WO2018105439A1 - Liquid crystal display element - Google Patents

Liquid crystal display element Download PDF

Info

Publication number
WO2018105439A1
WO2018105439A1 PCT/JP2017/042547 JP2017042547W WO2018105439A1 WO 2018105439 A1 WO2018105439 A1 WO 2018105439A1 JP 2017042547 W JP2017042547 W JP 2017042547W WO 2018105439 A1 WO2018105439 A1 WO 2018105439A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
mass
light
carbon atoms
Prior art date
Application number
PCT/JP2017/042547
Other languages
French (fr)
Japanese (ja)
Inventor
英彦 山口
芳典 岩下
小川 真治
崇之 三木
穣 田淵
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2018554932A priority Critical patent/JPWO2018105439A1/en
Publication of WO2018105439A1 publication Critical patent/WO2018105439A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/54Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal display element.
  • TFT thin film transistor
  • MIM metal insulator metal
  • VA vertical alignment: vertical alignment
  • IPS In Plane Switching: in-plane switching
  • IPS improved FFS Frringe Field Switching: fringe field switching
  • the liquid crystal display element is not a self-luminous type, a light source for emitting light is essential, and a white light source having an emission spectrum in a color reproduction region required for a display is used.
  • a light source a cold cathode tube, a white LED (light emitting diode), or the like is used. From the viewpoint of light emission efficiency, at present, the white LED is mainly used. LEDs cannot currently cover the entire visible light range from 380 nm to 750 nm with a single element, and several forms are known for obtaining white light.
  • white light is obtained by the combination of 1) blue LED and yellow phosphor.
  • liquid crystal display elements use color filters in combination with liquid crystal elements to realize color display, so it is difficult to improve color reproducibility even if the light source section is improved. It has been necessary to increase the color purity by increasing the pigment concentration in the color filter or by increasing the color film thickness. However, in this case, there is a problem that the light transmittance is reduced, and the amount of light must be increased, resulting in an increase in power consumption.
  • Quantum dots are composed of semiconductor microcrystals with a particle size of several nanometers to several tens of nanometers. The energy levels are discrete due to the confinement effect of electron-hole pairs, and the energy band gap increases as the particle diameter decreases. is doing. By applying this property and controlling the particle diameter to make the band gap uniform, a light source with a small half-value width of the emission spectrum can be obtained.
  • a liquid crystal display element with improved color reproducibility can be configured by using quantum dots as a constituent member of a backlight.
  • quantum dots See Patent Document 2 and Non-Patent Document 1.
  • these display elements can achieve both high luminous efficiency and color reproducibility.
  • quantum dots which are examples of light-emitting nanocrystals
  • a short light source is used to cause excitation of the quantum dots. Since a visible light source with a wavelength or ultraviolet light is required, the light transmitted through the liquid crystal layer is mainly in a short wavelength region, unlike the case of using conventional white light.
  • short-wavelength visible light and ultraviolet light used as a light source for light emission from the light-emitting nanocrystal are high-energy light, and the liquid crystal layer functioning as an optical switch can withstand long-time exposure to these high-energy light. It is demanded. In particular, it has been confirmed that the liquid crystal material itself is decomposed when the liquid crystal layer is exposed to a high-energy light beam such as short-wavelength visible light or ultraviolet light.
  • An object of the present invention is to provide a liquid crystal display element capable of suppressing or preventing the deterioration of the liquid crystal layer due to the irradiation.
  • the inventors of the present application have used a liquid crystal layer containing a specific liquid crystal compound in a polymer network as a member corresponding to a color filter using light-emitting nanocrystals such as quantum dots.
  • the present invention was completed by finding that the above-mentioned problems can be solved by using the liquid crystal display device.
  • a pair of substrates provided with the first substrate and the second substrate facing each other; A liquid crystal layer sandwiched between the first substrate and the second substrate; A pixel electrode provided on at least one of the first substrate and the second substrate; A common electrode provided on at least one of the first substrate and the second substrate; A light source unit including a light emitting element; It has three primary color pixels of red (R), green (G), and blue (B), and red (R), green (G), and blue (B) by light from the light source unit incident on at least one of the three primary colors.
  • the liquid crystal layer comprises a polymer network (A) and a general formula (i)
  • R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkyl group having 2 to 8 carbon atoms.
  • a alkenyloxy group, A represents a 1,4-phenylene group or trans-1,4-cyclohexylene group, and n represents 0 or 1).
  • the present invention relates to a liquid crystal display element comprising the composition (B).
  • an object of the present invention is to provide a liquid crystal display element capable of suppressing or preventing deterioration. Therefore, the liquid crystal display element of the present invention can maintain the color reproduction region for a long time.
  • FIG. 1 is a perspective view showing an embodiment of a liquid crystal display element of the present invention.
  • FIG. 2 is a perspective view showing another embodiment of the liquid crystal display element of the present invention.
  • FIG. 3 is a perspective view showing another embodiment of the liquid crystal display element of the present invention.
  • FIG. 4 is a perspective view showing another embodiment of the liquid crystal display element of the present invention.
  • FIG. 5 is a schematic view of a cross section of the liquid crystal display element cut along the line II in FIGS. 1 to 4, and is a schematic view showing an example of a light conversion layer in the liquid crystal display element of the present invention.
  • FIG. 6 is a schematic view of a cross section of the liquid crystal display element taken along the line II in FIGS.
  • FIG. 7 is a schematic view of a cross section of the liquid crystal display element taken along the line II in FIGS. 1 to 4, and is a schematic view showing another example of the light conversion layer in the liquid crystal display element of the present invention.
  • FIG. 8 is a schematic cross-sectional view of the liquid crystal display element cut along the line II in FIGS. 1 to 4, and is a schematic view showing another example of the light conversion layer in the liquid crystal display element of the present invention.
  • FIG. 9 is a schematic view of a cross section of the liquid crystal display element cut along the line II in FIGS.
  • FIG. 10 is a schematic cross-sectional view of the liquid crystal display element cut along the line II in FIGS. 1 to 4, and is a schematic view showing another example of the light conversion layer in the liquid crystal display element of the present invention.
  • FIG. 11 is a schematic cross-sectional view of the liquid crystal display element cut along the line II in FIGS. 1 to 4, and is a schematic view showing another example of the light conversion layer in the liquid crystal display element of the present invention.
  • FIG. 12 is a schematic diagram showing the pixel portion of the liquid crystal display element of the present invention in an equivalent circuit.
  • FIG. 13 is a schematic diagram showing an example of the shape of the pixel electrode of the present invention.
  • FIG. 14 is a schematic diagram showing an example of the shape of the pixel electrode of the present invention.
  • FIG. 15 is a schematic view showing an electrode structure of the IPS liquid crystal display element of the present invention.
  • 16 is one example of a cross-sectional view of the liquid crystal display element shown in FIG. 2 cut along the line III-III in FIG. 13 or FIG.
  • FIG. 17 is a cross-sectional view of the IPS liquid crystal panel taken along the line III-III in FIG.
  • FIG. 18 is an enlarged plan view of a region surrounded by the II line of the electrode layer 3 including the thin film transistor formed on the substrate in FIGS. 19 is a cross-sectional view of the liquid crystal display element shown in FIGS. 3 and 4 taken along the line III-III in FIG.
  • FIG. 20 is a schematic diagram illustrating an example of the light conversion layer 6.
  • FIG. 21 is a schematic diagram illustrating an example of the light conversion layer 6.
  • FIG. 22 is a schematic diagram illustrating an example of the light conversion layer 6.
  • FIG. 23 is a diagram showing an emission spectrum of a quantum dot.
  • FIG. 24 is a schematic diagram of an electrode structure of a fishbone type VA liquid crystal cell.
  • the liquid crystal display element of the present invention includes a pair of substrates provided with the first substrate and the second substrate facing each other, and a liquid crystal layer sandwiched between the first substrate and the second substrate.
  • a pixel electrode provided on at least one of the first substrate or the second substrate, a common electrode provided on at least one of the first substrate or the second substrate, and a light source including a light emitting element
  • the apparatus includes three primary color pixels of red (R), green (G), and blue (B). Red (R), green (G), and blue (B) are generated by incident light from the light source unit that is incident on at least one of the three primary colors.
  • a light conversion layer containing a light-emitting nanocrystal having an emission spectrum.
  • the liquid crystal layer comprises a polymer network (A) and a general formula (i)
  • R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkyl group having 2 to 8 carbon atoms.
  • a alkenyloxy group, A represents a 1,4-phenylene group or trans-1,4-cyclohexylene group, and n represents 0 or 1). It contains the composition (B).
  • a highly reliable liquid crystal display element having a liquid crystal layer capable of withstanding long-time exposure to high-energy light rays such as short-wavelength visible light and ultraviolet light used for a light source by configuring the liquid crystal layer as a characteristic configuration Can provide.
  • FIG. 1 is a perspective view showing the whole of an example of a liquid crystal display element used in the present embodiment, and for the sake of explanation, the constituent elements are shown separately.
  • the liquid crystal display element 1000 includes a backlight unit 100 and a liquid crystal panel 10.
  • the backlight unit 100 includes a light source unit 101 having a light emitting element L, and a light guide unit 102 serving as a light guide plate (not shown) or a light diffusion plate (not shown).
  • a light source unit 101 including a plurality of light emitting elements L is disposed on one side surface of the light guide unit 102. If necessary, the light source unit 101 including the plurality of light emitting elements L is not only provided on one side surface of the liquid crystal panel 10 (one side surface of the light guide unit 102) but also on the other side surface side (opposite side surfaces) of the liquid crystal panel 10.
  • the light source unit 101 including a plurality of light emitting elements L may surround three sides of the light guide unit 102 or the entire periphery of the light guide unit 102 so as to surround the light guide unit 102. As such, it may be provided on four side surfaces.
  • the light guide unit 102 may include a light diffusion plate (not shown) instead of the light guide plate as necessary.
  • the first (transparent insulating) substrate 2 is provided with a polarizing layer 1 on one surface and an electrode layer 3 on the other surface.
  • a second (transparent insulating) substrate 7 is disposed so as to face the first substrate 2 with the liquid crystal layer 5 interposed therebetween, and a light conversion layer (so-called color layer) 6 and a polarized light are disposed on the substrate 7.
  • the layers 8 are provided in this order.
  • the light conversion layer (color layer) 6 includes three primary color pixels of red (R), green (G), and blue (B), and pixels of at least one of the three primary colors are emitted from the light source unit. It contains light-emitting nanocrystals having an emission spectrum in any of red (R), green (G), and blue (B) by incident light.
  • FIG. 1 shows a mode in which a pixel electrode (not shown) and a common electrode (not shown) are provided on the first substrate 2 side as the electrode layer 3, but another embodiment (for example, 3 and 4), the pixel electrode may be provided on the first substrate 2 and the common electrode 3 ′ may be provided on the second substrate 7.
  • a light conversion layer 6 is provided between the second substrate 7 and the liquid crystal layer 5.
  • the light conversion layer 6 may be provided on the first substrate 2 side as in the so-called color filter on array (COA) type, and in this case, between the electrode layer 3 and the liquid crystal layer 5.
  • COA color filter on array
  • the light conversion layer 6 may be provided, or the light conversion layer 6 may be provided between the electrode layer 3 and the first substrate 2.
  • an overcoat layer (not shown) may be provided so as to cover the light conversion layer 6 to prevent a substance contained in the light conversion layer from flowing out to the liquid crystal layer.
  • the liquid crystal display element 1000 shown in FIG. 2 is a view showing an embodiment in which an alignment layer 4 is further provided in the liquid crystal panel 10 of FIG.
  • the polarizing layer 1 is provided on one surface of the first (transparent insulating) substrate 2, and the electrode layer 3 is provided on the other surface.
  • an alignment layer 4 is formed on the electrode layer 3.
  • a light conversion layer 6 containing nanocrystals for light emission is provided on a second (transparent insulating) substrate 7 so as to face the first substrate 2 with the liquid crystal layer 5 interposed therebetween.
  • a polarizing layer 8 is provided on the first substrate 2 side of the light conversion layer 6, and an alignment layer 4 is further provided on the first substrate 2 side of the polarizing layer 8.
  • a pixel electrode (not shown) and a common electrode (not shown) are provided on the first substrate 2 side as the electrode layer 3, but another embodiment (for example, FIG. 3 and FIG. 4). ),
  • the pixel electrode 3 may be provided on the first substrate 2, and the common electrode may be provided on the second substrate 7.
  • the alignment layer 4 can align liquid crystal molecules in the liquid crystal composition in a predetermined direction with respect to the substrates 2 and 7 when no voltage is applied.
  • FIG. 2 shows an example in which the liquid crystal layer 5 is sandwiched between the pair of alignment layers 4, the alignment layer 4 may be provided only on one side of the first substrate 2 or the second substrate.
  • the light conversion layer 6 is provided between the second substrate 7 and the alignment layer 4. As in the case of FIG. 1, similar to the so-called color filter on array (COA) type.
  • the light conversion layer 6 may be provided on the first substrate 2 side.
  • the alignment layer 4 is provided on the first substrate 2 side and the second substrate 7 side so as to be in contact with the liquid crystal layer 5, but only one of them may be provided.
  • the liquid crystal panel 10 includes the first polarizing layer 1, the first substrate 2, the electrode layer 3, the liquid crystal layer 5, the second polarizing layer 8, and the light conversion layer 6. And the second substrate 7 are sequentially laminated, or the first polarizing layer 1, the first substrate 2, the electrode layer 3, the alignment layer 4, and a liquid crystal layer containing a liquid crystal composition 5, the alignment layer 4, the second polarizing layer 8, the light conversion layer 6, and the second substrate 7 are preferably laminated in sequence.
  • the light emitted from the light emitting element L passes through the light guide 102 (for example, via a light guide plate or a light diffusion plate) and enters the surface of the liquid crystal panel 10.
  • the light incident on the liquid crystal panel 10 is polarized in a specific direction by the first polarizing layer 1, and then the light whose polarization direction is changed by the liquid crystal layer 5 is blocked by the second polarizing layer 8. After being polarized in a specific direction, it enters the light conversion layer 6.
  • the light incident on the light conversion layer 6 is absorbed by the light-emitting nanocrystals and converted into an emission spectrum into one of red (R), green (G), and blue (B).
  • red (R), green (G), and blue (B) can be displayed.
  • the shape of the light guide portion 102 (particularly, the light guide plate) is a flat plate having a side surface whose thickness gradually decreases from the side surface on which the light emitted from the light emitting element L is incident toward the opposing surface (side surface Is preferable because it is easy to make light incident on the liquid crystal panel 10 because the line light can be converted into surface light (which will be described later as an embodiment).
  • FIG. 3 shows an example of the entire liquid crystal display element having a so-called direct-type backlight structure in which the backlight unit 100 has a plurality of light emitting elements L arranged in a plane with respect to the flat light guide 102. It is a perspective view. In addition, for convenience of explanation, each component is illustrated separately.
  • the light from the light emitting element L is surface light, and therefore the shape of the light guide 102 need not be tapered unlike FIGS.
  • a liquid crystal panel 10 in FIG. 3 includes a first substrate 2 having a first electrode layer 3 (for example, a pixel electrode) on one surface and a first polarizing layer 1 on the other surface;
  • the second substrate 7 having the electrode layer 3 ′ (for example, a common electrode), and the liquid crystal layer 5 sandwiched between the first substrate 2 and the second substrate 7 are provided.
  • a light conversion layer 6 is provided between the second substrate 7 and the second electrode layer 3 ′, and a second electrode layer 3 ′ on the light conversion layer 6 is disposed on the second electrode layer 3 ′ side.
  • the polarizing layer 8 is provided.
  • the liquid crystal display element 1000 includes the backlight unit 100, the first polarizing plate 1, the first substrate 2, and an electrode layer including a thin film transistor (or a thin film transistor layer or a pixel electrode). ) 3, a layer 5 containing a liquid crystal composition, a second electrode layer 3 ′, a second polarizing plate 8, a light conversion layer 6, and a second substrate 7 are sequentially laminated. Become.
  • the liquid crystal display element 1000 shown in FIG. 4 is a view showing an embodiment in which an alignment layer 4 is further provided in the liquid crystal panel 10 of FIG. That is, the liquid crystal panel 10 in FIG. 4 includes a first substrate 2 having a first electrode layer 3 (for example, a pixel electrode) on one surface and a first polarizing layer 1 on the other surface; A liquid crystal composition (or liquid crystal layer 5) sandwiched between a second substrate 7 having a second electrode layer 3 ′ (for example, a common electrode) and the first substrate 2 and the second substrate 7. Between the first substrate 2 and the liquid crystal layer 5 so as to be in contact with the liquid crystal layer 5, and between the second substrate 7 and the liquid crystal layer 5. An alignment layer 4 provided in contact with the liquid crystal layer 5. In addition, a light conversion layer 6 is provided between the second substrate 7 and the second electrode layer 3 ′, and a second electrode layer 3 ′ on the light conversion layer 6 is disposed on the second electrode layer 3 ′ side. The polarizing layer 8 is provided.
  • a first electrode layer 3
  • the liquid crystal display element 1000 includes a backlight unit 100, a first polarizing plate 1, a first substrate 2, and an electrode layer (or a thin film transistor layer) 3 including a thin film transistor.
  • the light emitted from the light emitting element L passes through the light guide 102 (through the light diffusion plate or the light diffusion plate) and enters the surface of the liquid crystal panel 10.
  • the light incident on the liquid crystal panel 10 is polarized in a specific direction by the first polarizing layer 1, and then the light whose polarization direction is changed by the liquid crystal layer 5 is blocked by the second polarizing layer 8. After being polarized in a specific direction, it enters the light conversion layer 6.
  • the light incident on the light conversion layer 6 is absorbed by the light-emitting nanocrystals and converted into an emission spectrum into one of red (R), green (G), and blue (B). Thus, any one of red (R), green (G), and blue (B) can be displayed.
  • a light diffusing plate is provided between the liquid crystal panel 10 and the light guide unit 102 as the light guide unit 102 (described as an embodiment below).
  • 5 to 11 are schematic views of cross-sectional views of the liquid crystal display device in which a portion of the liquid crystal panel 10 is cut to show the configuration of the liquid crystal panel used in the present embodiment. It is the schematic which shows the lamination
  • the alignment layer 4 and the like are omitted schematically.
  • a substrate on the backlight unit (light source) side and a laminate laminated on the substrate are array substrate (A-SUB), and the array substrate and liquid crystal layer 5 are connected to the liquid crystal layer 5.
  • a substrate opposed to the substrate and a stacked body stacked on the substrate are referred to as a counter substrate (O-SUB).
  • the configurations and preferred embodiments of the array substrate (A-SUB) and the counter substrate (O-SUB) will be described in detail in the description of the electrode structure in FIGS. 5 to 11 show an example in which TFTs are formed on the array substrate side, the array substrate and the counter substrate may be interchanged.
  • the light conversion layer 6 is provided on the counter substrate (O-SUB), and the light conversion layer 6 and the second polarizing layer 8 include a pair of substrates (the first substrate 2 and the second substrate 2). In this embodiment, a so-called in-cell polarizing layer is provided between the second substrates 7).
  • the light conversion layer 6 in the present invention includes the three primary color pixels of red (R), green (G), and blue (B), and plays the same role as a so-called color filter.
  • the light conversion layer 6 includes, for example, a red (R) pixel portion (red color layer portion) including a light conversion pixel layer (NC-Red) including a red light emitting nanocrystal, and a green (
  • the pixel portion (green color layer portion) of R) includes a light conversion pixel layer (NC-Green) containing nanocrystals for green light emission, and the blue (R) pixel portion (blue color layer portion)
  • An optical conversion pixel layer (NC-Blue) including a blue light emitting nanocrystal is provided.
  • An example of such a single layer type light conversion layer 6 is shown in FIG.
  • the blue light emitted from the blue LED can be used as blue. Therefore, when the light from the light source is blue light, the light conversion pixel layer (NC-Blue) is omitted from the light conversion pixel layers (NC-Red, NC-Green, NC-Blue) of the respective colors.
  • the backlight may be used as it is.
  • the color layer displaying blue can be constituted by a transparent material or a color material layer (so-called blue color filter) containing a blue color material. Therefore, in FIGS. 5 and 22, since the blue light emitting nanocrystal can be an arbitrary component, the blue light emitting nanocrystal is indicated by a one-dot broken line.
  • a black matrix may be provided for the purpose of preventing color mixing between the color layers.
  • a color layer containing a blue color material (so-called “blue”) between the light conversion layer 6 and the second polarizing layer 8 according to the type of light source used (blue LED as a light emitting element). It is preferable to provide a color filter “) between them in order to prevent the intrusion of unnecessary light from the outside and suppress deterioration in image quality.
  • a structure in which such a blue color filter is arranged is shown in FIG.
  • the embodiment shown in FIG. 5 is applied to a VA type liquid crystal display element, in the counter substrate side O-SUB, between the liquid crystal 5 and the second polarizing layer 8 or between the second polarizing layer 8 and the light conversion layer. 6 is provided with an electrode layer 3 ′ (common electrode), and the electrode layer 3 (pixel electrode) is preferably formed on the first substrate 2.
  • the alignment layer 4 is preferably formed on the surface in contact with at least one liquid crystal layer on the counter substrate side (O-SUB) and the array substrate side (A-SUB).
  • the pixel electrode and the common electrode are preferably formed on the first base 2.
  • the light conversion layer 6 is provided on the counter substrate (O-SUB), and the light conversion layer 6 includes a pair of substrates (first substrate 2 and second substrate 7). ) Is provided outside. Therefore, a support substrate 9 that supports the second polarizing layer 8 and the light conversion layer 6 is provided.
  • the support substrate 9 is preferably a transparent substrate.
  • the red (R) pixel portion is a light conversion pixel layer (NC-Red) containing red light emitting nanocrystals, as in the embodiment of FIG.
  • the green (R) pixel portion includes a light conversion pixel layer (NC-Green) including a green light emitting nanocrystal, and the blue (R) pixel portion (blue color)
  • the layer portion includes a light conversion pixel layer (NC-Blue) that optionally includes blue light emitting nanocrystals.
  • the preferred form of the red (R) pixel portion, the green (G) pixel portion, and the blue (B) pixel portion in the light conversion layer 8 in FIG. 6 is the same as the embodiment shown in FIG. It is omitted here.
  • an electrode layer 3 ′ (common electrode) is provided between the liquid crystal 5 and the second polarizing layer 8 on the counter substrate side O-SUB, and
  • the electrode layer 3 (pixel electrode) is preferably formed on the first substrate 2.
  • the alignment layer 4 is preferably formed on the surface in contact with at least one liquid crystal layer on the counter substrate side (O-SUB) and the array substrate side (A-SUB). Further, in FIG. 6, when the liquid crystal display element is an FFS type or an IPS type, it is preferable that the pixel electrode and the common electrode are formed on the first substrate 2.
  • the light conversion layer 6 is provided on the counter substrate side O-SUB, and the light conversion layer 6 and the second polarizing layer 8 are formed of a pair of substrates (the first substrate 2 and the second substrate 2). And an in-cell polarizing plate provided between the substrates 7), and in each of the red and green color layer portions constituting the light conversion layer 6, the red color layer portion is a red light emitting nano-layer.
  • a light conversion pixel layer (NC-Red) containing crystals and a color material layer (so-called red color filter) (CF-Red) containing a red color material are stacked, and the green color
  • the layer part is composed of a light conversion pixel layer (NC-Green) containing nanocrystals for green light emission that emits green light and a color material layer (so-called green color filter) (CF-Green) containing a green color material. It has a two-layer structure.
  • Such a two-layer structure of the color layer portion transmits the remaining excitation light when all of the incident light (light from the light source, preferably blue light) cannot be converted by the light conversion pixel layer containing nanocrystals.
  • a color filter (CFL) is laminated for the purpose of absorption without absorption.
  • the second polarizing layer 8 and the light conversion layer 6 having a red color layer, a green color layer, and a blue color layer are provided as a backlight. It is provided on the substrate side O-SUB opposite to the unit (light source) side substrate A-SUB.
  • the second polarizing layer 8 includes an in-cell polarizing plate provided between a pair of substrates (first substrate 2 and second substrate 7).
  • the embodiment in FIG. 7 is a form in which the light conversion layer 6 in FIG. 5 is laminated in two layers.
  • the light conversion layer 6 has a red color layer portion, a green color layer portion, and a blue color layer portion, and the red (R) pixel portion (red color layer portion) is red.
  • a light conversion pixel layer (NC-Red) including a light emitting nanocrystal and a color material layer (CF-Red) including a red color material are configured as a two-layer structure.
  • the green (R) pixel portion (green color layer portion) includes a light conversion pixel layer (NC-Green) including a green light emitting nanocrystal and a color material layer (CF-Green) including a green color material. Configured as a layered structure. In this case, in FIG.
  • the green color layer portion includes a light conversion pixel layer (NC-Green) including a green light emitting nanocrystal and a yellow color material in order to perform color correction in consideration of transmission of excitation light. It may be combined with a color material layer (CF-Yellow) containing The blue (R) pixel portion (blue color layer portion) is composed of a color layer (NC-Blue) that optionally includes blue light emitting nanocrystals.
  • NC-Green light conversion pixel layer
  • CF-Yellow color material layer
  • the blue (R) pixel portion blue color layer portion
  • NC-Blue is composed of a color layer (NC-Blue) that optionally includes blue light emitting nanocrystals.
  • a light conversion pixel layer including a red light emitting nanocrystal, a light conversion pixel layer (NC-Green) including a green light emitting nanocrystal, and a blue light emitting nanocrystal in the light conversion layer 6 in FIG.
  • a preferable form of the color layer (NC-Blue) to be included is the same as that of the embodiment shown in FIG. In FIG. 7, the red color layer portion, the green color layer portion, and the blue color layer portion are shown as being in contact with each other, but in order to prevent color mixing, a light shielding layer is provided between them.
  • a black matrix may be arranged.
  • a color material layer containing a blue color material between the light conversion layer 6 and the second polarizing layer 8 in FIG. Is preferably provided between them in order to prevent intrusion of unnecessary light from the outside and suppress deterioration in image quality.
  • a layer structure having such a two-layer light conversion layer 6 and a blue color filter as essential components is the structure shown in FIG.
  • an electrode layer 3 ′ (common electrode) is provided between the liquid crystal 5 and the second polarizing layer 8 on the opposite substrate side O-SUB,
  • the electrode layer 3 (pixel electrode) is preferably formed on the first substrate 2.
  • the pixel electrode and the common electrode are formed on the first substrate 2.
  • an alignment layer 4 is formed on a surface in contact with at least one liquid crystal layer on the counter substrate side (O-SUB) and the array substrate side (A-SUB). Preferably it is.
  • the embodiment of FIG. 8 is a mode in which the second polarizing layer 8 includes an in-cell polarizing plate provided between a pair of substrates (first substrate 2 and second substrate 7). It has a two-layer light conversion layer 6 in which a layer containing nanocrystals and a color filter are laminated. Specifically, the light conversion layer 6 includes a red (R) pixel portion (red color layer portion) of a layer (NCL) including a light emitting nanocrystal and a color material layer including a red color material.
  • the green (R) pixel portion (green color layer portion) is composed of a two-layer structure of a layer (NC) containing a light emitting nanocrystal and a color material layer containing a green color material.
  • the blue (R) pixel portion (blue color layer portion) has a two-layer structure of a layer (NC) containing nanocrystals for light emission and a color material layer containing a blue color material.
  • the light-emitting nanocrystal in the layer including the light-emitting nanocrystal NC absorbs incident light (light from the light source, preferably blue light) and emits blue light, and incident light (from the light source). Of light emission, preferably blue light) and emits green light, and green light emission nanocrystals that emit incident light (light from a light source, preferably blue light) and emit red light. It is preferable that 1 type or 2 types selected from a group are included. In the present embodiment, a black matrix may be provided for the purpose of preventing color mixing between the color layers.
  • a blue color filter is provided on one side so as to be adjacent to the liquid crystal layer side of the light conversion layer 6 from the viewpoint that unnecessary light can be prevented from entering and image quality deterioration can be suppressed.
  • a structure in which such a blue color filter is arranged can be shown in FIG.
  • an electrode layer 3 ′ (common electrode) is provided between the liquid crystal 5 and the second polarizing layer 8 in the counter substrate side O-SUB.
  • the electrode layer 3 (pixel electrode) is provided on the first display substrate SUB1.
  • the alignment layer 4 is preferably formed on the surface in contact with at least one liquid crystal layer on the counter substrate side (O-SUB) and the array substrate side (A-SUB).
  • the liquid crystal display element is an FFS type or IPS type, it is preferable that the pixel electrode and the common electrode are formed on the first display substrate SUB1.
  • light using a high energy light source such as short wavelength visible light or ultraviolet light is converted into light through a liquid crystal layer and a polarizing layer functioning as an optical switch.
  • the light-emitting nanocrystal contained in the layer absorbs the light, and the absorbed light is converted into light of a specific wavelength by the light-emitting nanocrystal to emit light, thereby displaying a color.
  • the light conversion layer 6 is provided on the array substrate side (A-SUB) side, and the second polarizing layer 8 is provided outside the second substrate 7,
  • the first polarizing layer 1 is a color filter on array type liquid crystal panel including an in-cell polarizing plate provided between a pair of substrates (first substrate 2 and second substrate 7).
  • an electrode layer 3 ′ (common electrode) is provided between the liquid crystal 5 and the second substrate 7 on the opposite substrate side O-SUB, and
  • the electrode layer 3 (pixel electrode) is preferably formed on the first substrate 2.
  • the pixel electrode 3 is formed between the first substrate 2 and the light conversion layer 6, between the first polarizing layer 1 and the light conversion layer 6, or between the first polarizing layer 1 and the liquid crystal layer 5. It is preferable that
  • an alignment layer 4 is formed on the surface in contact with at least one liquid crystal layer on the counter substrate side (O-SUB) and the array substrate side (A-SUB).
  • the pixel electrode and the common electrode are arranged on the first substrate 2, for example, between the first substrate 2 and the light conversion layer 6, It is preferably formed between the one polarizing layer 1 and the light conversion layer 6 or between the first polarizing layer 1 and the liquid crystal layer 5.
  • a blue color filter is provided between the light conversion layer 6 and the first substrate 2 so as to prevent unnecessary light from entering and suppress deterioration in image quality.
  • the incident light is blue light
  • the color layer for displaying blue does not have to use a nanocrystal for blue light emission.
  • a color layer containing a transparent resin or a blue color material (so-called blue color filter). ) Or the like.
  • the light conversion layer 6 is provided on the array substrate (A-SUB) side on the backlight unit (light source) side, and the first polarizing layer 1 and the second polarizing layer 8 are a pair. It is the form provided in the outer side between the board
  • an electrode layer 3 ′ (common electrode) is provided between the liquid crystal 5 and the second substrate 7 on the opposite substrate side O-SUB, and
  • the electrode layer 3 (pixel electrode) is preferably formed on the first substrate 2.
  • a common electrode 3 ′ is preferably formed between the first substrate 2 and the liquid crystal layer 5.
  • the alignment layer 4 is preferably formed on the surface in contact with at least one liquid crystal layer on the counter substrate side (O-SUB) and the array substrate side (A-SUB). 11, when the liquid crystal display element is an FFS type or an IPS type, the pixel electrode and the common electrode are arranged on the first substrate 2, for example, between the first substrate 2 and the liquid crystal layer 5.
  • a common electrode is formed.
  • the color layer for displaying blue does not have to use a blue light emitting nanocrystal.
  • the light conversion layer 6 shown in FIGS. 5 to 9 is placed on the substrate side O ⁇ facing the substrate A-SUB on the backlight unit (light source) side.
  • the structure provided on the SUB side is preferable in that the effect of the present invention that the deterioration of the liquid crystal layer due to irradiation with high-energy rays can be suppressed or prevented is significantly exhibited.
  • the light conversion layer in the liquid crystal display element of the present invention has a pixel portion that includes a light-emitting nanocrystal as an essential component, a resin component, and other molecules having an affinity for the light-emitting nanocrystal if necessary, It may contain known additives and other coloring materials. Further, as described above, it is preferable from the viewpoint of contrast that a black matrix is provided at the boundary between the color layers.
  • the light-emitting nanocrystal constituting the light conversion layer preferably refers to a particle having at least one length of 100 nm or less.
  • the shape of the nanocrystal may have any geometric shape and may be symmetric or asymmetric. Specific examples of the shape of the nanocrystal include an elongated shape, a rod shape, a circle shape (spherical shape), an ellipse shape, a pyramid shape, a disk shape, a branch shape, a net shape, or any irregular shape.
  • the nanocrystals are preferably quantum dots or quantum rods.
  • the light-emitting nanocrystal preferably has a core including at least one first semiconductor material and a shell that covers the core and includes a second semiconductor material that is the same as or different from the core.
  • the light-emitting nanocrystal includes at least a core including the first semiconductor material and a shell including the second semiconductor material, and the first semiconductor material and the second semiconductor material may be the same or different. Further, the core and / or the shell may contain a third semiconductor material other than the first semiconductor and / or the second semiconductor. In addition, what is necessary is just to coat
  • the light-emitting nanocrystal further includes a core including at least one first semiconductor material, a first shell covering the core and including a second semiconductor material that is the same as or different from the core, and It is preferable to have a second shell that covers the first shell and includes a third semiconductor material that is the same as or different from the first shell.
  • the nanocrystal for light emission according to the present invention has a form having a core containing a first semiconductor material and a shell covering the core and containing the same second semiconductor material as the core, that is, one type or two
  • core-only structure also referred to as core structure
  • core structure also referred to as core structure
  • the light-emitting nanocrystal according to the present invention preferably includes three forms of a core structure, a core / shell structure, and a core / shell / shell structure.
  • the core has two or more kinds of semiconductors.
  • a mixed crystal containing a material may be used (for example, CdSe + CdS, CIS + ZnS, etc.).
  • the shell may also be a mixed crystal containing two or more semiconductor materials.
  • a molecule having an affinity for the light emitting nanocrystal may be in contact with the light emitting nanocrystal.
  • the above-mentioned molecules having affinity are low molecules and polymers having a functional group having affinity for the nanocrystals for light emission, and the functional group having affinity is not particularly limited. And a group containing one element selected from the group consisting of oxygen, sulfur and phosphorus. Examples include organic sulfur groups, organic phosphate groups pyrrolidone groups, pyridine groups, amino groups, amide groups, isocyanate groups, carbonyl groups, and hydroxyl groups.
  • the semiconductor material according to the present invention is one selected from the group consisting of II-VI group semiconductors, III-V group semiconductors, I-III-VI group semiconductors, IV group semiconductors, and I-II-IV-VI group semiconductors. Or it is preferable that they are 2 or more types.
  • Preferable examples of the first semiconductor material, the first semiconductor material, and the third semiconductor material according to the present invention are the same as the semiconductor materials described above.
  • the semiconductor material according to the present invention includes CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, InP, InAs, InSb, GaP, GaAs, GaSb, AgInS 2 , AgInSe 2. , AgInTe 2 , AgGaS 2 , AgGaSe 2 , AgGaTe 2 , CuInS 2 , CuInSe 2 , CuInTe 2 , CuGaS 2 , CuGaSe 2 , CuGaTe 2 , Si, C, Ge, Cu 2 ZnSnS 4 Two or more may be mixed.
  • the luminescent nanocrystal according to the present invention preferably includes at least one nanocrystal selected from the group consisting of a red luminescent nanocrystal, a green luminescent nanocrystal, and a blue luminescent nanocrystal.
  • the emission color of a light-emitting nanocrystal depends on the particle size according to the Schrodinger wave equation of the well-type potential model, but also depends on the energy gap of the light-emitting nanocrystal. The emission color is selected by adjusting the crystal and its particle size.
  • the semiconductor material used for the red light emitting nanocrystal emitting red light has a peak wavelength of light emission in the range of 635 nm ⁇ 30 nm.
  • the semiconductor material used for the green light emitting nanocrystal that emits green light preferably has a light emission peak wavelength in the range of 530 nm ⁇ 30 nm, and is used for the blue light emitting nanocrystal that emits blue light.
  • the semiconductor material to be used preferably has a light emission peak wavelength in the range of 450 nm ⁇ 30 nm.
  • the lower limit of the fluorescence quantum yield of the luminescent nanocrystal according to the present invention is preferably in the order of 40% or more, 30% or more, 20% or more, 10% or more.
  • the upper limit of the half-value width of the fluorescence spectrum of the luminescent nanocrystal according to the present invention is preferably in the order of 60 nm or less, 55 nm or less, 50 nm or less, and 45 nm or less.
  • the upper limit of the particle diameter (primary particle) of the red light emitting nanocrystal according to the present invention is preferably in the order of 50 nm or less, 40 nm or less, 30 nm or less, and 20 nm or less.
  • the upper limit value of the peak wavelength of the nanocrystal for red light emission according to the present invention is 665 nm, and the lower limit value is 605 nm, and the compound and its particle size are selected so as to match this peak wavelength.
  • the upper limit value of the peak wavelength of the green light emitting nanocrystal is 560 nm
  • the lower limit value is 500 nm
  • the upper limit value of the peak wavelength of the blue light emitting nanocrystal is 420 nm
  • the lower limit value is 480 nm. Select the compound and its particle size.
  • the liquid crystal display element according to the present invention includes at least one pixel.
  • the color constituting the pixel is obtained by three adjacent pixels, and each pixel is red (for example, CdSe light-emitting nanocrystal, CdSe rod-shaped light-emitting nanocrystal, and rod-shaped light-emitting device having a core-shell structure)
  • red for example, CdSe light-emitting nanocrystal, CdSe rod-shaped light-emitting nanocrystal, and rod-shaped light-emitting device having a core-shell structure
  • the shell portion is CdS
  • the inner core portion is ZnSe
  • the core shell the core shell.
  • nanocrystals for light emission, light-emitting nanocrystal having a core-shell structure, the shell portion is ZnSe, the inner core portion is ZnS, and the rod-shaped light-emitting nanocrystal having a core-shell structure
  • a use nanocrystals comprises a core portion inside of the shell portion is a ZnSe is ZnS, light emitting nanocrystals CdS, different nanocrystals that emit in the CdS rod light emitting nanocrystals).
  • Other colors for example, yellow
  • the average particle size (primary particles) of the luminescent nanocrystal according to the present invention can be measured by TEM observation.
  • examples of the method for measuring the average particle size of nanocrystals include a light scattering method, a sedimentation type particle size measurement method using a solvent, and a method of actually observing particles with an electron microscope and measuring the average particle size.
  • any number of crystals are directly observed with a transmission electron microscope (TEM) or a scanning electron microscope (SEM), and the length of the nanocrystals for light emission is reduced by projection two-dimensional images.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • a method is preferred in which the particle diameters are calculated from the diameter ratio and the average is obtained. Therefore, in the present invention, the average particle diameter is calculated by applying the above method.
  • the primary particle of the light emitting nanocrystal is a single crystal having a size of several to several tens of nanometers or a crystallite close thereto, and the size and shape of the primary particle of the light emitting nanocrystal is the primary particle. It is considered that it depends on the chemical composition, structure, manufacturing method and manufacturing conditions.
  • the light conversion layer in the present invention preferably contains a resin component for appropriately dispersing and stabilizing the light-emitting nanocrystals in addition to the light-emitting nanocrystals described above.
  • Such a resin component is preferably a polymer of a photopolymerizable compound and alkali-developable, since the light conversion layer is mainly produced by a photolithography method.
  • a resin component is preferably a polymer of a photopolymerizable compound and alkali-developable, since the light conversion layer is mainly produced by a photolithography method.
  • Polymer of bifunctional monomer trimethylol propaton triacrylate, pentaerythritol triacrylate, tris [2- (meth) acryloyloxyethyl) isocyanurate, dipentaerythritol hexaacrylate, dipentaerythritol pentaacyl Polymers of relatively low molecular weight small polyfunctional monomers rate, etc., polyester acrylate, polyurethane acrylate, a polymer of a large multi-functional monomer of relatively low molecular weight such as polyether acrylate.
  • thermoplastic resins may be used in combination with these polymers.
  • examples of the thermoplastic resins include urethane resins, acrylic resins, polyamide resins, polyimide resins, and styrene maleic acid resins. And styrene maleic anhydride resin.
  • a polymerization initiator in addition to the transparent resin and the luminescent nanocrystal, a polymerization initiator, a catalyst, alumina, silica, titanium oxide beads, a scattering agent such as zeolite or zirconia, Known additives may be included.
  • the upper limit of the content of the light-emitting nanocrystals with respect to the transparent resin is preferably 80 parts by mass, 70 parts by mass, 60 parts by mass, or 50 parts by mass with respect to 100 parts by mass of the transparent resin.
  • the lower limit is preferably 1.0 part by weight, 3.0 parts by weight, 5.0 parts by weight, or 10.0 parts by weight with respect to 100 parts by weight of the transparent resin.
  • the above content represents the total amount.
  • the above content represents the total amount.
  • the light conversion layer in the liquid crystal display element of the present invention includes three color pixel portions of red (R), green (G), and blue (B), and may include a color material as necessary as described above.
  • a color material a known color material can be used.
  • a diketopyrrolopyrrole pigment and / or an anionic red organic dye is used in a red (R) pixel portion, and a green (G) pixel portion.
  • the preferred colorant optionally added together with the luminescent nanocrystals in the red color layer according to the present invention preferably contains a diketopyrrolopyrrole pigment and / or an anionic red organic dye.
  • a diketopyrrolopyrrole pigment include C.I. I. One or more selected from Pigment Red 254, 255, 264, 272, Orange 71 and 73 are preferred, and one or more selected from Red 254, 255, 264 and 272 Is more preferred, and C.I. I. Pigment Red 254 is particularly preferable.
  • Specific examples of the anionic red organic dye include C.I. I. One or more selected from Solvent Red 124, Acid Red 52 and 289 are preferred. I. Solvent Red 124 is particularly preferred.
  • Preferred colorants optionally added together with the light emitting nanocrystals in the green color layer according to the present invention are metal halide phthalocyanine pigments, phthalocyanine green dyes and mixtures of phthalocyanine blue dyes and azo yellow organic dyes. It is preferable to contain at least one selected from the group consisting of Examples of the metal halide phthalocyanine pigment include the following two groups of metal halide phthalocyanine pigments.
  • (First group) It has a metal selected from the group consisting of Al, Si, Sc, Ti, V, Mg, Fe, Co, Ni, Zn, Ga, Ge, Y, Zr, Nb, In, Sn and Pb as a central metal, and phthalocyanine
  • a metal selected from the group consisting of Al, Si, Sc, Ti, V, Mg, Fe, Co, Ni, Zn, Ga, Ge, Y, Zr, Nb, In, Sn and Pb as a central metal
  • phthalocyanine A halogenated metal phthalocyanine pigment in which 8 to 16 halogen atoms per molecule are bonded to the benzene ring of the phthalocyanine molecule.
  • the central metal When the central metal is trivalent, the central metal contains one halogen atom, hydroxyl group Or when a sulfonic acid group (—SO 3 H) is bonded and the central metal is a tetravalent metal, the central metal has one oxygen atom or two halogens which may be the same or different.
  • a halogenated metal phthalocyanine pigment to which any one of an atom, a hydroxyl group and a sulfonic acid group is bonded.
  • Halogen having molecules as structural units and each central metal of these structural units bonded through a divalent atomic group selected from the group consisting of oxygen atom, sulfur atom, sulfinyl (—SO—) and sulfonyl (—SO 2 —)
  • a pigment comprising a metal halide phthalocyanine dimer.
  • all the halogen atoms bonded to the benzene ring may be the same or different. Different halogen atoms may be bonded to one benzene ring.
  • the halogenated metal phthalocyanine pigment used in the present invention in which 9 to 15 bromine atoms out of 8 to 16 halogen atoms per phthalocyanine molecule are bonded to the benzene ring of the phthalocyanine molecule is yellowish. It exhibits a bright green color and is optimal for use in the green pixel portion of the color filter.
  • the metal halide phthalocyanine pigment used in the present invention is insoluble or hardly soluble in water or an organic solvent.
  • the halogenated metal phthalocyanine pigment used in the present invention includes both a pigment that has not been subjected to a finishing treatment described later (also referred to as a crude pigment) and a pigment that has been subjected to a finishing treatment.
  • halogenated metal phthalocyanine pigments belonging to the first group and the second group can be represented by the following general formula (PIG-1).
  • the halogenated metal phthalocyanine pigment belonging to the first group is as follows in the general formula (PIG-1).
  • X 1 to X 16 each represents a hydrogen atom, a chlorine atom, a bromine atom, or an iodine atom.
  • the four X atoms bonded to one benzene ring may be the same or different.
  • 8 to 16 are chlorine, bromine or iodine atoms.
  • M represents a central metal.
  • a pigment having a total of less than 8 chlorine atoms, bromine atoms and iodine atoms out of 16 X 1 to X 16 is blue.
  • Y bonded to the central metal M is a monovalent atomic group selected from the group consisting of a halogen atom of any one of fluorine, chlorine, bromine or iodine, an oxygen atom, a hydroxyl group and a sulfonic acid group, and m is bonded to the central metal M. Represents the number of Y to be represented, and is an integer of 0-2.
  • m The value of m is determined by the valence of the central metal M.
  • One of the groups is attached to the central metal.
  • the central metal M is divalent like Mg, Fe, Co, Ni, Zn, Zr, Sn, and Pb, Y does not exist.
  • the halogenated metal phthalocyanine pigment belonging to the second group is as follows in the general formula (PIG-1).
  • X 1 to X 16 are as defined above, and the central metal M represents a trivalent metal selected from the group consisting of Al, Sc, Ga, Y and In, m represents 1. Y represents the following atomic group.
  • the central metal M has the same definition as described above, and X 17 to X 32 have the same definition as X 1 to X 16 in the general formula (PIG-1).
  • A represents a divalent atomic group selected from the group consisting of an oxygen atom, a sulfur atom, sulfinyl (—SO—) and sulfonyl (—SO 2 —).
  • M in the general formula (PIG-1) and M in the atomic group Y are bonded via the divalent atomic group A.
  • the halogenated metal phthalocyanine pigment belonging to the second group is a halogenated metal phthalocyanine dimer in which two molecules of metal halide phthalocyanine are structural units and these are bonded via the divalent atomic group.
  • metal halide phthalocyanine pigment represented by the general formula (PIG-1) include the following (1) to (4).
  • Mainly divalent metals selected from the group consisting of Mg, Fe, Co, Ni, Zn, Zr, Sn, and Pb, such as halogenated tin phthalocyanine pigment, halogenated nickel phthalocyanine pigment, and halogenated zinc phthalocyanine pigment.
  • a halogenated metal phthalocyanine pigment which is a metal and has 8 to 16 halogen atoms bonded to 4 benzene rings per phthalocyanine molecule.
  • chlorinated brominated zinc phthalocyanine pigments include C.I. I. Pigment Green 58, which is particularly preferable.
  • a trivalent metal selected from the group consisting of Al, Sc, Ga, Y and In, such as a halogenated chloroaluminum phthalocyanine, has one halogen atom, hydroxyl group or sulfonic acid as the central metal.
  • a halogenated metal phthalocyanine pigment having any of the groups and having 8 to 16 halogen atoms bonded to 4 benzene rings per phthalocyanine molecule.
  • a central metal is a tetravalent metal selected from the group consisting of Si, Ti, V, Ge, Zr and Sn, such as halogenated oxytitanium phthalocyanine and halogenated oxyvanadium phthalocyanine. 8 to 16 halogen atoms bonded to four benzene rings per one phthalocyanine molecule, having one oxygen atom or two halogen atoms which may be the same or different, a hydroxyl group or a sulfonic acid group Halogenated metal phthalocyanine pigment.
  • a halogenated ⁇ -oxo-aluminum phthalocyanine dimer and a halogenated ⁇ -thio-aluminum phthalocyanine dimer.
  • the valence metal is the central metal
  • the halogenated metal phthalocyanine is composed of two molecules of 8-16 halogen atoms bonded to 4 benzene rings per phthalocyanine molecule. Each central metal of these structural units is an oxygen atom.
  • a pigment comprising a metal halide phthalocyanine dimer bonded through a divalent atomic group selected from the group consisting of sulfur atom, sulfinyl and sulfonyl.
  • C.I. in the green color layer I. Solvent Blue 67 and C.I. I. A mixture with Solvent Yellow 162, or C.I. I.
  • Pigment Green 7 and / or 36 are optionally contained.
  • the preferred colorant optionally added together with the light emitting nanocrystals in the blue color layer according to the present invention preferably contains an ⁇ -type copper phthalocyanine pigment and / or a cationic blue organic dye.
  • the ⁇ -type copper phthalocyanine pigment is C.I. I. Pigment Blue 15: 6.
  • Specific examples of the cationic blue organic dye include C.I. I. Solvent Blue 2, 3, 4, 5, 6, 7, 23, 43, 72, 124, C.I. I. Basic Blue 7 and 26 are preferred, and C.I. I. Solvent Blue 7 and Basic Blue 7 are more preferable, and C.I. I. Solvent Blue 7 is particularly preferable.
  • C.I. I. Pigment Blue 1 C.I. I. Pigment Violet 23, C.I. I. Basic Blue 7, C.I. I. Basic Violet 10, C.I. I. Acid Blue 1, 90, 83, C.I. I. It is preferable to contain at least one organic dye / pigment selected from the group consisting of Direct Blue 86.
  • the color material may be C.I. I. Pigment Yellow 150, 215, 185, 138, 139, C.I. I. Solvent Yellow 21, 82, 83: 1, 33, or 162 is preferably at least one yellow organic dye / pigment selected from the group consisting of Solvent Yellow 21, 82, 83: 1, 33, and 162.
  • the upper limit of the content of the light-emitting nanocrystals with respect to the transparent resin is preferably 80 parts by mass, 70 parts by mass, 60 parts by mass, or 50 parts by mass with respect to 100 parts by mass of the transparent resin.
  • the minimum of content of the nanocrystal for light emission 1.0 mass part, 3.0 mass part, 5.0 mass part, and 10.0 mass parts are preferable with respect to 100 mass parts of transparent resin.
  • the above content represents the total amount.
  • the aforementioned light conversion layer can be formed by a method such as a photolithography method, an electrodeposition method, a transfer method, a micellar electrolysis method, a PVED (Photovoltaic Electrodeposition) method, an ink jet method, a reverse printing method, a thermosetting method, etc.
  • a photolithography method is preferable from the viewpoint of excellent productivity.
  • such a photolithographic method involves applying a photoluminescent composition containing a light-emitting nanocrystal, which will be described later, to the surface of the transparent substrate on which the black matrix is provided, heating and drying (prebaking), and then photomasking. After pattern exposure is performed by irradiating ultraviolet rays through the film, the photocurable compound at a location corresponding to the pixel portion is cured, and then the unexposed portion is developed with a developer, and the non-pixel portion is removed to remove the pixel. This is a method of fixing the part to the transparent substrate.
  • a photocurable composition is prepared for each of other color pixels such as a red (R) pixel, a green (G) pixel, a blue (B) pixel, and a yellow (Y) pixel as necessary.
  • a light conversion layer having colored pixel portions of red (R) pixels, green (G) pixels, blue (B) pixels, and yellow (Y) pixels at a predetermined position can be manufactured. .
  • a pixel portion composed of a cured colored film of the light-emitting nanocrystal-containing photocurable composition is formed on the transparent substrate.
  • examples of the method for applying the light-emitting nanocrystal-containing photocurable composition onto a transparent substrate such as glass include a spin coating method, a roll coating method, and an inkjet method.
  • the drying conditions of the coating film of the light-emitting nanocrystal-containing photocurable composition applied to the transparent substrate vary depending on the type of each component, the blending ratio, etc., but usually at 50 to 150 ° C. for about 1 to 15 minutes. is there.
  • light used for photocuring of the light-emitting nanocrystal-containing photocurable composition it is preferable to use ultraviolet rays or visible light in a wavelength range of 200 to 500 nm. Various light sources that emit light in this wavelength range can be used.
  • Examples of the developing method include a liquid filling method, a dipping method, and a spray method.
  • the transparent substrate on which the necessary color pixel portion is formed is washed with water and dried.
  • the color filter thus obtained is subjected to a heat treatment (post-baking) at 90 to 280 ° C. for a predetermined time by a heating device such as a hot plate or an oven, thereby removing volatile components in the colored coating film and simultaneously emitting light.
  • the unreacted photocurable compound remaining in the cured colored film of the photocurable composition containing the nanocrystals for use is thermally cured to complete the light conversion layer.
  • the voltage holding ratio (VHR) of the liquid crystal layer is lowered, the blue light or the ultraviolet light is deteriorated, and the ion density (ID) is reduced. It is possible to prevent the increase and to remarkably improve problems of display defects such as white spots, alignment unevenness, and burn-in.
  • a dispersion liquid for forming the pixel portion of the light conversion layer is prepared, and then the photo-curing property is prepared there. Examples include a method of adding a light emitting nanocrystal-containing photocurable composition containing a light emitting nanocrystal by adding a compound and, if necessary, a thermoplastic resin or a photopolymerization initiator.
  • organic solvent used here examples include aromatic solvents such as toluene, xylene, methoxybenzene, ethyl acetate, propyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol methyl ether acetate.
  • aromatic solvents such as toluene, xylene, methoxybenzene, ethyl acetate, propyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol methyl ether acetate.
  • Acetate solvents such as diethylene glycol ethyl ether acetate, diethylene glycol propyl ether acetate, diethylene glycol butyl ether acetate, propionate solvents such as ethoxyethyl propionate, alcohol solvents such as methanol and ethanol, butyl cellosolve, propylene glycol monomethyl ether, diethylene glycol ethyl Ether, diethylene glycol dimethyl ether Ether solvents such as tellurium, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, aliphatic hydrocarbon solvents such as hexane, N, N-dimethylformamide, ⁇ -butyrolactam, N-methyl-2-pyrrolidone, aniline And nitrogen compound solvents such as pyridine, lactone solvents such as ⁇ -butyrolactone, and carbamate esters such as a 48:52 mixture of
  • Dispersants used here include, for example, Big Chemie's Dispersic 130, Dispersic 161, Dispersic 162, Dispersic 163, Dispersic 170, Dispersic 171, Dispersic 174, Dispersic 180, Dispersic 182, Dispersic 183, Dispersic 184, Dispersic 185, Dispersic 2000, Dispersic 2001, Dispersic 2020, Dispersic 2050, Dispersic 2070, Dispersic 2096, Dispersic 2150, Dispersic LPN21116, Dispersic LPN6919 Efka EFKA 46, EFKA 47, EFKA 452, EFKA LP4008, EFKA 009, Efka LP4010, Efka LP4050, LP4055, Efka400, Efka401, Evka402, Efka403, Efka450, Efka451, Efka453, Evka4540, Efka4550, EfkaLP4560, Efka120, Efka150, Evka
  • rosin such as acrylic resin, urethane resin, alkyd resin, wood rosin, gum rosin, tall oil rosin, polymerized rosin, disproportionated rosin, hydrogenated rosin, oxidized rosin, modified rosin such as maleated rosin, Rosin derivatives such as rosinamine, lime rosin, rosin alkylene oxide adduct, rosin alkyd adduct, rosin modified phenol
  • a synthetic resin that is liquid and water-insoluble at room temperature can be contained. Addition of these dispersants and resins also contributes to reduction of flocculation, improvement of pigment dispersion stability, and improvement of viscosity characteristics of the dispersion.
  • organic pigment derivatives such as phthalimidomethyl derivatives, sulfonic acid derivatives, N- (dialkylamino) methyl derivatives, N- (dialkylaminoalkyl) sulfonic acid amide derivatives, etc. You can also. Of course, two or more of these derivatives can be used in combination.
  • photopolymerization initiator examples include acetophenone, benzophenone, benzyldimethylketanol, benzoyl peroxide, 2-chlorothioxanthone, 1,3-bis (4′-azidobenzal) -2-propane, 1,3-bis (4 ′ -Azidobenzal) -2-propane-2'-sulfonic acid, 4,4'-diazidostilbene-2,2'-disulfonic acid, and the like.
  • photopolymerization initiators include, for example, “Irgacure (trade name) -184”, “Irgacure (trade name) -369”, “Darocur (trade name) -1173” manufactured by BASF, “Lucirin- "TPO”, Nippon Kayaku Co., Ltd. "Kayacure (trade name) DETX”, “Kayacure (trade name) OA”, Stofer “Bicure 10", “Bicure 55", Akzo "Trigonal PI”, Sand “Sandray 1000" manufactured by Upjohn, “Deep” manufactured by Upjohn, and “Biimidazole” manufactured by Kurokin Kasei.
  • a known and commonly used photosensitizer can be used in combination with the photopolymerization initiator.
  • the photosensitizer include amines, ureas, compounds having a sulfur atom, compounds having a phosphorus atom, compounds having a chlorine atom, nitriles or other compounds having a nitrogen atom. These can be used alone or in combination of two or more.
  • the blending ratio of the photopolymerization initiator is not particularly limited, but is preferably in the range of 0.1 to 30% by mass with respect to the compound having a photopolymerizable or photocurable functional group. If it is less than 0.1% by mass, the photosensitivity at the time of photocuring tends to decrease, and if it exceeds 30%, crystals of the photopolymerization initiator are precipitated when the pigment-dispersed resist coating film is dried. May cause deterioration of physical properties of coating film.
  • the materials as described above on a mass basis, 300 to 100,000 parts of an organic solvent and 1 to 500 parts of an affinity molecule or dispersant per 100 parts of the light-emitting nanocrystal of the present invention.
  • the dye / pigment solution can be obtained by stirring and dispersing so as to be uniform.
  • an organic solvent is further added, and the light-curable nanocrystal-containing photocurable composition for forming a pixel portion by stirring and dispersing so as to be uniform can be obtained.
  • the developer a known and commonly used organic solvent or alkaline aqueous solution can be used.
  • the photocurable composition contains a thermoplastic resin or a photocurable compound, and at least one of them has an acid value and exhibits alkali solubility
  • the color filter can be washed with an alkaline aqueous solution. It is effective for forming the pixel portion.
  • the manufacturing method of the colored pixel part of R pixel, G pixel, B pixel, and Y pixel by the photolithography method was described in detail, the pixel part prepared by using the nanocrystal-containing composition for light emission of the present invention Forming each color pixel portion by other electrodeposition method, transfer method, micellar electrolysis method, PVED (Photovoltaic Electrodeposition) method, ink jet method, reversal printing method, thermosetting method, etc. to produce a light conversion layer Also good.
  • the blue, red, green, and yellow color materials that can be used here, any of the above-mentioned color materials can be used.
  • the blue (B) color material an ⁇ -type copper phthalocyanine pigment or a cationic blue organic material can be used.
  • the color filter may contain the above-described transparent resin, a photocurable compound described later, a dispersant, and the like, if necessary, and the color filter can be produced by a known photolithography method or the like.
  • the liquid crystal layer in the liquid crystal display element includes the polymer network (A) and the following general formula (i):
  • R i1 and R i2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 8 represents an alkenyloxy group,
  • a i1 represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group, and n i1 represents 0 or 1.)
  • the polymer network (A) constituting such a liquid crystal layer preferably has a uniaxial optical anisotropy, a uniaxial refractive index anisotropy, or an orientation easy axis direction. It is more preferable that the axis or the easy alignment axis is formed so that the easy alignment axis of the low-molecular liquid crystal constituting the liquid crystal composition (B) substantially coincides.
  • the polymer network includes a polymer binder in which a polymer thin film is formed by aggregating a plurality of polymer networks.
  • the polymer binder has refractive index anisotropy indicating uniaxial orientation, low molecular liquid crystal is dispersed in the thin film, and the uniaxial optical axis of the thin film and the optical axis of the low molecular liquid crystal are substantially in the same direction.
  • the feature is that they are aligned.
  • liquid crystal display element unlike a polymer dispersion type liquid crystal or polymer network type liquid crystal which is a light scattering type liquid crystal, light scattering does not occur and a high contrast display can be obtained in a liquid crystal display element using polarized light.
  • a characteristic is that the response time of the liquid crystal element is improved by shortening the down time.
  • the polymer network layer since the polymer network layer is formed on the entire liquid crystal display element, a thin film layer of polymer is formed on the liquid crystal element substrate to induce pretilt (Polymer). It can be distinguished from a Sustained Alignment) type liquid crystal composition.
  • Such a liquid crystal layer can be produced, for example, by polymerizing a polymerizable liquid crystal composition containing the polymerizable monomer component (a) and the liquid crystal composition (B) as essential components. Specifically, by polymerizing the polymerizable monomer component (a) in the polymerizable liquid crystal composition in a state where the polymerizable liquid crystal composition exhibits a liquid crystal phase, the molecular weight is increased and the liquid crystal composition is increased.
  • the liquid crystal layer can be formed by phase separation of the product (B) and the polymer (or copolymer).
  • the form of separation into two phases depends on the type of the liquid crystal composition (B) to be contained and the type of the polymerizable monomer component (a) (hereinafter sometimes simply referred to as “monomer”).
  • the phase of the polymerizable monomer component (a) (hereinafter abbreviated as “monomer phase”) in the liquid crystal composition (B) is generated by innumerable island-like nuclei and grows by binodal decomposition.
  • a separated structure may be formed, or a phase separated structure may be formed in the liquid crystal composition (B) by spinodal decomposition in which phase separation is performed based on concentration fluctuations with the monomer phase.
  • a structure of nano-order is generated by generating innumerable monomer nuclei smaller than the wavelength of visible light and connecting them linearly. This is preferable because a phase separation structure is formed.
  • a polymer network having a void interval shorter than the wavelength of visible light is formed depending on the phase separation structure.
  • the voids in the polymer network are due to the phase separation of the liquid crystal composition (B) phase.
  • the nucleation of the monomer phase in the binodal decomposition is preferably adjusted as necessary as affected by parameters such as the change in compatibility depending on the type and combination of the compounds, the reaction rate, and the temperature.
  • the UV irradiation conditions may be appropriately adjusted so as to promote the reactivity depending on the type and content of the functional group of the monomer, the polymerization initiator, the UV irradiation intensity, and at least 2 mW / An ultraviolet irradiation intensity of cm 2 or more is preferable.
  • a phase-separated microstructure can be obtained by fluctuations in the concentration of two phases having periodicity, and uniform gaps smaller than the visible light wavelength can be easily formed.
  • the monomer content is increased, there is a phase transition temperature at which the liquid crystal composition (B) high-concentration phase and the monomer high-concentration phase are separated into two phases due to the temperature.
  • An isotropic phase is exhibited at a temperature higher than the two-phase separation transition temperature, but if it is low, separation occurs and a uniform phase separation structure cannot be obtained.
  • two-phase separation is performed due to a temperature change, it is preferable to form a phase separation structure at a temperature higher than the two-phase separation temperature.
  • a polymer network can be formed while maintaining the same alignment state as that of the liquid crystal composition (B).
  • the polymerizable liquid crystal composition described above includes a polymerizable monomer component (a), the liquid crystal composition (B), and a polymerization initiator as necessary.
  • the polymerization initiator when the polymerization initiator is unevenly distributed in the monomer high concentration phase, the polymerization of the monomer is promoted, while the polymerization of the monomer remaining in the liquid crystal high concentration phase is difficult to proceed.
  • the residual monomer in the liquid crystal high-concentration phase having a low photoinitiator concentration is cross-linked by collecting into the monomer high-concentration phase by an action such as aggregation.
  • the polymerization initiator when unevenly distributed in the liquid crystal high concentration phase, the polymerization of the residual monomer in the liquid crystal high concentration phase is promoted, and the molecular weight of the residual monomer in the liquid crystal increases.
  • a polymer phase separation structure may be formed or the monomer may be agglomerated into a high concentration phase of the monomer, and the residual monomer in the high concentration phase of the liquid crystal is preferable because the polymerization is facilitated by the effect of the photoinitiator dissolved in the liquid crystal phase. It is also preferable that the residual monomer in the high-concentration liquid crystal phase undergoes separation of the polymerization phase by the effect of the photoinitiator and forms a new polymer network.
  • the formed polymer network (A) exhibits optical anisotropy so as to follow the orientation of the liquid crystal composition (B).
  • the form of the liquid crystal layer in the polymer network includes a structure in which the liquid crystal composition (B) forms a continuous layer in the three-dimensional network structure of the polymer, and a structure in which the droplets of the liquid crystal composition (B) are dispersed in the polymer. Or a structure in which both are mixed, and a structure in which a polymer network layer is present starting from both substrate surfaces and only a liquid crystal layer is provided near the center of the facing substrate. In any structure, it is preferable that a pretilt angle of 0 to 90 ° is induced with respect to the liquid crystal element substrate interface by the action of the polymer network.
  • the liquid crystal composition is particularly included in the three-dimensional network structure of the polymer.
  • a structure in which the product (B) forms a continuous layer is preferable from the viewpoint of excellent pretilt stability of liquid crystal molecules.
  • the polymer network constituting the liquid phase layer preferably has a function of aligning the coexisting liquid crystal composition (B) in the alignment direction indicated by the alignment film of the liquid crystal cell, and is further low in the polymer interface direction. It is also preferable to have a function of pretilting the molecular liquid crystal. Introducing a monomer that pre-tilts a low-molecular liquid crystal with respect to the polymer interface is useful and preferable for improving the transmittance and lowering the driving voltage of the liquid crystal element.
  • a pretilt may be formed by forming a polymer network by applying ultraviolet rays or the like while applying a voltage.
  • the polymerizable monomer component (a) is preferably a liquid crystalline monomer. That is, the liquid crystal display element of the present invention has a structure in which the polymer network layer is formed on the entire surface of the liquid crystal display element in the liquid crystal phase and the liquid crystal phase is continuous, and the polymer network has an easy alignment axis and a single optical axis. It is preferable that the orientation direction of the low-molecular liquid crystal is substantially the same direction as that of the low-molecular liquid crystal, and that the polymer network is formed so as to induce the pretilt angle of the low-molecular liquid crystal because the off-response speed can be increased.
  • the polymerizable monomer component (a) is preferably a liquid crystalline monomer having a mesogenic structure in the molecular structure.
  • the polymer network layer has a polymer network having an average gap interval smaller than the wavelength of visible light, that is, an average gap interval of less than 450 nm. This is preferable because it does not occur.
  • liquid crystalline monomer that is, a polymerizable monomer component (a) exhibiting liquid crystallinity, the following general formula (P1)
  • Z p11 is a fluorine atom, a cyano group, a hydrogen atom, an alkyl group having 1 to 15 carbon atoms in which a hydrogen atom may be substituted with a halogen atom, or a hydrogen atom in which a hydrogen atom is substituted.
  • An alkoxy group having 1 to 15 carbon atoms, an alkenyl group having 1 to 15 carbon atoms in which a hydrogen atom may be substituted with a halogen atom, and 1 to 15 carbon atoms in which a hydrogen atom may be substituted with a halogen atom The alkenyloxy group of — or —Sp p12 —R p12 .
  • Z p11 the use of an alkyl group having 1 to 15 carbon atoms in which a fluorine atom or an oxygen atom may be substituted with a halogen atom increases the voltage holding ratio of the liquid crystal display device. From the viewpoint of enabling tilting, it is preferable to be -Sp p12 -R p12 from the viewpoint of tilt stability.
  • R p11 and R p12 are each independently represented by the following formulas (RP11-1) to (PP11-8)
  • R P111 to R P112 are independently of each other a hydrogen atom or a carbon atom number. 1 to 5 alkyl groups, and t M11 represents 0, 1 or 2.
  • R P111 in formula is a hydrogen atom or a methyl group, a (meth) acryloyl group
  • the amount of UV irradiation to the liquid crystal material can be kept to the minimum necessary, and the deterioration of the liquid crystal material and the liquid crystal display element can be avoided. preferable.
  • Sp p11 and Sp p12 are each independently a single bond, a linear or branched alkylene group having 1 to 12 carbon atoms, or a carbon atom of this linear or branched alkylene structure is adjacent to an oxygen atom.
  • a structural moiety having a chemical structure substituted with an oxygen atom or a carbonyl group is preferable because it increases compatibility with the liquid crystal material (B), and has the same number of carbon atoms as the alkyl group of the liquid crystal molecule. Those of 1 to 6 are particularly preferred.
  • the compatibility between the polymerizable monomer component (a) and the liquid crystal material (B) is not sufficient, or the compatibility of the polymerization initiator (C) with the liquid crystal material (B) is not sufficient.
  • the density of the polymer network is increased and the density is increased, the device characteristics are affected and the in-plane characteristics are likely to be uneven.
  • a separation structure is formed, and a uniform polymer network in the liquid crystal is formed, so that the characteristics of the liquid crystal display element are constant in the plane.
  • Sp p11 and Sp p12 which are linear or branched alkylene groups having 1 to 12 carbon atoms, it is easy to produce the monomer that they are the same, It is preferable from the viewpoint that the physical properties can be easily adjusted by adjusting the use ratio of a plurality of kinds of compounds having different alkylene chain lengths.
  • the monomer tends to collect on the substrate surface, and the tendency to form a thin film on the surface of the vertical alignment film is stronger than the tendency to form the polymer network.
  • the effect of imparting a pretilt to the alignment film and fixing it is stronger than the effect of the high-speed response due to.
  • Sp p11 and Sp p12 are preferably single bonds.
  • the content is in the range of 0.5% by mass to 20% by mass, Sp p11 and Sp p12 have 1 to 12 carbon atoms.
  • a linear or branched alkylene group is preferred from the viewpoint of forming a polymer network that increases the off-response speed. In particular, it is preferably in the range of 1% by mass to 10% by mass from the viewpoint of off-response speed and low driving voltage.
  • the linear or branched alkylene group described above preferably has 2 to 8 carbon atoms, and more preferably 2 to 6 carbon atoms. Further, it is preferable to substitute a carbon atom on the alkylene group with an oxygen atom or a carbonyl group under the condition that the oxygen atom is not adjacent. In particular, it is preferable to introduce an oxygen atom at a position where it binds to M P11 or M P13 from the viewpoint that the liquid crystal material as a whole can increase the upper limit temperature of the liquid crystal and increase the ultraviolet sensitivity during polymerization.
  • the polymerizable monomer component (a) has high liquid crystallinity, and from the viewpoint of suppressing alignment unevenness in the liquid crystal display element, a single bond, —C 2 H 4 —, —COO—, —OCO—, —CH ⁇ CH—COO—, —OCO—CH ⁇ CH—, — (CH 2 ) 2 —C ( ⁇ O) —O—, — (CH 2 ) 2 —O— (C ⁇ O) —, —O— ( C ⁇ O) — (CH 2 ) 2 —, — (C ⁇ O) —O— (CH 2 ) 2 —, —CH ⁇ CH—, —CF ⁇ CF—, —CF ⁇ CH—, —CH ⁇ CF —, —CF 2 O—, —OCF 2 —, —CF 2 CH 2 —, —CH 2 CF 2 —, —CF 2 CF 2 —, —C ⁇ C—, —N ⁇ N—, or
  • —CH ⁇ CH—, —CF ⁇ CF—, —CF ⁇ CH—, —CH ⁇ CF— or —N ⁇ N— is preferred, and —CH ⁇ CH— and —N ⁇ N— are preferably selected, and in particular, —N ⁇ N— is preferred. Further, from the viewpoint of increasing the orientation of the polymer network, it is particularly preferable that —N ⁇ N—.
  • M p11 , M p12 and M p13 in the general formula (P1) are each independently 1,4-phenylene group, 1,3-phenylene group, 1,2-phenylene group, 1,4-cyclohexylene.
  • M p11 , M p12 and M p13 are preferably those in which —Sp p11 —R p11 is substituted on the aromatic nucleus of these structures from the viewpoint of becoming a radically polymerizable monomer having excellent reactivity.
  • R p11 is preferably the formula (RP11-1)
  • R P111 is preferably a hydrogen atom or a (meth) acryloyl group which is a methyl group.
  • mp12 represents 1 or 2
  • mp13 and mp14 each independently represent 0, 1, 2 or 3
  • m pi 1 and m p15 is 1, 2, or independently 3 is represented.
  • Z pi 1 there are a plurality have the same or different and when R pi 1 there exist a plurality they may be the same or different and is R p12
  • a plurality of Sp p11 are present, they may be the same or different.
  • there are a plurality of Sp p11 they may be the same or different.
  • Sp p12 They may be the same or different.
  • L p11 When there are a plurality of L p11 are present, they may be the same or different.
  • L p12 When there are a plurality of L p12 , they are the same. They may be the same or different when a plurality of M p12 are present, and they may be the same or different when a plurality of M p13 are present. so It is preferably a compound that is. Moreover, it is preferable to contain the said material 1 type (s) or 2 or more types.
  • the total of m p12 to m p14 described above is preferably in the range of 1 to 6, particularly preferably in the range of 2 to 4, particularly 2.
  • the average number calculated by multiplying the concentration of the monomers in the whole monomer and the sum of m p12 to m p14 is set to 1.6 to 2.8. It is preferably 1.7 to 2.4, more preferably 1.8 to 2.2.
  • the total of m p11 and m p15 is preferably 1 to 6, more preferably 2 to 4, and particularly preferably 2.
  • the average number calculated by multiplying the density and m p1 and p15 sum of the monomers in the total monomer may be set to be 1.6 to 2.8 It is preferably 1.7 to 2.4, more preferably 1.8 to 2.2.
  • the average number is close to 1, the driving voltage of the liquid crystal display element tends to be reduced, and when the average number is high, the off-response tends to be quick.
  • substitution with fluorine atoms for M p11 , M p12 and M p13 can control the magnitude and solubility of the interaction between the liquid crystal material and the polymer or copolymer without deteriorating the voltage holding ratio of the liquid crystal display element. Therefore, it is preferable.
  • the preferred number of substitution is 1 to 4.
  • R P21 and R P22 each independently represents a hydrogen atom or a methyl group
  • the solubility in a liquid crystal material may not be good. Accordingly, such a compound is preferably contained in an amount of 90% by mass or less, more preferably 70% by mass or less, and particularly preferably 50% by mass or less in the whole monomer to be used.
  • R P31 and R P32 each independently represent a hydrogen atom or a methyl group, mP31 represents an integer of 0 or 1, and when mP31 is 0, mP32 represents an integer of 1 to 6; In the case of 1, mP32 represents an integer of 2 to 6)
  • R P41 and R P42 each independently represent a hydrogen atom or a methyl group
  • mP42 and mP43 each independently represent an integer of 0 or 1
  • mP41 is 1-6
  • mp42 is 1
  • mP41 represents an integer of 2 to 6
  • mP44 represents an integer of 1 to 6
  • mp44 represents an integer of 2 to 6.
  • Such a compound is preferably contained in an amount of 40% by mass or more, more preferably 50% by mass or more, and particularly preferably 60% by mass or more in the whole monomer to be used.
  • the compounds represented by the formulas (P5-1) to (P5-11) having an aryl ester structure in the mesogen have the ability to initiate polymerization by ultraviolet irradiation. This is preferable because the amount can be reduced.
  • R P51 and R P52 each independently represent a hydrogen atom or a methyl group
  • mP52 and mP53 each independently represent an integer of 0 or 1
  • mP51 is 1-6
  • mp52 is 1, mP51 represents an integer of 2 to 6
  • mP54 represents an integer of 1 to 6
  • mp54 represents an integer of 2 to 6.
  • it is preferably contained in an amount of 30% by mass or less and more preferably 20% by mass or less in the whole monomer used. It is preferably 10% by mass or less.
  • R P61 and R P62 each independently represent a hydrogen atom or a methyl group
  • mP62 and mP63 each independently represent an integer of 0 or 1
  • mP61 is 1-6
  • mp62 is 1
  • mP61 represents an integer from 2 to 6
  • mP64 represents an integer from 1 to 6
  • mp64 represents an integer from 2 to 6.
  • compounds having a condensed ring represented by the following formulas (P7-1) to (P7-5) can shift the ultraviolet absorption region from the monocyclic compound to the visible light side. This is preferable from the viewpoint of adjusting the sensitivity of the monomer.
  • R P71 and R P72 each independently represent a hydrogen atom or a methyl group
  • mP72 and mP73 each independently represent an integer of 0 or 1
  • mP71 is 1-6.
  • mp72 is 1, mP71 represents an integer of 2 to 6, when mP73 is 0, mP74 represents an integer of 1 to 6, and when mP73 is 1, mp74 represents an integer of 2 to 6.
  • a bifunctional monomer is exemplified as a preferred compound, but among the formula (P1), the use of a trifunctional monomer such as the compounds represented by the formulas (P5-1) to (P5-11) is also preferred.
  • the mechanical strength of the polymer or copolymer can be improved. Moreover, what has an ester bond in a mesogen has the capability to start superposition
  • R P81 and R P83 each independently represent a hydrogen atom or a methyl group
  • mP72 and mP73 each independently represent an integer of 0 or 1
  • mP71 is 1-6.
  • mp72 is 1, mP71 represents an integer of 2 to 6, when mP73 is 0, mP74 represents an integer of 1 to 6, and when mP73 is 1, mp74 is an integer of 2 to 6 Represents.
  • a monofunctional monomer such as a compound represented by the following formulas (P9-1) to (P9-11) for the purpose of adjusting the driving voltage of the liquid crystal display element.
  • R P91 represents a hydrogen atom or a methyl group
  • R P92 represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms
  • R P101 and R P102 each independently represent a hydrogen atom or a methyl group
  • mP102 and mP103 each independently represent an integer of 0 or 1
  • mP101 is 1-6.
  • mp102 is 1, mP101 represents an integer from 2 to 6, when mP103 is 0, mP104 represents an integer from 1 to 6, and when mP103 is 1, mp104 represents an integer from 2 to 6 To express
  • the polymerizable monomer component (a) detailed above is a compound represented by the various specific examples described above, represented by the following general formula (V).
  • X 1 and X 2 each independently represent a hydrogen atom or a methyl group
  • Sp 1 and Sp 2 each independently represent a single bond, an alkylene group having 1 to 12 carbon atoms or —O— (CH 2 ) s —
  • U represents a linear or branched group having 2 to 20 carbon atoms
  • An alkyl group having 5 to 20 carbon atoms (the alkylene group in the group may be substituted with an oxygen atom within the range in which the oxygen atom is not adjacent) or a cyclic substituent, and k is 1 Represents an integer of up to 5.
  • X 3 represents a hydrogen atom or a methyl group
  • Sp 3 represents a single bond, an alkylene group having 1 to 12 carbon atoms, or —O— (CH 2 ) t — (wherein t is 2 to Represents an integer of 11 and an oxygen atom is bonded to an aromatic ring)
  • V is a linear or branched alkylene group having 2 to 20 carbon atoms or a polyvalent having 5 to 30 carbon atoms.
  • a hydrogen atom on the atom is substituted by an alkyl group having 5 to 20 carbon atoms (the alkylene group in the group may be substituted by an oxygen atom within a range not adjacent to the oxygen atom) or a cyclic substituent; W may be a hydrogen atom or a halogen atom.
  • all 1,4-phenylene group in the formula, any hydrogen atom is -CH 3, -OCH 3, substituted by fluorine atoms, or a cyano group May be.
  • Sp 1 and Sp 2 in the general formula (V) are the same, when these are, for example, a linear or branched alkylene group having 1 to 12 carbon atoms, It is preferable because it is easy to synthesize and the physical properties can be easily adjusted by adjusting the proportions of a plurality of compounds having different alkylene chain lengths.
  • the polymerizable monomer component (A) detailed above is in the range of 0.5% by mass to 20% by mass, particularly in the range of 1% by mass to 10% by mass in the polymerizable liquid crystal composition. It is preferably used in proportion, but at any concentration within the range, it is preferable to contain at least two kinds of polymerizable monomer components (A) having different Tg and adjust Tg as necessary. .
  • the precursor of the polymer having a low Tg preferably has a structure in which the number of functional groups is 1 or 2 or more, and an alkylene group or the like is provided as a spacer between the functional groups to increase the molecular length.
  • Tg is also related to thermal mobility at the molecular level in the main chain and side chain of the polymer network, and has an influence on electro-optical properties.
  • the crosslink density when the crosslink density is increased, the molecular mobility of the main chain is lowered, the anchoring force with the low molecular liquid crystal is increased, the drive voltage is increased, and the fall time is shortened.
  • the crosslinking density is lowered so that Tg is lowered, the thermal mobility of the polymer main chain is increased, so that the anchoring force with the low-molecular liquid crystal is lowered, the driving voltage is lowered, and the fall time is increased.
  • the anchoring force at the polymer network interface is influenced by the molecular mobility of the polymer side chain in addition to the above-mentioned Tg, and is monovalent or divalent, and an acrylate of an alcohol compound having 8 to 18 carbon atoms.
  • the anchoring force at the polymer interface can be lowered by using methacrylate as the polymerizable monomer component (a). Further, such a polymerizable monomer component (A) is effective in inducing a pretilt angle at the substrate interface and acts in the direction of lowering the polar anchoring force.
  • liquid crystal composition (B) constituting the liquid crystal layer or the polymerizable liquid crystal composition has the following general formula (i):
  • R i1 and R i2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 8 represents an alkenyloxy group,
  • a i1 represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group, and
  • n i1 represents 0 or 1.
  • the retardation of the liquid crystal layer can be adjusted.
  • the liquid crystal layer containing a compound having high reliability with respect to light resistance can be constituted by the above compound, deterioration due to light from the light source, in particular, blue light (from the blue LED) can be suppressed / prevented.
  • the lower limit of the preferable content of the compound represented by the general formula (i) is based on the total amount of the liquid crystal layer of the present invention or the polymerizable liquid crystal composition. 1% by mass, 2% by mass, 3% by mass, 5% by mass, 7% by mass, 10% by mass, 15% by mass, 20% by mass, It is 25% by mass, 30% by mass, 35% by mass, 40% by mass, 45% by mass, 50% by mass, and 55% by mass.
  • the upper limit of the preferable content is 95% by mass, 90% by mass, 85% by mass, and 80% by mass with respect to the total amount of the liquid crystal layer of the present invention or the polymerizable liquid crystal composition. 75% by mass, 70% by mass, 65% by mass, 60% by mass, 55% by mass, 50% by mass, 45% by mass, 40% by mass, and 35% by mass %, 30% by mass, and 25% by mass.
  • the compound represented by the general formula (i) is preferably a compound selected from the group of compounds represented by the following general formulas (i-1) to (i-2).
  • the compound represented by the general formula (i-1) is the following compound.
  • R i11 and R i12 each independently represent the same meaning as R L1 and R L2 in the general formula (i).
  • R i11 and R i12 are preferably a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms, and a linear alkenyl group having 2 to 5 carbon atoms. .
  • the compound represented by the general formula (i-1) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content is 1% by mass, 2% by mass, 3% by mass, 5% by mass, and 7% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. 10% by mass, 15% by mass, 20% by mass, 25% by mass, 30% by mass, 35% by mass, 40% by mass, and 45% by mass. Yes, 50% by mass, 55% by mass.
  • the upper limit of the preferable content is 95% by mass, 90% by mass, 85% by mass, 80% by mass, and 75% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. %, 70% by weight, 65% by weight, 60% by weight, 55% by weight, 50% by weight, 45% by weight, 40% by weight, and 35% by weight. Yes, 30% by mass and 25% by mass.
  • the above lower limit value is high and the upper limit value is high. Additionally, keeping the liquid crystal composition used in the present invention the T NI of (B) high, it is preferred if good composition temperature stability is required is the upper limit value in the lower limit of the above is moderate is moderate. When it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable that the lower limit value is low and the upper limit value is low.
  • the compound represented by the general formula (i-1) is preferably a compound selected from the group of compounds represented by the general formula (i-1-1).
  • the compound represented by the general formula (i-1-1) is a compound selected from the group of compounds represented by the formula (i-1-1.1) to the formula (i-1-1.3). And is preferably a compound represented by formula (i-1-1.2) or formula (i-1-1.3), and particularly represented by formula (i-1-1.3). It is preferable that it is a compound.
  • the lower limit of the preferable content of the compound represented by the formula (i-1-1.3) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, Yes, 3% by mass, 5% by mass, 7% by mass, and 10% by mass.
  • the upper limit of the preferable content is 20% by mass, 15% by mass, 13% by mass, 10% by mass, and 8% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. %, 7% by mass, 6% by mass, 5% by mass, and 3% by mass.
  • the compound represented by the general formula (i-1) is a compound selected from the group of compounds represented by the general formula (i-1-2), and the light having a wavelength of 200 to 400 nm in the ultraviolet region as a backlight. Even when it is irradiated, it is preferable in that it has excellent durability and can express a voltage holding ratio.
  • the lower limit of the preferable content of the compound represented by the formula (i-1-2) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 5% by mass, 10% by mass, 15% by mass, 17% by mass, 20% by mass, 23% by mass, 25% by mass, 27% by mass, 30% by mass, and 35% by mass %.
  • the upper limit of the preferable content is 60% by mass, 55% by mass, 50% by mass, 45% by mass, and 42% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention.
  • the upper limit of the content is preferably 15% by mass, particularly 10% by mass.
  • the compound represented by the general formula (i-1-2) is a compound selected from the group of compounds represented by the formula (i-1-2.1) to the formula (i-1-2.4).
  • it is a compound represented by the formula (i-1-2.2) to the formula (i-1-2.4).
  • the compound represented by the formula (i-1-2.2) is preferable because the response speed of the liquid crystal composition (B) used in the present invention is particularly improved.
  • it is preferable to use a compound represented by the formula (i-1-2.3) or the formula (i-1-2.4).
  • the content of the compounds represented by the formulas (i-1-2.3) and (i-1-2.4) is preferably not more than 30% by mass in order to improve the solubility at low temperatures. .
  • the lower limit of the preferable content of the compound represented by the formula (i-1-2.2) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 10% by mass, and 15% by mass. Yes, 18% by mass, 20% by mass, 23% by mass, 25% by mass, 27% by mass, 30% by mass, 33% by mass, 35% by mass, 38% by mass and 40% by mass.
  • the upper limit of the preferable content is 60% by mass, 55% by mass, 50% by mass, 45% by mass, and 43% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. %, 40% by mass, 38% by mass, 35% by mass, 32% by mass, 30% by mass, 27% by mass, 25% by mass, 22% by mass is there.
  • the total amount of the compound represented by formula (i-1-1.3) and the compound represented by formula (i-1-2.2) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 10% by mass, 15% by mass, 20% by mass, 25% by mass, 27% by mass, 30% by mass, and 35% by mass, 40% by mass.
  • the upper limit of the preferable content is 60% by mass, 55% by mass, 50% by mass, 45% by mass, and 43% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. %, 40% by mass, 38% by mass, 35% by mass, 32% by mass, 30% by mass, 27% by mass, 25% by mass, 22% by mass is there.
  • the compound represented by the general formula (i-1) is preferably a compound selected from the group of compounds represented by the general formula (i-1-3).
  • R i13 and R i14 each independently represent an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms.
  • R i13 and R i14 are preferably a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms, and a linear alkenyl group having 2 to 5 carbon atoms. .
  • the lower limit of the preferable content of the compound represented by the formula (i-1-3) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 5% by mass, 10% by mass, 13% by mass, 15% by mass, 17% by mass, 20% by mass, 23% by mass, 25% by mass, and 30% by mass.
  • the upper limit of the preferable content is 60% by mass, 55% by mass, 50% by mass, 45% by mass, and 40% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention.
  • the compound represented by the general formula (i-1-3) is a compound selected from the group of compounds represented by the formula (i-1-3.1) to the formula (i-1-3.12). Preferably, it is a compound represented by formula (i-1-3.1), formula (i-1-3.3) or formula (i-1-3.4).
  • the compound represented by the formula (i-1-3.1) is preferable because the response speed of the liquid crystal composition (B) used in the present invention is particularly improved.
  • the equation (i-1-3.3), the equation (i-1-3.4), the equation (L-1-3.11), and the equation (i It is preferable to use a compound represented by (1-3.12).
  • a compound represented by (1-3.12) Sum of compounds represented by formula (i-1-3.3), formula (i-1-3.4), formula (i-1-3.11) and formula (i-1-3.12)
  • the content of is not preferably 20% by mass or more in order to improve the solubility at low temperatures.
  • the lower limit of the preferable content of the compound represented by the formula (i-1-3.1) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, Yes, 3% by mass, 5% by mass, 7% by mass, 10% by mass, 13% by mass, 15% by mass, 18% by mass, and 20% by mass.
  • the upper limit of the preferable content is 20% by mass, 17% by mass, 15% by mass, 13% by mass, and 10% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. %, 8% by mass, 7% by mass, and 6% by mass.
  • the compound represented by the general formula (i-1) is preferably a compound selected from the group of compounds represented by the general formula (i-1-4) and / or (i-1-5).
  • R i15 and R i16 each independently represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms.
  • R i15 and R i16 are preferably a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms, and a linear alkenyl group having 2 to 5 carbon atoms. .
  • the lower limit of the preferable content of the compound represented by the formula (i-1-4) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 5% by mass, It is 10% by mass, 13% by mass, 15% by mass, 17% by mass, and 20% by mass.
  • the upper limit of the preferable content is 25% by mass, 23% by mass, 20% by mass, 17% by mass, and 15% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. %, 13% by mass, and 10% by mass.
  • the lower limit of the preferable content of the compound represented by the formula (i-1-5) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 5% by mass, It is 10% by mass, 13% by mass, 15% by mass, 17% by mass, and 20% by mass.
  • the upper limit of the preferable content is 25% by mass, 23% by mass, 20% by mass, 17% by mass, and 15% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. %, 13% by mass, and 10% by mass.
  • the compounds represented by the general formulas (i-1-4) and (i-1-5) are represented by the formulas (i-1-4.1) to (i-1-5.3). Are preferably selected from the group of compounds represented by formula (i-1-4.2) or (i-1-5.2).
  • the lower limit of the preferable content of the compound represented by the formula (i-1-4.2) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, Yes, 3% by mass, 5% by mass, 7% by mass, 10% by mass, 13% by mass, 15% by mass, 18% by mass, and 20% by mass.
  • the upper limit of the preferable content is 20% by mass, 17% by mass, 15% by mass, 13% by mass, and 10% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. %, 8% by mass, 7% by mass, and 6% by mass.
  • the upper limit is 80% by mass, 70% by mass, 60% by mass, 50% by mass, and 45% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. 40% by weight, 37% by weight, 35% by weight, 33% by weight, 30% by weight, 28% by weight, 25% by weight, 23% by weight, 20% by weight %.
  • the compound represented by the general formula (i-1) is preferably a compound selected from the group of compounds represented by the general formula (i-1-6).
  • R i17 and R i18 each independently represent a methyl group or a hydrogen atom.
  • the lower limit of the preferable content of the compound represented by the formula (i-1-6) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 5% by mass, 10% by mass, 15% by mass, 17% by mass, 20% by mass, 23% by mass, 25% by mass, 27% by mass, 30% by mass, and 35% by mass %.
  • the upper limit of the preferable content is 60% by mass, 55% by mass, 50% by mass, 45% by mass, and 42% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. %, 40% by mass, 38% by mass, 35% by mass, 33% by mass, and 30% by mass.
  • the compound represented by the general formula (i-1-6) is a compound selected from the compound group represented by the formula (i-1-6.1) to the formula (i-1-6.3). Preferably there is.
  • the compound represented by the general formula (i-2) is the following compound.
  • R i21 and R i22 each independently represent the same meaning as R i1 and R i2 in formula (i)).
  • R i21 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms
  • R L22 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or a carbon atom.
  • An alkoxy group of 1 to 4 is preferable.
  • the compound represented by the general formula (i-2) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (i-2) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 2% by mass, 3% by mass %, 5% by mass, 7% by mass, and 10% by mass.
  • the upper limit of the preferable content is 20% by mass, 15% by mass, 13% by mass, 10% by mass, and 8% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. %, 7% by mass, 6% by mass, 5% by mass, and 3% by mass.
  • the compound represented by the general formula (i-2) is preferably a compound selected from the group of compounds represented by the formulas (i-2.1) to (i-2.6)
  • a compound represented by formula (L-2.1), formula (i-2.3), formula (i-2.4) and formula (i-2.6) is preferred.
  • the liquid crystal composition (B) used in the present invention further contains one or more compounds selected from compounds represented by formulas (N-1), (N-2) and (N-3). It is preferable. These compounds correspond to dielectrically negative compounds (the sign of ⁇ is negative and the absolute value is greater than 2).
  • R N11 , R N12 , R N21 , R N22 , R N31 , R N32 , R N41 and R N42 each independently represents an alkyl group having 1 to 8 carbon atoms, or one or two or more non-adjacent —CH 2 — in the alkyl chain having 2 to 8 carbon atoms, each independently A structural moiety having a chemical structure substituted by CH ⁇ CH—, —C ⁇ C—, —O—, —CO—, —COO— or —OCO—, A N11 , A N12 , A N21 , A N22 , A N31 , A N32 , A N41 and A N42 each independently represents (a) a 1,4-cyclohexylene group (one —CH present in this group) 2 or two or more non-adjacent —CH 2 — may be replaced by —O—) and (b) a
  • (D) represents a group selected from the group consisting of 1,4-cyclohexenylene groups, and the group (a), the group (b), the group (c) and the group (d) are each a hydrogen atom in the structure Each independently may be substituted with a cyano group, a fluorine atom or a chlorine atom, Z N11 , Z N12 , Z N21 , Z N22 , Z N31 , Z N32 , Z N41 and Z N42 are each independently a single bond, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH.
  • X N21 represents a hydrogen atom or a fluorine atom
  • T N31 represents —CH 2 — or an oxygen atom
  • X N41 represents an oxygen atom, a nitrogen atom, or —CH 2 —
  • n N41 + n N42 represents an integer of 0 to 3, if a N41 and a N42, Z N41 and Z N42 there are multiple, they differ even for the same Even though it may.
  • the compounds represented by the general formulas (N-1), (N-2), (N-3) and (N-4) are preferably compounds whose ⁇ is negative and whose absolute value is larger than 2. .
  • R N11 , R N12 , R N21 , R N22 , R N31 and R N32 each independently represent 1 to 8 carbon atoms.
  • An alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or an alkenyloxy group having 2 to 8 carbon atoms preferably an alkyl group having 1 to 5 carbon atoms.
  • An alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms or an alkenyloxy group having 2 to 5 carbon atoms is preferable, and an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms is preferable.
  • an alkyl group having 2 to 5 carbon atoms or an alkenyl group having 2 to 3 carbon atoms is more preferable, and an alkenyl group having 3 carbon atoms (propenyl group
  • the ring structure to which it is bonded is a phenyl group (aromatic)
  • An alkenyl group having 4 to 5 atoms is preferable
  • the ring structure to which the alkenyl group is bonded is a saturated ring structure such as cyclohexane, pyran and dioxane
  • a straight-chain alkoxy group having 1 to 4 carbon atoms and a straight-chain alkenyl group having 2 to 5 carbon atoms are preferred.
  • the total of carbon atoms and oxygen atoms, if present is preferably 5 or less, and is preferably linear.
  • the alkenyl group is preferably selected from groups represented by any of the formulas (R1) to (R5). (The black dots in each formula represent carbon atoms in the ring structure.)
  • a N11 , A N12 , A N21 , A N22 , A N31, and A N32 are preferably aromatic when it is required to increase ⁇ n independently, and in order to improve the response speed, fat
  • fat Preferably a trans-1,4-cyclohexylene group, 1,4-phenylene group, 2-fluoro-1,4-phenylene group, 3-fluoro-1,4-phenylene group, 3,5 -Difluoro-1,4-phenylene group, 2,3-difluoro-1,4-phenylene group, 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1 , 4-diyl group, naphthalene-2,6-diyl group, decahydronaphthalene-2,6-diyl group or 1,2,3,4-tetrahydronaphthalene-2,6-diyl group Preferred, it is more preferable that represents the following
  • it represents a trans-1,4-cyclohexylene group, a 1,4-cyclohexenylene group or a 1,4-phenylene group.
  • Z N11, Z N12, Z N21 , Z N22, Z N31 and Z N32 -CH 2 each independently O -, - CF 2 O - , - CH 2 CH 2 -, - CF 2 CF 2 - or a single bond preferably represents an, -CH 2 O -, - CH 2 CH 2 - or a single bond is more preferable, -CH 2 O-or a single bond is particularly preferred.
  • XN21 is preferably a fluorine atom.
  • T N31 is preferably an oxygen atom.
  • n N11 + n N12 , n N21 + n N22 and n N31 + n N32 are preferably 1 or 2, a combination in which n N11 is 1 and n N12 is 0, a combination in which n N11 is 2 and n N12 is 0, n A combination in which N11 is 1 and n N12 is 1, a combination in which n N11 is 2 and n N12 is 1, a combination in which n N21 is 1 and n N22 is 0, n N21 is 2 and n N22 is n A combination in which n N31 is 1 and n N32 is 0, and a combination in which n N31 is 2 and n N32 is 0 are preferable.
  • the lower limit of the preferable content of the compound represented by the formula (N-1) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 10% by mass, and 20% by mass. %, 30% by mass, 40% by mass, 50% by mass, 55% by mass, 60% by mass, 65% by mass, 70% by mass, and 75% by mass. Yes, 80% by mass.
  • the upper limit of the preferable content is 95% by mass, 85% by mass, 75% by mass, 65% by mass, 55% by mass, 45% by mass, and 35% by mass, 25% by mass and 20% by mass.
  • the lower limit of the preferable content of the compound represented by the formula (N-2) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 10% by mass, and 20% by mass. %, 30% by mass, 40% by mass, 50% by mass, 55% by mass, 60% by mass, 65% by mass, 70% by mass, and 75% by mass. Yes, 80% by mass.
  • the upper limit of the preferable content is 95% by mass, 85% by mass, 75% by mass, 65% by mass, 55% by mass, 45% by mass, and 35% by mass, 25% by mass and 20% by mass.
  • the lower limit of the preferable content of the compound represented by the formula (N-3) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 10% by mass, and 20% by mass. %, 30% by mass, 40% by mass, 50% by mass, 55% by mass, 60% by mass, 65% by mass, 70% by mass, and 75% by mass. Yes, 80% by mass.
  • the upper limit of the preferable content is 95% by mass, 85% by mass, 75% by mass, 65% by mass, 55% by mass, 45% by mass, and 35% by mass, 25% by mass and 20% by mass.
  • the above lower limit value is preferably low and the upper limit value is preferably low. Additionally, keeping the liquid crystal composition used in the present invention the T NI of (B) high, it is preferred if good composition temperature stability is required a low upper limit lower the lower limit of the above. When it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable that the above lower limit value is increased and the upper limit value is high.
  • the compound represented by the general formula (N-1) is particularly a voltage in a liquid crystal display device. This is preferable from the viewpoint of excellent retention and low rotational viscosity.
  • liquid crystal composition (B) used in the present invention further contains one or more compounds represented by the general formula (J). These compounds correspond to dielectrically positive compounds ( ⁇ is greater than 2).
  • R J1 represents an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are each independently —CH ⁇ CH—, — Optionally substituted by C ⁇ C—, —O—, —CO—, —COO— or —OCO—, n J1 represents 0, 1, 2, 3 or 4;
  • a J1 , A J2 and A J3 are each independently (A) 1,4-cyclohexylene group (this is present in the group one -CH 2 - or nonadjacent two or more -CH 2 - may be replaced by -O-.)
  • the group (a), the group (b) and the group (c) are each independently selected from the group consisting of cyano group, fluorine atom, chlorine atom, methyl group, trifluoromethyl group or trifluoro May be substituted with a methoxy group
  • Z J1 and Z J2 are each independently a single bond, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH 2 —, —CH 2 O—, —OCF 2 —, —CF 2 O—, Represents —COO—, —OCO— or —C ⁇ C—
  • n J1 is 2, 3 or 4 and a plurality of A J2 are present, they may be the same or different, and n J1 is 2, 3 or 4 and a plurality of Z J1 is present.
  • X J1 represents a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, a fluoromethoxy group, a difluoromethoxy group, a trifluoromethoxy group, or a 2,2,2-trifluoroethyl group.
  • R J1 represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or alkenyloxy having 2 to 8 carbon atoms.
  • a group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms or an alkenyloxy group having 2 to 5 carbon atoms is preferable.
  • An alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms is more preferable, an alkyl group having 2 to 5 carbon atoms or an alkenyl group having 2 to 3 carbon atoms is more preferable, and an alkenyl group having 3 carbon atoms. (Propenyl group) is particularly preferred.
  • R J1 is preferably an alkyl group when emphasizing reliability, and is preferably an alkenyl group when emphasizing a decrease in viscosity.
  • the ring structure to which it is bonded is a phenyl group (aromatic)
  • An alkenyl group having 4 to 5 atoms is preferable
  • the ring structure to which the alkenyl group is bonded is a saturated ring structure such as cyclohexane, pyran and dioxane
  • a straight-chain alkoxy group having 1 to 4 carbon atoms and a straight-chain alkenyl group having 2 to 5 carbon atoms are preferred.
  • the total of carbon atoms and oxygen atoms, if present is preferably 5 or less, and is preferably linear.
  • the alkenyl group is preferably selected from groups represented by any of the formulas (R1) to (R5). (The black dot in each formula represents the carbon atom in the ring structure to which the alkenyl group is bonded.)
  • a J1 , A J2 and A J3 are preferably aromatic when it is required to independently increase ⁇ n, and are preferably aliphatic to improve the response speed.
  • Z J1 and Z J2 each independently preferably represent —CH 2 O—, —OCH 2 —, —CF 2 O—, —CH 2 CH 2 —, —CF 2 CF 2 — or a single bond, OCH 2 —, —CF 2 O—, —CH 2 CH 2 — or a single bond is more preferred, and —OCH 2 —, —CF 2 O— or a single bond is particularly preferred.
  • X J1 is preferably a fluorine atom or a trifluoromethoxy group, and more preferably a fluorine atom.
  • n J1 is preferably 0, 1, 2 or 3, preferably 0, 1 or 2, preferably 0 or 1 when emphasizing the improvement of ⁇ , and 1 or 2 when emphasizing TNI. preferable.
  • the types of compounds that can be combined are used in combination according to desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the content of the compound represented by the general formula (J) is low temperature solubility, transition temperature, electrical reliability, birefringence, process suitability, It is necessary to adjust appropriately according to required performance such as dripping marks, image sticking, and dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the general formula (J) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 10% by mass, and 20% by mass. 30% by mass 40% by mass 50% by mass 55% by mass 60% by mass 65% by mass 70% by mass 75% by mass 80% by mass.
  • the upper limit of the preferable content is, for example, 95% by mass, 85% by mass, and 75% by mass in one embodiment of the present invention with respect to the total amount of the liquid crystal composition (B) used in the present invention. 65% by mass, 55% by mass, 45% by mass, 35% by mass, and 25% by mass.
  • the composition of the liquid crystal composition (B) used in the present invention is kept low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Additionally, keeping the liquid crystal composition used in the present invention the T NI of (B) high, if the temperature stability with good composition is required for lowering the lower limit of the above, it is preferable to set the upper limit to lower. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
  • R J1 is preferably an alkyl group when emphasizing reliability, and is preferably an alkenyl group when emphasizing a decrease in viscosity.
  • R M1 represents an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are each independently —CH ⁇ CH—, — Optionally substituted by C ⁇ C—, —O—, —CO—, —COO— or —OCO—, n M1 represents 0, 1, 2, 3 or 4;
  • a M1 and A M2 are each independently (A) 1,4-cyclohexylene group (this is present in the group one -CH 2 - or nonadjacent two or more -CH 2 - may be replaced by -O- or -S- And (b) a 1,4-phenylene group (one —CH ⁇ present in this group or two or more non-adjacent —CH ⁇ may be replaced by —N ⁇ ).
  • a hydrogen atom on the group (a) and the group (b) may be independently substituted with a cyano group, a fluorine atom or a chlorine atom
  • Z M1 and Z M2 are each independently a single bond, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH 2 —, —CH 2 O—, —OCF 2 —, —CF 2 O—, Represents —COO—, —OCO— or —C ⁇ C—
  • n M1 is 2, 3 or 4 and a plurality of A M2 are present, they may be the same or different, and n M1 is 2, 3 or 4 and a plurality of Z M1 is present
  • X M1 and X M3 each independently represent a hydrogen atom, a chlorine atom or a fluorine atom
  • X M2 represents a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a
  • R K1 represents an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are each independently —CH ⁇ CH—, — Optionally substituted by C ⁇ C—, —O—, —CO—, —COO— or —OCO—, n K1 represents 0, 1, 2, 3 or 4;
  • a K1 and A K2 are each independently (A) 1,4-cyclohexylene group (this is present in the group one -CH 2 - or nonadjacent two or more -CH 2 - may be replaced by -O- or -S- And (b) a 1,4-phenylene group (one —CH ⁇ present in this group or two or more non-adjacent —CH ⁇ may be replaced by —N ⁇ ).
  • a hydrogen atom on the group (a) and the group (b) may be independently substituted with a cyano group, a fluorine atom or a chlorine atom
  • Z K1 and Z K2 are each independently a single bond, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH 2 —, —CH 2 O—, —OCF 2 —, —CF 2 O—, Represents —COO—, —OCO— or —C ⁇ C—
  • n K1 is 2, 3 or 4 and a plurality of A K2 are present, they may be the same or different, and n K1 is 2, 3 or 4 and a plurality of Z K1 is present
  • X K1 and X K3 each independently represent a hydrogen atom, a chlorine atom or a fluorine atom
  • X K2 represents a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a
  • R M1 represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or an alkenyloxy having 2 to 8 carbon atoms.
  • a group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms or an alkenyloxy group having 2 to 5 carbon atoms is preferable.
  • An alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms is more preferable, an alkyl group having 2 to 5 carbon atoms or an alkenyl group having 2 to 3 carbon atoms is more preferable, and an alkenyl group having 3 carbon atoms. (Propenyl group) is particularly preferred.
  • R M1 is preferably an alkyl group when emphasizing reliability, and is preferably an alkenyl group when emphasizing a decrease in viscosity.
  • the ring structure to which it is bonded is a phenyl group (aromatic)
  • An alkenyl group having 4 to 5 atoms is preferable
  • the ring structure to which the alkenyl group is bonded is a saturated ring structure such as cyclohexane, pyran and dioxane
  • a straight-chain alkoxy group having 1 to 4 carbon atoms and a straight-chain alkenyl group having 2 to 5 carbon atoms are preferred.
  • the total of carbon atoms and oxygen atoms, if present is preferably 5 or less, and is preferably linear.
  • the alkenyl group is preferably selected from groups represented by any of the formulas (R1) to (R5). (The black dot in each formula represents the carbon atom in the ring structure to which the alkenyl group is bonded.)
  • a M1 and A M2 are preferably aromatic when it is required to independently increase ⁇ n, and are preferably aliphatic for improving the response speed, and trans-1,4 -Cyclohexylene group, 1,4-phenylene group, 2-fluoro-1,4-phenylene group, 3-fluoro-1,4-phenylene group, 3,5-difluoro-1,4-phenylene group, 2, 3-difluoro-1,4-phenylene group, 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1,4-diyl group, naphthalene-2,6- It preferably represents a diyl group, decahydronaphthalene-2,6-diyl group or 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, and more preferably represents the following structure:
  • Z M1 and Z M2 each independently -CH 2 O -, - CF 2 O -, - CH 2 CH 2 -, - CF 2 CF 2 - or preferably a single bond, -CF 2 O-, —CH 2 CH 2 — or a single bond is more preferable, and —CF 2 O— or a single bond is particularly preferable.
  • n M1 is preferably 0, 1, 2 or 3, preferably 0, 1 or 2, preferably 0 or 1 when emphasizing the improvement of ⁇ , and 1 or 2 when emphasizing T NI preferable.
  • the types of compounds that can be combined are used in combination according to desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the content of the compound represented by the general formula (M) is low temperature solubility, transition temperature, electrical reliability, birefringence, process suitability, It is necessary to adjust appropriately according to required performance such as dripping marks, image sticking, and dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (M) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 10% by mass, and 20% by mass. Yes, 30% by weight, 40% by weight, 50% by weight, 55% by weight, 60% by weight, 65% by weight, 70% by weight, 75% by weight, 80% by mass.
  • the upper limit of the preferable content is, for example, 95% by mass, 85% by mass, and 75% by mass in one embodiment of the present invention with respect to the total amount of the liquid crystal composition (B) used in the present invention. 65% by mass, 55% by mass, 45% by mass, 35% by mass, and 25% by mass.
  • the composition of the liquid crystal composition (B) used in the present invention is kept low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Additionally, keeping the liquid crystal composition used in the present invention the T NI of (B) high, if the temperature stability with good composition is required for lowering the lower limit of the above, it is preferable to set the upper limit to lower. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
  • the liquid crystal composition of the present invention preferably further contains one or more compounds represented by the general formula (L).
  • the compound represented by the general formula (L) corresponds to a dielectrically neutral compound ( ⁇ value is ⁇ 2 to 2).
  • R L1 and R L2 each independently represents an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are each independently Optionally substituted by —CH ⁇ CH—, —C ⁇ C—, —O—, —CO—, —COO— or —OCO—, n L1 represents 0, 1, 2 or 3,
  • a L1 , A L2 and A L3 each independently represent (a) a 1,4-cyclohexylene group (one —CH 2 — present in the group or two or more —CH 2 — not adjacent to each other).
  • the group (a), the group (b) and the group (c) may be each independently substituted with a cyano group, a fluorine atom or a chlorine atom
  • n L1 is 2 or 3 and a plurality of A L2 are present, they may be the same or different, and when n L1 is 2 or 3, and a plurality of Z L2 are present, May be the same or different, but excludes compounds represented by general formulas (N-1), (N-2), (N-3), (J) and (i).
  • the compound represented by general formula (L) may be used independently, it can also be used in combination.
  • the types of compounds that can be combined but they are used in appropriate combinations according to desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention.
  • the content of the compound represented by the general formula (L) is low temperature solubility, transition temperature, electrical reliability, birefringence, process suitability, It is necessary to adjust appropriately according to required performance such as dripping marks, image sticking, and dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (L) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 10% by mass, and 20% by mass. Yes, 30% by weight, 40% by weight, 50% by weight, 55% by weight, 60% by weight, 65% by weight, 70% by weight, 75% by weight, 80% by mass.
  • the upper limit of the preferable content is 95% by mass, 85% by mass, 75% by mass, 65% by mass, 55% by mass, 45% by mass, and 35% by mass, 25% by mass.
  • the above lower limit value is high and the upper limit value is high. Additionally, keeping the liquid crystal composition used in the present invention the T NI of (B) high, it is preferable if the temperature stability with good composition is required upper limit higher the lower limit of the above is high. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable that the above lower limit value is lowered and the upper limit value is low.
  • R L1 and R L2 are preferably both alkyl groups, and when importance is placed on reducing the volatility of the compound, it is preferably an alkoxy group, and importance is placed on viscosity reduction. In this case, at least one is preferably an alkenyl group.
  • the number of halogen atoms present in the molecule is preferably 0, 1, 2 or 3, preferably 0 or 1, and 1 is preferred when importance is attached to compatibility with other liquid crystal molecules.
  • R L1 and R L2 are each a linear alkyl group having 1 to 5 carbon atoms or a linear alkyl group having 1 to 4 carbon atoms when the ring structure to which R L1 is bonded is a phenyl group (aromatic).
  • a phenyl group aromatic
  • Alkyl groups, linear alkoxy groups having 1 to 4 carbon atoms and linear alkenyl groups having 2 to 5 carbon atoms are preferred.
  • the total of carbon atoms and oxygen atoms, if present, is preferably 5 or less, and is preferably linear.
  • the alkenyl group is preferably selected from groups represented by any of the formulas (R1) to (R5). (The black dots in each formula represent carbon atoms in the ring structure.)
  • n L1 is preferably 0 when importance is attached to the response speed, 2 or 3 is preferred for improving the upper limit temperature of the nematic phase, and 1 is preferred for balancing these. In order to satisfy the properties required for the composition, it is preferable to combine compounds having different values.
  • a L1 , A L2, and A L3 are preferably aromatic when it is required to increase ⁇ n, and are preferably aliphatic for improving the response speed, and are each independently trans- 1,4-cyclohexylene group, 1,4-phenylene group, 2-fluoro-1,4-phenylene group, 3-fluoro-1,4-phenylene group, 3,5-difluoro-1,4-phenylene group 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1,4-diyl group, naphthalene-2,6-diyl group, decahydronaphthalene-2,6 -It preferably represents a diyl group or a 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, and more preferably represents the following structure:
  • it represents a trans-1,4-cyclohexylene group or a 1,4-phenylene group.
  • Z L1 and Z L2 are preferably single bonds when the response speed is important.
  • the compound represented by the general formula (L) preferably has 0 or 1 halogen atom in the molecule.
  • the compound represented by the general formula (L) is preferably a compound selected from the group of compounds represented by the general formulas (L-3) to (L-8).
  • the compound represented by the general formula (L-3) is the following compound.
  • R L31 and R L32 each independently represent the same meaning as R L1 and R L2 in General Formula (L).
  • R L31 and R L32 are each independently preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms.
  • the compound represented by the general formula (L-3) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (L-3) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 2% by mass, 3% by mass %, 5% by mass, 7% by mass, and 10% by mass.
  • the upper limit of the preferable content is 20% by mass, 15% by mass, 13% by mass, 10% by mass, and 8% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. %, 7% by mass, 6% by mass, 5% by mass, and 3% by mass.
  • the effect is high when the content is set to be large.
  • the high TNI is emphasized, the effect is high when the content is set low.
  • the compound represented by the general formula (L-4) is the following compound.
  • R L41 and R L42 each independently represent the same meaning as R L1 and R L2 in General Formula (L).
  • R L41 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms
  • R L42 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or a carbon atom.
  • An alkoxy group of 1 to 4 is preferable.
  • the compound represented by the general formula (L-4) can be used alone, or two or more compounds can be used in combination.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the content of the compound represented by the general formula (L-4) is low temperature solubility, transition temperature, electrical reliability, birefringence, process suitability. It is necessary to adjust appropriately according to required properties such as property, dripping marks, image sticking, and dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (L-4) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 2% by mass, 3% by mass %, 5% by mass, 7% by mass, 10% by mass, 14% by mass, 16% by mass, 20% by mass, 23% by mass and 26% by mass. Yes, 30% by mass, 35% by mass, and 40% by mass.
  • the upper limit of the preferable content of the compound represented by the formula (L-4) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 50% by mass, 40% by mass, and 35% by mass. %, 30% by mass, 20% by mass, 15% by mass, 10% by mass, and 5% by mass.
  • the compound represented by the general formula (L-5) is the following compound.
  • R L51 and R L52 each independently represent the same meaning as R L1 and R L2 in the general formula (L).
  • R L51 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms
  • R L52 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or a carbon atom.
  • An alkoxy group of 1 to 4 is preferable.
  • the compound represented by the general formula (L-5) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the content of the compound represented by the general formula (L-5) is low temperature solubility, transition temperature, electrical reliability, birefringence, process suitability. It is necessary to adjust appropriately according to required properties such as property, dripping marks, image sticking, and dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (L-5) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 2% by mass, 3% by mass %, 5% by mass, 7% by mass, 10% by mass, 14% by mass, 16% by mass, 20% by mass, 23% by mass and 26% by mass. Yes, 30% by mass, 35% by mass, and 40% by mass.
  • the upper limit of the preferable content of the compound represented by the formula (L-5) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 50% by mass, 40% by mass, and 35% by mass. %, 30% by mass, 20% by mass, 15% by mass, 10% by mass, and 5% by mass.
  • the compound represented by the general formula (L-6) is the following compound.
  • R L61 and R L62 each independently represent the same meaning as R L1 and R L2 in the general formula (L), and X L61 and X L62 each independently represent a hydrogen atom or a fluorine atom.
  • R L61 and R L62 are each independently preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and one of X L61 and X L62 is a fluorine atom and the other is a hydrogen atom. Is preferred.
  • the compound represented by the general formula (L-6) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence.
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
  • the lower limit of the preferable content of the compound represented by the formula (L-6) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 2% by mass, 3% by mass %, 5% by mass, 7% by mass, 10% by mass, 14% by mass, 16% by mass, 20% by mass, 23% by mass and 26% by mass. Yes, 30% by mass, 35% by mass, and 40% by mass.
  • the upper limit of the preferable content of the compound represented by the formula (L-6) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 50% by mass, 40% by mass, and 35% by mass. %, 30% by mass, 20% by mass, 15% by mass, 10% by mass, and 5% by mass.
  • the compound represented by the general formula (L-7) is the following compound.
  • R L71 and R L72 each independently represent the same meaning as R L1 and R L2 in Formula (L), A L71 and A L72 is A L2 and in the general formula (L) independently A L3 represents the same meaning, but the hydrogen atoms on A L71 and A L72 may be each independently substituted with a fluorine atom, Z L71 represents the same meaning as Z L2 in formula (L), X L71 and X L72 each independently represent a fluorine atom or a hydrogen atom.
  • R L71 and R L72 are each independently preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and
  • a L71 and A L72 Are each independently preferably a 1,4-cyclohexylene group or a 1,4-phenylene group, the hydrogen atoms on A L71 and A L72 may be each independently substituted with a fluorine atom, and
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, and four kinds.
  • the content of the compound represented by the general formula (L-7) is the solubility at low temperature, transition temperature, electrical reliability, birefringence, process suitability It is necessary to adjust appropriately according to required properties such as property, dripping marks, image sticking, and dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (L-7) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 2% by mass, 3% by mass %, 5% by mass, 7% by mass, 10% by mass, 14% by mass, 16% by mass, and 20% by mass.
  • the upper limit of the preferable content of the compound represented by the formula (L-7) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 30% by mass, 25% by mass, and 23% by mass. %, 20% by mass, 18% by mass, 15% by mass, 10% by mass, and 5% by mass.
  • the content of the compound represented by formula (L-7) is preferably increased, and an embodiment having a low viscosity is used. If desired, it is preferable to reduce the content.
  • the compound represented by the general formula (L-8) is the following compound.
  • R L81 and R L82 each independently represent the same meaning as R L1 and R L2 in General Formula (L), and A L81 represents the same meaning or single bond as A L1 in General Formula (L)).
  • each hydrogen atom on A L81 may be independently substituted with a fluorine atom
  • X L81 to X L86 each independently represent a fluorine atom or a hydrogen atom.
  • R L81 and R L82 are each independently an alkyl group having 1 to 5 carbon atoms, an alkenyl group or an alkoxy group having 1 to 4 carbon atoms of 2 to 5 carbon atoms preferably, A L81 is 1, A 4-cyclohexylene group or a 1,4-phenylene group is preferable
  • the hydrogen atoms on A L71 and A L72 may be each independently substituted with a fluorine atom, and the same in general formula (L-8)
  • the number of fluorine atoms in the ring structure is preferably 0 or 1, and the number
  • the kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, and four kinds.
  • the content of the compound represented by the general formula (L-8) is the solubility at low temperature, transition temperature, electrical reliability, birefringence, process suitability It is necessary to adjust appropriately according to required properties such as property, dripping marks, image sticking, and dielectric anisotropy.
  • the lower limit of the preferable content of the compound represented by the formula (L-8) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 2% by mass, 3% by mass %, 5% by mass, 7% by mass, 10% by mass, 14% by mass, 16% by mass, and 20% by mass.
  • the upper limit of the preferable content of the compound represented by the formula (L-8) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 30% by mass, 25% by mass, and 23% by mass. %, 20% by mass, 18% by mass, 15% by mass, 10% by mass, and 5% by mass.
  • the content of the compound represented by formula (L-8) is preferably increased, and an embodiment having a low viscosity is used. If desired, it is preferable to reduce the content.
  • general formula (i) general formula (L), (N-1), (N-2), (N-3) and (J) with respect to the total amount of liquid crystal composition (B) used in the present invention.
  • the lower limit of the preferable total content of the compounds represented is 80% by mass, 85% by mass, 88% by mass, 90% by mass, 92% by mass, and 93% by mass. 94% by mass, 95% by mass, 96% by mass, 97% by mass, 98% by mass, 99% by mass and 100% by mass.
  • the upper limit of preferable content is 100% by mass, 99% by mass, 98% by mass, and 95% by mass.
  • any one of the compounds represented by the general formula (N-1), (N-2), (N-3) or (J) is 0. It is preferable that it is mass%.
  • the lower limit of the preferable total content of the compounds represented by the general formulas (N-1) to (N-4) is 80% by mass, 85% by mass, 88% by mass, 90% by mass 92% by mass 93% by mass 94% by mass 95% by mass 96% by mass 97% by mass 98% by mass 99% by mass , 100% by mass.
  • the upper limit of preferable content is 100% by mass, 99% by mass, 98% by mass, and 95% by mass.
  • the liquid crystal composition (B) used in the present invention preferably does not contain a compound having a structure in which oxygen atoms such as a peracid (—CO—OO—) structure are bonded in the molecule.
  • the content of the compound having a carbonyl group is 5% by mass or less based on the total mass of the composition.
  • the content is 3% by mass or less, more preferably 1% by mass or less, and most preferably not substantially contained.
  • the content of the compound substituted with chlorine atoms is 15% by mass or less based on the total mass of the composition. Is preferably 10% by mass or less, preferably 8% by mass or less, more preferably 5% by mass or less, and preferably 3% by mass or less, and substantially does not contain. Is more preferable.
  • liquid crystal composition (B) used in the present invention it is preferable to increase the content of a compound whose ring structure in the molecule is a 6-membered ring, and the inclusion of a compound whose ring structure in the molecule is a 6-membered ring.
  • the amount is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and substantially the ring in the molecule.
  • the composition is composed of only compounds having a 6-membered ring structure.
  • liquid crystal composition (B) used in the present invention in order to suppress deterioration due to oxidation of the composition, it is preferable to reduce the content of a compound having a cyclohexenylene group as a ring structure, and to have a cyclohexenylene group.
  • the content of the compound is preferably 10% by mass or less with respect to the total mass of the composition, preferably 8% by mass or less, more preferably 5% by mass or less, and 3% by mass or less.
  • liquid crystal composition (B) used in the present invention when importance is attached to improvement of viscosity and improvement of TNI, a 2-methylbenzene-1,4-diyl group in which a hydrogen atom may be substituted with a halogen is substituted.
  • the content of the compound having in the molecule is preferably reduced, and the content of the compound having the 2-methylbenzene-1,4-diyl group in the molecule is 10% by mass or less based on the total mass of the composition.
  • the content is preferably 8% by mass or less, more preferably 5% by mass or less, further preferably 3% by mass or less, and still more preferably substantially not contained.
  • substantially not contained in the present application means that it is not contained except for an unintentionally contained product.
  • the alkenyl group when the compound contained in the composition of the first embodiment of the present invention has an alkenyl group as a side chain, when the alkenyl group is bonded to cyclohexane, the alkenyl group has 2 to 5 carbon atoms.
  • the alkenyl group is bonded to benzene, the number of carbon atoms of the alkenyl group is preferably 4 to 5, and the unsaturated bond of the alkenyl group and benzene are directly bonded. Preferably not.
  • Polymerization proceeds in the polymerizable liquid crystal composition used in the present invention even in the absence of a polymerization initiator, but may contain a polymerization initiator in order to accelerate the polymerization.
  • radical polymerization anionic polymerization, cationic polymerization, and the like can be used as the polymerization method.
  • Polymerization is preferably performed by radical polymerization, and radical polymerization by photo-Fries rearrangement, radical polymerization by a photopolymerization initiator is used. More preferred.
  • radical polymerization initiator a thermal polymerization initiator or a photopolymerization initiator can be used, but a photopolymerization initiator is preferable. Specifically, the following compounds are preferable.
  • the polymerizable liquid crystal composition in the present invention can further contain a compound represented by the general formula (Q) as an antioxidant or a light stabilizer.
  • RQ represents a straight-chain alkyl group or a branched-chain alkyl group having 1 to 22 carbon atoms, and one or more CH 2 groups in the alkyl group are —O—so that oxygen atoms are not directly adjacent to each other.
  • MQ represents a trans-1,4-cyclohexylene group, a 1,4
  • the polymerizable liquid crystal composition of the present invention preferably contains one or more compounds represented by general formula (Q) or compounds selected from general formulas (III-1) to (III-38). It is more preferable to contain 1 to 5 types, and the content is preferably 0.001 to 1%, more preferably 0.001 to 0.1%, and 0.001 to 0.05%. Particularly preferred.
  • the above-described method for forming the liquid crystal layer will be described in more detail.
  • the two substrates are opposed so that the transparent electrode layer is on the inside, the distance between the substrates is adjusted via a spacer, and the polymerizable property is maintained between the substrates.
  • Examples include a method of sandwiching the liquid crystal composition and polymerizing the polymerizable monomer component (a) in the composition.
  • the thickness of the liquid crystal layer is preferably adjusted to be 1 to 100 ⁇ m, more preferably 1.5 to 10 ⁇ m.
  • the refractive index of the liquid crystal is maximized so that the contrast is maximized. It is preferable to adjust the product of the anisotropy ⁇ n and the cell thickness d.
  • the polarizing axis of each polarizing plate can be adjusted so that the viewing angle and contrast are good.
  • a retardation film for widening the viewing angle can also be used.
  • examples of the spacer include columnar spacers made of glass particles, plastic particles, alumina particles, a photoresist material, and the like.
  • a normal vacuum injection method, an ODF method, or the like can be used as a method for sandwiching the polymerizable liquid crystal composition between two substrates.
  • a sealant such as epoxy photothermal curing is drawn on a backplane or frontplane substrate using a dispenser in a closed-loop bank shape, and then removed.
  • a liquid crystal display element can be produced by bonding a front plane and a back plane after dropping a predetermined amount of the polymerizable liquid crystal composition under air.
  • the polymerizable liquid crystal composition used in the present invention can be preferably used because it can stably drop the composite material of the liquid crystal and the polymerizable monomer component (a) in the ODF process.
  • an appropriate polymerization rate is desirable. Therefore, ultraviolet rays or electron beams which are active energy rays are used singly or in combination. Or the method of superposing
  • a polarized light source or a non-polarized light source may be used.
  • polymerization is performed in a state where a liquid crystal composition for manufacturing a liquid crystal display element is sandwiched between two substrates, at least the substrate on the irradiation surface side is given appropriate transparency to active energy rays. Must be.
  • the alternating electric field to be applied is preferably an alternating current having a frequency of 10 Hz to 10 kHz, more preferably a frequency of 100 Hz to 5 kHz, and the voltage is selected depending on a desired pretilt angle of the liquid crystal display element. That is, the pretilt angle of the liquid crystal display element can be controlled by the applied voltage. In a horizontal electric field type MVA mode liquid crystal display element, the pretilt angle is preferably controlled from 80 degrees to 89.9 degrees from the viewpoint of alignment stability and contrast.
  • the temperature during irradiation is preferably such that the temperature of the polymerizable liquid crystal composition is in the range of ⁇ 50 ° C. to 30 ° C. Furthermore, the range of 20 ° C. to ⁇ 10 ° C. allows polymerization with an increased degree of orientation of the liquid crystal molecules, lowers the compatibility between the polymer and the liquid crystal composition, and facilitates phase separation, thereby causing voids in the polymer network. Since the interval becomes fine, it is preferable from the point that the off-response speed is further improved.
  • a lamp for generating ultraviolet rays a metal halide lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, or the like can be used.
  • a wavelength of the ultraviolet rays to be irradiated it is preferable to irradiate ultraviolet rays in a wavelength region other than the absorption wavelength region of the liquid crystal composition, and it is preferable to cut and use ultraviolet rays of less than 365 nm as necessary.
  • Intensity of ultraviolet irradiation is preferably from 0.1mW / cm 2 ⁇ 100W / cm 2, 2mW / cm 2 ⁇ 50W / cm 2 is more preferable.
  • the amount of energy of ultraviolet rays to be irradiated can be adjusted as appropriate, but is preferably 10 mJ / cm 2 to 500 J / cm 2, and more preferably 100 mJ / cm 2 to 200 J / cm 2 .
  • the intensity may be changed.
  • the time for irradiating with ultraviolet rays is appropriately selected depending on the intensity of the irradiated ultraviolet rays, but is preferably from 10 seconds to 3600 seconds, and more preferably from 10 seconds to 600 seconds.
  • a fibrous or columnar polymer network (A) is formed in a direction substantially the same as the vertical direction of the liquid crystal composition (B) with respect to the liquid crystal cell substrate. It is preferable.
  • the liquid crystal is pretilted and aligned. It is preferable that the fibrous or columnar polymer network (A) is formed to be inclined in the same direction as the liquid crystal composition (B).
  • the inclination of the polymer network (A) may be such that a monomer is selected so as to spontaneously occur at the substrate interface, or a spontaneous orientation agent and a photo-alignment film described later are used.
  • the polymer network (A) may be formed by applying a voltage to place the liquid crystal in an inclined alignment state and irradiating with ultraviolet rays or the like.
  • a method for inducing the pretilt angle while applying a voltage a method of polymerizing while applying a voltage in a voltage range of about 0.9 V to 2 V higher than a threshold voltage of a liquid crystal for manufacturing a liquid crystal display element.
  • a method of forming a polymer network by applying a voltage higher than the threshold voltage for a short time of several seconds to several tens of seconds during the process of forming the polymer network (A) and then forming the polymer network below the threshold voltage.
  • the fibrous or columnar polymer network (A) formed in the liquid crystal layer is preferably formed to be inclined so as to induce a pretilt angle of 90 to 80 degrees with respect to the transparent substrate plane.
  • the pretilt angle is particularly preferably in the range of 90 ° to 85 °, in the range of 89.9 ° to 85 °, in the range of 89.9 ° to 87 °, and in the range of 89.9 ° to 88 °.
  • the fibrous or columnar polymer network formed by any method is characterized in that the two cell substrates are connected to each other. As a result, the thermal stability of the pretilt angle can be improved and the reliability of the liquid crystal display element can be increased.
  • an alkylene between the polymerizable functional group and the mesogenic group is used as a method for inducing the pretilt angle of the liquid crystal composition (B) by forming the fibrous or columnar polymer network (A) by tilting orientation.
  • Bifunctional acrylates having a small pretilt angle induction angle with 6 or more carbon atoms and functional groups, and bifunctional acrylates having a large pretilt angle induction angle with 5 or more carbon atoms in the alkylene group between the mesogenic groups A method using a combination of A desired pretilt angle can be induced in the vicinity of the interface by adjusting the compounding ratio of these compounds.
  • the transformer body has a rod-like shape similar to that of the low-molecular liquid crystal, which affects the alignment state of the low-molecular liquid crystal.
  • the trans isomer contained in the polymerizable liquid crystal composition for producing a liquid crystal display element is aligned so that the direction of ultraviolet light travels parallel to the direction of the long axis of the rod when irradiated with ultraviolet light as parallel light from the top surface of the cell.
  • the low-molecular liquid crystals are also aligned so as to be aligned in the molecular major axis direction of the trans form at the same time.
  • the molecular long axis of the trans body is oriented in the tilt direction and the liquid crystal is oriented in the tilt direction of the ultraviolet rays. That is, a pre-tilt angle is induced and a photo-alignment function is exhibited.
  • the pretilt angle induced is fixed by a fibrous or columnar polymer network formed by polymerization phase separation.
  • the pretilt angle that is important in the VA mode is induced by a method of separating the polymerization phase while applying a voltage, a method of adding a plurality of monomers with different pretilt angles to induce polymerization phase separation, and a monomer having a reversible photo-alignment function.
  • the liquid crystal composition (B) and the monomer are aligned in the direction in which ultraviolet rays travel using the photo-alignment function shown in FIG. Can be produced.
  • the monomer having a photo-alignment function may be a photoisomeric compound that absorbs ultraviolet rays and becomes a trans isomer, or may be a photoisomerizable compound that absorbs ultraviolet rays and becomes a cis isomer. Furthermore, it is preferable that the reaction rate of the monomer having the photo-alignment function is slower than the reaction rate of the monomer other than the monomer having the photo-alignment function. When irradiated with ultraviolet rays, the monomer having a photo-alignment function immediately becomes a trans form, and when it is aligned in the light traveling direction, surrounding monomers and non-polymerized liquid crystal compositions are aligned in the same direction.
  • the polymerization phase separation proceeds, and the pretilt angle is induced in the direction in which the easy alignment direction of the liquid crystal composition (B) and the polymer network is aligned with the easy alignment direction of the monomer having the photo-alignment function and the ultraviolet light travels. Is done.
  • a fibrous or columnar polymer network (A) is formed on the surface of the liquid crystal cell substrate by phase separation polymerization using a liquid crystal composition for manufacturing a liquid crystal display element.
  • the liquid crystal composition (B) is aligned in parallel with the alignment direction of the alignment film in the liquid crystal composition (B), the refractive index anisotropy or the easy axis direction of the formed fibrous or columnar polymer network and the liquid crystal composition (B ) In the direction substantially the same as the orientation direction.
  • the fibrous or columnar polymer network is present in substantially the entire cell except for the voids in which the liquid crystal composition (B) is dispersed.
  • a monomer having a mesogenic group using a monovalent or divalent acrylate or methacrylate of an alcohol compound having 8 to 18 carbon atoms as a monomer; It is preferable to use it.
  • the electro-optical characteristics are affected by the surface area of the polymer network interface and the gap spacing of the polymer network, it is important not to cause light scattering, and the average gap spacing is preferably smaller than the wavelength of visible light.
  • the average gap spacing is preferably smaller than the wavelength of visible light.
  • the polymer phase is formed so that the surface area of the interface is increased by changing the polymerization phase separation structure and making the gap interval fine, and the drive voltage and the fall time are shortened.
  • the polymerization phase separation structure is also affected by the polymerization temperature.
  • the liquid crystal layer having such a polymer network (A) will be described in more detail.
  • the liquid crystal layer has a structure in which a polymer network layer is formed on the entire surface of the liquid crystal display element in the liquid crystal phase and the liquid crystal phase is continuous.
  • the easy axis of alignment of the polymer network (A) and the uniaxial optical axis are substantially in the same direction as the easy alignment axis of the low molecular liquid crystal, and the polymer network is formed so as to induce the pretilt angle of the low molecular liquid crystal.
  • the light scattering is less likely to occur by making the average gap distance of the polymer network (A) smaller.
  • the average gap interval of the polymer network (A) Is preferably in the range of 50 nm to 450 nm.
  • the average gap interval is in the range of around 200 nm and the upper limit is around 450 nm. It is preferable to enter. Increasing the drive gap increases the average gap spacing.
  • the fall response time can be improved in the range of about 5 msec to about 1 msec, which is preferable.
  • the average gap interval is in the range of about 300 nm to 450 nm.
  • the drive voltage may be increased to 30 V or more, but the average gap interval may be set between about 50 nm and about 250 nm, and in order to make 0.5 msec or less, from about 50 nm to 200 nm. It is preferable to make it near.
  • the average diameter of the polymer network is in the range of 20 nm to 700 nm, contrary to the average gap spacing. The average diameter tends to increase as the monomer content increases. Increasing the polymerization phase separation rate by increasing the reactivity increases the density of the polymer network and decreases the average diameter of the polymer network. Therefore, the phase separation conditions may be adjusted as necessary.
  • the average diameter is preferably from 20 nm to 160 nm, and when the average gap distance is from 200 nm to 450 nm, the average diameter is preferably from 40 nm to 160 nm.
  • the monomer content is larger than 10% by mass, the range of 50 nm to 700 nm is preferable, and the range of 50 nm to 400 nm is more preferable.
  • the content of the polymerizable monomer component (a) is low and the polymer network layer is required to cover the entire cell.
  • the polymer network layer is formed discontinuously.
  • the polymerizable monomer component (a) tends to gather near the liquid crystal cell substrate interface, and a polymer network layer is formed so that the polymer network grows from the substrate surface and adheres to the substrate interface.
  • the polymer network layer, the liquid crystal layer, the polymer network layer, and the counter substrate are stacked in this order from the cell substrate surface.
  • Polymer having a laminated structure of polymer network layer / liquid crystal layer / polymer network layer and having a thickness of at least 0.5%, preferably 1%, more preferably 5% or more of the cell thickness in the cell cross-sectional direction
  • the network layer is formed, the effect of shortening the fall time due to the action of the anchoring force between the polymer network and the low-molecular liquid crystal is exhibited and a favorable tendency is exhibited.
  • the thickness of the polymer network layer may be increased as necessary.
  • the polymer network structure in the polymer network layer is such that the low-molecular liquid crystal and the easy-orientation axis or uniaxial optical axis are aligned in substantially the same direction, and the low-molecular liquid crystal is formed so as to induce a pretilt angle. Just do it.
  • the average gap distance is preferably in the range of 90 nm to 450 nm.
  • the monomer content is less than 6% by mass
  • a bifunctional monomer having a mesogenic group having a high anchoring force and a bifunctional monomer having a structure with a short distance between functional groups and a high polymerization rate. It is preferable to use, and it is preferable to form a polymer phase separation structure at a low temperature of 0 ° C. or lower.
  • the monomer content is from 6% by mass to less than 10% by mass, a combination of the bifunctional monomer and a monofunctional monomer having a low anchoring force is preferable, and polymerization is performed in the range of 25 ° C. to ⁇ 20 ° C. as necessary. It is preferable to form a phase separation structure.
  • the melting point is room temperature or higher, it is preferable to lower the melting point by about 5 ° C. because the same effect as low temperature polymerization can be obtained.
  • the higher the monomer concentration in the liquid crystal composition for producing a liquid crystal display element the greater the anchoring force between the liquid crystal composition (B) and the polymer interface, and the higher the ⁇ d.
  • the concentration of the monomer in the liquid crystal composition for producing a liquid crystal display element is 1% by mass or more and less than 10% by mass, and 1.5% by mass or more and 8% by mass. % By mass or less is preferable, and 1.8% by mass or more and 5% by mass or less is more preferable.
  • the cause of lowering the voltage holding ratio is the presence of ionic impurities contained in the liquid crystal composition for producing a liquid crystal display element, particularly mobile ions, so that at least a specific resistance of 10 14 ⁇ ⁇ cm or more can be obtained.
  • the voltage holding ratio may decrease due to ionic impurities generated from the photopolymerization initiator, etc., but the polymerization initiator generates a small amount of organic acid and low-molecular byproducts. Is preferably selected.
  • the alignment easy axis direction of the alignment film is the same as the alignment easy axis direction of the polymer network (A).
  • the alignment easy axis direction of the polymer network (A) is the same as the alignment easy axis direction of the polymer network (A).
  • the content of the polymer network in the liquid crystal layer 5 is preferably 0.5% by mass or more and 20% by mass or less of the total mass of the liquid crystal composition (B) and the polymer network, as described above. Is preferably 0.7% by mass or more, 0.9% by mass or more, particularly preferably 1% by mass, and the upper limit is preferably 10% by mass or less, 9% by mass or less, and preferably 7% by mass or less. Is preferable from the viewpoint of excellent balance between the off-response speed and the drive voltage.
  • the alignment treatment is omitted by providing a plurality of slits with a width of 3 to 5 ⁇ m in the electrode instead of the rubbing alignment treatment and tilting the liquid crystal in the slit direction.
  • mass production technology when UV irradiation is applied while applying a voltage of several tens of volts, the alignment of the liquid crystal is stabilized so that a pretilt angle (tilt angle with respect to the substrate normal) is obtained at the substrate interface, and the polymer is stabilized. A thin film is formed. Utilizing the fact that the pretilt angle is induced by the action of the polymer thin film, it is used for the production of PSVA (polymer-stabilized vertical alignment) LCD or PSALCD. Further, for the purpose of improving the viewing angle, a pattern electrode designed so that a multi-domain can be formed is used to divide the pretilt angle direction in one pixel into a plurality of parts.
  • PSVA polymer-stabilized vertical alignment
  • the transmittance decreases because the tilted orientation of the liquid crystal is not determined.
  • a voltage higher than the threshold voltage is applied to the polymerizable liquid crystal composition to form a part of the polymer network, and then the voltage is set to be lower than the threshold voltage during the ultraviolet irradiation.
  • a voltage higher than the threshold voltage is applied, a part of the monomer is polymerized to form a part of the polymer network so that the tilt alignment orientation of the liquid crystal is stabilized, and then the voltage is set to the threshold during ultraviolet irradiation.
  • the liquid crystal returns to a substantially vertical alignment.
  • the refractive anisotropy of the polymer network or the easy alignment axis is formed so that the substantially vertical alignment is formed, and the tilted alignment orientation is formed. Can be left in the polymer network as a trajectory, and it is possible to achieve both orientation control when a voltage is applied and vertical orientation when no voltage is applied.
  • the method for producing a liquid crystal display element of the present invention includes a polymerizable liquid crystal composition for producing a liquid crystal display element sandwiched between two transparent substrates having electrodes on at least one side, and a liquid crystal threshold value for producing the element.
  • a method comprising a step of irradiating ultraviolet rays while applying a voltage higher than the voltage to cause polymerization phase separation, and a step of further irradiating with ultraviolet rays by setting the voltage below the threshold voltage while irradiating with ultraviolet rays is preferable.
  • liquid crystal molecules in the liquid crystal are aligned with an inclination in the range of 0 ° to 30 ° with respect to the transparent substrate plane, and then the above-mentioned voltage is made lower than the threshold voltage while irradiating with ultraviolet rays, and further irradiating with ultraviolet rays
  • the liquid crystal molecules are aligned with an inclination of 80 to 90 degrees with respect to the transparent substrate plane.
  • the state in which the liquid crystal molecules are aligned with an inclination in the range of 0 to 30 degrees with respect to the transparent substrate plane indicates a state in which the birefringence of the liquid crystal is increased by voltage application, and the alignment state of the liquid crystal is in the plane of the transparent substrate.
  • the birefringence is maximized, which is preferable.
  • an orientation inclined by 30 degrees with respect to the substrate plane is also preferable.
  • the PVA cell is preferable because the tilt direction can be made constant. In any case, it is preferable to form a polymer network in which the orientation is stabilized so that the tilt orientation direction of the liquid crystal by voltage application becomes a constant direction.
  • the birefringence becomes minimum when the liquid crystal is aligned at 90 degrees with respect to the transparent substrate plane when no voltage is applied. It is useful and preferable for increasing the contrast of the liquid crystal display element, but it is more preferable that the liquid crystal display device is tilted within 89.9 degrees to 85 degrees with respect to the substrate plane in order to tilt and align in a certain direction when a voltage is applied. . If the angle exceeds 80 degrees with respect to the substrate plane, the birefringence increases and the amount of transmitted light increases, which is not preferable because the display contrast is lowered. Since contrast is obtained, it is preferable.
  • IPS In-plane switching
  • FFS FFS mode liquid crystal display element
  • a process of polymerizing phase separation by irradiating ultraviolet rays while applying a voltage higher than a threshold voltage of a liquid crystal composition for liquid crystal display element production The liquid crystal molecules in the liquid crystal composition for manufacturing a liquid crystal display element are aligned with an inclination in the range of 0 to 90 degrees with respect to the transparent substrate plane, and the voltage is set to be lower than the threshold voltage while being irradiated with ultraviolet rays.
  • the liquid crystal molecules are aligned with an inclination of 0 to 30 degrees with respect to the transparent substrate plane.
  • the liquid crystal molecules are tilted in the range of 0 to 90 degrees with respect to the transparent substrate plane, and the alignment forms a polymer network so as to stabilize the alignment state of the liquid crystal to which a voltage is applied.
  • the tilt angle of the properties of the alignment film used in the element greatly depends on the tilt angle, and may be in the range of 1 to 2 degrees.
  • the tilt angle of the liquid crystal molecules including the twisted orientation is 0. .5 to 3 degrees is preferable, and 0 to 2 degrees is preferable.
  • the alignment state of the liquid crystal depends on the electric field distribution in the device, and the splay alignment, bend alignment, and twist alignment states coexist. Indicates.
  • the inclination angle of the alignment state of the liquid crystal molecules in this state is preferably in the range of 0 to 45 degrees, and the same range is preferably stabilized when the alignment is stabilized by the polymer network.
  • the tilt angle is preferably in the range of 45 degrees to 90 degrees.
  • a polymer network is formed so as to stabilize the alignment state of the liquid crystal by applying a voltage lower than the threshold voltage.
  • the pretilt angle is applied to the substrate interface by rubbing alignment treatment. Therefore, it is preferable to form a polymer network so as to stabilize the alignment state of the liquid crystal to which a voltage less than the threshold voltage is applied, even if the liquid crystal alignment angle is inclined within this range.
  • the tilt angle of the liquid crystal molecules including the twist orientation is preferably 0.5 to 3 degrees using other alignment processing methods such as a photo-alignment film, and a wide viewing angle is within 0 to 2 degrees. Useful and more preferred to obtain.
  • the voltage to be applied is an alternating current waveform and has a frequency in a range in which the liquid crystal composition (B) for producing a liquid crystal display element exhibits dielectric anisotropy.
  • the waveform is preferably a rectangular wave that can increase the effective voltage when the peak voltage is constant.
  • the upper limit of the frequency may be a frequency that does not attenuate the signal transmitted to the pixel by the driving circuit used for the liquid crystal display element, and it is preferable that the frequency is at least 2 kHz or less.
  • the frequency shown by the dielectric anisotropy in the frequency dependence of the dielectric constant exhibited by the liquid crystal composition for producing a liquid crystal display element before ultraviolet irradiation may be 10 kHz or less.
  • the lower limit value may be a frequency at which flicker occurs when the element is driven. In this case, the frequency may be any frequency that minimizes flicker, and is preferably at least 20 Hz or more.
  • the polymer network formed so as to maintain each liquid crystal alignment state has a refractive index anisotropy or alignment of the polymer network. It is formed so that the easy axis coincides with the liquid crystal alignment direction not less than the threshold voltage or the liquid crystal alignment direction less than the threshold voltage. This creates a state in which the polymer network that stabilizes the alignment of the liquid crystal when a voltage is applied and the polymer network that stabilizes the alignment of the liquid crystal when no voltage is applied coexist, and the liquid crystal alignment when no voltage is applied It is possible to improve display characteristics such as an improvement in contrast by suppressing orientation distortion that occurs when orientation deformation is caused by voltage application from the state.
  • the polymer network formed so as to maintain the liquid crystal alignment state when no voltage is applied is formed so as to maintain the liquid crystal alignment below the threshold voltage when changing to the liquid crystal alignment state when the voltage is applied. Since the influence of the polymer network is strong, when the liquid crystal alignment state is shifted to a threshold voltage or higher, an alignment strain is applied to cause a decrease in transmittance.
  • a polymer network that stabilizes the alignment of the liquid crystal when a voltage is applied to a part of the polymer network distortion of the alignment change caused by switching is suppressed, and the originally required change in liquid crystal alignment can be obtained and transmitted. The rate can be improved.
  • the polymer network formed so as to stabilize the alignment state of each liquid crystal when a voltage is applied and when no voltage is applied is the refractive index anisotropy or alignment of the polymer network along the alignment of two different liquid crystals. It is characterized by forming an easy axis.
  • the influence of the polymer network formed to stabilize the liquid crystal state above the threshold voltage changes depending on the application time of the voltage above the threshold voltage during UV irradiation, making it possible to change the electro-optical characteristics.
  • the polymer network is formed with the alignment state of the liquid crystal at the time of voltage application as a parallel alignment including a tilted alignment of 0 to 30 degrees with respect to the substrate plane, the voltage application time equal to or higher than the threshold voltage during ultraviolet irradiation is set.
  • the action to maintain the parallel alignment is small, so that the liquid crystal tends to align according to the action of the polymer network to maintain the vertical alignment.
  • the influence of both orientations from the polymer network holding two different orientations is balanced, and a small pre-tilt angle of less than 1 degree is induced with respect to the normal direction of the transparent substrate.
  • the application time of the voltage exceeding the threshold voltage during UV irradiation is increased, the influence of the polymer network that tries to maintain the horizontal alignment becomes stronger, so the pretilt is based on the balance between the force that maintains the vertical alignment and the force that maintains the parallel alignment. The angle increases and the pretilt angle increases, and it becomes possible to make it 10 degrees or more with respect to the normal direction of the transparent substrate.
  • the application time of the voltage higher than the threshold voltage during ultraviolet irradiation largely depends on the reactivity of the polymerizable liquid crystal composition used for manufacturing the liquid crystal display element used, it can be adjusted appropriately to obtain a desired pretilt angle. It is preferable to make it. In particular, it is preferable to obtain a pretilt angle in the range of 80 to 90 degrees with respect to the substrate plane, more preferably 85 to 89.9 degrees, and 87 to 89.9 degrees. Is more preferable.
  • the polymer network formed to maintain the alignment state of the liquid crystal obtained by applying a voltage higher than the threshold voltage is the horizontal alignment state in the vertical alignment mode liquid crystal display element using negative dielectric anisotropy.
  • a tilted orientation with a constant azimuth is desirable.
  • the alignment state obtained at a voltage lower than the threshold voltage is preferably a substantially vertical alignment, and in particular, a substantially vertical alignment of 80 to 90 degrees with respect to the substrate plane is preferable, and a good black level that provides high contrast is obtained. It is preferable that it is the orientation state which shows.
  • the alignment state of the liquid crystal obtained by applying a voltage higher than the threshold voltage during ultraviolet irradiation is twisted.
  • the orientation is preferable.
  • the alignment state obtained at a voltage lower than the threshold voltage is preferably parallel alignment with a constant azimuth angle.
  • the alignment state obtained by applying a voltage equal to or higher than the threshold voltage during ultraviolet irradiation is preferably at least one of bend alignment, splay alignment, inclined alignment, or a mixed alignment state. When the voltage is lower than the threshold voltage, it is preferable to have a substantially parallel orientation.
  • the polymer After forming the polymer network to maintain the alignment state of the liquid crystal when a voltage is applied, the polymer is stabilized after the formation of the polymer network by stabilizing the alignment state of the liquid crystal below the threshold voltage.
  • the alignment state can be easily changed to the alignment state, and both high transmittance and high-speed response can be achieved.
  • the applied voltage at the time of ultraviolet irradiation is preferably adjusted as appropriate so that the display of the liquid crystal display element after the formation of the polymer network has a high contrast, and the electro-optic effect of the liquid crystal composition for manufacturing the liquid crystal display element before the ultraviolet irradiation Since it greatly depends on the characteristics, it is necessary to match the voltage-transmittance characteristics exhibited by the liquid crystal for manufacturing the liquid crystal display element.
  • the voltage above the threshold voltage is preferably a voltage V10 or higher, which is 10% or higher with respect to the total change in transmittance in the voltage-transmittance characteristic voltage of the liquid crystal for manufacturing a liquid crystal display element.
  • the voltage is preferably not more than 6 times the threshold voltage.
  • an alternating voltage is preferably applied, and a rectangular wave is preferably applied.
  • the frequency is preferably a frequency that cannot be visually recognized by the flicker, and when an electronic circuit such as a TFT substrate is formed on a glass substrate, it may be a frequency at which the polymerization voltage does not attenuate, and is 30 Hz to 5 kHz. It is preferable that there is a degree.
  • the voltage applied in the middle of the ultraviolet irradiation is changed from the threshold voltage to less than the threshold voltage, but the voltage less than the threshold voltage may be in a range where the orientation of the liquid crystal does not change with the voltage.
  • the voltage is preferably less than 80%, more preferably less than 80%, and even more preferably 70% or less.
  • the applied voltage is set to the threshold voltage or lower during the ultraviolet irradiation, but at this time, it is preferable to return to the liquid crystal alignment state at the OFF time in the liquid crystal display element.
  • the vertical alignment mode as described above. In other words, it may be returned to the vertical alignment, and in the FFS mode or the IPS mode, the parallel alignment may be used.
  • the influence of the polymer network that stabilizes the liquid crystal alignment during voltage application is lowered to a voltage lower than the threshold voltage in a slight state.
  • the ultraviolet rays are irradiated after applying a voltage higher than the threshold voltage.
  • the voltage application time becomes longer during the ultraviolet irradiation, the influence of the polymer network that stabilizes the orientation of the liquid crystal during voltage application during the ultraviolet irradiation increases. It becomes unpreferable because it does not return to the liquid crystal alignment state when the required liquid crystal display element is OFF. Therefore, it is preferable to produce the liquid crystal liquid crystal display element of the present invention by appropriately optimizing the optimum voltage during ultraviolet irradiation.
  • the voltage during ultraviolet irradiation is made lower than the threshold voltage, the voltage is gradually lowered during the ultraviolet irradiation in order to adjust the response relaxation time in the liquid crystal of the liquid crystal composition for device manufacture.
  • the fall time of the liquid crystal is 10 ms or more. Is preferably within 1000 ms. On the contrary, it may be lowered quickly, and it is preferably at least shorter than the relaxation time indicated by the liquid crystal composition for producing a liquid crystal display element, and preferably 100 ms or less.
  • a polymer network of the horizontal alignment component is partially formed by irradiating with ultraviolet rays in a state where a voltage equal to or higher than the threshold voltage is applied, and the liquid crystal is vertically aligned by keeping the voltage below the threshold voltage while continuing the ultraviolet irradiation.
  • the polymerization phase separation is completed by returning to the orientation.
  • the pretilt angle can be changed by the ratio of the above-mentioned parallel alignment component and vertical alignment component.
  • the parallel alignment state means that a negative dielectric anisotropic liquid crystal is in a substantially parallel alignment state when a voltage is applied, and is preferably in the range of 0.1 to 30 degrees with respect to the substrate surface. It is preferable that the tilt orientation is in the range of 1 to 10 degrees.
  • the vertical alignment when no voltage is applied means that the vertical alignment film is brought into a substantially vertical alignment state.
  • the alignment of the liquid crystal is inclined at 80 to 89.9 degrees with respect to the substrate plane. It is preferable that the angle is inclined from 85 degrees to 89.9 degrees.
  • a vertical alignment is obtained when a voltage is applied, but the liquid crystal is tilted and aligned in the range of 45 to 89.9 degrees with respect to the substrate plane. It is also included.
  • the parallel alignment when no voltage is applied means that the parallel alignment film is brought into a substantially parallel alignment state.
  • the alignment of the liquid crystal is tilted from 0.1 to 30 degrees with respect to the substrate plane. It is included.
  • the distance (d) between the substrates in the liquid crystal display element of the present invention is preferably in the range of 2 to 5 ⁇ m, more preferably 3.5 ⁇ m or less.
  • the birefringence is adjusted so that the product of the birefringence of the liquid crystal composition and the cell thickness is close to 0.275.
  • the polymer network is separated after the polymerization phase separation.
  • the product of the birefringence ( ⁇ n) of the liquid crystal composition contained in the liquid crystal composition for production and the distance (d) between the substrates is 0.3 to 0.00 when the driving voltage is increased within about 5 V due to the formation of the polymer network.
  • the range of 4 ⁇ m is particularly preferable, the range of 0.30 to 0.35 ⁇ m is more preferable when the increase is within about 3 V, and the range of 0.29 to 0.33 ⁇ m when the drive voltage is within 1 V. It is particularly preferred.
  • the transmittance is limited to only low-molecular liquid crystals. It is possible to obtain a display that is relatively high and has a high-speed response and favorable color reproducibility.
  • the birefringence of the liquid crystal composition used in the liquid crystal composition for manufacturing the liquid crystal display element is such that the product of the cell thickness (d) and the birefringence ( ⁇ n) is 1 to 1.9 times with respect to 0.275. It is preferable to make it.
  • the driving voltage of the liquid crystal display element of the present invention is not determined only by the dielectric anisotropy or elastic constant of the liquid crystal composition, but is greatly influenced by the anchoring force acting between the liquid crystal composition and the polymer interface.
  • Japanese Patent Laid-Open No. 6-222320 discloses the relationship of the following formula as a description regarding the driving voltage of a polymer dispersion type liquid crystal display element.
  • Vth represents a threshold voltage
  • 1Kii and 2Kii represent elastic constants
  • i represents 1, 2 or 3
  • represents dielectric anisotropy
  • ⁇ r> represents a transparent polymer substance interface.
  • A indicates the anchoring force of the transparent polymer substance to the liquid crystal composition
  • d indicates the distance between the substrates having transparent electrodes.
  • the driving voltage of the light-scattering liquid crystal display element is determined by the average gap spacing at the interface of the transparent polymer material, the distance between the substrates, the elastic constant / dielectric anisotropy of the liquid crystal composition, and the transparency with the liquid crystal composition. Determined by the anchoring energy between the conductive polymer materials.
  • parameters that can be controlled by the liquid crystal display device of the present invention are liquid crystal properties and anchoring force between polymers. Since the anchoring force largely depends on the molecular structure of the polymer and the molecular structure of the low-molecular liquid crystal, if a monomer having a strong anchoring force is selected, the response time can be shortened to 1.5 ms or less.
  • the composition by appropriately selecting the liquid crystal compound and the monomer so that the drive voltage is 30 V or less and the response speed is 1.5 ms or less. It is preferable to adjust the composition so that the driving voltage and the response speed are balanced by appropriately blending a polymer precursor having a strong anchoring force and a polymer precursor having a weak anchoring force.
  • the dielectric anisotropy is 6 or more for the P-type liquid crystal and -3 or less for the N-type liquid crystal. .
  • the birefringence is preferably 0.09 or more.
  • the birefringence of the liquid crystal composition and the refractive index of the fibrous or columnar polymer network it is preferable to make the birefringence of the liquid crystal composition and the refractive index of the fibrous or columnar polymer network as close as possible to eliminate light scattering.
  • the retardation of the liquid crystal element is affected by the concentration of the polymer precursor, it is preferable to use the liquid crystal composition with an increased or decreased birefringence so that the necessary retardation can be obtained.
  • the liquid crystal layer described in detail above has a retardation (Re) defined by the following mathematical formula (1) when the wavelength of incident light from the light source unit in the liquid crystal display element is 450 nm and 25 ° C.
  • Re ⁇ n ⁇ d
  • ⁇ n the refractive index anisotropy at 589 nm
  • d the cell thickness ( ⁇ m) of the liquid crystal layer of the liquid crystal display element. It is preferably 220 to 300 nm.
  • a liquid crystal display element using a normal white light source and a liquid crystal display element that switches transmission of blue visible light (so-called short wavelength region light) or ultraviolet light of about 500 nm or less that causes excitation of the quantum dots are transmitted. Since the optical properties of the transmitted light and the transmitted light are different, the characteristics required for each element are also different. However, the difference between a light source used in a conventional liquid crystal display element using a light emitting nanocrystal such as a quantum dot as a light emitting element and a light source used in a normal liquid crystal display element not including a light emitting nanocrystal such as a quantum dot.
  • the optical characteristics of the liquid crystal material resulting from the above have not been optimized, and there has been a problem that the optical characteristics of display elements using light emitting nanocrystals such as quantum dots cannot be utilized to the maximum. Therefore, by satisfying the retardation condition, the transmittance of the liquid crystal display element can be improved when blue visible light (so-called short wavelength region light) of 500 nm or less or ultraviolet light is used as incident light. Therefore, it is possible to suppress or prevent a decrease in transmittance of the liquid crystal display element.
  • the liquid crystal display element of the present invention may have the alignment layer 4 as described above.
  • a self-aligning agent is included in the polymerizable liquid crystal composition so that the liquid crystal is self-supported without an alignment film, or is aligned using a solvent-soluble vertical alignment polyimide, or a photo-alignment film, particularly a non-polyimide. It is preferable from the viewpoint that the liquid crystal display element can be easily manufactured by aligning the liquid crystal with the photo alignment film of the system.
  • the alignment direction of the liquid crystal molecules contained in the liquid crystal composition (B) constituting the liquid crystal layer can be controlled. It is considered that the alignment direction of the liquid crystal molecules can be controlled by accumulating or adsorbing the components of the spontaneous alignment agent at the interface of the liquid crystal layer. Thereby, when a spontaneous orientation agent is included in the polymerizable liquid crystal composition, the orientation layer of the liquid crystal panel can be eliminated.
  • the content of the spontaneous alignment agent in the polymerizable liquid crystal composition according to the present invention is preferably 0.1 to 10% by mass in the entire polymerizable liquid crystal composition.
  • the spontaneous alignment agent is preferably the following general formula (al-1) and / or general formula (al-2).
  • R al1 represents a hydrogen atom, a halogen, a straight chain, branched or cyclic alkyl having 1 to 20 carbon atoms, wherein in the alkyl group, one or two or more non-adjacent CH 2 The group is substituted by —O—, —S—, —CO—, —CO—O—, —O—CO—, —O—CO—O— so that the O and / or S atoms are not directly bonded to each other.
  • one or more hydrogen atoms may be replaced by F or
  • Spal1 , Spal2 and Spal3 each independently represent an alkyl group having 1 to 12 carbon atoms or a single bond
  • Xal1 , Xal2 and Xal3 each independently represent an alkyl group, an acrylic group, a methacrylic group or a vinyl group
  • Z al1 is —O—, —S—, —CO— , —CO—O— , —OCO— , —O—CO—O—, —OCH 2 —, —CH 2 O—, —SCH 2 —, —CH 2 S—, —CF 2 O—, —OCF 2 —, —CF 2 S—, —SCF 2 —, — (CH 2 ) n al —, —CF 2 CH 2 —, —CH 2 CF 2 — , — (CF 2 ) n al —, —CH ⁇ CH—, —CF ⁇ CF—, —C ⁇ C—, —CH ⁇ CH— CO
  • na1 -, - CH (-Sp al1 -X al1) -, - CH 2 CH (-Sp al1 -X al1) -, - CH (-Sp al1 -X al1) CH (- Sp al1 -X al1 )- L al1 , L al2 and L al3 are each independently a hydrogen atom, fluorine atom, chlorine atom, bromine atom, iodine
  • Z i1 and Z i2 are each independently a single bond, —CH ⁇ CH—, —CF ⁇ CF—, —C ⁇ C—, —COO—, —OCO—, —OCOO—, —OOCO.
  • a AL21 and Aa 122 each independently represents a divalent 6-membered ring aromatic group or a divalent 6-membered ring aliphatic group, a divalent unsubstituted 6-membered ring aromatic group, a divalent An unsubstituted 6-membered cycloaliphatic group or a hydrogen atom in these ring structures is unsubstituted or substituted with an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a halogen atom It is preferable that a divalent unsubstituted 6-membered
  • R al21 represents a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group, or P i1 —Sp i1 —
  • —CH 2 — in the alkyl group represents —O —, —OCO—, or —COO— is preferable (where —O— is not continuous), more preferably a hydrogen atom, a linear or branched alkyl group having 1 to 18 carbon atoms, or P i1 —.
  • Sp i1 — represents —CH 2 — in the alkyl group represents —O— or —OCO— (however, —O— is not continuous).
  • K i1 represents a substituent represented by the following general formula (K-1) to general formula (K-11),
  • P i1 represents a polymerizable group, and represents a substituent selected from the group represented by the following general formulas (P-1) to (P-15) (in the formula, the black dot on the right end represents a bond). To express.),
  • Z ii1 is at least —CH 2 —CH 2 COO—, —OCOCH 2 —CH 2 —, —CH 2 Including —CH (CH 3 ) COO—, —OCOCH (CH 3 ) —CH 2 —, —OCH 2 CH 2 O—,
  • m iii1 represents an integer of 1 to 5
  • m iii2 represents an integer of 1 to 5
  • G i1 represents a divalent, trivalent or tetravalent branched structure, or a divalent, trivalent or tetravalent aliphatic or aromatic ring structure;
  • the crystal composition is filled in a state of Tni or higher.
  • a method of curing the polymerizable compound by irradiating the liquid crystal composition containing the polymerizable compound with UV.
  • the crystal composition is filled in a state of Tni or higher.
  • a method of curing the polymerizable compound by irradiating the liquid crystal composition containing the polymerizable compound with UV.
  • the photo-alignment film may be composed of a photoresponsive molecule or a photoresponsive polymer as a main component.
  • a photoresponsive molecule or photoresponsive polymer (1) a photoresponsive isomerized molecule or polymer thereof that isomerizes in response to light and is oriented substantially perpendicularly or parallel to the polarization axis; (2) Photoresponsive dimerization-type molecules that form a crosslinked structure by dimerization in response to light, and (3) Photoresponsive decomposable polymers in which a polymer chain is cleaved in response to light.
  • the photoresponsive isomerized molecule or the polymer (3) is particularly preferable from the viewpoints of sensitivity and orientation regulating ability.
  • the light source part which comprises the liquid crystal display element of this invention has a light emitting element which light-emits ultraviolet or visible light.
  • the light-emitting element is not particularly limited with respect to the wavelength region, but preferably has a main light emission peak in the blue region.
  • a light emitting diode (blue light emitting diode) having a main light emission peak in a wavelength region of 420 nm or more and 480 nm or less can be suitably used.
  • the light-emitting element (or light-emitting diode) according to the present invention is not particularly limited in the wavelength region, but preferably has a main light emission peak in the blue region.
  • a light emitting diode having a main emission peak in a wavelength region of 430 nm to 500 nm (420 nm to 480 nm) can be suitably used.
  • a known light emitting diode having a main light emission peak in the blue region can be used.
  • the stacked semiconductor layer may be configured by stacking a base layer, an n-type semiconductor layer, a light emitting layer, and a p-type semiconductor layer in this order from the substrate side.
  • the ultraviolet light source examples include a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a carbon arc lamp, an electrodeless lamp, a metal halide lamp, a xenon arc lamp, and an LED.
  • L is preferably an LED that generates ultraviolet light other than the LED having the main emission peak in the wavelength region of 420 nm to 480 nm.
  • light having an emission center wavelength in the wavelength band of 420 to 480 nm is referred to as blue light
  • light having an emission center wavelength in the wavelength band of 500 to 560 nm is referred to as green light
  • wavelength of 605 to 665 nm is referred to as red light
  • the ultraviolet light in this specification refers to light having an emission center wavelength in a wavelength band of 300 nm or more and less than 420 nm.
  • the “half-value width” refers to the width of the peak at the peak height 1 ⁇ 2.
  • polarizing layer As the polarizing layer used in the liquid crystal display element of the present invention, a known polarizing plate (polarizing layer) can be used. Examples thereof include a dichroic organic dye polarizer, a coating type polarizing layer, a wire grid type polarizer, or a cholesteric liquid crystal type polarizer.
  • the wire grid polarizer is formed on the first substrate, the second substrate, and the color filter, and is formed by any one of nanoimprint method, block copolymer method, E-beam lithography method, and glansing angle deposition method. It is preferable.
  • a coating type polarizing layer you may further provide the orientation layer demonstrated by this specification below. Therefore, when the polarizing layer which concerns on this invention is a coating type polarizing layer, it is preferable to have a coating type polarizing layer and an orientation layer.
  • the two substrates used in the liquid crystal display element of the present invention are made of a transparent material having flexibility such as glass or plastic. it can.
  • a transparent substrate having a transparent electrode layer can be obtained, for example, by sputtering indium tin oxide (ITO) on a transparent substrate such as a glass plate.
  • FIG. 12 shows a schematic diagram of a structure diagram of the electrode layer 3 of the liquid crystal display unit. More specifically, FIG. 12 is a schematic diagram showing the pixel portion in an equivalent circuit, and FIGS. 13 and 14 show the shape of the pixel electrode. It is a schematic diagram which shows an example. 13 to 14 are schematic views showing electrode structures of FFS type liquid crystal display elements as an example of the present embodiment.
  • FIG. 15 is a schematic diagram showing an electrode structure of an IPS liquid crystal display element as an example of the present embodiment.
  • FIG. 18 is a schematic diagram showing an electrode structure of a VA liquid crystal display element as an example of the present embodiment.
  • a liquid crystal display element is driven by providing the backlight unit as illumination means for illuminating the liquid crystal panel 10 from the back side.
  • the electrode layer 3 includes a common electrode and a plurality of pixel electrodes.
  • the pixel electrode is disposed on the common electrode via an insulating layer (for example, silicon nitride (SiN)).
  • the pixel electrode is disposed for each display pixel, and a slit-shaped opening is formed.
  • the common electrode and the pixel electrode are transparent electrodes formed of, for example, ITO (Indium Tin Oxide), and the electrode layer 3 has a gate bus line GBL (extending along a row in which a plurality of display pixels are arranged in the display unit.
  • GBL1, GBL2,... GBLm a source bus line SBL (SBL1, SBL2,...
  • a thin film transistor is provided as a pixel switch.
  • the gate electrode of the thin film transistor is electrically connected to the corresponding gate bus line GBL, and the source electrode of the thin film transistor is electrically connected to the corresponding signal line SBL. Further, the drain electrode of the thin film transistor is electrically connected to the corresponding pixel electrode.
  • the electrode layer 3 includes a gate driver and a source driver as driving means for driving a plurality of display pixels, and the gate driver and the source driver are arranged around the liquid crystal display unit.
  • the plurality of gate bus lines are electrically connected to the output terminal of the gate driver, and the plurality of source bus lines are electrically connected to the output terminal of the source driver.
  • the gate driver sequentially applies an ON voltage to the plurality of gate bus lines, and supplies the ON voltage to the gate electrode of the thin film transistor electrically connected to the selected gate bus line. Conduction is established between the source and drain electrodes of the thin film transistor in which the ON voltage is supplied to the gate electrode.
  • the source driver supplies an output signal corresponding to each of the plurality of source bus lines.
  • the signal supplied to the source bus line is applied to the corresponding pixel electrode through a thin film transistor in which the source and drain electrodes are electrically connected.
  • the operations of the gate driver and the source driver are controlled by a display processing unit (also referred to as a control circuit) arranged outside the liquid crystal display element.
  • the display processing unit according to the present invention may have a low frequency driving function and an intermittent driving function for reducing driving power in addition to normal driving, and an LSI for driving a gate bus line of a TFT liquid crystal panel.
  • the operation of the gate driver and the operation of the source driver which is an LSI for driving the source bus line of the TFT liquid crystal panel are controlled.
  • the common voltage V COM is supplied to the common electrode to control the operation of the backlight.
  • the display processing unit according to the present invention includes a local dimming unit that divides the entire display screen into a plurality of sections and adjusts the intensity of the backlight light according to the brightness of the image displayed in each section. Also good.
  • FIG. 13 is a diagram illustrating a comb-shaped pixel electrode as an example of the shape of the pixel electrode, and is an enlarged plan view of a region surrounded by the II line of the electrode layer 3 formed on the substrate 2 in FIG. .
  • the electrode layer 3 including the thin film transistor formed on the surface of the first substrate 2 includes a plurality of gate bus lines 26 for supplying scanning signals and a plurality of gate bus lines 26 for supplying display signals.
  • the source bus lines 25 are arranged in a matrix so as to cross each other.
  • a unit pixel of the liquid crystal display device is formed by a region surrounded by the plurality of gate bus lines 26 and the plurality of source bus lines 25, and a pixel electrode 21 and a common electrode 22 are formed in the unit pixel. ing.
  • a thin film transistor including a source electrode 27, a drain electrode 24, and a gate electrode 28 is provided in the vicinity of the intersection where the gate bus line 26 and the source bus line 25 intersect each other.
  • the thin film transistor is connected to the pixel electrode 21 as a switch element that supplies a display signal to the pixel electrode 21.
  • a common line 29 is provided in parallel with the gate bus line 26.
  • the common line 29 is connected to the common electrode 22 in order to supply a common signal to the common electrode 22.
  • a common electrode 22 is formed on the back surface of the pixel electrode 21 through an insulating layer 18 (not shown).
  • the shortest separation distance between the adjacent common electrode and the pixel electrode is shorter than the shortest separation distance (cell gap) between the alignment layers.
  • the surface of the pixel electrode is preferably covered with a protective insulating film and an alignment film layer.
  • a storage capacitor for storing a display signal supplied through the source bus line 25 may be provided in a region surrounded by the plurality of gate bus lines 26 and the plurality of source bus lines 25.
  • FIG. 14 is a modification of FIG. 13 and shows a slit pixel electrode as an example of the shape of the pixel electrode.
  • the pixel electrode 21 shown in FIG. 13 is formed by cutting out a substantially rectangular flat plate electrode at the center and both ends of the flat plate with a triangular cutout, and the other portions are cut out in a substantially rectangular frame shape.
  • the shape is hollowed out at the part.
  • the shape of the notch is not particularly limited, and a notch having a known shape such as an ellipse, a circle, a rectangle, a rhombus, a triangle, or a parallelogram can be used.
  • 13 and 14 show only a pair of gate bus lines 26 and a pair of source bus lines 25 in one pixel.
  • FIG. 16 is one example of a cross-sectional view of the liquid crystal display element shown in FIG. 1 cut along the line III-III in FIG. 13 or FIG.
  • the first substrate 2 having the alignment layer 4 and the electrode layer 3 including the thin film transistor formed on the surface thereof is separated from the second substrate 7 having the alignment layer 4 formed on the surface so that the alignment layers face each other with a predetermined gap G.
  • This space is filled with a liquid crystal layer 5 containing a liquid crystal composition.
  • a gate insulating film 12, a common electrode 22, a passivation film 18, a pixel electrode 21, and an alignment layer 4 are sequentially stacked on a part of the surface of the first substrate 2.
  • a preferred embodiment of the structure of the thin film transistor is provided, for example, as shown in FIG. 16 so as to cover the gate electrode 11 formed on the surface of the substrate 2 and the gate electrode 11 and cover the substantially entire surface of the substrate 2.
  • a source electrode 17 which covers the film 14 and the other side edge of the semiconductor layer 13 and is in contact with the gate insulating layer 12 formed on the surface of the substrate 2; It has a passivation film 18 provided so as to cover the electrode 16 and the source electrode 17, a.
  • An anodic oxide film may be formed on the surface of the gate electrode 11 for reasons such as eliminating a step with the gate electrode
  • the common electrode 22 is a flat electrode formed on almost the entire surface of the gate insulating layer 12, while the pixel electrode 21 is an insulating protective layer 18 covering the common electrode 22. It is a comb-shaped electrode formed on the top.
  • the common electrode 22 is disposed at a position closer to the first substrate 2 than the pixel electrode 21, and these electrodes are disposed so as to overlap each other via the insulating protective layer 18.
  • the pixel electrode 21 and the common electrode 22 are formed of a transparent conductive material such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IZTO (Indium Zinc Tin Oxide), and the like. Since the pixel electrode 21 and the common electrode 22 are formed of a transparent conductive material, the area opened by the unit pixel area increases, and the aperture ratio and transmittance increase.
  • the pixel electrode 21 and the common electrode 22 have an interelectrode distance (also referred to as a minimum separation distance) R between the pixel electrode 21 and the common electrode 22 in order to form a fringe electric field between these electrodes. It is formed to be smaller than the thickness G of the liquid crystal layer 5 between the first substrate 2 and the second substrate 7.
  • the inter-electrode distance R represents the distance in the horizontal direction on the substrate between the electrodes.
  • the FFS type liquid crystal display element can use a horizontal electric field formed in a direction perpendicular to a line forming the comb shape of the pixel electrode 21 and a parabolic electric field.
  • the electrode width of the comb-shaped portion of the pixel electrode 21: l and the width of the gap of the comb-shaped portion of the pixel electrode 21: m are such that all the liquid crystal molecules in the liquid crystal layer 5 can be driven by the generated electric field. It is preferable to form.
  • the configuration of the liquid crystal panel 10 of the IPS type liquid crystal display element is a structure in which an electrode layer 3 (including a common electrode, a pixel electrode, and a TFT) is provided on one substrate as in the FFS type of FIG.
  • the second polarizing plate 8 are sequentially laminated.
  • FIG. 15 is an enlarged plan view of a part of the region surrounded by the II line of the electrode layer 3 formed on the first substrate 2 of FIG. 1 in the IPS liquid crystal display unit.
  • a comb-tooth shape is formed in a region surrounded by a plurality of gate bus lines 26 for supplying scanning signals and a plurality of source bus lines 25 for supplying display signals (in a unit pixel).
  • the first electrode (for example, pixel electrode) 21 and the comb-shaped second electrode (for example, common electrode) 22 are loosely engaged with each other (the two electrodes are spaced apart and meshed with each other while maintaining a certain distance). Is provided).
  • a thin film transistor including a source electrode 27, a drain electrode 24, and a gate electrode 28 is provided in the vicinity of an intersection where the gate bus line 26 and the source bus line 25 intersect each other.
  • the thin film transistor is connected to the first electrode 21 as a switch element that supplies a display signal to the first electrode 21.
  • a common line (V com ) 29 is provided in parallel with the gate bus line 26. The common line 29 is connected to the second electrode 22 in order to supply a common signal to the second electrode 22.
  • FIG. 17 is a cross-sectional view of the IPS liquid crystal panel cut in the direction of the line III-III in FIG.
  • a gate insulating layer 32 is provided so as to cover the gate bus line 26 (not shown) and to cover substantially the entire surface of the first substrate 2, and on the surface of the gate insulating layer 32.
  • the formed insulating protective layer 31 is provided, and on the insulating protective film 31, a first electrode (pixel electrode) 21 and a second electrode (common electrode) 22 are provided separately.
  • the insulating protective layer 31 is a layer having an insulating function, and is formed of silicon nitride, silicon dioxide, silicon oxynitride film, or the like.
  • the first electrode 21 and the second electrode 22 are comb-shaped electrodes formed on the insulating protective layer 31, that is, on the same layer. It is provided in a state of being separated and meshed.
  • the interelectrode distance G between the first electrode 21 and the second electrode 22 and the thickness of the liquid crystal layer between the first substrate 2 and the second substrate 7 ( Cell gap): H satisfies the relationship G ⁇ H.
  • the distance between electrodes: G represents the shortest distance in the horizontal direction on the substrate between the first electrode 21 and the second electrode 22.
  • the first electrode 21 is used.
  • the distance H between the first substrate 2 and the second substrate 7 represents the thickness of the liquid crystal layer between the first substrate 2 and the second substrate 7, specifically, the first The distance (namely, cell gap) between the alignment layers 4 (outermost surfaces) provided on each of the substrate 2 and the second substrate 7 and the thickness of the liquid crystal layer are represented.
  • the thickness of the liquid crystal layer 5 between the first substrate 2 and the second substrate 7 is between the first electrode 21 and the second electrode 22.
  • the IPS type liquid crystal display unit has a thickness of the liquid crystal layer 5 between the first substrate 2 and the second substrate 7 that is equal to or more than the shortest distance in the horizontal direction with respect to the substrate.
  • the distance between the two electrodes 22 is less than the shortest distance in the horizontal direction on the substrate. Therefore, the difference between IPS and FFS does not depend on the positional relationship between the first electrode 21 and the second electrode 22 in the thickness direction.
  • the IPS liquid crystal display element drives liquid crystal molecules by using an electric field in a horizontal direction with respect to a substrate surface formed between the first electrode 21 and the second electrode 22.
  • the electrode width Q of the first electrode 21 and the electrode width R of the second electrode 22 are preferably formed such that all the liquid crystal molecules in the liquid crystal layer 5 can be driven by the generated electric field.
  • FIG. 18 is an enlarged plan view of a region surrounded by the II line of the electrode layer 3 (or also referred to as a thin film transistor layer 3) including a thin film transistor formed on the substrate in FIG. 18 is a cross-sectional view of the liquid crystal display element shown in FIG. 2 taken along the line III-III in FIG.
  • a vertical alignment type liquid crystal display unit according to the present invention will be described with reference to FIG. 2 and FIGS.
  • the configuration of the liquid crystal panel 10 in the liquid crystal display element according to the present invention includes a second electrode having a transparent electrode (layer) 3 ′ (also referred to as a common electrode 3 ′) made of a transparent conductive material, as shown in FIG.
  • a liquid crystal display element having a liquid crystal composition (or a liquid crystal layer 5) sandwiched between the substrates, wherein the alignment of liquid crystal molecules in the liquid crystal composition when no voltage is applied is substantially perpendicular to the substrates 2 and 7.
  • the liquid crystal composition of the present invention is used as the liquid crystal composition. Further, as shown in FIG.
  • the first substrate 2 and the second substrate 7 may be sandwiched between a pair of polarizing plates 1 and 8. Further, in FIG. 19, a color filter 6 is provided between the second substrate 7 and the common electrode 3 '. Furthermore, a pair of alignment layers 4 are formed on the surfaces of the transparent electrodes (layers) 3 and 3 ′ so as to be in direct contact with the liquid crystal composition constituting the liquid crystal layer 5 adjacent to the liquid crystal layer 5 according to the present invention. Also good.
  • FIG. 18 is a diagram illustrating an inverted L-shaped pixel electrode as an example of the shape of the pixel electrode 21, and an area surrounded by the II line of the electrode layer 3 formed on the substrate 2 in FIG. 3 is enlarged. It is a top view. 13, 14 and 15, the pixel electrode 21 is formed in an inverted L shape over substantially the entire area surrounded by the gate bus line 26 and the source bus line 25. The shape is not limited.
  • the liquid crystal display part of the vertical alignment type liquid crystal display element is formed with a common electrode 22 (not shown) facing and separating from the pixel electrode 21.
  • the pixel electrode 21 and the common electrode 22 are formed on different substrates.
  • the pixel electrode 21 and the common electrode 22 are formed on the same substrate.
  • the color filter 6 is preferably formed with a black matrix (not shown) in a portion corresponding to the thin film transistor and the storage capacitor from the viewpoint of preventing light leakage.
  • FIG. 19 is a cross-sectional view of the liquid crystal display element shown in FIG. 2 taken along the line III-III in FIG. That is, the liquid crystal panel 10 of the liquid crystal display element according to the present invention has a first polarizing plate 1, a first substrate 2, an electrode layer (also referred to as a thin film transistor layer) 3 including a thin film transistor, and a liquid crystal vertically aligned.
  • An alignment layer 4, a layer 5 containing a liquid crystal composition, the alignment layer 4, a common electrode 3 ′, a color filter 6, a second substrate 7, and a first polarizing plate 8 are sequentially stacked. It is a configuration.
  • the vertical alignment type liquid crystal display element described in detail above is preferably one in which a pixel is divided and aligned having a multi-domain in which the pixel is divided into two to eight in order to improve the viewing angle dependency.
  • Such divisional alignment may be produced by mask rubbing the alignment film 4, 1) means for forming ribs on both the first substrate 2 side and the second substrate 7; 2) means for forming ribs on the second substrate 7 using electrode slits in the first pixel electrode 21; 3) Means for forming a rib on the second substrate 7 using a fine slit electrode for the first pixel electrode 21; 4) Means using slit electrodes for the first pixel electrode 21 and the second common electrode 22; 5) Means for using a fine slit electrode for the first pixel electrode 21 and forming a pretilt in the liquid crystal with a polymer, 6) It is a multi-domain type VA device in which the alignment orientation of the liquid crystal is defined by means using a so-called photo-alignment film capable of imparting
  • it is easy to form a polymer network of the liquid crystal layer 5, the optical axis direction or the easy axis direction of the polymer network (A) in the liquid phase layer 5, and the liquid crystal composition (B).
  • It is easy to control the alignment easy axis directions to the same or substantially the same direction. Therefore, it was obtained by means of 5) means for forming a pretilt in liquid crystal with a polymer, or means for using 6) a photo-alignment film.
  • a liquid crystal display element is preferable.
  • the electrode is made of a transparent electrode such as ITO, and is provided with a slit portion 512c from which a part of the electrode material (ITO) is removed.
  • a slit portion 512c having a cross shape connecting the midpoints of the opposing sides of the rectangular cell and having a width of about 3 to 5 ⁇ m functions as an alignment regulating structure, and extends from the slit portion 512c in an oblique 45 ° direction and has a width of 5 ⁇ m.
  • a plurality of 512c are formed with a pitch of 8 ⁇ m, and these function as an auxiliary orientation control factor that suppresses disturbance in the azimuth direction during tilting.
  • the width of the display pixel electrode is 3 ⁇ m, for example.
  • the pixel trunk electrode 512a and the pixel branch electrode 512b have an angle of 45 degrees, and have a structure in which the branch electrodes extend in four directions that differ by 90 degrees with respect to the center of the pixel. Yes.
  • the liquid crystal molecules are tilted when a voltage is applied, but tilted so that the orientation of the tilted alignment coincides with these four directions. Therefore, a four-divided domain is formed in one pixel to increase the display viewing angle. Can be wide.
  • the liquid crystal display element according to the present invention may have a local dimming technique for improving the contrast by controlling the brightness of the backlight unit 100 for each of a plurality of sections smaller than the number of pixels of the liquid crystal.
  • the plurality of light emitting elements L may be arranged in a planar shape, or may be arranged in a line on one side of the liquid crystal panel 10.
  • the light guide unit 102 may include a control layer that controls the amount of light of the backlight for each specific region smaller than the number of pixels of the liquid crystal.
  • a liquid crystal element having fewer than the number of pixels of the liquid crystal may be further included, and various existing methods can be used as the liquid crystal element.
  • An LCD layer containing is preferable in terms of transmittance.
  • the layer containing the (nematic) liquid crystal in which the polymer network is formed (if necessary, the layer containing the (nematic) liquid crystal in which the polymer network is sandwiched between a pair of transparent electrodes) scatters light when the voltage is OFF,
  • an LCD layer including a liquid crystal formed with a polymer network partitioned so as to divide the entire display screen into a plurality of partitions, a light guide plate (and / or a light diffusion plate) and a liquid crystal panel Local dimming can be realized by providing it between the substrate on the light source side.
  • the liquid crystal display element of the present invention described in detail above can be applied to operation modes such as TN, STN, ECB, VA, VA-TN, IPS, FFS, ⁇ cell, OCB, cholesteric liquid crystal.
  • operation modes such as TN, STN, ECB, VA, VA-TN, IPS, FFS, ⁇ cell, OCB, cholesteric liquid crystal.
  • VA, IPS, FFS, VA-TN, TN, and ECB are particularly preferable.
  • the liquid crystal display element of the present invention can be distinguished from a PSA (Polymer Sustained Alignment) type liquid crystal display element having a polymer or copolymer on the alignment film in that a polymer network is formed in the liquid crystal layer.
  • PSA Polymer Sustained Alignment
  • N represents a natural number.
  • the polymerizable monomers used in each example are as follows.
  • the polymerization initiator used in each example is Irgacure 651.
  • T NI Nematic phase-isotropic liquid phase transition temperature (° C) ⁇ n: Refractive index anisotropy at 25 ° C. ⁇ : Dielectric anisotropy at 25 ° C. ⁇ : Viscosity at 25 ° C. (mPa ⁇ s) ⁇ 1 : rotational viscosity at 25 ° C. (mPa ⁇ s) VHR measurement (voltage holding ratio (%) at 333K under conditions of frequency 60Hz and applied voltage 1V) LED light resistance test with main emission peak at 450 nm: The VHR before and after the visible light LED light source having a main emission peak at 450 nm of 20,000 cd / m 2 was exposed to the liquid crystal panel for 1 week was measured.
  • LED light resistance test with main emission peak at 385 nm The VHR before and after irradiation with 130 J for 60 seconds was measured with a monochromatic LED having a peak at 385 nm.
  • Liquid crystal compositions were prepared as N-type liquid crystal compositions according to the formulations shown in Tables 1 to 15 below, then heated to 60 ° C., and polymerizable monomers [(P2-1M), (P2- 2M) or (P4-4M)] was mixed and dissolved. It was confirmed with a polarizing microscope that each polymerizable liquid crystal composition was uniformly dissolved at room temperature to show a nematic liquid crystal phase. A polymerizable photoinitiator (Irgacure 651) was mixed with this solution to prepare a polymerizable liquid crystal composition.
  • Red coloring composition 10 parts of a red pigment (CI Pigment Red 254 having a water content of 0.3% and a specific electric conductivity of 30 ⁇ S / cm) are placed in a plastic bottle, 55 parts of propylene glycol monomethyl ether acetate, Dispersic LPN21116 (manufactured by Big Chemie Co., Ltd.) 7 0.0 parts, 0.3-0.4 mm ⁇ Sepul beads were added, and dispersed for 4 hours with a paint conditioner (manufactured by Toyo Seiki Co., Ltd.), followed by filtration with a 5 ⁇ m filter to obtain a pigment dispersion.
  • a red pigment CI Pigment Red 254 having a water content of 0.3% and a specific electric conductivity of 30 ⁇ S / cm
  • the water content of the pigment is based on JIS K5101-16-1 (Pigment test method-Part 16: Water content-Section 1: Boiling extraction method).
  • Water content of pigment (%) remaining evaporation (g) ⁇ 2.5 / mass of pigment (g) ⁇ 100
  • the specific conductivity of the pigment was measured using a conductivity meter (such as CM-30V manufactured by Toa DKK Corporation) after measuring the specific conductivity of ion-exchanged water, and 100 mL was measured with a graduated cylinder in 3 above.
  • the filtrate obtained is measured using the same conductivity meter, and the measured value is corrected by the following formula.
  • Specific conductivity of pigment specific conductivity of filtrate-specific conductivity of ion-exchanged water used
  • Green coloring composition instead of 10 parts of the red pigment 1 of the red pigment coloring composition 1, 6 parts of green pigment 1 (CI Pigment Green 36 having a water content of 0.3% and a specific conductivity of 40 ⁇ S / cm) and a yellow pigment 2 (water solution) Using a pigment (water content: 0.4%, specific conductivity: 50 ⁇ S / cm) mixed with 4 parts of CI Pigment Yellow 150 (0.6% min, specific conductivity: 70 ⁇ S / cm) in the same manner as above. Thus, a green coloring composition was obtained.
  • green pigment 1 CI Pigment Green 36 having a water content of 0.3% and a specific conductivity of 40 ⁇ S / cm
  • a yellow pigment 2 water solution
  • the blue coloring composition was prepared by mixing propylene glycol monomethyl ether acetate, Dispersic LPN21116 (manufactured by Big Chemie Co., Ltd.), 0.3-0.4 mm ⁇ zirconia beads “ER-120S” manufactured by Saint-Gobain, and paint conditioner (Toyo After dispersion for 4 hours by Seiki Co., Ltd., a 1 ⁇ m filter was used to prepare a dispersion.
  • Blue Coloring Composition 2 In the blue coloring composition, blue dye 1 (CI Solvent Blue 7) is put in a polybin, propylene glycol monomethyl ether acetate, Dispersic LPN21116 (manufactured by Big Chemie Co., Ltd.), 0.3-0. 4 mm ⁇ zirconia beads “ER-120S” was added and dispersed with a paint conditioner (manufactured by Toyo Seiki Co., Ltd.) for 4 hours, followed by filtration with a 1 ⁇ m filter to obtain a pigment dispersion.
  • a paint conditioner manufactured by Toyo Seiki Co., Ltd.
  • this pigment dispersion 75 parts by mass of this pigment dispersion, 5.5 parts by mass of polyester acrylate resin (Aronix (trade name) M7100, manufactured by Toa Gosei Chemical Co., Ltd.), dipentaerystol hexaacrylate (KAYARAD (trade name) DPHA, Nippon Kayaku) 5 parts by mass of Yakuhin Co., Ltd., 1.00 parts of benzophenone (KAYACURE (trade name) BP-100, manufactured by Nippon Kayaku Co., Ltd.) and 13.5 parts of Euker Ester EEP are stirred with a dispersion stirrer, and the pore size is 1.0 ⁇ m.
  • the blue colored composition 2 was obtained by filtering with a filter.
  • yellow coloring composition instead of the red pigment of the red pigment composition, yellow pigment (CI Pigment Yellow 150 having a water content of 0.6% and a specific conductivity of 70 ⁇ S / cm) was used in the same manner as above for yellow coloring. A composition was obtained.
  • yellow pigment CI Pigment Yellow 150 having a water content of 0.6% and a specific conductivity of 70 ⁇ S / cm
  • the nanocrystal-containing composition for green light emission is similarly applied by spin coating so that the film thickness becomes 2 ⁇ m.
  • the striped colored layer was exposed and developed at a place different from the above-mentioned red pixel by an exposure machine, thereby forming a green pixel adjacent to the above-mentioned red pixel.
  • the light conversion layer 1 having stripe-like pixels of three colors of red, green, and blue, using the light emitting nanocrystal-containing composition or the coloring composition so as to have the configuration shown in Table 1 below.
  • a light conversion layer 2 having stripe-like pixels of 3, 5 or four colors of red, green, blue, and yellow was obtained.
  • VA type liquid crystal panel 1 After forming a polyimide-based vertical alignment layer on ITO of the second (electrode) substrate and a transparent electrode of the first substrate, respectively, the first substrate on which the transparent electrode and the polyimide-based vertical alignment layer are formed, the second (electrode) substrate on which the polyimide-based vertical alignment layer is formed is disposed so that the alignment layers face each other and the alignment direction of the alignment layer is an antiparallel direction (180 °).
  • the peripheral part was bonded with a sealing agent in a state where a constant gap (4 ⁇ m) was maintained between the substrates.
  • the polymerizable liquid crystal compositions of Examples 1 to 27 described below are filled into the cell gap defined by the alignment layer surface and the sealing agent by vacuum injection, and a polarizing plate is attached to the first substrate. By combining them, a VA type liquid crystal panel 1 was produced. The liquid crystal panel thus fabricated was used as an evaluation element, and VHR measurement and display quality evaluation for UV were performed.
  • composition example 2 has the lowest decrease rate when irradiated with light having a main emission peak at 450 nm for one week.
  • the light having the main emission peak at 385 nm was irradiated for 60 seconds, it was confirmed that Examples 2, 11 and 20 had the lowest reduction rate.
  • ⁇ 1 related to the high-speed response of the liquid crystal display element was observed, it was confirmed that Examples 3, 12, and 21 were the highest.
  • the cause of the former is considered to be related to the fact that it contains two or more liquid crystal compounds including a condensed ring (naphthalene) and thus easily absorbs light.
  • the latter is considered to be due to the increase in viscosity because the liquid crystal compound contains two or more rings including a chroman ring.
  • the polymerizable liquid crystal composition described in Examples 1, 10, and 19 was applied to the VA liquid crystal panel 2 in which the gap (4 ⁇ m) of the VA liquid crystal panel 1 was changed to the gap (3.5 ⁇ m), and the VA liquid crystal.
  • the transmittance was simulated using the VA liquid crystal panel 3 in which the gap (4 ⁇ m) of the panel 1 was changed to the gap (2.8 ⁇ m) (using LCD Master manufactured by Shintech Co., Ltd.). The results are shown below.
  • Retardation (Re) is expressed by the following formula (1).
  • ⁇ n represents the refractive index anisotropy at 589 nm
  • d represents the cell thickness ( ⁇ m) of the liquid crystal layer of the liquid crystal display element.
  • the initial VHR is lower than that of the other composition examples. Therefore, the antioxidant of the following formula (III-22) is used with respect to 100 parts by mass of the liquid crystal composition of Composition Example 8. Was added in an amount of 0.03 parts by mass.
  • the initial VHR was 98% or more, and the LED light resistance test having the main emission peak at 450 nm and the LED light resistance test having the main emission peak at 385 nm were confirmed.
  • the rate of decrease is shown in Table 4 above. The result was almost the same as the value.
  • the added liquid crystal composition was filled by a vacuum injection method, and a polarizing plate was bonded onto the first substrate, whereby a VA liquid crystal panel 4 was produced.
  • the added liquid crystal composition was filled by a vacuum injection method, and a polarizing plate was bonded to the first substrate, whereby a VA liquid crystal panel 5 was produced.
  • a vertical alignment layer solution including the vertical alignment layer solution used in Example 22 of International Publication No. 2013/002260 pamphlet is formed by spin coating, and then dried.
  • An alignment layer having a thickness of 0.1 ⁇ m was formed.
  • an alignment layer was formed on the surface of the second transparent electrode substrate on which the light conversion layer 1 having the polarizing layer on the surface was formed.
  • the first substrate on which the transparent electrode and the alignment layer are formed and the second (electrode) substrate, which is the counter substrate on which the light conversion layer 1 is formed, are opposed to each other, and the alignment direction of the alignment layer is
  • the peripheral portions were bonded together with a sealant in a state of being arranged in an antiparallel direction (180 °) and maintaining a constant gap (4 ⁇ m) between the two substrates.
  • the polymerizable liquid crystal composition of Example 1 below is filled into the cell gap defined by the alignment layer surface and the sealing agent by vacuum injection, and the polarizing plate is bonded onto the first substrate.
  • a VA type liquid crystal panel 6 was produced.
  • IPS liquid crystal panel An alignment layer solution was formed on the pair of comb-shaped electrodes formed on the first substrate by a spin coating method to form an alignment layer.
  • the alignment layers face each other and are arranged so that the direction of linearly polarized light irradiation or rubbing in the horizontal direction is the anti-parallel direction (180 °), and a constant gap (4 ⁇ m) is provided between the two substrates. In the state kept, the peripheral part was pasted together with a sealant.
  • Example 6 liquid crystal composition 6
  • the polymerizable liquid crystal composition of Example 6 is filled into the cell gap defined by the alignment layer surface and the sealing agent by a vacuum injection method, and then the pair of polarizing plates is first bonded.
  • An IPS type liquid crystal panel was bonded to the substrate and the second substrate.
  • FFS type liquid crystal panel After forming a flat common electrode on the first transparent substrate, an insulating layer film is formed, a transparent comb electrode is further formed on the insulating layer film, and an alignment layer solution is then applied on the transparent comb electrode.
  • a first electrode substrate was formed by spin coating. The alignment layer was formed in the same manner on the second substrate on which the alignment layer, the in-cell polarizing layer, the light conversion layer 1 and the planarizing film were formed.
  • the first substrate on which the comb-shaped transparent electrode and the alignment layer are formed, and the alignment layer, the polarizing layer, the light conversion layer 1, and the second substrate on which the planarizing film is formed on the light conversion layer 1, are arranged in such a way that the direction where the linearly polarized light is radiated or rubbed is in the anti-parallel direction (180 °) and a constant gap (4 ⁇ m) is maintained between the two substrates.
  • the polymerizable liquid crystal composition of Example 9 was filled into the cell gap partitioned by the alignment layer surface and the sealing agent by a dropping method, to produce an FFS type liquid crystal panel.
  • a blue LED is arranged in a lattice pattern on the lower reflection plate that scatters and reflects light, a diffusion plate is arranged immediately above the irradiation side, and a diffusion sheet is further arranged on the irradiation side to produce a backlight unit 2. .
  • the backlight units 1 and 2 prepared above were attached to the IPS liquid crystal panel (on-cell) and IPS liquid crystal panel (in-cell) obtained above, and the color reproduction region was measured. As a result, it was confirmed that the color reproducible region was expanded in the former in both the liquid crystal display element having the light conversion unit and the conventional liquid crystal display element not having the light conversion unit.
  • the backlight units 1 to 4 prepared above were attached to the obtained FFS type liquid crystal panel (on-cell) and FFS type liquid crystal panel (in-cell), and the color reproduction area was measured. As a result, it was confirmed that the color reproducible region was expanded in the former in both the liquid crystal display element having the light conversion unit and the conventional liquid crystal display element not having the light conversion unit.
  • Liquid crystal display element 100 Backlight unit (101: light source unit, 102: light guide unit, 103: light conversion unit) 101: light source part (L: light emitting element (105: light emitting diode, 110: light source substrate), 112a, b: fixing member) 102: Light guide section (106: diffusion plate, 104: light guide plate) 103: light conversion unit 110: light source substrate 111: transparent filling container 112a, b: fixing member 113: recessed container SUB1: (transparent) electrode substrate SUB2: (transparent) substrate (including a case where electrodes are provided) SUB3: (Transparent) substrate NC: Nanocrystal for light emission (compound semiconductor) DESCRIPTION OF SYMBOLS 1, 8: Polarizing layer 2, 7: Transparent substrate 3: 1st electrode layer 3 ': 2nd electrode layer 4: Alignment film 5: Liquid crystal layer 6: Color filter (The case where the pigment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal Substances (AREA)
  • Planar Illumination Modules (AREA)
  • Luminescent Compositions (AREA)
  • Optical Filters (AREA)

Abstract

[Problem] To provide a liquid crystal display element which balances light-emission efficiency and color reproducibility, and is capable of suppressing or preventing deterioration of the liquid crystal layer thereof caused by high energy light ray irradiation. [Solution] A liquid crystal display element which is depicted in fig. 3 and equipped with a pair of substrates provided in a manner such that a first substrate and a second substrate face one another, a liquid crystal layer sandwiched between the pair of substrates, a pixel electrode provided on the first or second substrate, a common electrode provided on the other of the substrates, a light source unit, and a photoconversion layer which contains a light-emitting nanocrystal that has a light-emitting spectrum which is red (R), green (G) or blue (B) depending on the light from the light source unit, wherein the liquid crystal layer contains a polymer network (A), and a liquid crystal composition (B) containing a compound represented by general formula (i) (In the formula, Ri1 and Ri2 represent a C1-8 alkyl group or the like, Ai1 represents a 1,4-phenylene group or the like, and ni1 represents 0 or 1.) in the amount of 10-50 wt%.

Description

液晶表示素子Liquid crystal display element
 本願発明は、液晶表示素子に関する。 The present invention relates to a liquid crystal display element.
 表示品質が優れていることから、アクティブマトリクス形液晶表示装置が携帯端末、液晶テレビ、プロジェクタ、コンピューター等の市場に出されている。アクティブマトリクス表示方式は、画素毎にTFT(薄膜トランジスタ)あるいはMIM(メタル・インシュレータ・メタル)等が使われており、高電圧保持率を有する液晶組成物との組合せにおいて、TN型(ツイストネマチック)を初めとする一般的液晶表示素子として広く用いられている。また、更に広い視角特性を得るためにVA(バーチカルアライメント:垂直配向)、IPS(In Plane Switching:インプレーンスイッチング)、IPSの改良型であるFFS(Fringe Field Switching:フリンジフィールドスイッチング)等が用いられており、この様な表示素子に対応するために、現在も新しい液晶化合物あるいは液晶組成物の提案がなされている。 Because of its excellent display quality, active matrix liquid crystal display devices are put on the market for mobile terminals, liquid crystal televisions, projectors, computers and the like. In the active matrix display system, TFT (thin film transistor) or MIM (metal insulator metal) is used for each pixel. In combination with a liquid crystal composition having a high voltage holding ratio, a TN type (twisted nematic) is used. It is widely used as the first general liquid crystal display element. In order to obtain wider viewing angle characteristics, VA (vertical alignment: vertical alignment), IPS (In Plane Switching: in-plane switching), IPS improved FFS (Fringe Field Switching: fringe field switching), etc. are used. In order to deal with such display elements, new liquid crystal compounds or liquid crystal compositions have been proposed at present.
 一方液晶表示素子は自己発光型では無いため、発光するための光源が必須となり、ディスプレイとして求められる色再現領域に発光スペクトルを有する白色光源が使用される。光源としては、冷陰極管や白色LED(発光ダイオード)等が用いられるが発光効率の観点から、現在では白色LEDを用いることが主流となっている。LEDは現在一つの素子で380nmから750nmにおよぶ可視光全領域のカバーすることはできず、白色光を得るためにはいくつかの形式が知られている。
1)青色LEDと黄色蛍光体の組合せ
2)3原色の各LED(赤色・緑色・青色)の組合せ
3)近紫外線または紫色LEDと赤色・緑色・青色の蛍光体との組合せ
 これら3方式中、液晶表示素子の光源として最適な白色光を得る観点では3)が最も優れ、2)、1)の順となり、発光効率の観点では、1)が最も優れている。
On the other hand, since the liquid crystal display element is not a self-luminous type, a light source for emitting light is essential, and a white light source having an emission spectrum in a color reproduction region required for a display is used. As the light source, a cold cathode tube, a white LED (light emitting diode), or the like is used. From the viewpoint of light emission efficiency, at present, the white LED is mainly used. LEDs cannot currently cover the entire visible light range from 380 nm to 750 nm with a single element, and several forms are known for obtaining white light.
1) Combination of blue LED and yellow phosphor 2) Combination of three primary color LEDs (red, green and blue) 3) Combination of near ultraviolet or purple LED and red, green and blue phosphor Among these three methods, From the viewpoint of obtaining white light optimal as a light source for a liquid crystal display element, 3) is the best, and 2) and 1) are in order, and from the viewpoint of luminous efficiency, 1) is the best.
 液晶表示素子においては、消費電力の低減が重要であり、先進各国が検討中の省電力プログラムに対応するためには、光源の発光効率が重視されている。そのため、現在では1)の青色LEDと黄色蛍光体の組合せにより白色光を得ている。 In a liquid crystal display element, reduction of power consumption is important, and in order to respond to a power saving program under study by advanced countries, the light emission efficiency of the light source is emphasized. Therefore, at present, white light is obtained by the combination of 1) blue LED and yellow phosphor.
 この方式は、発光効率的には優れるものの、赤色光の不足など白色光源としての特性的には劣り、色再現性に問題を有していた。特に液晶表示素子はカラー表示を実現するために液晶素子と合わせてカラーフィルタを用いることから、光源部を改良しても色再現性を向上させることは難しく、そのため色再現性を向上させるにはカラーフィルタ中の高顔料濃度化を図るか、或いは、着色膜厚を大きくすることにより色純度を高める必要があった。然しながら、この場合、光の透過率が低下し、光量を増加させなければならず消費電力が増加することとなる問題があった。 Although this method is excellent in luminous efficiency, it has poor characteristics as a white light source, such as lack of red light, and has a problem in color reproducibility. In particular, liquid crystal display elements use color filters in combination with liquid crystal elements to realize color display, so it is difficult to improve color reproducibility even if the light source section is improved. It has been necessary to increase the color purity by increasing the pigment concentration in the color filter or by increasing the color film thickness. However, in this case, there is a problem that the light transmittance is reduced, and the amount of light must be increased, resulting in an increase in power consumption.
 そこで、液晶表示素子の色再現性と発光効率を同時に解決するための技術として、発光用ナノ結晶の一例である量子ドット技術(特許文献1参照)が注目されている。量子ドットは、粒子径数nmから数十nmの半導体微結晶からなり電子正孔対の閉じ込め効果によりエネルギーレベルが離散的に存在し、粒子径が小さくなるにつれてエネルギーバンドギャップが大きくなる性質を有している。この性質を応用し、粒子径をコントロールしバンドギャップを均一化することにより、発光スペクトルの半値幅が小さい光源を得ることができる。半値幅の小さい三原色の光源を得ることにより広色域ディスプレイが実現できることから、量子ドットをバックライトの構成部材として用いることにより、色再現性を向上させた液晶表示素子を構成できることが開示されている(特許文献2及び非特許文献1参照)。更に、光源として近紫外線または青色等の短波長可視光線を用いて、三色の量子ドットを従来のカラーフィルタの替わりに用いる提案がなされている(特許文献3参照)。これらの表示素子は、原理的には高い発光効率と色再現性を両立できるものである。 Therefore, as a technique for simultaneously solving the color reproducibility and the light emission efficiency of the liquid crystal display element, a quantum dot technique (see Patent Document 1), which is an example of a nanocrystal for light emission, has attracted attention. Quantum dots are composed of semiconductor microcrystals with a particle size of several nanometers to several tens of nanometers. The energy levels are discrete due to the confinement effect of electron-hole pairs, and the energy band gap increases as the particle diameter decreases. is doing. By applying this property and controlling the particle diameter to make the band gap uniform, a light source with a small half-value width of the emission spectrum can be obtained. Since a wide color gamut display can be realized by obtaining a light source of three primary colors with a small half-value width, it is disclosed that a liquid crystal display element with improved color reproducibility can be configured by using quantum dots as a constituent member of a backlight. (See Patent Document 2 and Non-Patent Document 1). Further, a proposal has been made to use three-color quantum dots in place of conventional color filters by using short-wavelength visible light such as near ultraviolet light or blue light as a light source (see Patent Document 3). In principle, these display elements can achieve both high luminous efficiency and color reproducibility.
特表2001-523758号公報JP-T-2001-523758 国際公開2004/074739号パンフレットInternational Publication No. 2004/074739 Pamphlet 米国特許8648524号公報U.S. Pat. No. 8,648,524
 しかしながら、上記の通り、特許文献2、3及び非特許文献1のように発光用ナノ結晶の一例である量子ドットを液晶表示素子に用いた場合、当該量子ドットの励起を引き起こすために光源として短波長または紫外光の可視光源が必要であることから、液晶層を透過する光は、従来の白色光を用いる場合と異なり短波長領域が主体となる。 However, as described above, when quantum dots, which are examples of light-emitting nanocrystals, are used in a liquid crystal display element as in Patent Documents 2 and 3 and Non-Patent Document 1, a short light source is used to cause excitation of the quantum dots. Since a visible light source with a wavelength or ultraviolet light is required, the light transmitted through the liquid crystal layer is mainly in a short wavelength region, unlike the case of using conventional white light.
 よって、発光用ナノ結晶の発光に使用するための光源に用いる短波長の可視光線や紫外光は高エネルギー光線であり、光スイッチとして機能する液晶層はこれらの高エネルギー光の長時間暴露に耐えうることが求められる。特に、短波長の可視光線や紫外光といった高エネルギー光線に液晶層が暴露されると液晶材料自体が分解する等の問題が確認された。 Therefore, short-wavelength visible light and ultraviolet light used as a light source for light emission from the light-emitting nanocrystal are high-energy light, and the liquid crystal layer functioning as an optical switch can withstand long-time exposure to these high-energy light. It is demanded. In particular, it has been confirmed that the liquid crystal material itself is decomposed when the liquid crystal layer is exposed to a high-energy light beam such as short-wavelength visible light or ultraviolet light.
 従って、本発明が解決しようとする課題は、発光用ナノ結晶を含有する光変換層をカラーフィルタの替わりに用いた場合において、高い発光効率と優れた色再現性を両立しつつ、高エネルギー光線の照射による液晶層の劣化を抑制または防止できる液晶表示素子を提供することにある。 Therefore, the problem to be solved by the present invention is that, when a light conversion layer containing nanocrystals for light emission is used instead of a color filter, a high energy light beam while achieving both high luminous efficiency and excellent color reproducibility. An object of the present invention is to provide a liquid crystal display element capable of suppressing or preventing the deterioration of the liquid crystal layer due to the irradiation.
 本願発明者らは、上記課題を解決するために鋭意検討した結果、ポリマーネットワーク中に特定の液晶化合物を含有する液晶層を、量子ドットなどの発光用ナノ結晶をカラーフィルタに相当する部材として用いた液晶表示素子に使用することにより、前記課題を解決できることを見出し本願発明の完成に至った。 As a result of intensive studies to solve the above-mentioned problems, the inventors of the present application have used a liquid crystal layer containing a specific liquid crystal compound in a polymer network as a member corresponding to a color filter using light-emitting nanocrystals such as quantum dots. The present invention was completed by finding that the above-mentioned problems can be solved by using the liquid crystal display device.
 すなわち、第一の基板および第二の基板が対向して設けられる一対の基板と、
 前記第一の基板と第二の基板と間に挟持された液晶層と、
 前記第一の基板または第二の基板の少なくとも一方に設けられた画素電極と、
 前記第一の基板または第二の基板の少なくとも一方に設けられた共通電極と、
 発光素子を備えた光源部と、
 赤色(R)、緑色(G)および青色(B)の三原色画素を備え、前記三原色の内少なくとも一色に入射した前記光源部からの光により赤色(R)、緑色(G)、青色(B)の何れかに発光スペクトルを有する発光用ナノ結晶を含有する光変換層と、を備え、
 前記液晶層が、ポリマーネットワーク(A)と、一般式(i)
That is, a pair of substrates provided with the first substrate and the second substrate facing each other;
A liquid crystal layer sandwiched between the first substrate and the second substrate;
A pixel electrode provided on at least one of the first substrate and the second substrate;
A common electrode provided on at least one of the first substrate and the second substrate;
A light source unit including a light emitting element;
It has three primary color pixels of red (R), green (G), and blue (B), and red (R), green (G), and blue (B) by light from the light source unit incident on at least one of the three primary colors. A light conversion layer containing a light-emitting nanocrystal having an emission spectrum,
The liquid crystal layer comprises a polymer network (A) and a general formula (i)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、R1及びR2はそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Aは1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、nは0又は1を表す。)で表される化合物を10~50質量%含有する液晶組成物(B)を含有することを特徴とする液晶表示素子に関する。 Wherein R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkyl group having 2 to 8 carbon atoms. A alkenyloxy group, A represents a 1,4-phenylene group or trans-1,4-cyclohexylene group, and n represents 0 or 1). The present invention relates to a liquid crystal display element comprising the composition (B).
 本発明によれば、発光用ナノ結晶を含有する光変換層をカラーフィルタの替わりに用いた場合において、高い発光効率と優れた色再現性を両立しつつ、高エネルギー光線の照射による液晶層の劣化を抑制または防止できる液晶表示素子を提供することにある。よって、本発明の液晶表示素子は色再現領域を長期間維持することが可能なものとなる。 According to the present invention, when a light conversion layer containing nanocrystals for light emission is used in place of a color filter, the liquid crystal layer is irradiated with a high-energy beam while achieving both high light emission efficiency and excellent color reproducibility. An object of the present invention is to provide a liquid crystal display element capable of suppressing or preventing deterioration. Therefore, the liquid crystal display element of the present invention can maintain the color reproduction region for a long time.
図1は、本発明の液晶表示素子の実施形態を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of a liquid crystal display element of the present invention. 図2は、本発明の液晶表示素子の他の実施形態を示す斜視図である。FIG. 2 is a perspective view showing another embodiment of the liquid crystal display element of the present invention. 図3は、本発明の液晶表示素子の他の実施形態を示す斜視図である。FIG. 3 is a perspective view showing another embodiment of the liquid crystal display element of the present invention. 図4は、本発明の液晶表示素子の他の実施形態を示す斜視図である。FIG. 4 is a perspective view showing another embodiment of the liquid crystal display element of the present invention. 図5は、図1~4のI-I線方向に液晶表示素子を切断した断面の模式図であり、本発明の液晶表示素子における光変換層の一例を示す模式図である。FIG. 5 is a schematic view of a cross section of the liquid crystal display element cut along the line II in FIGS. 1 to 4, and is a schematic view showing an example of a light conversion layer in the liquid crystal display element of the present invention. 図6は、図1~4のI-I線方向に液晶表示素子を切断した断面の模式図であり、本発明の液晶表示素子における光変換層の他の一例を示す模式図である。FIG. 6 is a schematic view of a cross section of the liquid crystal display element taken along the line II in FIGS. 1 to 4, and is a schematic view showing another example of the light conversion layer in the liquid crystal display element of the present invention. 図7は、図1~4のI-I線方向に液晶表示素子を切断した断面の模式図であり、本発明の液晶表示素子における光変換層の他の一例を示す模式図である。FIG. 7 is a schematic view of a cross section of the liquid crystal display element taken along the line II in FIGS. 1 to 4, and is a schematic view showing another example of the light conversion layer in the liquid crystal display element of the present invention. 図8は、図1~4のI-I線方向に液晶表示素子を切断した断面の模式図であり、本発明の液晶表示素子における光変換層の他の一例を示す模式図である。FIG. 8 is a schematic cross-sectional view of the liquid crystal display element cut along the line II in FIGS. 1 to 4, and is a schematic view showing another example of the light conversion layer in the liquid crystal display element of the present invention. 図9は、図1~4のI-I線方向に液晶表示素子を切断した断面の模式図であり、本発明の液晶表示素子における光変換層の他の一例を示す模式図である。FIG. 9 is a schematic view of a cross section of the liquid crystal display element cut along the line II in FIGS. 1 to 4, and is a schematic view showing another example of the light conversion layer in the liquid crystal display element of the present invention. 図10は、図1~4のI-I線方向に液晶表示素子を切断した断面の模式図であり、本発明の液晶表示素子における光変換層の他の一例を示す模式図である。FIG. 10 is a schematic cross-sectional view of the liquid crystal display element cut along the line II in FIGS. 1 to 4, and is a schematic view showing another example of the light conversion layer in the liquid crystal display element of the present invention. 図11は、図1~4のI-I線方向に液晶表示素子を切断した断面の模式図であり、本発明の液晶表示素子における光変換層の他の一例を示す模式図である。FIG. 11 is a schematic cross-sectional view of the liquid crystal display element cut along the line II in FIGS. 1 to 4, and is a schematic view showing another example of the light conversion layer in the liquid crystal display element of the present invention. 図12は、本発明の液晶表示素子の画素部分を等価回路で示した模式図である。FIG. 12 is a schematic diagram showing the pixel portion of the liquid crystal display element of the present invention in an equivalent circuit. 図13は、本発明の画素電極の形状の一例を示す模式図である。FIG. 13 is a schematic diagram showing an example of the shape of the pixel electrode of the present invention. 図14は、本発明の画素電極の形状の一例を示す模式図である。FIG. 14 is a schematic diagram showing an example of the shape of the pixel electrode of the present invention. 図15は、本発明のIPS型の液晶表示素子の電極構造を示す模式図である。FIG. 15 is a schematic view showing an electrode structure of the IPS liquid crystal display element of the present invention. 図16は、図13または図14におけるIII-III線方向に図2に示す液晶表示素子を切断した断面図の例の一つである。16 is one example of a cross-sectional view of the liquid crystal display element shown in FIG. 2 cut along the line III-III in FIG. 13 or FIG. 図17は、図15におけるIII-III線方向にIPS型の液晶パネルを切断した断面図である。FIG. 17 is a cross-sectional view of the IPS liquid crystal panel taken along the line III-III in FIG. 図18は、図3、図4における基板上に形成された薄膜トランジスタを含む電極層3のII線で囲まれた領域を拡大した平面図である。FIG. 18 is an enlarged plan view of a region surrounded by the II line of the electrode layer 3 including the thin film transistor formed on the substrate in FIGS. 図19は、図18におけるIII-III線方向に図3、図4に示す液晶表示素子を切断した断面図である。19 is a cross-sectional view of the liquid crystal display element shown in FIGS. 3 and 4 taken along the line III-III in FIG. 図20は、図20は、光変換層6の一例を示す模式図である。FIG. 20 is a schematic diagram illustrating an example of the light conversion layer 6. 図21は、図21は、光変換層6の一例を示す模式図である。FIG. 21 is a schematic diagram illustrating an example of the light conversion layer 6. 図22は、図22は、光変換層6の一例を示す模式図である。FIG. 22 is a schematic diagram illustrating an example of the light conversion layer 6. 図23は、図23は、量子ドットの発光スペクトルを示す図である。FIG. 23 is a diagram showing an emission spectrum of a quantum dot. 図24は、図24は、フィッシュボーン型VA液晶セルの電極構造の模式図である。FIG. 24 is a schematic diagram of an electrode structure of a fishbone type VA liquid crystal cell.
 本発明の液晶表示素子は、前記した通り、第一の基板および第二の基板が対向して設けられる一対の基板と、前記第一の基板と第二の基板と間に挟持された液晶層と、前記第一の基板または第二の基板の少なくとも一方に設けられた画素電極と、前記第一の基板または第二の基板の少なくとも一方に設けられた共通電極と、発光素子を備えた光源部と、
 赤色(R)、緑色(G)および青色(B)の三原色画素を備え、前記三原色の内少なくとも一色に入射した前記光源部からの入射光により赤色(R)、緑色(G)、青色(B)の何れかに発光スペクトルを有する発光用ナノ結晶を含有する光変換層とを備え、
 前記液晶層が、ポリマーネットワーク(A)と、一般式(i)
As described above, the liquid crystal display element of the present invention includes a pair of substrates provided with the first substrate and the second substrate facing each other, and a liquid crystal layer sandwiched between the first substrate and the second substrate. A pixel electrode provided on at least one of the first substrate or the second substrate, a common electrode provided on at least one of the first substrate or the second substrate, and a light source including a light emitting element And
The apparatus includes three primary color pixels of red (R), green (G), and blue (B). Red (R), green (G), and blue (B) are generated by incident light from the light source unit that is incident on at least one of the three primary colors. And a light conversion layer containing a light-emitting nanocrystal having an emission spectrum.
The liquid crystal layer comprises a polymer network (A) and a general formula (i)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、R1及びR2はそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Aは1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、nは0又は1を表す。)で表される化合物を10~50質量%含有する液晶組成物(B)を含有することを特徴とするものである。 Wherein R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkyl group having 2 to 8 carbon atoms. A alkenyloxy group, A represents a 1,4-phenylene group or trans-1,4-cyclohexylene group, and n represents 0 or 1). It contains the composition (B).
 本発明では、液晶層を特性の構成とすることにより、光源に用いる短波長の可視光線や紫外光などの高エネルギー光線の長時間暴露に耐えうる液晶層を備えた信頼性の高い液晶表示素子を提供できる。 In the present invention, a highly reliable liquid crystal display element having a liquid crystal layer capable of withstanding long-time exposure to high-energy light rays such as short-wavelength visible light and ultraviolet light used for a light source by configuring the liquid crystal layer as a characteristic configuration Can provide.
 本発明に係る好適な液晶表示素子について図を用いて以下に説明した後、液晶表示素子の各構成要素について説明する。 A preferred liquid crystal display element according to the present invention will be described below with reference to the drawings, and then each component of the liquid crystal display element will be described.
 図1は、本実施形態で用いられる液晶表示素子の一例の全体を示す斜視図であり、説明のために便宜上各構成要素を離間して記載している。 FIG. 1 is a perspective view showing the whole of an example of a liquid crystal display element used in the present embodiment, and for the sake of explanation, the constituent elements are shown separately.
 本発明に係る液晶表示素子1000は、バックライトユニット100と、液晶パネル10とを備えている。当該バックライトユニット100は、発光素子Lを有する光源部101と、導光板(図示せず)または光拡散板(図示せず)の役割を果たす導光部102と、を有している。図1に示すように、バックライト100の一形態は、複数の発光素子Lを含む光源部101が導光部102の一側面に配置されている。必要により、複数の発光素子Lを含む光源部101を、液晶パネル10の一側面側(導光部102の一側面)だけでなく、液晶パネル10の他方の側面側(対向する両側面)に設けてもよく、また、導光部102の周囲を囲むように、複数の発光素子Lを含む光源部101が、該導光部102の3つ側面又は該導光部102の全周囲を囲むように、4つの側面に設けられていてもよい。なお、導光部102は必要に応じて導光板の代わりに光拡散板(図示せず)を備えてもよい。 The liquid crystal display element 1000 according to the present invention includes a backlight unit 100 and a liquid crystal panel 10. The backlight unit 100 includes a light source unit 101 having a light emitting element L, and a light guide unit 102 serving as a light guide plate (not shown) or a light diffusion plate (not shown). As shown in FIG. 1, in one form of the backlight 100, a light source unit 101 including a plurality of light emitting elements L is disposed on one side surface of the light guide unit 102. If necessary, the light source unit 101 including the plurality of light emitting elements L is not only provided on one side surface of the liquid crystal panel 10 (one side surface of the light guide unit 102) but also on the other side surface side (opposite side surfaces) of the liquid crystal panel 10. The light source unit 101 including a plurality of light emitting elements L may surround three sides of the light guide unit 102 or the entire periphery of the light guide unit 102 so as to surround the light guide unit 102. As such, it may be provided on four side surfaces. The light guide unit 102 may include a light diffusion plate (not shown) instead of the light guide plate as necessary.
 図1に示す液晶パネル10において、第一の(透明絶縁)基板2は、一方の面に偏光層1が設けられ、他方の面に電極層3が設けられている。また、液晶層5を挟んで前記第一の基板2と対向するように、第二の(透明絶縁)基板7が配設され、該基板7上に光変換層(いわゆる色層)6および偏光層8の順で設けられている。ここで、該光変換層(色層)6は、赤色(R)、緑色(G)および青色(B)の三原色画素を備え、前記三原色の内の少なくとも一色の画素が、前記光源部からの入射光により赤色(R)、緑色(G)、青色(B)の何れかに発光スペクトルを有する発光用ナノ結晶を含有するものである。 In the liquid crystal panel 10 shown in FIG. 1, the first (transparent insulating) substrate 2 is provided with a polarizing layer 1 on one surface and an electrode layer 3 on the other surface. In addition, a second (transparent insulating) substrate 7 is disposed so as to face the first substrate 2 with the liquid crystal layer 5 interposed therebetween, and a light conversion layer (so-called color layer) 6 and a polarized light are disposed on the substrate 7. The layers 8 are provided in this order. Here, the light conversion layer (color layer) 6 includes three primary color pixels of red (R), green (G), and blue (B), and pixels of at least one of the three primary colors are emitted from the light source unit. It contains light-emitting nanocrystals having an emission spectrum in any of red (R), green (G), and blue (B) by incident light.
 図1では、電極層3として画素電極(図示せず)と共通電極(図示せず)とが第一の基板2側に設けられている形態を示しているが、別の実施形態(例えば、図3、図4)では、画素電極を第一の基板2に設け、共通電極3’を第二の基板7に設けてもよい。 FIG. 1 shows a mode in which a pixel electrode (not shown) and a common electrode (not shown) are provided on the first substrate 2 side as the electrode layer 3, but another embodiment (for example, 3 and 4), the pixel electrode may be provided on the first substrate 2 and the common electrode 3 ′ may be provided on the second substrate 7.
 また、図1では、前記第二の基板7と液晶層5との間に光変換層6が設けられているが、本発明に係る液晶表示素子の他の実施形態としては、図10、図11に示す様な、いわゆるカラーフィルタオンアレイ(COA)型と同様に光変換層6が第一の基板2側に設けられていてもよく、この場合、電極層3と液晶層5の間に光変換層6を設けても、または当該電極層3と第一の基板2との間に光変換層6を設けてもよい。また、必要により、オーバコート層(図示せず)を、光変換層6を覆う様に設けることで、光変換層に含まれる物質が液晶層へ流出することを防止してもよい。 In FIG. 1, a light conversion layer 6 is provided between the second substrate 7 and the liquid crystal layer 5. As another embodiment of the liquid crystal display element according to the present invention, FIG. 11, the light conversion layer 6 may be provided on the first substrate 2 side as in the so-called color filter on array (COA) type, and in this case, between the electrode layer 3 and the liquid crystal layer 5. The light conversion layer 6 may be provided, or the light conversion layer 6 may be provided between the electrode layer 3 and the first substrate 2. Further, if necessary, an overcoat layer (not shown) may be provided so as to cover the light conversion layer 6 to prevent a substance contained in the light conversion layer from flowing out to the liquid crystal layer.
 次に、図2に示す液晶表示素子1000は、図1の液晶パネル10において、更に配向層4を設けた実施形態を示す図である。具体的には、図2の液晶パネル10において、第一の(透明絶縁)基板2の一方の面に偏光層1が設けられており、他方の面に電極層3が設けられている。さらに前記電極層3上には配向層4が形成されている。また、液晶層5を挟んで前記第一の基板2と対向するよう、第二の(透明絶縁)基板7上に発光用ナノ結晶を含有する光変換層6を有する。また、当該光変換層6の第一の基板2側に偏光層8が設けられ、さらに当該偏光層8の第一の基板2側に配向層4が設けられている。 Next, the liquid crystal display element 1000 shown in FIG. 2 is a view showing an embodiment in which an alignment layer 4 is further provided in the liquid crystal panel 10 of FIG. Specifically, in the liquid crystal panel 10 of FIG. 2, the polarizing layer 1 is provided on one surface of the first (transparent insulating) substrate 2, and the electrode layer 3 is provided on the other surface. Further, an alignment layer 4 is formed on the electrode layer 3. In addition, a light conversion layer 6 containing nanocrystals for light emission is provided on a second (transparent insulating) substrate 7 so as to face the first substrate 2 with the liquid crystal layer 5 interposed therebetween. Further, a polarizing layer 8 is provided on the first substrate 2 side of the light conversion layer 6, and an alignment layer 4 is further provided on the first substrate 2 side of the polarizing layer 8.
 図2では、電極層3として画素電極(図示せず)と共通電極(図示せず)とが第一の基板2側に設けられているが、別の実施形態(例えば、図3、図4)では、画素電極3を第一の基板2に設け、共通電極を第二の基板7に設けてもよい。 In FIG. 2, a pixel electrode (not shown) and a common electrode (not shown) are provided on the first substrate 2 side as the electrode layer 3, but another embodiment (for example, FIG. 3 and FIG. 4). ), The pixel electrode 3 may be provided on the first substrate 2, and the common electrode may be provided on the second substrate 7.
 また、配向層4により電圧無印加時に該液晶組成物中の液晶分子が前記基板2,7に対して所定方向に配向することができる。図2では一対の配向層4により液晶層5を挟持した形態を例にしているが、配向層4は第一の基板2または第二の基板の片側にだけ設けてもよい。 The alignment layer 4 can align liquid crystal molecules in the liquid crystal composition in a predetermined direction with respect to the substrates 2 and 7 when no voltage is applied. Although FIG. 2 shows an example in which the liquid crystal layer 5 is sandwiched between the pair of alignment layers 4, the alignment layer 4 may be provided only on one side of the first substrate 2 or the second substrate.
 また、図2では、前記第二の基板7と配向層4との間に光変換層6が設けられているが、図1の場合と同様に、いわゆるカラーフィルタオンアレイ(COA)型と同様に光変換層6が第一の基板2側に設けられていてもよい。更に、図2および後述の図4において、配向層4は液晶層5に接するように第一の基板2側と第二の基板7側に設けられているが、そのどちらか一方のみでもよい。 In FIG. 2, the light conversion layer 6 is provided between the second substrate 7 and the alignment layer 4. As in the case of FIG. 1, similar to the so-called color filter on array (COA) type. The light conversion layer 6 may be provided on the first substrate 2 side. Further, in FIG. 2 and FIG. 4 described later, the alignment layer 4 is provided on the first substrate 2 side and the second substrate 7 side so as to be in contact with the liquid crystal layer 5, but only one of them may be provided.
 このように、本発明に係る液晶パネル10は、第一の偏光層1と、第一の基板2と、電極層3と、液晶層5と、第二の偏光層8と、光変換層6と、第二の基板7と、が順次積層された構成、或いは、第一の偏光層1と、第一の基板2と、電極層3と、配向層4と、液晶組成物を含む液晶層5と、配向層4と、第二の偏光層8と、光変換層6と、第二の基板7と、が順次積層された構成を有するものであることが好ましい。 As described above, the liquid crystal panel 10 according to the present invention includes the first polarizing layer 1, the first substrate 2, the electrode layer 3, the liquid crystal layer 5, the second polarizing layer 8, and the light conversion layer 6. And the second substrate 7 are sequentially laminated, or the first polarizing layer 1, the first substrate 2, the electrode layer 3, the alignment layer 4, and a liquid crystal layer containing a liquid crystal composition 5, the alignment layer 4, the second polarizing layer 8, the light conversion layer 6, and the second substrate 7 are preferably laminated in sequence.
 図1、図2において、発光素子Lから発光された光は、導光部102内(例えば、導光板や光拡散板を介して)を通過して、液晶パネル10の面内に入射する。当該液晶パネル10内に入射した光は、第一の偏光層1により特定の方向に偏光された後、液晶層5により偏光の方向が変えられた光は、第二の偏光層8で遮断または特定方向に偏光された後、光変換層6に入光する。当該光変換層6では、該光変換層6に入光した光が発光用ナノ結晶に吸収され、赤色(R)、緑色(G)、青色(B)の何れかに発光スペクトルに変換されることで、赤色(R)、緑色(G)、青色(B)の何れかの色を表示することができる。 1 and 2, the light emitted from the light emitting element L passes through the light guide 102 (for example, via a light guide plate or a light diffusion plate) and enters the surface of the liquid crystal panel 10. The light incident on the liquid crystal panel 10 is polarized in a specific direction by the first polarizing layer 1, and then the light whose polarization direction is changed by the liquid crystal layer 5 is blocked by the second polarizing layer 8. After being polarized in a specific direction, it enters the light conversion layer 6. In the light conversion layer 6, the light incident on the light conversion layer 6 is absorbed by the light-emitting nanocrystals and converted into an emission spectrum into one of red (R), green (G), and blue (B). Thus, any one of red (R), green (G), and blue (B) can be displayed.
 この際、導光部102(特に導光板)の形状が、発光素子Lから発光された光が入射する側面から対向面に向かって厚さが次第に減少する側面を備えた平板体である(側面がテーパー状の形態や楔状四角形板)と、線光を面光に変換することができるため液晶パネル10内に光を入射しやすくなる為好ましい(後述に実施形態として記載する)。 At this time, the shape of the light guide portion 102 (particularly, the light guide plate) is a flat plate having a side surface whose thickness gradually decreases from the side surface on which the light emitted from the light emitting element L is incident toward the opposing surface (side surface Is preferable because it is easy to make light incident on the liquid crystal panel 10 because the line light can be converted into surface light (which will be described later as an embodiment).
 図3は、バックライトユニット100が、複数の発光素子Lを平板状の導光部102に対して平面状に配置された、所謂直下型バックライト構造を持つ液晶表示素子の一例の全体を示す斜視図である。なお、説明のために便宜上各構成要素を離間して記載している。 FIG. 3 shows an example of the entire liquid crystal display element having a so-called direct-type backlight structure in which the backlight unit 100 has a plurality of light emitting elements L arranged in a plane with respect to the flat light guide 102. It is a perspective view. In addition, for convenience of explanation, each component is illustrated separately.
 直下型バックライト構造は、発光素子Lからの光は面光であるため、導光部102の形状は、図1、図2とは異なりテーパー状である必要はない。 In the direct backlight structure, the light from the light emitting element L is surface light, and therefore the shape of the light guide 102 need not be tapered unlike FIGS.
 図3における液晶パネル10は、一方の面に第一の電極層3(例えば、画素電極)を備え、かつ他方の面に第一の偏光層1を備えた第一の基板2と、第二の電極層3’(例えば、共通電極)を具備した第二の基板7と、前記第一の基板2と第二の基板7との間に挟持された液晶層5を備えている。また、前記第二の基板7と第二の電極層3’との間に光変換層6が設けられており、さらに当該光変換層6の上の第二の電極層3’側に第二の偏光層8が設けられている。 A liquid crystal panel 10 in FIG. 3 includes a first substrate 2 having a first electrode layer 3 (for example, a pixel electrode) on one surface and a first polarizing layer 1 on the other surface; The second substrate 7 having the electrode layer 3 ′ (for example, a common electrode), and the liquid crystal layer 5 sandwiched between the first substrate 2 and the second substrate 7 are provided. In addition, a light conversion layer 6 is provided between the second substrate 7 and the second electrode layer 3 ′, and a second electrode layer 3 ′ on the light conversion layer 6 is disposed on the second electrode layer 3 ′ side. The polarizing layer 8 is provided.
 すなわち、図3の実施形態では、液晶表示素子1000は、バックライトユニット100と、第一の偏光板1と、第一の基板2と、薄膜トランジスタを含む電極層(又は薄膜トランジスタ層や画素電極とも称する)3と、液晶組成物を含む層5と、第二の電極層3’と、第二の偏光板8と、光変換層6と、第二の基板7と、が順次積層された構成となる。 That is, in the embodiment of FIG. 3, the liquid crystal display element 1000 includes the backlight unit 100, the first polarizing plate 1, the first substrate 2, and an electrode layer including a thin film transistor (or a thin film transistor layer or a pixel electrode). ) 3, a layer 5 containing a liquid crystal composition, a second electrode layer 3 ′, a second polarizing plate 8, a light conversion layer 6, and a second substrate 7 are sequentially laminated. Become.
 次に、図4に示す液晶表示素子1000は、図3の液晶パネル10において、更に配向層4を設けた実施形態を示す図である。即ち、図4における液晶パネル10は、一方の面に第一の電極層3(例えば、画素電極)を備え、かつ他方の面に第一の偏光層1を備えた第一の基板2と、第二の電極層3’(例えば、共通電極)を具備した第二の基板7と、前記第一の基板2と第二の基板7との間に挟持された液晶組成物(または液晶層5)を有し、前記第一の基板2と前記液晶層5の間に前記液晶層5と接するように設けられた配向層4と、前記第二の基板7と前記液晶層5との間に前記液晶層5と接するように設けられた配向層4と、を備えている。また、前記第二の基板7と第二の電極層3’との間に光変換層6が設けられており、さらに当該光変換層6の上の第二の電極層3’側に第二の偏光層8が設けられている。 Next, the liquid crystal display element 1000 shown in FIG. 4 is a view showing an embodiment in which an alignment layer 4 is further provided in the liquid crystal panel 10 of FIG. That is, the liquid crystal panel 10 in FIG. 4 includes a first substrate 2 having a first electrode layer 3 (for example, a pixel electrode) on one surface and a first polarizing layer 1 on the other surface; A liquid crystal composition (or liquid crystal layer 5) sandwiched between a second substrate 7 having a second electrode layer 3 ′ (for example, a common electrode) and the first substrate 2 and the second substrate 7. Between the first substrate 2 and the liquid crystal layer 5 so as to be in contact with the liquid crystal layer 5, and between the second substrate 7 and the liquid crystal layer 5. An alignment layer 4 provided in contact with the liquid crystal layer 5. In addition, a light conversion layer 6 is provided between the second substrate 7 and the second electrode layer 3 ′, and a second electrode layer 3 ′ on the light conversion layer 6 is disposed on the second electrode layer 3 ′ side. The polarizing layer 8 is provided.
 すなわち、図4の実施形態では、液晶表示素子1000は、バックライトユニット100と、第一の偏光板1と、第一の基板2と、薄膜トランジスタを含む電極層(又は薄膜トランジスタ層とも称する)3と、配向層4と、液晶組成物を含む層5と、配向層4と、第二の電極層3’と、第二の偏光板8と、光変換層6と、第二の基板7と、が順次積層された構成であることが好ましい。 That is, in the embodiment of FIG. 4, the liquid crystal display element 1000 includes a backlight unit 100, a first polarizing plate 1, a first substrate 2, and an electrode layer (or a thin film transistor layer) 3 including a thin film transistor. , Alignment layer 4, layer 5 containing a liquid crystal composition, alignment layer 4, second electrode layer 3 ′, second polarizing plate 8, light conversion layer 6, second substrate 7, It is preferable that are sequentially stacked.
 図3、図4において、発光素子Lから発光された光は、導光部102を(光拡散板や光拡散板を介して)通過して、液晶パネル10の面内に入射する。当該液晶パネル10内に入射した光は、第一の偏光層1により特定の方向に偏光された後、液晶層5により偏光の方向が変えられた光は、第二の偏光層8で遮断または特定方向に偏光された後、光変換層6に入光する。当該光変換層6では、該光変換層6に入光した光が発光用ナノ結晶に吸収され、赤色(R)、緑色(G)、青色(B)の何れかに発光スペクトルに変換されることで、赤色(R)、緑色(G)、青色(B)の何れかの色を表示することができる。 3 and 4, the light emitted from the light emitting element L passes through the light guide 102 (through the light diffusion plate or the light diffusion plate) and enters the surface of the liquid crystal panel 10. The light incident on the liquid crystal panel 10 is polarized in a specific direction by the first polarizing layer 1, and then the light whose polarization direction is changed by the liquid crystal layer 5 is blocked by the second polarizing layer 8. After being polarized in a specific direction, it enters the light conversion layer 6. In the light conversion layer 6, the light incident on the light conversion layer 6 is absorbed by the light-emitting nanocrystals and converted into an emission spectrum into one of red (R), green (G), and blue (B). Thus, any one of red (R), green (G), and blue (B) can be displayed.
 また、前記導光部102として、液晶パネル10と前記導光部102との間に光拡散板を備えることが好ましい(後述に実施形態として記載する)。 Moreover, it is preferable that a light diffusing plate is provided between the liquid crystal panel 10 and the light guide unit 102 as the light guide unit 102 (described as an embodiment below).
 以下、本発明の好ましい液晶表示素子における液晶パネル部分の断面構造、特に、偏光層、光変換層、および液晶層などの積層態様について説明する。 Hereinafter, a cross-sectional structure of a liquid crystal panel portion in a preferable liquid crystal display element of the present invention, in particular, a laminated mode of a polarizing layer, a light conversion layer, a liquid crystal layer, and the like will be described.
 図5~11は、本実施形態で用いられる液晶パネルの構成を示すために、液晶表示素子における液晶パネル10部分を切断した断面図の模式図であり、液晶パネル10における偏光層、光変換層および液晶層の積層態様を示す概略図である。また、図5~11では、偏光層、光変換層および液晶層の位置関係の説明のため便宜上、図1~図4で示されている電極層3(TFTを含む)、電極層3’、配向層4などを省略して模式的に示している。 5 to 11 are schematic views of cross-sectional views of the liquid crystal display device in which a portion of the liquid crystal panel 10 is cut to show the configuration of the liquid crystal panel used in the present embodiment. It is the schematic which shows the lamination | stacking aspect of a liquid crystal layer. 5 to 11, for convenience of description of the positional relationship among the polarizing layer, the light conversion layer, and the liquid crystal layer, the electrode layer 3 (including the TFT), the electrode layer 3 ′, and the electrode layer 3 ′ shown in FIGS. The alignment layer 4 and the like are omitted schematically.
 さらに、図5~11では、液晶層5に対して、バックライトユニット(光源)側の基板とその基板に積層される積層体をアレイ基板(A-SUB)、当該アレイ基板と液晶層5を挟んで対向する基板とその基板に積層される積層体を対向基板(O-SUB)としている。これらアレイ基板(A-SUB)および対向基板(O-SUB)の構成や好ましい実施態様は、後述の図12~図19における電極構造の説明の箇所で詳細に説明する。なお、図5~11では、アレイ基板側にTFTが形成されている例を記載しているが、アレイ基板と対向基板とを入れ替えてもよい。 Further, in FIGS. 5 to 11, a substrate on the backlight unit (light source) side and a laminate laminated on the substrate are array substrate (A-SUB), and the array substrate and liquid crystal layer 5 are connected to the liquid crystal layer 5. A substrate opposed to the substrate and a stacked body stacked on the substrate are referred to as a counter substrate (O-SUB). The configurations and preferred embodiments of the array substrate (A-SUB) and the counter substrate (O-SUB) will be described in detail in the description of the electrode structure in FIGS. 5 to 11 show an example in which TFTs are formed on the array substrate side, the array substrate and the counter substrate may be interchanged.
 図5の実施態様は、光変換層6が対向基板(O-SUB)に設けられ、かつ、該光変換層6と第二の偏光層8とが、一対の基板(第一の基板2及び第二の基板7)の間に設けられた所謂インセル偏光層を備える形態である。 In the embodiment of FIG. 5, the light conversion layer 6 is provided on the counter substrate (O-SUB), and the light conversion layer 6 and the second polarizing layer 8 include a pair of substrates (the first substrate 2 and the second substrate 2). In this embodiment, a so-called in-cell polarizing layer is provided between the second substrates 7).
 一般的な液晶表示素子は、白色光源からの光をカラーフィルタにおいて、波長選択し、その一部を吸収することによりそれぞれの色表示を行っているのに対して、本発明では、発光用ナノ結晶を含有する光変換層をカラーフィルタの代替部材として用いたことを特徴の一つとしている。よって、本発明における光変換層6は、赤色(R)、緑色(G)および青色(B)の三原色画素を備えており、いわゆるカラーフィルタと同様の役割を果たす。 In general liquid crystal display elements, light from a white light source is wavelength-selected in a color filter, and each color is displayed by absorbing a part of the light. One of the features is that the light conversion layer containing crystals is used as an alternative member of the color filter. Therefore, the light conversion layer 6 in the present invention includes the three primary color pixels of red (R), green (G), and blue (B), and plays the same role as a so-called color filter.
 具体的には、光変換層6は、例えば、赤色(R)の画素部(赤色の色層部)は、赤色発光用ナノ結晶を含む光変換画素層(NC-Red)を備え、緑色(R)の画素部(緑色の色層部)は、緑色発光用ナノ結晶を含む光変換画素層(NC-Green)を備え、そして青色(R)の画素部(青色の色層部)は、青色発光用ナノ結晶を含む光変換画素層(NC-Blue)を備えている。斯かる単層型の光変換層6の一例を図22に示す。 Specifically, the light conversion layer 6 includes, for example, a red (R) pixel portion (red color layer portion) including a light conversion pixel layer (NC-Red) including a red light emitting nanocrystal, and a green ( The pixel portion (green color layer portion) of R) includes a light conversion pixel layer (NC-Green) containing nanocrystals for green light emission, and the blue (R) pixel portion (blue color layer portion) An optical conversion pixel layer (NC-Blue) including a blue light emitting nanocrystal is provided. An example of such a single layer type light conversion layer 6 is shown in FIG.
 すなわち、光変換層6は、青色LEDなどの450nm近傍に主ピークを持つ光を光源として使用する場合、青色LEDが発する青色光を青色として利用することができる。そのため、光源部からの光が青色光である場合には、前記各色の光変換画素層(NC-Red、NC-Green、NC-Blue)のうち、光変換画素層(NC-Blue)を省略し、青色はバックライト光をそのまま使用してもよい。この場合、青色を表示する色層は透明樹脂や青色の色材を含む色材層(いわゆる青色カラーフィルタ)などによって構成することができる。よって、図5及び図22では、青色発光用ナノ結晶が任意成分となりうることから、青色発光用ナノ結晶を一点破線で表示している。 That is, when the light conversion layer 6 uses light having a main peak near 450 nm, such as a blue LED, as a light source, the blue light emitted from the blue LED can be used as blue. Therefore, when the light from the light source is blue light, the light conversion pixel layer (NC-Blue) is omitted from the light conversion pixel layers (NC-Red, NC-Green, NC-Blue) of the respective colors. However, for blue, the backlight may be used as it is. In this case, the color layer displaying blue can be constituted by a transparent material or a color material layer (so-called blue color filter) containing a blue color material. Therefore, in FIGS. 5 and 22, since the blue light emitting nanocrystal can be an arbitrary component, the blue light emitting nanocrystal is indicated by a one-dot broken line.
 図5で示す本発明の液晶表示素子では、各色層の間の混色を防ぐ目的でブラックマトリックスを設けてもよい。また、図5において、使用する光源の種類(発光素子として青色LED)に応じて、光変換層6と第二の偏光層8との間に、青色の色材を含む色層(いわゆる「青色カラーフィルタ」)をそれらの間に一面に設けることが、外部からの不要光の侵入を防ぎ、画質低下を抑制できる点から好ましい。斯かる青色カラーフィルタを配した構造を図21に示す。 In the liquid crystal display element of the present invention shown in FIG. 5, a black matrix may be provided for the purpose of preventing color mixing between the color layers. In FIG. 5, a color layer containing a blue color material (so-called “blue”) between the light conversion layer 6 and the second polarizing layer 8 according to the type of light source used (blue LED as a light emitting element). It is preferable to provide a color filter “) between them in order to prevent the intrusion of unnecessary light from the outside and suppress deterioration in image quality. A structure in which such a blue color filter is arranged is shown in FIG.
 図5に示す実施形態をVA型液晶表示素子に適用する場合、対向基板側O-SUBにおいて、液晶5と第二の偏光層8との間、或いは、第二の偏光層8と光変換層6との間に電極層3’(共通電極)を設け、かつ、電極層3(画素電極)が第一の基板2上に形成されていることが好ましい。また、対向基板側(O-SUB)およびアレイ基板側(A-SUB)の少なくとも一方の液晶層と接する面には配向層4が形成されいることが好ましい。また、図5において液晶表示素子がFFS型またはIPS型である場合には、画素電極および共通電極が第一の基2上に形成されていることが好ましい。 When the embodiment shown in FIG. 5 is applied to a VA type liquid crystal display element, in the counter substrate side O-SUB, between the liquid crystal 5 and the second polarizing layer 8 or between the second polarizing layer 8 and the light conversion layer. 6 is provided with an electrode layer 3 ′ (common electrode), and the electrode layer 3 (pixel electrode) is preferably formed on the first substrate 2. The alignment layer 4 is preferably formed on the surface in contact with at least one liquid crystal layer on the counter substrate side (O-SUB) and the array substrate side (A-SUB). Further, in FIG. 5, when the liquid crystal display element is an FFS type or an IPS type, the pixel electrode and the common electrode are preferably formed on the first base 2.
 次に、図6の実施態様は、光変換層6が対向基板(O-SUB)に設けられ、かつ、該光変換層6が、一対の基板(第一の基板2及び第二の基板7)の外側に設けられた形態である。そのため、第二の偏光層8および光変換層6を支持する支持基板9が設けられている。当該支持基板9は、透明基板であることが好ましい。 Next, in the embodiment of FIG. 6, the light conversion layer 6 is provided on the counter substrate (O-SUB), and the light conversion layer 6 includes a pair of substrates (first substrate 2 and second substrate 7). ) Is provided outside. Therefore, a support substrate 9 that supports the second polarizing layer 8 and the light conversion layer 6 is provided. The support substrate 9 is preferably a transparent substrate.
 図6における光変換層6は、図5の実施形態と同様に、赤色(R)の画素部(赤色の色層部)は、赤色発光用ナノ結晶を含む光変換画素層(NC-Red)を備え、緑色(R)の画素部(緑色の色層部)は、緑色発光用ナノ結晶を含む光変換画素層(NC-Green)を備え、当該青色(R)の画素部(青色の色層部)は、青色発光用ナノ結晶を必要により含む光変換画素層(NC-Blue)を備えている。また、図6における光変換層8における赤色(R)の画素部、緑色(G)の画素部および青色(B)の画素部の好ましい形態は、図5で示した実施形態と同一であるためここでは省略する。 In the light conversion layer 6 in FIG. 6, the red (R) pixel portion (red color layer portion) is a light conversion pixel layer (NC-Red) containing red light emitting nanocrystals, as in the embodiment of FIG. The green (R) pixel portion (green color layer portion) includes a light conversion pixel layer (NC-Green) including a green light emitting nanocrystal, and the blue (R) pixel portion (blue color) The layer portion) includes a light conversion pixel layer (NC-Blue) that optionally includes blue light emitting nanocrystals. Further, the preferred form of the red (R) pixel portion, the green (G) pixel portion, and the blue (B) pixel portion in the light conversion layer 8 in FIG. 6 is the same as the embodiment shown in FIG. It is omitted here.
 図6に示す実施形態をVA型液晶表示素子に適用する場合、対向基板側O-SUBにおいて、液晶5と第二の偏光層8との間に電極層3’(共通電極)を設け、かつ、電極層3(画素電極)が第一の基板2上に形成されていることが好ましい。また、対向基板側(O-SUB)およびアレイ基板側(A-SUB)の少なくとも一方の液晶層と接する面には配向層4が形成されていることが好ましい。また、図6において液晶表示素子がFFS型またはIPS型である場合には、画素電極および共通電極が第一の基板2上に形成されていることが好ましい。 When the embodiment shown in FIG. 6 is applied to a VA liquid crystal display element, an electrode layer 3 ′ (common electrode) is provided between the liquid crystal 5 and the second polarizing layer 8 on the counter substrate side O-SUB, and The electrode layer 3 (pixel electrode) is preferably formed on the first substrate 2. The alignment layer 4 is preferably formed on the surface in contact with at least one liquid crystal layer on the counter substrate side (O-SUB) and the array substrate side (A-SUB). Further, in FIG. 6, when the liquid crystal display element is an FFS type or an IPS type, it is preferable that the pixel electrode and the common electrode are formed on the first substrate 2.
 次に、図7の実施態様は、光変換層6が対向基板側O-SUBに設けられ、該光変換層6及び第二の偏光層8が一対の基板(第一の基板2及び第二の基板7)の間に設けられたインセル偏光板を備える形態であって、かつ、該光変換層6を構成する赤色及び緑色の各色層部において、赤色の色層部が、赤色発光用ナノ結晶を含有する光変換画素層(NC-Red)と、赤色の色材を含む色材層(いわゆる赤色カラーフィルタ)(CF‐Red)とが積層された2層構造を有し、緑色の色層部が、緑色光を発する緑色発光用ナノ結晶を含有する光変換画素層(NC-Green)と、緑色の色材を含む色材層(いわゆる緑色カラーフィルタ)(CF‐Green)とが積層された2層構造を有するものである。 Next, in the embodiment of FIG. 7, the light conversion layer 6 is provided on the counter substrate side O-SUB, and the light conversion layer 6 and the second polarizing layer 8 are formed of a pair of substrates (the first substrate 2 and the second substrate 2). And an in-cell polarizing plate provided between the substrates 7), and in each of the red and green color layer portions constituting the light conversion layer 6, the red color layer portion is a red light emitting nano-layer. It has a two-layer structure in which a light conversion pixel layer (NC-Red) containing crystals and a color material layer (so-called red color filter) (CF-Red) containing a red color material are stacked, and the green color The layer part is composed of a light conversion pixel layer (NC-Green) containing nanocrystals for green light emission that emits green light and a color material layer (so-called green color filter) (CF-Green) containing a green color material. It has a two-layer structure.
 即ち、斯かる色層部の2層構造は、入射光(光源からの光、好ましくは青色光)の全てをナノ結晶を含有する光変換画素層で変換できない場合に、残った励起光を透過させず吸収する目的でカラーフィルタ(CFL)を積層させるものである。 That is, such a two-layer structure of the color layer portion transmits the remaining excitation light when all of the incident light (light from the light source, preferably blue light) cannot be converted by the light conversion pixel layer containing nanocrystals. A color filter (CFL) is laminated for the purpose of absorption without absorption.
 図7によれば、本発明に係る液晶表示素子の液晶パネル部において、第二の偏光層8および赤色の色層と緑色の色層と青色の色層を有する光変換層6は、バックライトユニット(光源)側の基板A-SUBと対向する基板側O-SUBに設けられている。また、図7では第二の偏光層8が一対の基板(第一の基板2、第二の基板7)の間に設けられたインセル偏光板を備える形態である。図7における実施形態は、図5の光変換層6が二層に積層された形態である。より詳細には、光変換層6は、赤色の色層部と緑色の色層部と青色の色層部とを有し、赤色(R)の画素部(赤色の色層部)は、赤色発光用ナノ結晶を含む光変換画素層(NC-Red)と赤色の色材を含む色材層(CF‐Red)との二層構造として構成される。緑色(R)の画素部(緑色の色層部)は、緑色発光用ナノ結晶を含む光変換画素層(NC-Green)と緑色の色材を含む色材層(CF‐Green)との二層構造として構成される。この場合、図7では、緑色の色層部は、励起光の透過を考慮して色補正を行うために、緑色発光用ナノ結晶を含む光変換画素層(NC-Green)と黄色の色材を含む色材層(CF‐Yellow)との組み合わせでもよい。青色(R)の画素部(青色の色層部)は、青色発光用ナノ結晶を必要により含む色層(NC-Blue)で構成される。 According to FIG. 7, in the liquid crystal panel portion of the liquid crystal display element according to the present invention, the second polarizing layer 8 and the light conversion layer 6 having a red color layer, a green color layer, and a blue color layer are provided as a backlight. It is provided on the substrate side O-SUB opposite to the unit (light source) side substrate A-SUB. In FIG. 7, the second polarizing layer 8 includes an in-cell polarizing plate provided between a pair of substrates (first substrate 2 and second substrate 7). The embodiment in FIG. 7 is a form in which the light conversion layer 6 in FIG. 5 is laminated in two layers. More specifically, the light conversion layer 6 has a red color layer portion, a green color layer portion, and a blue color layer portion, and the red (R) pixel portion (red color layer portion) is red. A light conversion pixel layer (NC-Red) including a light emitting nanocrystal and a color material layer (CF-Red) including a red color material are configured as a two-layer structure. The green (R) pixel portion (green color layer portion) includes a light conversion pixel layer (NC-Green) including a green light emitting nanocrystal and a color material layer (CF-Green) including a green color material. Configured as a layered structure. In this case, in FIG. 7, the green color layer portion includes a light conversion pixel layer (NC-Green) including a green light emitting nanocrystal and a yellow color material in order to perform color correction in consideration of transmission of excitation light. It may be combined with a color material layer (CF-Yellow) containing The blue (R) pixel portion (blue color layer portion) is composed of a color layer (NC-Blue) that optionally includes blue light emitting nanocrystals.
 図7における光変換層6における赤色発光用ナノ結晶を含む光変換画素層(NC-Red)、緑色発光用ナノ結晶を含む光変換画素層(NC-Green)および青色発光用ナノ結晶を必要により含む色層(NC-Blue)の好ましい形態は、図5で示した実施形態と同一であるためここでは省略する。なお、図7でも、赤色の色層部と緑色の色層部と青色の色層部はそれぞれ接しているように示されているが、混色を防止するために、それぞれの間に遮光層としてブラックマトリックスを配置してもよい。 If necessary, a light conversion pixel layer (NC-Red) including a red light emitting nanocrystal, a light conversion pixel layer (NC-Green) including a green light emitting nanocrystal, and a blue light emitting nanocrystal in the light conversion layer 6 in FIG. A preferable form of the color layer (NC-Blue) to be included is the same as that of the embodiment shown in FIG. In FIG. 7, the red color layer portion, the green color layer portion, and the blue color layer portion are shown as being in contact with each other, but in order to prevent color mixing, a light shielding layer is provided between them. A black matrix may be arranged.
 また、使用する発光素子として青色LEDなど使用する場合には、図7の光変換層6と第二の偏光層8との間に、青色の色材を含む色材層(いわゆる青色カラーフィルタ)をそれらの間に一面に設けることが外部からの不要光の侵入を防ぎ、画質低下を抑制できる点から好ましい。斯かる2層構造の光変換層6と青色カラーフィルタとを必須の構成要素とする層構造は、例えば図22で示される構造が挙げられる。 When a blue LED or the like is used as the light emitting element to be used, a color material layer containing a blue color material (so-called blue color filter) between the light conversion layer 6 and the second polarizing layer 8 in FIG. Is preferably provided between them in order to prevent intrusion of unnecessary light from the outside and suppress deterioration in image quality. An example of a layer structure having such a two-layer light conversion layer 6 and a blue color filter as essential components is the structure shown in FIG.
 図7に示す実施形態をVA型液晶表示素子に適用する場合、対向する基板側O-SUBにおいて、液晶5と第二の偏光層8との間に電極層3’(共通電極)を設け、かつ、電極層3(画素電極)が第一の基板2上に形成されていることが好ましい。また、図7において液晶表示素子がFFS型またはIPS型である場合には、画素電極および共通電極が第一の基板2上に形成されていることが好ましい。また、VA型、FFS型またはIPS型液晶表示素子において、対向基板側(O-SUB)およびアレイ基板側(A-SUB)の少なくとも一方の液晶層と接する面には配向層4が形成されていることが好ましい。 When the embodiment shown in FIG. 7 is applied to a VA liquid crystal display element, an electrode layer 3 ′ (common electrode) is provided between the liquid crystal 5 and the second polarizing layer 8 on the opposite substrate side O-SUB, The electrode layer 3 (pixel electrode) is preferably formed on the first substrate 2. Further, in FIG. 7, when the liquid crystal display element is an FFS type or an IPS type, it is preferable that the pixel electrode and the common electrode are formed on the first substrate 2. In the VA-type, FFS-type, or IPS-type liquid crystal display element, an alignment layer 4 is formed on a surface in contact with at least one liquid crystal layer on the counter substrate side (O-SUB) and the array substrate side (A-SUB). Preferably it is.
 次に、図8の実施形態は、第二の偏光層8が一対の基板(第一の基板2、第二の基板7)の間に設けられたインセル偏光板を備えた形態であり、発光用ナノ結晶を含む層とカラーフィルタとが積層された二層の光変換層6を持つものである。具体的には、光変換層6は、赤色(R)の画素部(赤色の色層部)が、発光用ナノ結晶を含む層(NCL)と赤色の色材を含む色材層との二層構造で構成され、緑色(R)の画素部(緑色の色層部)が、発光用ナノ結晶を含む層(NC)と緑色の色材を含む色材層との二層構造で構成され、かつ、青色(R)の画素部(青色の色層部)は、発光用ナノ結晶を含む層(NC)と青色の色材を含む色材層との二層構造で構成されている。 Next, the embodiment of FIG. 8 is a mode in which the second polarizing layer 8 includes an in-cell polarizing plate provided between a pair of substrates (first substrate 2 and second substrate 7). It has a two-layer light conversion layer 6 in which a layer containing nanocrystals and a color filter are laminated. Specifically, the light conversion layer 6 includes a red (R) pixel portion (red color layer portion) of a layer (NCL) including a light emitting nanocrystal and a color material layer including a red color material. It is composed of a layer structure, and the green (R) pixel portion (green color layer portion) is composed of a two-layer structure of a layer (NC) containing a light emitting nanocrystal and a color material layer containing a green color material. The blue (R) pixel portion (blue color layer portion) has a two-layer structure of a layer (NC) containing nanocrystals for light emission and a color material layer containing a blue color material.
 この場合、発光用ナノ結晶NCを含む層における発光用ナノ結晶は、入射光(光源からの光、好ましくは青色光)を吸収して青色光を発する青色発光用ナノ結晶、入射光(光源からの光、好ましくは青色光)を吸収して緑色光を発する緑色発光用ナノ結晶および入射光(光源からの光、好ましくは青色光)を吸収して赤色光を発する赤色発光用ナノ結晶からなる群から選択される1種または2種を含むことが好ましい。なお、本実施形態においても各色層の間の混色を防ぐ目的でブラックマトリックスを設けてもよい。 In this case, the light-emitting nanocrystal in the layer including the light-emitting nanocrystal NC absorbs incident light (light from the light source, preferably blue light) and emits blue light, and incident light (from the light source). Of light emission, preferably blue light) and emits green light, and green light emission nanocrystals that emit incident light (light from a light source, preferably blue light) and emit red light. It is preferable that 1 type or 2 types selected from a group are included. In the present embodiment, a black matrix may be provided for the purpose of preventing color mixing between the color layers.
 また、図8の実施形態では、青色カラーフィルタを光変換層6の液晶層側に隣接するように一面に設けることが不要光の侵入を防ぎ、画質低下を抑制できる点から好ましい。斯かる青色カラーフィルターを配設した構造は図9で示すことができる。 Further, in the embodiment of FIG. 8, it is preferable that a blue color filter is provided on one side so as to be adjacent to the liquid crystal layer side of the light conversion layer 6 from the viewpoint that unnecessary light can be prevented from entering and image quality deterioration can be suppressed. A structure in which such a blue color filter is arranged can be shown in FIG.
 図8又は図9に示す実施形態をVA型液晶表示素子に適用する場合、対向基板側O-SUBにおいて、液晶5と第二の偏光層8との間に電極層3’(共通電極)を設け、かつ、電極層3(画素電極)が第一の表示基板SUB1上に形成されていることが好ましい。また、対向基板側(O-SUB)およびアレイ基板側(A-SUB)の少なくとも一方の液晶層と接する面には配向層4が形成されていることが好ましい。また、図8において液晶表示素子がFFS型またはIPS型である場合には、画素電極および共通電極が第一の表示基板SUB1上に形成されていることが好ましい。 When the embodiment shown in FIG. 8 or FIG. 9 is applied to a VA liquid crystal display element, an electrode layer 3 ′ (common electrode) is provided between the liquid crystal 5 and the second polarizing layer 8 in the counter substrate side O-SUB. Preferably, the electrode layer 3 (pixel electrode) is provided on the first display substrate SUB1. The alignment layer 4 is preferably formed on the surface in contact with at least one liquid crystal layer on the counter substrate side (O-SUB) and the array substrate side (A-SUB). In FIG. 8, when the liquid crystal display element is an FFS type or IPS type, it is preferable that the pixel electrode and the common electrode are formed on the first display substrate SUB1.
 以上詳述した図5~9に示す実施形態では、短波長の可視光線や紫外光といった高エネルギー光線の光源を用いた光を、光スイッチとして機能する液晶層および偏光層を介して、光変換層に含まれる発光用ナノ結晶が吸収し、当該吸収した光を当該発光用ナノ結晶により特定の波長の光に変換して発光することにより色を表示する。 In the embodiment shown in FIGS. 5 to 9 described in detail above, light using a high energy light source such as short wavelength visible light or ultraviolet light is converted into light through a liquid crystal layer and a polarizing layer functioning as an optical switch. The light-emitting nanocrystal contained in the layer absorbs the light, and the absorbed light is converted into light of a specific wavelength by the light-emitting nanocrystal to emit light, thereby displaying a color.
 次に、図10の実施形態は、光変換層6がアレイ基板側(A-SUB)側に設けられ、また、第二の偏光層8が、第二の基板7の外側に設けられ、さらに、第一の偏光層1が一対の基板(第一の基板2、第二の基板7)の間に設けられたインセル偏光板を備える、カラーフィルターオンアレイ型の液晶パネルである。 Next, in the embodiment of FIG. 10, the light conversion layer 6 is provided on the array substrate side (A-SUB) side, and the second polarizing layer 8 is provided outside the second substrate 7, The first polarizing layer 1 is a color filter on array type liquid crystal panel including an in-cell polarizing plate provided between a pair of substrates (first substrate 2 and second substrate 7).
 図10に示す実施形態をVA型液晶表示素子に適用する場合、対向する基板側O-SUBにおいて、液晶5と第二の基板7との間に電極層3’(共通電極)を設け、かつ、電極層3(画素電極)が第一の基板2上に形成されていることが好ましい。 When the embodiment shown in FIG. 10 is applied to a VA liquid crystal display element, an electrode layer 3 ′ (common electrode) is provided between the liquid crystal 5 and the second substrate 7 on the opposite substrate side O-SUB, and The electrode layer 3 (pixel electrode) is preferably formed on the first substrate 2.
 例えば、第一の基板2と光変換層6との間、第一の偏光層1と光変換層6との間または第一の偏光層1と液晶層5との間に画素電極3が形成されていることが好ましい。 For example, the pixel electrode 3 is formed between the first substrate 2 and the light conversion layer 6, between the first polarizing layer 1 and the light conversion layer 6, or between the first polarizing layer 1 and the liquid crystal layer 5. It is preferable that
 また、対向基板側(O-SUB)およびアレイ基板側(A-SUB)の少なくとも一方の液晶層と接する面には配向層4が形成されていることが好ましい。 Further, it is preferable that an alignment layer 4 is formed on the surface in contact with at least one liquid crystal layer on the counter substrate side (O-SUB) and the array substrate side (A-SUB).
 また、図10において液晶表示素子がFFS型またはIPS型である場合には、画素電極および共通電極が第一の基板2上、例えば、第一の基板2と光変換層6との間、第一の偏光層1と光変換層6との間または第一の偏光層1と液晶層5との間に形成されていることが好ましい。また、光変換層6と第一の基板2との間には、青色カラーフィルタをそれらの間に一面に設けることが不要光の侵入を防ぎ、画質低下を抑制できる点から好ましい。また、入射光が青色光である場合には、青色を表示する色層は青色発光用ナノ結晶を用いなくともよく、この場合、透明樹脂や青色の色材を含む色層(いわゆる青色カラーフィルタ)などによって構成することができる。 In addition, in FIG. 10, when the liquid crystal display element is an FFS type or an IPS type, the pixel electrode and the common electrode are arranged on the first substrate 2, for example, between the first substrate 2 and the light conversion layer 6, It is preferably formed between the one polarizing layer 1 and the light conversion layer 6 or between the first polarizing layer 1 and the liquid crystal layer 5. In addition, it is preferable that a blue color filter is provided between the light conversion layer 6 and the first substrate 2 so as to prevent unnecessary light from entering and suppress deterioration in image quality. Further, when the incident light is blue light, the color layer for displaying blue does not have to use a nanocrystal for blue light emission. In this case, a color layer containing a transparent resin or a blue color material (so-called blue color filter). ) Or the like.
 図11に示す実施形態は、光変換層6がバックライトユニット(光源)側のアレイ基板(A-SUB)側に設けられ、かつ、第一の偏光層1および第二の偏光層8が一対の基板(第一の基板2、第二の基板7)の間の外側に設けられた形態である。そのため、第一の偏光層1および光変換層6を支持する支持基板9が第一の基板2より光源部(バックライトユニット)側に設けられている。 In the embodiment shown in FIG. 11, the light conversion layer 6 is provided on the array substrate (A-SUB) side on the backlight unit (light source) side, and the first polarizing layer 1 and the second polarizing layer 8 are a pair. It is the form provided in the outer side between the board | substrates (the 1st board | substrate 2 and the 2nd board | substrate 7). Therefore, a support substrate 9 that supports the first polarizing layer 1 and the light conversion layer 6 is provided closer to the light source unit (backlight unit) than the first substrate 2.
 図11に示す実施形態をVA型液晶表示素子に適用する場合、対向する基板側O-SUBにおいて、液晶5と第二の基板7との間に電極層3’(共通電極)を設け、かつ、電極層3(画素電極)が第一の基板2上に形成されていることが好ましい。例えば、第一の基板2と液晶層5との間に共通電極3’が形成されていることが好ましい。また、対向基板側(O-SUB)およびアレイ基板側(A-SUB)の少なくとも一方の液晶層と接する面には配向層4が形成されていることが好ましい。また、図11において液晶表示素子がFFS型またはIPS型である場合には、画素電極および共通電極が第一の基板2上、例えば、第一の基板2と液晶層5との間に画素電極および共通電極が形成されていることが好ましい。また、光変換層6と支持基板9との間には、青色カラーフィルタをそれらの間に一面に設けることが不要光の侵入を防ぎ、画質低下を抑制できる点から好ましい。また、入射光が青色光である場合には、青色を表示する色層は青色発光用ナノ結晶を用いなくともよく、この場合、透明樹脂や青色の色材を含む色材層(いわゆる青色カラーフィルタ)などによって構成することができる。 When the embodiment shown in FIG. 11 is applied to a VA type liquid crystal display element, an electrode layer 3 ′ (common electrode) is provided between the liquid crystal 5 and the second substrate 7 on the opposite substrate side O-SUB, and The electrode layer 3 (pixel electrode) is preferably formed on the first substrate 2. For example, a common electrode 3 ′ is preferably formed between the first substrate 2 and the liquid crystal layer 5. The alignment layer 4 is preferably formed on the surface in contact with at least one liquid crystal layer on the counter substrate side (O-SUB) and the array substrate side (A-SUB). 11, when the liquid crystal display element is an FFS type or an IPS type, the pixel electrode and the common electrode are arranged on the first substrate 2, for example, between the first substrate 2 and the liquid crystal layer 5. It is preferable that a common electrode is formed. In addition, it is preferable to provide a blue color filter between the light conversion layer 6 and the support substrate 9 so as to prevent unnecessary light from entering and suppress deterioration in image quality. In addition, when the incident light is blue light, the color layer for displaying blue does not have to use a blue light emitting nanocrystal. In this case, a color material layer containing a transparent resin or a blue color material (so-called blue color) Filter) or the like.
 以上詳述した通り、図10~11に示す実施形態では、短波長の可視光線や紫外光といった高エネルギー光線の光源を用いた光のうち、光変換層に含まれる発光用ナノ結晶で吸収されなかった光、特に青色の色層部を通過した光が光スイッチとして機能する液晶層を介して、色を表示するものである。 As described in detail above, in the embodiments shown in FIGS. 10 to 11, light emitted from a nanocrystal for light emission contained in the light conversion layer out of light using a high-energy light source such as short-wavelength visible light or ultraviolet light is absorbed. The light that has not passed, particularly the light that has passed through the blue color layer, displays the color through a liquid crystal layer that functions as an optical switch.
 以上の図5~図11の各実施態様の中でも、特に、図5~図9で示される、光変換層6を、バックライトユニット(光源)側の基板A-SUBと対向する基板側O-SUB側に設けられた構造のものが、高エネルギー光線の照射による液晶層の劣化を抑制または防止できる、という本発明の効果が顕著に現れるものとなる点から好ましい。 Among the embodiments shown in FIGS. 5 to 11, in particular, the light conversion layer 6 shown in FIGS. 5 to 9 is placed on the substrate side O− facing the substrate A-SUB on the backlight unit (light source) side. The structure provided on the SUB side is preferable in that the effect of the present invention that the deterioration of the liquid crystal layer due to irradiation with high-energy rays can be suppressed or prevented is significantly exhibited.
 次に、本発明の液晶表示素子における主たる構成要素である、光変換層、カラーフィルタ、液晶層、配向層、光源部、光源部、偏光層、基板につき詳述する。 Next, a light conversion layer, a color filter, a liquid crystal layer, an alignment layer, a light source part, a light source part, a polarizing layer, and a substrate, which are main components in the liquid crystal display element of the present invention, will be described in detail.
 [光変換層]
 本発明の液晶表示素子における光変換層は、その画素部を構成要素は、発光用ナノ結晶を必須成分として含み、樹脂成分、その他必要により当該発光用ナノ結晶に対して親和性のある分子、公知の添加剤、その他色材を含有してもよいものである。また、前記した通り、各色層の境界部分にはブラックマトリックスを有することがコントラストの点から好ましい。
[Light conversion layer]
The light conversion layer in the liquid crystal display element of the present invention has a pixel portion that includes a light-emitting nanocrystal as an essential component, a resin component, and other molecules having an affinity for the light-emitting nanocrystal if necessary, It may contain known additives and other coloring materials. Further, as described above, it is preferable from the viewpoint of contrast that a black matrix is provided at the boundary between the color layers.
 (発光用ナノ結晶)
 前記光変換層を構成する発光用ナノ結晶は、好ましくは100nm以下の少なくとも1つの長さを有する、粒子を指す。ナノ結晶の形状は、任意の幾何学的形状を有してもよく、対称または不対称であってよい。当該ナノ結晶の形状の具体例としては、細長、ロッド状の形状、円形(球状)、楕円形、角錐の形状、ディスク状、枝状、網状または任意の不規則な形状等を含む。一部の実施形態では、ナノ結晶は、量子ドットまたは量子ロッドであることが好ましい。
(Nanocrystals for light emission)
The light-emitting nanocrystal constituting the light conversion layer preferably refers to a particle having at least one length of 100 nm or less. The shape of the nanocrystal may have any geometric shape and may be symmetric or asymmetric. Specific examples of the shape of the nanocrystal include an elongated shape, a rod shape, a circle shape (spherical shape), an ellipse shape, a pyramid shape, a disk shape, a branch shape, a net shape, or any irregular shape. In some embodiments, the nanocrystals are preferably quantum dots or quantum rods.
 当該発光用ナノ結晶は、少なくとも1種の第一の半導体材料を含むコアと、前記コアを被覆し、かつ前記コアと同一または異なる第二の半導体材料を含むシェルとを有することが好ましい。 The light-emitting nanocrystal preferably has a core including at least one first semiconductor material and a shell that covers the core and includes a second semiconductor material that is the same as or different from the core.
 そのため、発光用ナノ結晶は、少なくとも第一半導体材料を含むコアと、第二半導体材料を含むシェルからなり、前記第一半導体材料と、前記第二半導体材料とは同じでも異なっていても良い。また、コアおよび/またはシェル共に第一半導体および/または第二半導体以外の第三の半導体材料を含んでも良い。なお、ここでいうコアを被覆とは、コアの少なくとも一部を被覆していればよい。 Therefore, the light-emitting nanocrystal includes at least a core including the first semiconductor material and a shell including the second semiconductor material, and the first semiconductor material and the second semiconductor material may be the same or different. Further, the core and / or the shell may contain a third semiconductor material other than the first semiconductor and / or the second semiconductor. In addition, what is necessary is just to coat | cover at least one part of a core with the core covering here.
 さらに、当該発光用ナノ結晶は、少なくとも1種の第一の半導体材料を含むコアと、前記コアを被覆し、かつ前記コアと同一または異なる第二の半導体材料を含む第一のシェルと、必要により、前記第一のシェルを被覆し、かつ前記第一のシェルと同一または異なる第三の半導体材料を含む第二のシェルと、を有することが好ましい。 The light-emitting nanocrystal further includes a core including at least one first semiconductor material, a first shell covering the core and including a second semiconductor material that is the same as or different from the core, and It is preferable to have a second shell that covers the first shell and includes a third semiconductor material that is the same as or different from the first shell.
 したがって、本発明に係る発光用ナノ結晶は、第一の半導体材料を含むコアおよび前記コアを被覆し、かつ前記コアと同一の第二の半導体材料を含むシェルを有する形態、すなわち1種類又は2種以上の半導体材料から構成される態様(=コアのみの構造(コア構造とも称する))と、第一の半導体材料を含むコアおよび前記コアを被覆し、かつ前記コアと異なる第二の半導体材料を含むシェルを有する形態等の、すなわちコア/シェル構造と、第一の半導体材料を含むコアおよび前記コアを被覆し、かつ前記コアと異なる第二の半導体材料を含む第一のシェルと、前記第一のシェルを被覆し、かつ前記第一のシェルと異なる第三の半導体材料を含む第二のシェルを有する形態の、すなわちコア/シェル/シェル構造との3つの構造のうち少なくとも一つを有することが好ましい。 Therefore, the nanocrystal for light emission according to the present invention has a form having a core containing a first semiconductor material and a shell covering the core and containing the same second semiconductor material as the core, that is, one type or two An embodiment composed of more than one kind of semiconductor material (= core-only structure (also referred to as core structure)), a core containing a first semiconductor material, and a second semiconductor material that covers the core and is different from the core Including a core / shell structure, a core including a first semiconductor material, and a first shell covering the core and including a second semiconductor material different from the core; Of the three structures of a core / shell / shell structure in a form having a second shell covering the first shell and containing a third semiconductor material different from the first shell It is preferred to have one even without.
 また、本発明に係る発光用ナノ結晶は、上記の通り、コア構造、コア/シェル構造、コア/シェル/シェル構造の3つの形態を含むことが好ましく、この場合、コアは2種以上の半導体材料を含む混晶であってもよい(例えば、CdSe+CdS、CIS+ZnS等)。またさらに、シェルも同様に2種以上の半導体材料を含む混晶であってもよい。 Further, as described above, the light-emitting nanocrystal according to the present invention preferably includes three forms of a core structure, a core / shell structure, and a core / shell / shell structure. In this case, the core has two or more kinds of semiconductors. A mixed crystal containing a material may be used (for example, CdSe + CdS, CIS + ZnS, etc.). Furthermore, the shell may also be a mixed crystal containing two or more semiconductor materials.
 本発明に係る光変換層において、発光用ナノ結晶は、当該発光用ナノ結晶に対して親和性のある分子が発光用ナノ結晶と接触していてもよい。 In the light conversion layer according to the present invention, in the light emitting nanocrystal, a molecule having an affinity for the light emitting nanocrystal may be in contact with the light emitting nanocrystal.
 上記親和性のある分子とは、発光用ナノ結晶に対して親和性のある官能基を有する低分子および高分子であり、親和性のある官能基としては特に限定されるものでは無いが、窒素、酸素、硫黄およびリンからなる群から選択される1種の元素を含む基である事が好ましい。例えば、有機系硫黄基、有機系リン酸基ピロリドン基、ピリジン基、アミノ基、アミド基、イソシアネート基、カルボニル基、および水酸基等を挙げる事が出来る。 The above-mentioned molecules having affinity are low molecules and polymers having a functional group having affinity for the nanocrystals for light emission, and the functional group having affinity is not particularly limited. And a group containing one element selected from the group consisting of oxygen, sulfur and phosphorus. Examples include organic sulfur groups, organic phosphate groups pyrrolidone groups, pyridine groups, amino groups, amide groups, isocyanate groups, carbonyl groups, and hydroxyl groups.
 本発明に係る半導体材料は、II-VI族半導体、III-V族半導体、I-III-VI族半導体、IV族半導体及びI-II-IV-VI族半導体からなる群から選択される1種又は2種以上であることが好ましい。本発明に係る第一の半導体材料、第一の半導体材料および第三の半導体材料の好ましい例は、上記の半導体材料と同様である。 The semiconductor material according to the present invention is one selected from the group consisting of II-VI group semiconductors, III-V group semiconductors, I-III-VI group semiconductors, IV group semiconductors, and I-II-IV-VI group semiconductors. Or it is preferable that they are 2 or more types. Preferable examples of the first semiconductor material, the first semiconductor material, and the third semiconductor material according to the present invention are the same as the semiconductor materials described above.
 本発明に係る半導体材料は、具体的には、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、InP、InAs、InSb、GaP、GaAs、GaSb、AgInS、AgInSe、AgInTe、AgGaS、AgGaSe、AgGaTe、CuInS、CuInSe、CuInTe、CuGaS、CuGaSe、CuGaTe、Si、C、Ge、CuZnSnSから少なくとも1つ以上選ばれ、2つ以上が混合されていても良い。 Specifically, the semiconductor material according to the present invention includes CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, InP, InAs, InSb, GaP, GaAs, GaSb, AgInS 2 , AgInSe 2. , AgInTe 2 , AgGaS 2 , AgGaSe 2 , AgGaTe 2 , CuInS 2 , CuInSe 2 , CuInTe 2 , CuGaS 2 , CuGaSe 2 , CuGaTe 2 , Si, C, Ge, Cu 2 ZnSnS 4 Two or more may be mixed.
 本発明に係る発光用ナノ結晶は、赤色発光用ナノ結晶を、緑色発光用ナノ結晶を、及び青色発光用ナノ結晶からなる群から選択される少なくとも1種のナノ結晶を含むことが好ましい。一般に、発光用ナノ結晶の発光色は、井戸型ポテンシャルモデルのシュレディンガー波動方程式の解によれば粒子径に依存するが、発光用ナノ結晶が有するエネルギーギャップにも依存するため、使用する発光用ナノ結晶とその粒子径を調整することにより、発光色を選択する。 The luminescent nanocrystal according to the present invention preferably includes at least one nanocrystal selected from the group consisting of a red luminescent nanocrystal, a green luminescent nanocrystal, and a blue luminescent nanocrystal. In general, the emission color of a light-emitting nanocrystal depends on the particle size according to the Schrodinger wave equation of the well-type potential model, but also depends on the energy gap of the light-emitting nanocrystal. The emission color is selected by adjusting the crystal and its particle size.
 本発明において赤色光を発光する赤色発光用ナノ結晶に使用される半導体材料は、発光のピーク波長が635nm±30nmの範囲に入っている事が望ましい。同じく、緑色光を発光する緑色発光用ナノ結晶に使用される半導体材料は、発光のピーク波長が530nm±30nmの範囲に入っている事が望ましく、青色光を発光する青色発光用ナノ結晶に使用される半導体材料は、発光のピーク波長が450nm±30nmの範囲に入っている事が望ましい。 In the present invention, it is desirable that the semiconductor material used for the red light emitting nanocrystal emitting red light has a peak wavelength of light emission in the range of 635 nm ± 30 nm. Similarly, the semiconductor material used for the green light emitting nanocrystal that emits green light preferably has a light emission peak wavelength in the range of 530 nm ± 30 nm, and is used for the blue light emitting nanocrystal that emits blue light. The semiconductor material to be used preferably has a light emission peak wavelength in the range of 450 nm ± 30 nm.
 本発明に係る発光用ナノ結晶の蛍光量子収率の下限値は、40%以上、30%以上、20%以上、10%以上の順で好ましい。 The lower limit of the fluorescence quantum yield of the luminescent nanocrystal according to the present invention is preferably in the order of 40% or more, 30% or more, 20% or more, 10% or more.
 本発明に係る発光用ナノ結晶の蛍光スペクトルの半値幅の上限値は、60nm以下、55nm以下、50nm以下、45nm以下の順で好ましい。 The upper limit of the half-value width of the fluorescence spectrum of the luminescent nanocrystal according to the present invention is preferably in the order of 60 nm or less, 55 nm or less, 50 nm or less, and 45 nm or less.
 本発明に係る赤色発光用ナノ結晶の粒子径(1次粒子)の上限値は、50nm以下、40nm以下、30nm以下、20nm以下の順で好ましい。 The upper limit of the particle diameter (primary particle) of the red light emitting nanocrystal according to the present invention is preferably in the order of 50 nm or less, 40 nm or less, 30 nm or less, and 20 nm or less.
 本発明に係る赤色発光用ナノ結晶のピーク波長の上限値は665nm、下限値は605nmであり、このピーク波長に合う様に化合物およびその粒径を選択する。同じく、緑色発光用ナノ結晶のピーク波長の上限値は560nm、下限値は500nm、青色発光用ナノ結晶のピーク波長の上限値は420nm、下限値は480nmであり、それぞれこのピーク波長に合う様に化合物およびその粒径を選択する。 The upper limit value of the peak wavelength of the nanocrystal for red light emission according to the present invention is 665 nm, and the lower limit value is 605 nm, and the compound and its particle size are selected so as to match this peak wavelength. Similarly, the upper limit value of the peak wavelength of the green light emitting nanocrystal is 560 nm, the lower limit value is 500 nm, the upper limit value of the peak wavelength of the blue light emitting nanocrystal is 420 nm, and the lower limit value is 480 nm. Select the compound and its particle size.
 本発明に係る液晶表示素子は、少なくとも1つの画素を備える。当該画素を構成する色は、近接する3つの画素により得られ、各画素は、赤色(例えば、CdSeの発光用ナノ結晶、CdSeのロッド状発光用ナノ結晶、コアシェル構造を備えたロッド状発光用ナノ結晶であり、当該シェル部分がCdSであって内側のコア部がCdSe、コアシェル構造を備えたロッド状発光用ナノ結晶であり、当該シェル部分がCdSであって内側のコア部がZnSe、コアシェル構造を備えた発光用ナノ結晶であり、当該シェル部分がCdSであって内側のコア部がCdSe、コアシェル構造を備えた発光用ナノ結晶であり、当該シェル部分がCdSであって内側のコア部がZnSe、CdSeとZnSとの混晶の発光用ナノ結晶、CdSeとZnSとの混晶のロッド状発光用ナノ結晶、InPの発光用ナノ結晶、InPの発光用ナノ結晶、InPのロッド状発光用ナノ結晶、CdSeとCdSとの混晶の発光用ナノ結晶、CdSeとCdSとの混晶のロッド状発光用ナノ結晶、ZnSeとCdSとの混晶の発光用ナノ結晶、ZnSeとCdSとの混晶のロッド状発光用ナノ結晶など)、緑色(CdSeの発光用ナノ結晶、CdSeのロッド状の発光用ナノ結晶、CdSeとZnSとの混晶の発光用ナノ結晶、CdSeとZnSとの混晶のロッド状発光用ナノ結晶など)および青色(ZnSeの発光用ナノ結晶、ZnSeのロッド状発光用ナノ結晶、ZnSの発光用ナノ結晶、ZnSのロッド状発光用ナノ結晶、コアシェル構造を備えた発光用ナノ結晶であり、当該シェル部分がZnSeであって内側のコア部がZnS、コアシェル構造を備えたロッド状発光用ナノ結晶であり、当該シェル部分がZnSeであって内側のコア部がZnS、CdSの発光用ナノ結晶、CdSのロッド状発光用ナノ結晶)で発光する異なるナノ結晶を含む。他の色(例えば、黄色)についても、必要に応じて光変換層に含有してもよく、さらには近接する4画素以上の異なる色を使用してもよい。 The liquid crystal display element according to the present invention includes at least one pixel. The color constituting the pixel is obtained by three adjacent pixels, and each pixel is red (for example, CdSe light-emitting nanocrystal, CdSe rod-shaped light-emitting nanocrystal, and rod-shaped light-emitting device having a core-shell structure) It is a nanocrystal, the shell portion is CdS, the inner core portion is CdSe, and a rod-shaped light emitting nanocrystal having a core-shell structure. The shell portion is CdS, the inner core portion is ZnSe, and the core shell. A light-emitting nanocrystal having a structure, wherein the shell portion is CdS, an inner core portion is CdSe, and a light-emitting nanocrystal having a core-shell structure is formed, and the shell portion is CdS and an inner core portion ZnSe, mixed crystal luminescent nanocrystals of CdSe and ZnS, mixed crystal rod-shaped luminescent nanocrystals of CdSe and ZnS, InP luminescent nanocrystals, I P light-emitting nanocrystals, InP rod-shaped light-emitting nanocrystals, CdSe and CdS mixed crystal light-emitting nanocrystals, CdSe and CdS mixed crystal rod-shaped light-emitting nanocrystals, ZnSe and CdS mixed Luminescent nanocrystals, ZnSe and CdS mixed crystal rod-shaped luminescent nanocrystals, etc.), green (CdSe luminescent nanocrystals, CdSe rod-shaped luminescent nanocrystals, CdSe and ZnS mixed crystals) Luminescent nanocrystals, mixed crystal rod-like luminescent nanocrystals of CdSe and ZnS, etc. and blue (ZnSe luminescent nanocrystals, ZnSe luminescent nanocrystals, ZnS luminescent nanocrystals, ZnS luminescent nanocrystals) Rod-shaped nanocrystal for light emission, light-emitting nanocrystal having a core-shell structure, the shell portion is ZnSe, the inner core portion is ZnS, and the rod-shaped light-emitting nanocrystal having a core-shell structure A use nanocrystals comprises a core portion inside of the shell portion is a ZnSe is ZnS, light emitting nanocrystals CdS, different nanocrystals that emit in the CdS rod light emitting nanocrystals). Other colors (for example, yellow) may be contained in the light conversion layer as necessary, and different colors of four or more adjacent pixels may be used.
 本発明に係る発光用ナノ結晶の平均粒子径(1次粒子)はTEM観察によって測定できる。一般的に、ナノ結晶の平均粒子径の測定方法としては、光散乱法、溶媒を用いた沈降式粒度測定法、電子顕微鏡により粒子を直接観察して平均粒子径を実測する方法が挙げられる。発光用ナノ結晶は水分などにより劣化しやすいため、本発明では、透過型電子顕微鏡(TEM)または走査型電子顕微鏡(SEM)により任意の複数個の結晶を直接観察し、投影二次元映像よる長短径比からそれぞれの粒子径を算出し、その平均を求める方法が好適である。そのため、本発明では上記方法を適用して平均粒子径を算出している。発光用ナノ結晶の1次粒子とは、構成する数~数十nmの大きさの単結晶またはそれに近い結晶子のことであり、発光用ナノ結晶の一次粒子の大きさや形は、当該一次粒子の化学組成、構造、製造方法や製造条件などによって依存すると考えられる。 The average particle size (primary particles) of the luminescent nanocrystal according to the present invention can be measured by TEM observation. In general, examples of the method for measuring the average particle size of nanocrystals include a light scattering method, a sedimentation type particle size measurement method using a solvent, and a method of actually observing particles with an electron microscope and measuring the average particle size. In the present invention, any number of crystals are directly observed with a transmission electron microscope (TEM) or a scanning electron microscope (SEM), and the length of the nanocrystals for light emission is reduced by projection two-dimensional images. A method is preferred in which the particle diameters are calculated from the diameter ratio and the average is obtained. Therefore, in the present invention, the average particle diameter is calculated by applying the above method. The primary particle of the light emitting nanocrystal is a single crystal having a size of several to several tens of nanometers or a crystallite close thereto, and the size and shape of the primary particle of the light emitting nanocrystal is the primary particle. It is considered that it depends on the chemical composition, structure, manufacturing method and manufacturing conditions.
 本発明における光変換層は、上記で示した発光用ナノ結晶に加え、該発光用ナノ結晶を適度分散安定化させる樹脂成分を含むことが好ましい。 The light conversion layer in the present invention preferably contains a resin component for appropriately dispersing and stabilizing the light-emitting nanocrystals in addition to the light-emitting nanocrystals described above.
 斯かる樹脂成分は、該光変換層が主にフォトリソグラフィー法にて製造されることから、光重合性化合部物の重合体であって、かつ、アルカリ現像可能なものが好ましく、具体的には、例えば、1,6-ヘキサンジオールジアクリレート、エチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、トリエチレングリコールジアクリレート、ビス(アクリロキシエトキシ)ビスフェノールA、3-メチルペンタンジオールジアクリレート等のような2官能モノマーの重合体:トリメチルロールプロパトントリアクリレート、ペンタエリスリトールトリアクリレート、トリス〔2-(メタ)アクリロイルオキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタアクリレート等の比較的分子量の小さな多官能モノマーの重合体、ポリエステルアクリレート、ポリウレタンアクリレート、ポリエーテルアクリレート等の様な比較的分子量の大きな多官能モノマーの重合体が挙げられる。 Such a resin component is preferably a polymer of a photopolymerizable compound and alkali-developable, since the light conversion layer is mainly produced by a photolithography method. Such as 1,6-hexanediol diacrylate, ethylene glycol diacrylate, neopentyl glycol diacrylate, triethylene glycol diacrylate, bis (acryloxyethoxy) bisphenol A, 3-methylpentanediol diacrylate, etc. Polymer of bifunctional monomer: trimethylol propaton triacrylate, pentaerythritol triacrylate, tris [2- (meth) acryloyloxyethyl) isocyanurate, dipentaerythritol hexaacrylate, dipentaerythritol pentaacyl Polymers of relatively low molecular weight small polyfunctional monomers rate, etc., polyester acrylate, polyurethane acrylate, a polymer of a large multi-functional monomer of relatively low molecular weight such as polyether acrylate.
 また、これらの重合体と共に、一部熱可塑性樹脂を併用してもよく、該熱可塑性樹脂としては、例えば、ウレタン系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、スチレンマレイン酸系樹脂、スチレン無水マレイン酸系樹脂等が挙げられる。 In addition, some thermoplastic resins may be used in combination with these polymers. Examples of the thermoplastic resins include urethane resins, acrylic resins, polyamide resins, polyimide resins, and styrene maleic acid resins. And styrene maleic anhydride resin.
 さらに、本発明に係る光変換層において、必要により、上記透明樹脂、上記発光用ナノ結晶の他に、重合開始剤、触媒、アルミナ、シリカ、酸化チタンビーズ、ゼオライトまたはジルコニアなどの散乱剤といった、公知の添加剤を含んでもよい。 Furthermore, in the light conversion layer according to the present invention, if necessary, in addition to the transparent resin and the luminescent nanocrystal, a polymerization initiator, a catalyst, alumina, silica, titanium oxide beads, a scattering agent such as zeolite or zirconia, Known additives may be included.
 本発明における光変換層において、透明樹脂に対する発光用ナノ結晶の含有量の上限は、透明樹脂100質量部に対して、80質量部、70質量部、60質量部、50質量部、が好ましい。一方、下限は透明樹脂100質量部に対して、1.0質量部、3.0質量部、5.0質量部、10.0質量部が好ましい。光変換層に複数種の発光用ナノ結晶が含まれる場合において、上記含有量は合計量を表す。 In the light conversion layer in the present invention, the upper limit of the content of the light-emitting nanocrystals with respect to the transparent resin is preferably 80 parts by mass, 70 parts by mass, 60 parts by mass, or 50 parts by mass with respect to 100 parts by mass of the transparent resin. On the other hand, the lower limit is preferably 1.0 part by weight, 3.0 parts by weight, 5.0 parts by weight, or 10.0 parts by weight with respect to 100 parts by weight of the transparent resin. In the case where a plurality of kinds of light-emitting nanocrystals are contained in the light conversion layer, the above content represents the total amount.
 光変換層に複数種の発光用ナノ結晶が含まれる場合において、上記含有量は合計量を表す。 In the case where a plurality of kinds of light-emitting nanocrystals are contained in the light conversion layer, the above content represents the total amount.
 (色材)
 本発明の液晶表示素子における光変換層は、赤(R)、緑(G)、青(B)の三色画素部を備え、前記した通り、必要により色材を含んでもよい。当該色材としては、公知の色材を使用することができ、例えば、赤(R)の画素部中にジケトピロロピロール顔料及び/又はアニオン性赤色有機染料を、緑(G)の画素部中にハロゲン化銅フタロシニアン顔料、フタロシアニン系緑色染料、フタロシアニン系青色染料とアゾ系黄色有機染料との混合物からなる群から選ばれる少なくとも一種を、青(B)の画素部中にε型銅フタロシニアン顔料及び/又はカチオン性青色有機染料を含有することが好ましい。
(Color material)
The light conversion layer in the liquid crystal display element of the present invention includes three color pixel portions of red (R), green (G), and blue (B), and may include a color material as necessary as described above. As the color material, a known color material can be used. For example, a diketopyrrolopyrrole pigment and / or an anionic red organic dye is used in a red (R) pixel portion, and a green (G) pixel portion. At least one selected from the group consisting of a halogenated copper phthalocyanine pigment, a phthalocyanine green dye, and a mixture of a phthalocyanine blue dye and an azo yellow organic dye, and an ε-type copper phthalocyanine pigment in a blue (B) pixel portion And / or a cationic blue organic dye.
 本発明に係る赤色の色層中に発光用ナノ結晶と共に任意に添加される好ましい色材は、ジケトピロロピロール顔料及び/又はアニオン性赤色有機染料を含有するのが好ましい。ジケトピロロピロール顔料としては、具体的にはC.I.Pigment Red 254、同255、同264、同272、Orange 71及び同73から選ばれる1種又は2種以上が好ましく、Red 254、同255、同264及び同272から選ばれる1種又は2種以上がより好ましく、C.I.Pigment Red 254が特に好ましい。アニオン性赤色有機染料としては、具体的には、C.I.Solvent Red 124、Acid Red 52及び同289から選ばれる1種又は2種以上が好ましく、C.I.Solvent Red 124が特に好ましい。 The preferred colorant optionally added together with the luminescent nanocrystals in the red color layer according to the present invention preferably contains a diketopyrrolopyrrole pigment and / or an anionic red organic dye. Specific examples of the diketopyrrolopyrrole pigment include C.I. I. One or more selected from Pigment Red 254, 255, 264, 272, Orange 71 and 73 are preferred, and one or more selected from Red 254, 255, 264 and 272 Is more preferred, and C.I. I. Pigment Red 254 is particularly preferable. Specific examples of the anionic red organic dye include C.I. I. One or more selected from Solvent Red 124, Acid Red 52 and 289 are preferred. I. Solvent Red 124 is particularly preferred.
 上記本発明に係る赤色の色層中には、色材として、更に、C.I.Pigment Red 177、同242、同166、同167、同179、C.I.Pigment Orange 38、同71、C.I.Pigment Yellow 150、同215、同185、同138、同139、C.I.Solvent Red 89、C.I.Solvent Orange 56、C.I.Solvent Yellow 21、同82、同83:1、同33、同162からなる群から選ばれる少なくとも1種の有機染顔料を含有するのが好ましい。 In the red color layer according to the present invention, C.I. I. Pigment Red 177, 242, 166, 167, 179, C.I. I. Pigment Orange 38, 71, C.I. I. Pigment Yellow 150, 215, 185, 138, 139, C.I. I. Solvent Red 89, C.I. I. Solvent Orange 56, C.I. I. It is preferable to contain at least one organic dye / pigment selected from the group consisting of Solvent Yellow 21, 82, 83: 1, 33, 162.
 本発明に係る緑色の色層中に発光用ナノ結晶と共に任意に添加される好ましい色材は、ハロゲン化金属フタロシアニン顔料、フタロシアニン系緑色染料及びフタロシアニン系青色染料とアゾ系黄色有機染料との混合物からなる群から選ばれる少なくとも一種を含有するのが好ましい。上記ハロゲン化金属フタロシアニン顔料としては、次の2つの群のハロゲン化金属フタロシアニン顔料が挙げられる。 Preferred colorants optionally added together with the light emitting nanocrystals in the green color layer according to the present invention are metal halide phthalocyanine pigments, phthalocyanine green dyes and mixtures of phthalocyanine blue dyes and azo yellow organic dyes. It is preferable to contain at least one selected from the group consisting of Examples of the metal halide phthalocyanine pigment include the following two groups of metal halide phthalocyanine pigments.
 (第一群)
 Al、Si、Sc、Ti、V、Mg、Fe、Co、Ni、Zn、Ga、Ge、Y、Zr、Nb、In、Sn及びPbからなる群から選ばれる金属を中心金属として有し、フタロシアニン分子1個当たり8~16個のハロゲン原子がフタロシアニン分子のベンゼン環に結合したハロゲン化金属フタロシアニン顔料であり、その中心金属が三価の場合には、その中心金属には1つのハロゲン原子、水酸基又はスルホン酸基(-SOH)のいずれかが結合しており、中心金属が四価金属の場合には、その中心金属には1つの酸素原子又は同一でも異なっていても良い2つのハロゲン原子、水酸基又はスルホン酸基のいずれかが結合しているハロゲン化金属フタロシアニン顔料。
(First group)
It has a metal selected from the group consisting of Al, Si, Sc, Ti, V, Mg, Fe, Co, Ni, Zn, Ga, Ge, Y, Zr, Nb, In, Sn and Pb as a central metal, and phthalocyanine A halogenated metal phthalocyanine pigment in which 8 to 16 halogen atoms per molecule are bonded to the benzene ring of the phthalocyanine molecule. When the central metal is trivalent, the central metal contains one halogen atom, hydroxyl group Or when a sulfonic acid group (—SO 3 H) is bonded and the central metal is a tetravalent metal, the central metal has one oxygen atom or two halogens which may be the same or different. A halogenated metal phthalocyanine pigment to which any one of an atom, a hydroxyl group and a sulfonic acid group is bonded.
 (第二群)
 Al、Sc、Ga、Y及びInからなる群から選ばれる三価金属を中心金属とし、フタロシアニン分子1個当たり8~16個のハロゲン原子がフタロシアニン分子のベンゼン環に結合したハロゲン化金属フタロシアニンの2分子を構成単位とし、これら構成単位の各中心金属が酸素原子、硫黄原子、スルフィニル(-SO-)及びスルホニル(-SO-)からなる群から選ばれる二価原子団を介して結合したハロゲン化金属フタロシアニン二量体からなる顔料。
(Second group)
2 of halogenated metal phthalocyanine having a trivalent metal selected from the group consisting of Al, Sc, Ga, Y and In as a central metal and having 8 to 16 halogen atoms bonded to the benzene ring of the phthalocyanine molecule per phthalocyanine molecule. Halogen having molecules as structural units and each central metal of these structural units bonded through a divalent atomic group selected from the group consisting of oxygen atom, sulfur atom, sulfinyl (—SO—) and sulfonyl (—SO 2 —) A pigment comprising a metal halide phthalocyanine dimer.
 本発明で用いるハロゲン化金属フタロシアニン顔料において、ベンゼン環に結合するハロゲン原子は、全て同一であっても、それぞれ異なっていてもよい。また、ひとつのベンゼン環に異なるハロゲン原子が結合していてもよい。 In the halogenated metal phthalocyanine pigment used in the present invention, all the halogen atoms bonded to the benzene ring may be the same or different. Different halogen atoms may be bonded to one benzene ring.
 ここで、フタロシアニン分子1個当たり8~16個のハロゲン原子のうち9~15個の臭素原子がフタロシアニン分子のベンゼン環に結合した、本発明で用いるハロゲン化金属フタロシアニン顔料は、黄味を帯びた明るい緑色を呈し、カラーフィルタの緑色画素部への使用に最適である。本発明で用いるハロゲン化金属フタロシアニン顔料は、水や有機溶媒に不溶または難溶である。本発明で用いるハロゲン化金属フタロシアニン顔料には、後述する仕上げ処理が行われていない顔料(粗顔料とも呼ばれる)も、仕上げ処理が行われた顔料も、いずれも包含される。 Here, the halogenated metal phthalocyanine pigment used in the present invention in which 9 to 15 bromine atoms out of 8 to 16 halogen atoms per phthalocyanine molecule are bonded to the benzene ring of the phthalocyanine molecule is yellowish. It exhibits a bright green color and is optimal for use in the green pixel portion of the color filter. The metal halide phthalocyanine pigment used in the present invention is insoluble or hardly soluble in water or an organic solvent. The halogenated metal phthalocyanine pigment used in the present invention includes both a pigment that has not been subjected to a finishing treatment described later (also referred to as a crude pigment) and a pigment that has been subjected to a finishing treatment.
 前記第一群および第二群に属するハロゲン化金属フタロシアニン顔料は、下記一般式(PIG-1)で表すことが出来る。 The halogenated metal phthalocyanine pigments belonging to the first group and the second group can be represented by the following general formula (PIG-1).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 第一群に属するハロゲン化金属フタロシアニン顔料は、前記一般式(PIG-1)において、次の通りである。 The halogenated metal phthalocyanine pigment belonging to the first group is as follows in the general formula (PIG-1).
 一般式(PIG-1)において、X~X16は、水素原子、塩素原子、臭素原子またはヨウ素原子を表す。ひとつのベンゼン環に結合した4個のXの原子は同一でも異なっていても良い。4個のベンゼン環に結合したX~X16のうち、8~16個は塩素原子、臭素原子またはヨウ素原子である。Mは中心金属を表す。後述するY及びそれの個数mが同一であるハロゲン化金属フタロシアニン顔料の範囲において、16個のX~X16のうち塩素原子、臭素原子及びヨウ素原子の合計が8未満の顔料は青色であり、同様に16個のX~X16のうち塩素原子、臭素原子及びヨウ素原子の合計が8以上の顔料で前記合計値が大きいほど黄味が強くなる。中心金属Mに結合するYはフッ素、塩素、臭素またはヨウ素のいずれかのハロゲン原子、酸素原子、水酸基及びスルホン酸基からなる群から選ばれる一価原子団であり、mは中心金属Mに結合するYの数を表し、0~2の整数である。 In the general formula (PIG-1), X 1 to X 16 each represents a hydrogen atom, a chlorine atom, a bromine atom, or an iodine atom. The four X atoms bonded to one benzene ring may be the same or different. Of X 1 to X 16 bonded to four benzene rings, 8 to 16 are chlorine, bromine or iodine atoms. M represents a central metal. In the range of Y and the number of halogenated metal phthalocyanine pigments having the same number m, a pigment having a total of less than 8 chlorine atoms, bromine atoms and iodine atoms out of 16 X 1 to X 16 is blue. Similarly, among the 16 X 1 to X 16 pigments, the total of chlorine atom, bromine atom and iodine atom is 8 or more, and the yellow color becomes stronger as the total value is larger. Y bonded to the central metal M is a monovalent atomic group selected from the group consisting of a halogen atom of any one of fluorine, chlorine, bromine or iodine, an oxygen atom, a hydroxyl group and a sulfonic acid group, and m is bonded to the central metal M. Represents the number of Y to be represented, and is an integer of 0-2.
 中心金属Mの原子価により、mの値が決定される。中心金属Mが、Al、Sc、Ga、Y、Inの様に原子価が3価の場合、m=1であり、フッ素、塩素、臭素、ヨウ素、水酸基及びスルホン酸基からなる群から選ばれる基の一つが中心金属に結合する。中心金属Mが、Si、Ti、V、Ge、Zr、Snの様に原子価が4価の場合は、m=2であり、酸素の一つが中心金属に結合するか、またはフッ素、塩素、臭素、ヨウ素、水酸基及びスルホン酸基からなる群から選ばれる基の二つが中心金属に結合する。中心金属Mが、Mg、Fe、Co、Ni、Zn、Zr、Sn、Pbの様に原子価が2価の場合は、Yは存在しない。 The value of m is determined by the valence of the central metal M. When the central metal M is trivalent like Al, Sc, Ga, Y, and In, m = 1, and is selected from the group consisting of fluorine, chlorine, bromine, iodine, hydroxyl group, and sulfonic acid group. One of the groups is attached to the central metal. When the central metal M is tetravalent like Si, Ti, V, Ge, Zr, Sn, m = 2 and one of oxygen is bonded to the central metal or fluorine, chlorine, Two of the groups selected from the group consisting of bromine, iodine, hydroxyl group and sulfonic acid group are bonded to the central metal. When the central metal M is divalent like Mg, Fe, Co, Ni, Zn, Zr, Sn, and Pb, Y does not exist.
 また、第二群に属するハロゲン化金属フタロシアニン顔料は、前記一般式(PIG-1)において次の通りである。 The halogenated metal phthalocyanine pigment belonging to the second group is as follows in the general formula (PIG-1).
 前記一般式(PIG-1)において、X~X16については、前記定義と同義であり、中心金属MはAl、Sc、Ga、Y及びInからなる群から選ばれる三価金属を表し、mは1を表す。Yは次の原子団を表す。 In the general formula (PIG-1), X 1 to X 16 are as defined above, and the central metal M represents a trivalent metal selected from the group consisting of Al, Sc, Ga, Y and In, m represents 1. Y represents the following atomic group.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 なお、原子団Yの化学構造中、中心金属Mは前記した定義と同義であり、X17~X32については、一般式(PIG-1)において前記したX~X16の定義と同義である。Aは、酸素原子、硫黄原子、スルフィニル(-SO-)及びスルホニル(-SO-)からなる群から選ばれる二価原子団を表す。一般式(PIG-1)中のMと原子団YのMとは、二価原子団Aを介して結合していることを表す。 In the chemical structure of the atomic group Y, the central metal M has the same definition as described above, and X 17 to X 32 have the same definition as X 1 to X 16 in the general formula (PIG-1). is there. A represents a divalent atomic group selected from the group consisting of an oxygen atom, a sulfur atom, sulfinyl (—SO—) and sulfonyl (—SO 2 —). M in the general formula (PIG-1) and M in the atomic group Y are bonded via the divalent atomic group A.
 即ち、第二群に属するハロゲン化金属フタロシアニン顔料は、ハロゲン化金属フタロシアニンの2分子を構成単位とし、これらが前記二価原子団を介して結合したハロゲン化金属フタロシアニン二量体である。 That is, the halogenated metal phthalocyanine pigment belonging to the second group is a halogenated metal phthalocyanine dimer in which two molecules of metal halide phthalocyanine are structural units and these are bonded via the divalent atomic group.
 一般式(PIG-1)で表わされるハロゲン化金属フタロシアニン顔料としては、具体的には、次の(1)~(4)が挙げられる。 Specific examples of the metal halide phthalocyanine pigment represented by the general formula (PIG-1) include the following (1) to (4).
 (1) ハロゲン化錫フタロシアニン顔料、ハロゲン化ニッケルフタロシアニン顔料、ハロゲン化亜鉛フタロシアニン顔料の様な、Mg、Fe、Co、Ni、Zn、Zr、Sn及びPbからなる群から選ばれる二価金属を中心金属として有し、かつフタロシアニン分子1個当たり4個のベンゼン環に8~16個のハロゲン原子が結合したハロゲン化金属フタロシアニン顔料。なお、この中で、塩素化臭素化亜鉛フタロシアニン顔料は、C.I.Pigment Green 58であり、特に好ましい。 (1) Mainly divalent metals selected from the group consisting of Mg, Fe, Co, Ni, Zn, Zr, Sn, and Pb, such as halogenated tin phthalocyanine pigment, halogenated nickel phthalocyanine pigment, and halogenated zinc phthalocyanine pigment. A halogenated metal phthalocyanine pigment which is a metal and has 8 to 16 halogen atoms bonded to 4 benzene rings per phthalocyanine molecule. Of these, chlorinated brominated zinc phthalocyanine pigments include C.I. I. Pigment Green 58, which is particularly preferable.
 (2) ハロゲン化クロロアルミニウムフタロシアニンの様な、Al、Sc、Ga、Y及びInからなる群から選ばれる三価金属を中心金属として有し、中心金属には1つのハロゲン原子、水酸基又はスルホン酸基のいずれかを有し、かつフタロシアニン分子1個当たり4個のベンゼン環に8~16個のハロゲン原子が結合したハロゲン化金属フタロシアニン顔料。 (2) As a central metal, a trivalent metal selected from the group consisting of Al, Sc, Ga, Y and In, such as a halogenated chloroaluminum phthalocyanine, has one halogen atom, hydroxyl group or sulfonic acid as the central metal. A halogenated metal phthalocyanine pigment having any of the groups and having 8 to 16 halogen atoms bonded to 4 benzene rings per phthalocyanine molecule.
 (3) ハロゲン化オキシチタニウムフタロシアニン、ハロゲン化オキシバナジウムフタロシアニンの様な、Si、Ti、V、Ge、Zr及びSnからなる群から選ばれる四価金属を中心金属として有し、中心金属には1つの酸素原子又は同一でも異なっていても良い2つのハロゲン原子、水酸基又はスルホン酸基のいずれかを有し、かつフタロシアニン分子1個当たり4個のベンゼン環に8~16個のハロゲン原子が結合したハロゲン化金属フタロシアニン顔料。 (3) A central metal is a tetravalent metal selected from the group consisting of Si, Ti, V, Ge, Zr and Sn, such as halogenated oxytitanium phthalocyanine and halogenated oxyvanadium phthalocyanine. 8 to 16 halogen atoms bonded to four benzene rings per one phthalocyanine molecule, having one oxygen atom or two halogen atoms which may be the same or different, a hydroxyl group or a sulfonic acid group Halogenated metal phthalocyanine pigment.
 (4) ハロゲン化されたμ-オキソ-アルミニウムフタロシアニン二量体、ハロゲン化されたμ-チオ-アルミニウムフタロシアニン二量体の様な、Al、Sc、Ga、Y及びInからなる群から選ばれる三価金属を中心金属とし、フタロシアニン分子1個当たり4個のベンゼン環に8~16個のハロゲン原子が結合したハロゲン化金属フタロシアニンの2分子を構成単位とし、これら構成単位の各中心金属が酸素原子、硫黄原子、スルフィニル及びスルホニルからなる群から選ばれる二価原子団を介して結合したハロゲン化金属フタロシアニン二量体からなる顔料。 (4) Three selected from the group consisting of Al, Sc, Ga, Y and In, such as a halogenated μ-oxo-aluminum phthalocyanine dimer and a halogenated μ-thio-aluminum phthalocyanine dimer. The valence metal is the central metal, and the halogenated metal phthalocyanine is composed of two molecules of 8-16 halogen atoms bonded to 4 benzene rings per phthalocyanine molecule. Each central metal of these structural units is an oxygen atom. And a pigment comprising a metal halide phthalocyanine dimer bonded through a divalent atomic group selected from the group consisting of sulfur atom, sulfinyl and sulfonyl.
 その他の色材としては、緑色の色層中にC.I.Solvent Blue 67とC.I.Solvent Yellow 162との混合物、又はC.I.Pigment Green 7及び/又は同36を任意に含有するのが好ましい。 Other color materials include C.I. in the green color layer. I. Solvent Blue 67 and C.I. I. A mixture with Solvent Yellow 162, or C.I. I. Preferably, Pigment Green 7 and / or 36 are optionally contained.
 上記本発明に係る緑色の色層中には、色材として、更に、C.I.Pigment Yellow 150、同215、同185、同138、C.I.Solvent Yellow 21、同82、同83:1、同33からなる群から選ばれる少なくとも1種の有機染顔料を含有するのが好ましい。 In the green color layer according to the present invention, C.I. I. Pigment Yellow 150, 215, 185, 138, C.I. I. It is preferable to contain at least one organic dye / pigment selected from the group consisting of Solvent Yellow 21, 82, 83: 1, and 33.
 本発明に係る青色の色層中に発光用ナノ結晶と共に任意に添加される好ましい色材は、ε型銅フタロシニアン顔料及び/又はカチオン性青色有機染料を含有するのが好ましい。ε型銅フタロシニアン顔料は、C.I.Pigment Blue 15:6である。カチオン性青色有機染料としては、具体的には、C.I.Solvent Blue 2、同3、同4、同5、同6、同7、同23、同43、同72、同124、C.I.Basic Blue7、同26が好ましく、C.I.Solvent Blue 7、Basic Blue7がより好ましく、C.I.Solvent Blue 7が特に好ましい。 The preferred colorant optionally added together with the light emitting nanocrystals in the blue color layer according to the present invention preferably contains an ε-type copper phthalocyanine pigment and / or a cationic blue organic dye. The ε-type copper phthalocyanine pigment is C.I. I. Pigment Blue 15: 6. Specific examples of the cationic blue organic dye include C.I. I. Solvent Blue 2, 3, 4, 5, 6, 7, 23, 43, 72, 124, C.I. I. Basic Blue 7 and 26 are preferred, and C.I. I. Solvent Blue 7 and Basic Blue 7 are more preferable, and C.I. I. Solvent Blue 7 is particularly preferable.
 上記本発明に係る青色の色層中には、色材として、更に、C.I.Pigment Blue 1、C.I.Pigment Violet 23、C.I.Basic Blue 7、C.I.Basic Violet 10、C.I.Acid Blue 1、同90、同83、C.I.Direct Blue 86からなる群から選ばれる少なくとも1種の有機染顔料を含有するのが好ましい。 In the blue color layer according to the present invention, C.I. I. Pigment Blue 1, C.I. I. Pigment Violet 23, C.I. I. Basic Blue 7, C.I. I. Basic Violet 10, C.I. I. Acid Blue 1, 90, 83, C.I. I. It is preferable to contain at least one organic dye / pigment selected from the group consisting of Direct Blue 86.
 また、本発明に係る光変換層又はカラーフィルタにおいて、黄色の色材を用いる場合、該色材としては、C.I.Pigment Yellow 150、同215、同185、同138、同139、C.I.Solvent Yellow 21、82、同83:1、同33、同162からなる群から選ばれる少なくとも1種の黄色有機染顔料であることが好ましい。 In addition, when a yellow color material is used in the light conversion layer or the color filter according to the present invention, the color material may be C.I. I. Pigment Yellow 150, 215, 185, 138, 139, C.I. I. Solvent Yellow 21, 82, 83: 1, 33, or 162 is preferably at least one yellow organic dye / pigment selected from the group consisting of Solvent Yellow 21, 82, 83: 1, 33, and 162.
 本発明における光変換層において、透明樹脂に対する発光用ナノ結晶の含有量の上限は、透明樹脂100質量部に対して、80質量部、70質量部、60質量部、50質量部が好ましく、前記発光用ナノ結晶の含有量の下限は、透明樹脂100質量部に対して、1.0質量部、3.0質量部、5.0質量部、10.0質量部が好ましい。光変換層に複数種の発光用ナノ結晶が含まれる場合において、上記含有量は合計量を表す。 In the light conversion layer in the present invention, the upper limit of the content of the light-emitting nanocrystals with respect to the transparent resin is preferably 80 parts by mass, 70 parts by mass, 60 parts by mass, or 50 parts by mass with respect to 100 parts by mass of the transparent resin. As for the minimum of content of the nanocrystal for light emission, 1.0 mass part, 3.0 mass part, 5.0 mass part, and 10.0 mass parts are preferable with respect to 100 mass parts of transparent resin. In the case where a plurality of kinds of light-emitting nanocrystals are contained in the light conversion layer, the above content represents the total amount.
 前記した光変換層は、例えばフォトリソグラフィー法、電着法、転写法、ミセル電解法、PVED(PhotovoltaicElectrodeposition)法、インクジェット法、反転印刷法、熱硬化法等の方法により形成することができるが、これらの中でも生産性に優れる点からフォトリソグラフィー法が好ましい。 The aforementioned light conversion layer can be formed by a method such as a photolithography method, an electrodeposition method, a transfer method, a micellar electrolysis method, a PVED (Photovoltaic Electrodeposition) method, an ink jet method, a reverse printing method, a thermosetting method, etc. Among these, the photolithography method is preferable from the viewpoint of excellent productivity.
 斯かるフォトリソグラフィー法は、具体的には、後述する発光用ナノ結晶含有光硬化性組成物を、透明基板のブラックマトリックスを設けた側の面に塗布、加熱乾燥(プリベーク)した後、フォトマスクを介して紫外線を照射することでパターン露光を行って、画素部に対応する箇所の光硬化性化合物を硬化させた後、未露光部分を現像液で現像し、非画素部を除去して画素部を透明基板に固着させる方法である。 Specifically, such a photolithographic method involves applying a photoluminescent composition containing a light-emitting nanocrystal, which will be described later, to the surface of the transparent substrate on which the black matrix is provided, heating and drying (prebaking), and then photomasking. After pattern exposure is performed by irradiating ultraviolet rays through the film, the photocurable compound at a location corresponding to the pixel portion is cured, and then the unexposed portion is developed with a developer, and the non-pixel portion is removed to remove the pixel. This is a method of fixing the part to the transparent substrate.
 これを、赤色(R)画素、緑色(G)画素、青色(B)画素、必要に応じて黄色(Y)画素等の他の色の画素ごとに、光硬化性組成物を調製して、前記した操作を繰り返すことにより、所定の位置に赤色(R)画素、緑色(G)画素、青色(B)画素、黄色(Y)画素の着色画素部を有する光変換層を製造することができる。 A photocurable composition is prepared for each of other color pixels such as a red (R) pixel, a green (G) pixel, a blue (B) pixel, and a yellow (Y) pixel as necessary. By repeating the above-described operation, a light conversion layer having colored pixel portions of red (R) pixels, green (G) pixels, blue (B) pixels, and yellow (Y) pixels at a predetermined position can be manufactured. .
 この様にして発光用ナノ結晶含有光硬化性組成物の硬化着色皮膜からなる画素部が透明基板上に形成される。 In this manner, a pixel portion composed of a cured colored film of the light-emitting nanocrystal-containing photocurable composition is formed on the transparent substrate.
 ここで、発光用ナノ結晶含有光硬化性組成物をガラス等の透明基板上に塗布する方法としては、例えば、スピンコート法、ロールコート法、インクジェット法等が挙げられる。 Here, examples of the method for applying the light-emitting nanocrystal-containing photocurable composition onto a transparent substrate such as glass include a spin coating method, a roll coating method, and an inkjet method.
 透明基板に塗布した発光用ナノ結晶含有光硬化性組成物の塗膜の乾燥条件は、各成分の種類、配合割合等によっても異なるが、通常、50~150℃で、1~15分間程度である。また、発光用ナノ結晶含有光硬化性組成物の光硬化に用いる光としては、200~500nmの波長範囲の紫外線、あるいは可視光を使用するのが好ましい。この波長範囲の光を発する各種光源が使用できる。 The drying conditions of the coating film of the light-emitting nanocrystal-containing photocurable composition applied to the transparent substrate vary depending on the type of each component, the blending ratio, etc., but usually at 50 to 150 ° C. for about 1 to 15 minutes. is there. In addition, as light used for photocuring of the light-emitting nanocrystal-containing photocurable composition, it is preferable to use ultraviolet rays or visible light in a wavelength range of 200 to 500 nm. Various light sources that emit light in this wavelength range can be used.
 現像方法としては、例えば、液盛り法、ディッピング法、スプレー法等が挙げられる。光硬化性組成物の露光、現像の後に、必要な色の画素部が形成された透明基板は水洗いし乾燥させる。こうして得られたカラーフィルタは、ホットプレート、オーブン等の加熱装置により、90~280℃で、所定時間加熱処理(ポストベーク)することによって、着色塗膜中の揮発性成分を除去すると同時に、発光用ナノ結晶を含有する光硬化性組成物の硬化着色皮膜中に残存する未反応の光硬化性化合物が熱硬化し、光変換層が完成する。 Examples of the developing method include a liquid filling method, a dipping method, and a spray method. After exposure and development of the photocurable composition, the transparent substrate on which the necessary color pixel portion is formed is washed with water and dried. The color filter thus obtained is subjected to a heat treatment (post-baking) at 90 to 280 ° C. for a predetermined time by a heating device such as a hot plate or an oven, thereby removing volatile components in the colored coating film and simultaneously emitting light. The unreacted photocurable compound remaining in the cured colored film of the photocurable composition containing the nanocrystals for use is thermally cured to complete the light conversion layer.
 本発明の光変換層は、発光用ナノ結晶と共に前記色材、樹脂を併用することによって、液晶層の電圧保持率(VHR)の低下、青色光または紫外光による劣化、イオン密度(ID)の増加を防止し、白抜け、配向むら、焼き付けなどの表示不良の問題をより顕著に改善することが可能となる。 In the light conversion layer of the present invention, by using the colorant and the resin together with the light-emitting nanocrystal, the voltage holding ratio (VHR) of the liquid crystal layer is lowered, the blue light or the ultraviolet light is deteriorated, and the ion density (ID) is reduced. It is possible to prevent the increase and to remarkably improve problems of display defects such as white spots, alignment unevenness, and burn-in.
 上記した発光用ナノ結晶含有光硬化性組成物を製造する方法としては、発光用ナノ結晶と、有機溶剤と、を混合して、必要により、親和性のある分子、分散剤、色材(=染料及び/又は顔料組成物)と、を添加し均一となる様に攪拌分散を行って、まず光変換層の画素部を形成するための分散液を調製してから、そこに、光硬化性化合物と、必要に応じて熱可塑性樹脂や光重合開始剤等を加えて発光用ナノ結晶を含有する発光用ナノ結晶含有光硬化性組成物とする方法が挙げられる。 As a method for producing the light-emitting nanocrystal-containing photocurable composition described above, a light-emitting nanocrystal and an organic solvent are mixed, and if necessary, an affinity molecule, a dispersant, a colorant (= Dye and / or pigment composition), and stirring and dispersing so as to be uniform. First, a dispersion liquid for forming the pixel portion of the light conversion layer is prepared, and then the photo-curing property is prepared there. Examples include a method of adding a light emitting nanocrystal-containing photocurable composition containing a light emitting nanocrystal by adding a compound and, if necessary, a thermoplastic resin or a photopolymerization initiator.
 ここで用いられる有機溶媒としては、例えば、トルエンやキシレン、メトキシベンゼン等の芳香族系溶剤、酢酸エチルや酢酸プロピルや酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールメチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコールプロピルエーテルアセテート、ジエチレングリコールブチルエーテルアセテート等の酢酸エステル系溶剤、エトキシエチルプロピオネート等のプロピオネート系溶剤、メタノール、エタノール等のアルコール系溶剤、ブチルセロソルブ、プロピレングリコールモノメチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、ヘキサン等の脂肪族炭化水素系溶剤、N,N-ジメチルホルムアミド、γ-ブチロラクタム、N-メチル-2-ピロリドン、アニリン、ピリジン等の窒素化合物系溶剤、γ-ブチロラクトン等のラクトン系溶剤、カルバミン酸メチルとカルバミン酸エチルの48:52の混合物の様なカルバミン酸エステル等が挙げられる。 Examples of the organic solvent used here include aromatic solvents such as toluene, xylene, methoxybenzene, ethyl acetate, propyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol methyl ether acetate. , Acetate solvents such as diethylene glycol ethyl ether acetate, diethylene glycol propyl ether acetate, diethylene glycol butyl ether acetate, propionate solvents such as ethoxyethyl propionate, alcohol solvents such as methanol and ethanol, butyl cellosolve, propylene glycol monomethyl ether, diethylene glycol ethyl Ether, diethylene glycol dimethyl ether Ether solvents such as tellurium, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, aliphatic hydrocarbon solvents such as hexane, N, N-dimethylformamide, γ-butyrolactam, N-methyl-2-pyrrolidone, aniline And nitrogen compound solvents such as pyridine, lactone solvents such as γ-butyrolactone, and carbamate esters such as a 48:52 mixture of methyl carbamate and ethyl carbamate.
 ここで用いられる分散剤としては、例えば、ビックケミー社のディスパービック130、ディスパービック161、ディスパービック162、ディスパービック163、ディスパービック170、ディスパービック171、ディスパービック174、ディスパービック180、ディスパービック182、ディスパービック183、ディスパービック184、ディスパービック185、ディスパービック2000、ディスパービック2001、ディスパービック2020、ディスパービック2050、ディスパービック2070、ディスパービック2096、ディスパービック2150、ディスパービックLPN21116、ディスパービックLPN6919エフカ社のエフカ46、エフカ47、エフカ452、エフカLP4008、エフカ4009、エフカLP4010、エフカLP4050、LP4055、エフカ400、エフカ401、エフカ402、エフカ403、エフカ450、エフカ451、エフカ453、エフカ4540、エフカ4550、エフカLP4560、エフカ120、エフカ150、エフカ1501、エフカ1502、エフカ1503、ルーブリゾール社のソルスパース3000、ソルスパース9000、ソルスパース13240、ソルスパース13650、ソルスパース13940、ソルスパース17000、18000、ソルスパース20000、ソルスパース21000、ソルスパース20000、ソルスパース24000、ソルスパース26000、ソルスパース27000、ソルスパース28000、ソルスパース32000、ソルスパース36000、ソルスパース37000、ソルスパース38000、ソルスパース41000、ソルスパース42000、ソルスパース43000、ソルスパース46000、ソルスパース54000、ソルスパース71000、味の素株式会社のアジスパーPB711、アジスパーPB821、アジスパーPB822、アジスパーPB814、アジスパーPN411、アジスパーPA111等の分散剤や、アクリル系樹脂、ウレタン系樹脂、アルキッド系樹脂、ウッドロジン、ガムロジン、トール油ロジン等の天然ロジン、重合ロジン、不均化ロジン、水添ロジン、酸化ロジン、マレイン化ロジン等の変性ロジン、ロジンアミン、ライムロジン、ロジンアルキレンオキシド付加物、ロジンアルキド付加物、ロジン変性フェノール等のロジン誘導体等の、室温で液状かつ水不溶性の合成樹脂を含有させることが出来る。これら分散剤や、樹脂の添加は、フロッキュレーションの低減、顔料の分散安定性の向上、分散体の粘度特性を向上にも寄与する。 Dispersants used here include, for example, Big Chemie's Dispersic 130, Dispersic 161, Dispersic 162, Dispersic 163, Dispersic 170, Dispersic 171, Dispersic 174, Dispersic 180, Dispersic 182, Dispersic 183, Dispersic 184, Dispersic 185, Dispersic 2000, Dispersic 2001, Dispersic 2020, Dispersic 2050, Dispersic 2070, Dispersic 2096, Dispersic 2150, Dispersic LPN21116, Dispersic LPN6919 Efka EFKA 46, EFKA 47, EFKA 452, EFKA LP4008, EFKA 009, Efka LP4010, Efka LP4050, LP4055, Efka400, Efka401, Evka402, Efka403, Efka450, Efka451, Efka453, Evka4540, Efka4550, EfkaLP4560, Efka120, Efka150, Evka1501, Evka1501, 1502, Efka 1503, Lubrizol's Sol Sparse 3000, Sol Sparse 9000, Sol Sparse 13240, Sol Sparse 13650, Sol Sparse 13940, Sol Sparse 17000, 18000, Sol Sparse 20000, Sol Sparse 21000, Sol Sparse 20000, Sol Sparse 24000, Sol Sparse 26000, Sol Sparse 28000, Sol Sparse 28000, Sol Sparse 32000, Sol Sparse 3 000, Solsperce 37000, Solsperse 38000, Solsperse 41000, Solsperse 42000, Solsperse 43000, Solsperse 46000, Solsperse 54000, Solsperse 71000, Ajinomoto Co., Ltd. Agents, natural rosin such as acrylic resin, urethane resin, alkyd resin, wood rosin, gum rosin, tall oil rosin, polymerized rosin, disproportionated rosin, hydrogenated rosin, oxidized rosin, modified rosin such as maleated rosin, Rosin derivatives such as rosinamine, lime rosin, rosin alkylene oxide adduct, rosin alkyd adduct, rosin modified phenol A synthetic resin that is liquid and water-insoluble at room temperature can be contained. Addition of these dispersants and resins also contributes to reduction of flocculation, improvement of pigment dispersion stability, and improvement of viscosity characteristics of the dispersion.
 また、分散助剤として、有機顔料誘導体の、例えば、フタルイミドメチル誘導体、同スルホン酸誘導体、同N-(ジアルキルアミノ)メチル誘導体、同N-(ジアルキルアミノアルキル)スルホン酸アミド誘導体等も含有することも出来る。もちろん、これら誘導体は、異なる種類のものを二種以上併用することも出来る。 Further, as a dispersion aid, organic pigment derivatives such as phthalimidomethyl derivatives, sulfonic acid derivatives, N- (dialkylamino) methyl derivatives, N- (dialkylaminoalkyl) sulfonic acid amide derivatives, etc. You can also. Of course, two or more of these derivatives can be used in combination.
 光重合開始剤としては、例えばアセトフェノン、ベンゾフェノン、ベンジルジメチルケタノール、ベンゾイルパーオキサイド、2-クロロチオキサントン、1,3-ビス(4’-アジドベンザル)-2-プロパン、1,3-ビス(4’-アジドベンザル)-2-プロパン-2’-スルホン酸、4,4’-ジアジドスチルベン-2,2’-ジスルホン酸等が挙げられる。市販の光重合開始剤としては、たとえば、BASF社製「イルガキュア(商標名)-184」、「イルガキュア(商標名)-369」、「ダロキュア(商標名)-1173」、BASF社製「ルシリン-TPO」、日本化薬社製「カヤキュアー(商標名)DETX」、「カヤキュアー(商標名)OA」、ストーファー社製「バイキュアー10」、「バイキュアー55」、アクゾー社製「トリゴナールPI」、サンド社製「サンドレー1000」、アップジョン社製「デープ」、黒金化成社製「ビイミダゾール」などがある。 Examples of the photopolymerization initiator include acetophenone, benzophenone, benzyldimethylketanol, benzoyl peroxide, 2-chlorothioxanthone, 1,3-bis (4′-azidobenzal) -2-propane, 1,3-bis (4 ′ -Azidobenzal) -2-propane-2'-sulfonic acid, 4,4'-diazidostilbene-2,2'-disulfonic acid, and the like. Commercially available photopolymerization initiators include, for example, “Irgacure (trade name) -184”, “Irgacure (trade name) -369”, “Darocur (trade name) -1173” manufactured by BASF, “Lucirin- "TPO", Nippon Kayaku Co., Ltd. "Kayacure (trade name) DETX", "Kayacure (trade name) OA", Stofer "Bicure 10", "Bicure 55", Akzo "Trigonal PI", Sand "Sandray 1000" manufactured by Upjohn, "Deep" manufactured by Upjohn, and "Biimidazole" manufactured by Kurokin Kasei.
 また上記光重合開始剤に公知慣用の光増感剤を併用することもできる。光増感剤としては、たとえば、アミン類、尿素類、硫黄原子を有する化合物、燐原子を有する化合物、塩素原子を有する化合物またはニトリル類もしくはその他の窒素原子を有する化合物等が挙げられる。これらは、単独で用いることも、2種以上を組み合わせて用いることもできる。 Also, a known and commonly used photosensitizer can be used in combination with the photopolymerization initiator. Examples of the photosensitizer include amines, ureas, compounds having a sulfur atom, compounds having a phosphorus atom, compounds having a chlorine atom, nitriles or other compounds having a nitrogen atom. These can be used alone or in combination of two or more.
 光重合開始剤の配合率は、特に限定されるものではないが、光重合性あるいは光硬化性官能基を有する化合物に対して0.1~30質量%の範囲が好ましい。0.1質量%未満では、光硬化時の感光度が低下する傾向にあり、30%を超えると、顔料分散レジストの塗膜を乾燥させたときに、光重合開始剤の結晶が析出して塗膜物性の劣化を引き起こすことがある。 The blending ratio of the photopolymerization initiator is not particularly limited, but is preferably in the range of 0.1 to 30% by mass with respect to the compound having a photopolymerizable or photocurable functional group. If it is less than 0.1% by mass, the photosensitivity at the time of photocuring tends to decrease, and if it exceeds 30%, crystals of the photopolymerization initiator are precipitated when the pigment-dispersed resist coating film is dried. May cause deterioration of physical properties of coating film.
 前記した様な各材料を使用して、質量基準で、本発明の発光用ナノ結晶100部当たり、300~100000部の有機溶剤と、1~500部の親和性のある分子や分散剤とを、均一となる様に攪拌分散して前記染顔料液を得ることができる。次いでこの顔料分散液100部当たり、熱可塑性樹脂と光硬化性化合物の合計が0.125~2500部、光硬化性化合物1部当たり0.05~10部の光重合開始剤と、必要に応じてさらに有機溶剤を添加し、均一となる様に攪拌分散して画素部を形成するための発光用ナノ結晶含有光硬化性組成物を得ることができる。 Using each of the materials as described above, on a mass basis, 300 to 100,000 parts of an organic solvent and 1 to 500 parts of an affinity molecule or dispersant per 100 parts of the light-emitting nanocrystal of the present invention. The dye / pigment solution can be obtained by stirring and dispersing so as to be uniform. Then, per 100 parts of this pigment dispersion, a total of 0.125 to 2500 parts of thermoplastic resin and photocurable compound, 0.05 to 10 parts of photopolymerization initiator per 1 part of photocurable compound, and if necessary In addition, an organic solvent is further added, and the light-curable nanocrystal-containing photocurable composition for forming a pixel portion by stirring and dispersing so as to be uniform can be obtained.
 現像液としては、公知慣用の有機溶剤やアルカリ水溶液を使用することができる。特に前記光硬化性組成物に、熱可塑性樹脂または光硬化性化合物が含まれており、これらの少なくとも一方が酸価を有し、アルカリ可溶性を呈する場合には、アルカリ水溶液での洗浄がカラーフィルタ画素部の形成に効果的である。 As the developer, a known and commonly used organic solvent or alkaline aqueous solution can be used. In particular, when the photocurable composition contains a thermoplastic resin or a photocurable compound, and at least one of them has an acid value and exhibits alkali solubility, the color filter can be washed with an alkaline aqueous solution. It is effective for forming the pixel portion.
 ここでは、フォトリソグラフィー法によるR画素、G画素、B画素、Y画素の着色画素部の製造方法について詳記したが、本発明の発光用ナノ結晶含有組成物を使用して調製された画素部は、その他の電着法、転写法、ミセル電解法、PVED(PhotovoltaicElectrodeposition)法、インクジェット法、反転印刷法、熱硬化法等の方法で各色画素部を形成して、光変換層を製造してもよい。 Here, although the manufacturing method of the colored pixel part of R pixel, G pixel, B pixel, and Y pixel by the photolithography method was described in detail, the pixel part prepared by using the nanocrystal-containing composition for light emission of the present invention Forming each color pixel portion by other electrodeposition method, transfer method, micellar electrolysis method, PVED (Photovoltaic Electrodeposition) method, ink jet method, reversal printing method, thermosetting method, etc. to produce a light conversion layer Also good.
 [カラーフィルタ]
 本発明では、図7における光変換画素層に積層される色材層(CF-Green、CF-Red)、図8又は図9におけるカラーフィルタ(CFL)、図9における青色カラーフィルタ(CF-Blue)のように色材を含むカラーフィルタを適宜使用することができる。
[Color filter]
In the present invention, the color material layer (CF-Green, CF-Red) laminated on the light conversion pixel layer in FIG. 7, the color filter (CFL) in FIG. 8 or FIG. 9, and the blue color filter (CF-Blue) in FIG. A color filter containing a color material as shown in FIG.
 ここで使用し得る、青色、赤色、緑色、黄色の色材は、上記したものが何れも使用できるが、なかでも青色(B)の色材としては、ε型銅フタロシニアン顔料又はカチオン性青色有機染料、赤色(R)の色材としてはジケトピロロピロール顔料又はアニオン性赤色有機染料、緑色(G)の色材としてはハロゲン化銅フタロシニアン顔料、フタロシアニン系緑色染料、又はフタロシアニン系青色染料とアゾ系黄色有機染料との混合物であることが好ましい。また、カラーフィルタには、必要により前述の透明樹脂や後述の光硬化性化合物、分散剤などを含んでもよく、カラーフィルタの製造方法は公知のフォトリソグラフィー法などで形成することができる。 As the blue, red, green, and yellow color materials that can be used here, any of the above-mentioned color materials can be used. Among them, as the blue (B) color material, an ε-type copper phthalocyanine pigment or a cationic blue organic material can be used. Dye, red (R) colorant as diketopyrrolopyrrole pigment or anionic red organic dye, green (G) colorant as halogenated copper phthalocyanine pigment, phthalocyanine green dye, or phthalocyanine blue dye and azo A mixture with a yellow organic dye is preferred. In addition, the color filter may contain the above-described transparent resin, a photocurable compound described later, a dispersant, and the like, if necessary, and the color filter can be produced by a known photolithography method or the like.
 [液晶層]
 次に、液晶表示素子における液晶層、例えば、前記各実施態様における液晶層5は、前記した通り、ポリマーネットワーク(A)と、下記一般式(i):
[Liquid crystal layer]
Next, as described above, the liquid crystal layer in the liquid crystal display element, for example, the liquid crystal layer 5 in each of the above embodiments, includes the polymer network (A) and the following general formula (i):
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式中、Ri1及びRi2はそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Ai1は1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、ni1は0又は1を表す。)で表される化合物を10~50重量%含有する液晶組成物(B)を含有することを特徴としている。 Wherein R i1 and R i2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 8 represents an alkenyloxy group, A i1 represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group, and n i1 represents 0 or 1.) % Liquid crystal composition (B).
 (ポリマーネットワーク(A))
 斯かる液晶層を構成するポリマーネットワーク(A)は、一軸性の光学異方性、又は一軸性の屈折率異方性又は配向容易軸方向を有するものであることが好ましく、該ポリマーネットワークの光学軸又は配向容易軸と、前記液晶組成物(B)を構成する低分子液晶の配向容易軸が略一致するように形成されていることがより好ましい。尚、該ポリマーネットワークには、複数のポリマーネットワークが集合することにより高分子薄膜を形成したポリマーバインダも含まれる。該ポリマーバインダは、一軸配向性を示す屈折率異方性を有しており、該薄膜に低分子液晶が分散され、該薄膜の一軸性の光学軸と低分子液晶の光学軸が略同一方向へ揃っていることが特徴である。
(Polymer network (A))
The polymer network (A) constituting such a liquid crystal layer preferably has a uniaxial optical anisotropy, a uniaxial refractive index anisotropy, or an orientation easy axis direction. It is more preferable that the axis or the easy alignment axis is formed so that the easy alignment axis of the low-molecular liquid crystal constituting the liquid crystal composition (B) substantially coincides. The polymer network includes a polymer binder in which a polymer thin film is formed by aggregