exceeds a specific value, it is determined that the region is not the recording region. The method for determining whether or not the area irradiated with light is the recording area is not limited to the above method. For example, when the intensity of the fluorescent light emitted from the region exceeds a specific value, it may be determined that the region is a recording region. Further, when the intensity of the fluorescent light emitted from the region is not more than a specific value, it may be determined that the region is not the recording region. If it is determined that the area is not the recording area, the same operation is performed for other areas of the recording medium. This makes it possible to search for a recording area.
上記の記録媒体を用いた情報の記録方法及び読出方法は、例えば、公知の記録装置によって行うことができる。記録装置は、例えば、記録媒体における記録領域に光を照射する光源と、記録領域の光学特性を測定する測定器と、光源及び測定器を制御する制御器と、を備えている。
The information recording method and reading method using the above-mentioned recording medium can be performed by, for example, a known recording device. The recording device includes, for example, a light source that irradiates a recording area on a recording medium with light, a measuring instrument that measures the optical characteristics of the recording area, and a controller that controls the light source and the measuring instrument.
造形機は、例えば、光硬化性樹脂組成物に光を照射し、その樹脂組成物を硬化させることによって造形を行う。一例として、光造形用の光硬化性樹脂組成物が本実施形態の光吸収材料を含んでいる。光硬化性樹脂組成物は、例えば、光吸収材料の他に、重合性を有する化合物と、重合開始剤とを含む。光硬化性樹脂組成物は、バインダー樹脂などの添加剤をさらに含んでいてもよい。光硬化性樹脂組成物は、エポキシ樹脂を含んでいてもよい。
The modeling machine performs modeling by, for example, irradiating a photocurable resin composition with light and curing the resin composition. As an example, the photocurable resin composition for stereolithography contains the light absorbing material of the present embodiment. The photocurable resin composition contains, for example, a polymerizable compound and a polymerization initiator in addition to the light absorbing material. The photocurable resin composition may further contain an additive such as a binder resin. The photocurable resin composition may contain an epoxy resin.
蛍光顕微鏡によれば、例えば、蛍光色素材料を含む生体試料に光を照射し、当該色素材料から放射された蛍光を観察することができる。一例として、生体試料に添加されるべき蛍光色素材料が本実施形態の光吸収材料を含んでいる。
According to the fluorescence microscope, for example, a biological sample containing a fluorescent dye material can be irradiated with light, and the fluorescence emitted from the dye material can be observed. As an example, the fluorescent dye material to be added to the biological sample contains the light absorbing material of the present embodiment.
以下、実施例により本開示をさらに詳細に説明する。なお、以下の実施例は一例であり、本開示は以下の実施例に限定されない。本開示では、実施例で用いられた化合物を「化合物(X)-Y」と表記する。「X」は、化合物の構造式を意味する。「Y」は、式(X)におけるZの種類を意味する。例えば、化合物(3)-1とは、式(3)で表され、かつZが表1に示された置換基1(-C(CH3)3)である化合物を意味する。
Hereinafter, the present disclosure will be described in more detail by way of examples. The following examples are examples, and the present disclosure is not limited to the following examples. In the present disclosure, the compound used in the examples is referred to as "Compound (X) -Y". "X" means the structural formula of the compound. "Y" means the kind of Z in the formula (X). For example, the compound (3) -1 means a compound represented by the formula (3) and in which Z is the substituent 1 (−C (CH 3 ) 3 ) shown in Table 1.
(実施例1)
[化合物(3)-1]
まず、100mLのナス型フラスコに、原料としてテトラキス(4-アミノフェニル)メタン(東京化成工業社製)及び4-tert-ブチルベンズアルデヒド(東京化成工業社製)と、溶媒としてエタノール(富士フイルム和光純薬社製)とを投入し、原料を溶媒に溶解させた。次に、得られた溶液について、スターラーを用いて撹拌しながら12時間、加熱還流を行った。これにより、反応物が生成した。次に、この反応物について、固液分離を行った。得られた固体を真空乾燥することによって、実施例1の化合物を得た。実施例1の化合物は、上述した式(3)で表される化合物Cについて、複数のZが-C(CH3)3である化合物に相当する。実施例1の化合物は、1H-NMRにより同定した。図2は、実施例1の化合物の1H-NMRスペクトルを示すグラフである。実施例1の化合物の1H-NMRスペクトルは、以下のとおりであった。
1H-NMR (600MHz, CHLOROFORM-D) δ8.48 (s, 4H), 7.83 (d, J=8.3Hz, 8H), 7.49 (d, J=8.3Hz, 8H), 7.29 (d, J=9.0Hz, 8H), 7.13 (d, J=9.0Hz, 8H), 1.35 (s, 36H). (Example 1)
[Compound (3) -1]
First, in a 100 mL eggplant-shaped flask, tetrakis (4-aminophenyl) methane (manufactured by Tokyo Chemical Industry Co., Ltd.) and 4-tert-butylbenzaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.) are used as raw materials, and ethanol (Fujifilm Wakojun) is used as a solvent. (Manufactured by Yakusha) was added, and the raw material was dissolved in a solvent. Next, the obtained solution was heated under reflux for 12 hours while stirring with a stirrer. This produced a reactant. Next, solid-liquid separation was performed on this reaction product. The obtained solid was vacuum dried to obtain the compound of Example 1. The compound of Example 1 corresponds to a compound in which a plurality of Z is −C (CH 3 ) 3 with respect to the compound C represented by the above-mentioned formula (3). The compound of Example 1 was identified by 1 H-NMR. FIG. 2 is a graph showing a 1 H-NMR spectrum of the compound of Example 1. The 1 H-NMR spectrum of the compound of Example 1 was as follows.
1 H-NMR (600MHz, CHLOROFORM-D) δ8.48 (s, 4H), 7.83 (d, J = 8.3Hz, 8H), 7.49 (d, J = 8.3Hz, 8H), 7.29 (d, J = 9.0Hz, 8H), 7.13 (d, J = 9.0Hz, 8H), 1.35 (s, 36H).
[化合物(3)-1]
まず、100mLのナス型フラスコに、原料としてテトラキス(4-アミノフェニル)メタン(東京化成工業社製)及び4-tert-ブチルベンズアルデヒド(東京化成工業社製)と、溶媒としてエタノール(富士フイルム和光純薬社製)とを投入し、原料を溶媒に溶解させた。次に、得られた溶液について、スターラーを用いて撹拌しながら12時間、加熱還流を行った。これにより、反応物が生成した。次に、この反応物について、固液分離を行った。得られた固体を真空乾燥することによって、実施例1の化合物を得た。実施例1の化合物は、上述した式(3)で表される化合物Cについて、複数のZが-C(CH3)3である化合物に相当する。実施例1の化合物は、1H-NMRにより同定した。図2は、実施例1の化合物の1H-NMRスペクトルを示すグラフである。実施例1の化合物の1H-NMRスペクトルは、以下のとおりであった。
1H-NMR (600MHz, CHLOROFORM-D) δ8.48 (s, 4H), 7.83 (d, J=8.3Hz, 8H), 7.49 (d, J=8.3Hz, 8H), 7.29 (d, J=9.0Hz, 8H), 7.13 (d, J=9.0Hz, 8H), 1.35 (s, 36H). (Example 1)
[Compound (3) -1]
First, in a 100 mL eggplant-shaped flask, tetrakis (4-aminophenyl) methane (manufactured by Tokyo Chemical Industry Co., Ltd.) and 4-tert-butylbenzaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.) are used as raw materials, and ethanol (Fujifilm Wakojun) is used as a solvent. (Manufactured by Yakusha) was added, and the raw material was dissolved in a solvent. Next, the obtained solution was heated under reflux for 12 hours while stirring with a stirrer. This produced a reactant. Next, solid-liquid separation was performed on this reaction product. The obtained solid was vacuum dried to obtain the compound of Example 1. The compound of Example 1 corresponds to a compound in which a plurality of Z is −C (CH 3 ) 3 with respect to the compound C represented by the above-mentioned formula (3). The compound of Example 1 was identified by 1 H-NMR. FIG. 2 is a graph showing a 1 H-NMR spectrum of the compound of Example 1. The 1 H-NMR spectrum of the compound of Example 1 was as follows.
1 H-NMR (600MHz, CHLOROFORM-D) δ8.48 (s, 4H), 7.83 (d, J = 8.3Hz, 8H), 7.49 (d, J = 8.3Hz, 8H), 7.29 (d, J = 9.0Hz, 8H), 7.13 (d, J = 9.0Hz, 8H), 1.35 (s, 36H).
(実施例2)
[化合物(3)-2]
まず、100mLのナス型フラスコに、原料としてテトラキス(4-アミノフェニル)メタン(東京化成工業社製)及び4-メトキシベンズアルデヒド(東京化成工業社製)と、溶媒としてエタノール(富士フイルム和光純薬社製)とを投入し、原料を溶媒に溶解させた。次に、得られた溶液について、スターラーを用いて撹拌しながら12時間、加熱還流を行った。これにより、反応物が生成した。次に、この反応物について、固液分離を行った。得られた固体を真空乾燥することによって、実施例2の化合物を得た。実施例2の化合物は、上述した式(3)で表される化合物Cについて、複数のZが-OCH3である化合物に相当する。実施例2の化合物は、1H-NMRにより同定した。図3は、実施例2の化合物の1H-NMRスペクトルを示すグラフである。実施例2の化合物の1H-NMRスペクトルは、以下のとおりであった。
1H-NMR (600MHz, CHLOROFORM-D) δ8.44 (s, 4H), 7.84 (d, J=9.0Hz, 8H), 7.28 (d, J=9.0Hz, 8H), 7.12 (d, J=9.0Hz, 8H), 6.98 (d, J=9.0Hz, 8H), 3.87 (s, 12H). (Example 2)
[Compound (3) -2]
First, in a 100 mL eggplant-shaped flask, tetrakis (4-aminophenyl) methane (manufactured by Tokyo Chemical Industry Co., Ltd.) and 4-methoxybenzaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.) as raw materials, and ethanol (Fujifilm Wako Junyaku Co., Ltd.) as a solvent. The raw material was dissolved in a solvent. Next, the obtained solution was heated under reflux for 12 hours while stirring with a stirrer. This produced a reactant. Next, solid-liquid separation was performed on this reaction product. The obtained solid was vacuum dried to obtain the compound of Example 2. The compound of Example 2 corresponds to a compound in which a plurality of Z is −OCH 3 with respect to the compound C represented by the above-mentioned formula (3). The compound of Example 2 was identified by 1 H-NMR. FIG. 3 is a graph showing a 1 H-NMR spectrum of the compound of Example 2. The 1 H-NMR spectrum of the compound of Example 2 was as follows.
1 H-NMR (600MHz, CHLOROFORM-D) δ8.44 (s, 4H), 7.84 (d, J = 9.0Hz, 8H), 7.28 (d, J = 9.0Hz, 8H), 7.12 (d, J = 9.0Hz, 8H), 6.98 (d, J = 9.0Hz, 8H), 3.87 (s, 12H).
[化合物(3)-2]
まず、100mLのナス型フラスコに、原料としてテトラキス(4-アミノフェニル)メタン(東京化成工業社製)及び4-メトキシベンズアルデヒド(東京化成工業社製)と、溶媒としてエタノール(富士フイルム和光純薬社製)とを投入し、原料を溶媒に溶解させた。次に、得られた溶液について、スターラーを用いて撹拌しながら12時間、加熱還流を行った。これにより、反応物が生成した。次に、この反応物について、固液分離を行った。得られた固体を真空乾燥することによって、実施例2の化合物を得た。実施例2の化合物は、上述した式(3)で表される化合物Cについて、複数のZが-OCH3である化合物に相当する。実施例2の化合物は、1H-NMRにより同定した。図3は、実施例2の化合物の1H-NMRスペクトルを示すグラフである。実施例2の化合物の1H-NMRスペクトルは、以下のとおりであった。
1H-NMR (600MHz, CHLOROFORM-D) δ8.44 (s, 4H), 7.84 (d, J=9.0Hz, 8H), 7.28 (d, J=9.0Hz, 8H), 7.12 (d, J=9.0Hz, 8H), 6.98 (d, J=9.0Hz, 8H), 3.87 (s, 12H). (Example 2)
[Compound (3) -2]
First, in a 100 mL eggplant-shaped flask, tetrakis (4-aminophenyl) methane (manufactured by Tokyo Chemical Industry Co., Ltd.) and 4-methoxybenzaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.) as raw materials, and ethanol (Fujifilm Wako Junyaku Co., Ltd.) as a solvent. The raw material was dissolved in a solvent. Next, the obtained solution was heated under reflux for 12 hours while stirring with a stirrer. This produced a reactant. Next, solid-liquid separation was performed on this reaction product. The obtained solid was vacuum dried to obtain the compound of Example 2. The compound of Example 2 corresponds to a compound in which a plurality of Z is −OCH 3 with respect to the compound C represented by the above-mentioned formula (3). The compound of Example 2 was identified by 1 H-NMR. FIG. 3 is a graph showing a 1 H-NMR spectrum of the compound of Example 2. The 1 H-NMR spectrum of the compound of Example 2 was as follows.
1 H-NMR (600MHz, CHLOROFORM-D) δ8.44 (s, 4H), 7.84 (d, J = 9.0Hz, 8H), 7.28 (d, J = 9.0Hz, 8H), 7.12 (d, J = 9.0Hz, 8H), 6.98 (d, J = 9.0Hz, 8H), 3.87 (s, 12H).
<二光子吸収断面積の測定>
合成した化合物について、405nmの波長を有する光に対する二光子吸収断面積の測定を行った。二光子吸収断面積の測定は、J. Opt. Soc. Am. B, 2003, Vol. 20, p. 529.に記載されたZスキャン法を用いて行った。二光子吸収断面積を測定するための光源としては、チタンサファイアパルスレーザーを用いた。詳細には、チタンサファイアパルスレーザーの第二高周波を試料に照射した。レーザーのパルス幅は、80fsであった。レーザーの繰り返し周波数は、1kHzであった。レーザーの平均パワーは、0.01mW以上0.08mW以下の範囲で変化させた。レーザーからの光は、405nmの波長を有する光であった。詳細には、レーザーからの光は、402nm以上404nm以下の中心波長を有していた。レーザーからの光の半値全幅は、4nmであった。 <Measurement of two-photon absorption cross section>
The two-photon absorption cross section of the synthesized compound was measured for light having a wavelength of 405 nm. The two-photon absorption cross section was measured using the Z scan method described in J. Opt. Soc. Am. B, 2003, Vol. 20, p. 529. A titanium sapphire pulse laser was used as a light source for measuring the two-photon absorption cross section. Specifically, the sample was irradiated with a second high frequency of a titanium sapphire pulse laser. The pulse width of the laser was 80 fs. The laser repeat frequency was 1 kHz. The average power of the laser was varied in the range of 0.01 mW or more and 0.08 mW or less. The light from the laser was light with a wavelength of 405 nm. Specifically, the light from the laser had a center wavelength of 402 nm or more and 404 nm or less. The full width at half maximum of the light from the laser was 4 nm.
合成した化合物について、405nmの波長を有する光に対する二光子吸収断面積の測定を行った。二光子吸収断面積の測定は、J. Opt. Soc. Am. B, 2003, Vol. 20, p. 529.に記載されたZスキャン法を用いて行った。二光子吸収断面積を測定するための光源としては、チタンサファイアパルスレーザーを用いた。詳細には、チタンサファイアパルスレーザーの第二高周波を試料に照射した。レーザーのパルス幅は、80fsであった。レーザーの繰り返し周波数は、1kHzであった。レーザーの平均パワーは、0.01mW以上0.08mW以下の範囲で変化させた。レーザーからの光は、405nmの波長を有する光であった。詳細には、レーザーからの光は、402nm以上404nm以下の中心波長を有していた。レーザーからの光の半値全幅は、4nmであった。 <Measurement of two-photon absorption cross section>
The two-photon absorption cross section of the synthesized compound was measured for light having a wavelength of 405 nm. The two-photon absorption cross section was measured using the Z scan method described in J. Opt. Soc. Am. B, 2003, Vol. 20, p. 529. A titanium sapphire pulse laser was used as a light source for measuring the two-photon absorption cross section. Specifically, the sample was irradiated with a second high frequency of a titanium sapphire pulse laser. The pulse width of the laser was 80 fs. The laser repeat frequency was 1 kHz. The average power of the laser was varied in the range of 0.01 mW or more and 0.08 mW or less. The light from the laser was light with a wavelength of 405 nm. Specifically, the light from the laser had a center wavelength of 402 nm or more and 404 nm or less. The full width at half maximum of the light from the laser was 4 nm.
<機械学習による二光子吸収断面積の予測>
次に、合成した化合物、及び合成した化合物とはZの種類が異なる他の化合物について、機械学習による二光子吸収断面積の予測を行った。詳細には、まず、学習データとして、二光子吸収断面積が既知である化合物を約70種類準備した。これらの化合物の半数をトレーニングデータとして用い、残りの半数を試験データとして用いた。これらの学習データに基づいて、ランダムフォレストにより二光子吸収断面積の予測を行い、予測精度の評価を行った。ランダムフォレストには、ケモインフォマティクスソフトウェアRDkitを用いた。これにより、決定係数であるR2が0.75以上の予測モデルを得た。この予測モデルを用いて、合成した化合物、及び合成した化合物とはZの種類が異なる他の化合物について、二光子吸収断面積の予測を行った。 <Prediction of two-photon absorption cross section by machine learning>
Next, the two-photon absorption cross section was predicted by machine learning for the synthesized compound and other compounds having a Z type different from that of the synthesized compound. Specifically, first, about 70 kinds of compounds having a known two-photon absorption cross section were prepared as learning data. Half of these compounds were used as training data and the other half were used as test data. Based on these training data, the two-photon absorption cross section was predicted by random forest, and the prediction accuracy was evaluated. Cheminformatics software RDkit was used for the random forest. As a result, a prediction model with a coefficient of determination of R 2 of 0.75 or more was obtained. Using this prediction model, the two-photon absorption cross section was predicted for the synthesized compound and other compounds having a Z type different from that of the synthesized compound.
次に、合成した化合物、及び合成した化合物とはZの種類が異なる他の化合物について、機械学習による二光子吸収断面積の予測を行った。詳細には、まず、学習データとして、二光子吸収断面積が既知である化合物を約70種類準備した。これらの化合物の半数をトレーニングデータとして用い、残りの半数を試験データとして用いた。これらの学習データに基づいて、ランダムフォレストにより二光子吸収断面積の予測を行い、予測精度の評価を行った。ランダムフォレストには、ケモインフォマティクスソフトウェアRDkitを用いた。これにより、決定係数であるR2が0.75以上の予測モデルを得た。この予測モデルを用いて、合成した化合物、及び合成した化合物とはZの種類が異なる他の化合物について、二光子吸収断面積の予測を行った。 <Prediction of two-photon absorption cross section by machine learning>
Next, the two-photon absorption cross section was predicted by machine learning for the synthesized compound and other compounds having a Z type different from that of the synthesized compound. Specifically, first, about 70 kinds of compounds having a known two-photon absorption cross section were prepared as learning data. Half of these compounds were used as training data and the other half were used as test data. Based on these training data, the two-photon absorption cross section was predicted by random forest, and the prediction accuracy was evaluated. Cheminformatics software RDkit was used for the random forest. As a result, a prediction model with a coefficient of determination of R 2 of 0.75 or more was obtained. Using this prediction model, the two-photon absorption cross section was predicted for the synthesized compound and other compounds having a Z type different from that of the synthesized compound.
上述の方法によって得られた二光子吸収断面積の実測値及び予測値を表2に示す。表2において、「No Data」は、データを取得していないことを意味する。
Table 2 shows the measured and predicted values of the two-photon absorption cross section obtained by the above method. In Table 2, "No Data" means that no data has been acquired.
次に、式(1)で表される化合物Aとは異なる化合物として、下記の表3に示す化合物を準備した。なお、比較例1の化合物1fは、下記式(5)で表される。
Next, the compounds shown in Table 3 below were prepared as compounds different from the compound A represented by the formula (1). The compound 1f of Comparative Example 1 is represented by the following formula (5).
次に、表3に示す化合物について、上述の方法によって、二光子吸収断面積の測定及び予測を行った。結果を表3に示す。
Next, for the compounds shown in Table 3, the two-photon absorption cross section was measured and predicted by the above method. The results are shown in Table 3.
表2から分かるとおり、式(1)で表される化合物Aに相当する実施例1から15の化合物では、いずれも、405nmの波長を有する光に対する二光子吸収断面積が2000GMを上回った。表3に記載された比較例1から6の化合物に比べて、実施例1から15の化合物は、非常に大きい二光子吸収断面積を有していた。この結果から、式(1)で表される化合物Aは、短波長域の波長を有する光に対して、優れた二光子吸収特性を有することが分かる。式(1)で表される化合物Aは、拡大されたπ電子共役系を有する4置換炭素であり、かつ分子骨格中にイミン基を有する。このような構造に起因して、化合物Aは、優れた二光子吸収特性を有すると推定される。
As can be seen from Table 2, in each of the compounds of Examples 1 to 15 corresponding to the compound A represented by the formula (1), the two-photon absorption cross-sectional area for light having a wavelength of 405 nm exceeded 2000 GM. Compared to the compounds of Comparative Examples 1 to 6 shown in Table 3, the compounds of Examples 1 to 15 had a very large two-photon absorption cross section. From this result, it can be seen that the compound A represented by the formula (1) has excellent two-photon absorption characteristics with respect to light having a wavelength in the short wavelength range. The compound A represented by the formula (1) is a tetra-substituted carbon having an expanded π-electron conjugated system and has an imine group in the molecular skeleton. Due to such a structure, compound A is presumed to have excellent two-photon absorption properties.
本開示の光吸収材料は、三次元光メモリの記録層、光造形用の光硬化性樹脂組成物などの用途に利用できる。本開示の光吸収材料は、短波長域の波長を有する光に対して、優れた二光子吸収特性を有する傾向がある。そのため、本開示の光吸収材料は、三次元光メモリ、造形機などの用途において、極めて高い空間分解能を実現しうる。本開示の光吸収材料によれば、従来の光吸収材料に比べて、小さい光強度のレーザー光によって二光子吸収を行うことが可能である。
The light absorbing material of the present disclosure can be used for applications such as a recording layer of a three-dimensional optical memory and a photocurable resin composition for stereolithography. The light absorbing material of the present disclosure tends to have excellent two-photon absorption characteristics with respect to light having a wavelength in the short wavelength range. Therefore, the light absorbing material of the present disclosure can realize extremely high spatial resolution in applications such as a three-dimensional optical memory and a modeling machine. According to the light absorbing material of the present disclosure, it is possible to absorb two photons with a laser beam having a smaller light intensity than that of a conventional light absorbing material.
Claims (12)
- 下記式(1)で表される化合物を主成分として含む、光吸収材料。
- 前記R1から前記R28は、互いに独立して、水素原子、ハロゲン原子、アルキル基、ハロゲン化アルキル基、不飽和炭化水素基、ヒドロキシル基、カルボキシル基、アルコキシカルボニル基、アシル基、アミド基、ニトリル基、アルコキシ基、アシルオキシ基、チオール基、アルキルチオ基、スルホン酸基、アシルチオ基、アルキルスルホニル基、スルホンアミド基、1級アミノ基、2級アミノ基、3級アミノ基又はニトロ基である、
請求項1に記載の光吸収材料。 The R 1 to R 28 are independent of each other and have a hydrogen atom, a halogen atom, an alkyl group, an alkyl halide group, an unsaturated hydrocarbon group, a hydroxyl group, a carboxyl group, an alkoxycarbonyl group, an acyl group and an amide group. A nitrile group, an alkoxy group, an acyloxy group, a thiol group, an alkylthio group, a sulfonic acid group, an acylthio group, an alkylsulfonyl group, a sulfonamide group, a primary amino group, a secondary amino group, a tertiary amino group or a nitro group.
The light absorbing material according to claim 1. - 前記R9から前記R11、前記R14から前記R16、前記R19から前記R21、及び、前記R24から前記R26からなる群より選ばれる少なくとも1つは、電子供与基又は電子求引基である、
請求項1又は2に記載の光吸収材料。 At least one selected from the group consisting of R 9 to R 11 , R 14 to R 16 , R 19 to R 21 , and R 24 to R 26 is at least one electron-donating group or electron-withdrawing group. The basis,
The light absorbing material according to claim 1 or 2. - 前記電子供与基は、アルキル基又はアルコキシ基である、
請求項3に記載の光吸収材料。 The electron donating group is an alkyl group or an alkoxy group.
The light absorbing material according to claim 3. - 前記電子供与基は、-C(CH3)3又は-OCH3である、
請求項3又は4に記載の光吸収材料。 The electron donating group is -C (CH 3 ) 3 or -OCH 3 .
The light absorbing material according to claim 3 or 4. - 前記化合物が下記式(2)で表される、
請求項1又は2に記載の光吸収材料。
The light absorbing material according to claim 1 or 2.
- 前記化合物は光吸収効果を有する、
請求項1から6のいずれか1項に記載の光吸収材料。 The compound has a light absorption effect.
The light absorbing material according to any one of claims 1 to 6. - 390nm以上420nm以下の波長を有する光を利用するデバイスに用いられる、
請求項1から7のいずれか1項に記載の光吸収材料。 Used for devices that utilize light with a wavelength of 390 nm or more and 420 nm or less.
The light absorbing material according to any one of claims 1 to 7. - 請求項1から8のいずれか1項に記載の光吸収材料を含む記録層を備える、記録媒体。 A recording medium including a recording layer containing the light absorbing material according to any one of claims 1 to 8.
- 390nm以上420nm以下の波長を有する光を発する光源を準備することと、
前記光源からの前記光を集光して、請求項9に記載の記録媒体における前記記録層に照射することと、
を含む、情報の記録方法。 Preparing a light source that emits light with a wavelength of 390 nm or more and 420 nm or less,
Condensing the light from the light source and irradiating the recording layer in the recording medium according to claim 9 with the light.
How to record information, including. - 請求項10に記載の記録方法によって記録された情報の読出方法であって、
前記読出方法は、
前記記録媒体における前記記録層に対して光を照射することによって、前記記録層の光学特性を測定することと、
前記光学特性に基づいて、前記記録層に情報が記録されているか否かを判定することと
を含む、情報の読出方法。 A method for reading information recorded by the recording method according to claim 10.
The reading method is
By irradiating the recording layer in the recording medium with light, the optical characteristics of the recording layer can be measured.
A method for reading information, which comprises determining whether or not information is recorded on the recording layer based on the optical characteristics. - 前記光学特性は、前記記録層で反射した光の強度である、
請求項11に記載の読出方法。 The optical characteristic is the intensity of the light reflected by the recording layer.
The reading method according to claim 11.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021002262A JP2024026908A (en) | 2021-01-08 | 2021-01-08 | Light absorption material, recording medium, method for recording information, and method for reading information |
JP2021-002262 | 2021-01-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022149460A1 true WO2022149460A1 (en) | 2022-07-14 |
Family
ID=82357278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/047343 WO2022149460A1 (en) | 2021-01-08 | 2021-12-21 | Light-absorbing material, recording medium, method for recording information, and method for reading information |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024026908A (en) |
WO (1) | WO2022149460A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003049162A (en) * | 2001-08-02 | 2003-02-21 | Univ Osaka | Material for organic photorefractive element, amorphous film and organic photorefractive element |
JP2004503392A (en) * | 2000-06-15 | 2004-02-05 | スリーエム イノベイティブ プロパティズ カンパニー | Process for manufacturing microfluidic products |
JP2004043340A (en) * | 2002-07-10 | 2004-02-12 | Nitto Denko Corp | Urethane compound and organic photorefractive material using the same |
JP2004277344A (en) * | 2003-03-17 | 2004-10-07 | Fuji Photo Film Co Ltd | Aromatic compound, nonlinear optical material, electrooptical material, and optical element |
JP2006267981A (en) * | 2005-03-25 | 2006-10-05 | Fuji Xerox Co Ltd | Organic functional material and organic functional element using the same |
-
2021
- 2021-01-08 JP JP2021002262A patent/JP2024026908A/en active Pending
- 2021-12-21 WO PCT/JP2021/047343 patent/WO2022149460A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004503392A (en) * | 2000-06-15 | 2004-02-05 | スリーエム イノベイティブ プロパティズ カンパニー | Process for manufacturing microfluidic products |
JP2003049162A (en) * | 2001-08-02 | 2003-02-21 | Univ Osaka | Material for organic photorefractive element, amorphous film and organic photorefractive element |
JP2004043340A (en) * | 2002-07-10 | 2004-02-12 | Nitto Denko Corp | Urethane compound and organic photorefractive material using the same |
JP2004277344A (en) * | 2003-03-17 | 2004-10-07 | Fuji Photo Film Co Ltd | Aromatic compound, nonlinear optical material, electrooptical material, and optical element |
JP2006267981A (en) * | 2005-03-25 | 2006-10-05 | Fuji Xerox Co Ltd | Organic functional material and organic functional element using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2024026908A (en) | 2024-02-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021246066A1 (en) | Compound, non-linear optical material, recording medium, method for recording information, and method for reading information | |
WO2022149460A1 (en) | Light-absorbing material, recording medium, method for recording information, and method for reading information | |
WO2022149459A1 (en) | Non-linear optical absorption material, recording medium, method for recording information, and method for reading information | |
WO2022149461A1 (en) | Nonlinear light absorption material, recording medium, method for recording information, and method for reading information | |
JP6994666B1 (en) | Non-linear optical material, light absorption material, recording medium, information recording method and information reading method | |
JP6994667B1 (en) | Non-linear optical material, light absorption material, recording medium, information recording method and information reading method | |
WO2022149462A1 (en) | Light-absorbing material, recording medium, method for recording information, and method for reading out information | |
JP2022177737A (en) | Nonlinear absorption material, recording medium, information recording method, and information reading method | |
WO2022244431A1 (en) | Nonlinear light absorption material, recording medium, method for recording information, and method for reading information | |
WO2022244430A1 (en) | Nonlinear light absorbing material, recording medium, method for recording information, and method for reading information | |
WO2022244429A1 (en) | Nonlinear light absorption material, recording medium, method for recording information, and method for reading information | |
JP2007241168A (en) | Two-photon absorption material | |
CN115210336B (en) | Light absorbing material, recording medium using the same, information recording method, and information reading method | |
JP4996115B2 (en) | Two-photon absorption materials and their applications | |
US20240069408A1 (en) | Light absorption material, recording medium, information recording method, and information reading method | |
JP7390676B1 (en) | Nonlinear light absorption material, recording medium, information recording method, and information reading method | |
JP7526934B2 (en) | Recording medium, information recording method, and information reading method | |
WO2022255066A1 (en) | Recording medium, information recording method, information reading method, and composition for producing recording layer | |
WO2023238487A1 (en) | Recording medium, information recording method, and information reading method | |
WO2023140012A1 (en) | Compound, light absorption material, non-linear light absorption material, recording medium, information recording method, and information read-out method | |
JP4969881B2 (en) | Two-photon absorption materials and their applications | |
JP2013010893A (en) | Two-photon absorption polymerizable composition | |
JP2004339435A (en) | Non-resonating two-photon absorption dye and method for inducing non-resonating two-photon absorption | |
Yanez | Synthesis of novel fluorene-based two-photon absorbing molecules and their applications in optical data storage, microfabrication, and stimulated emission depletion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21917680 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21917680 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |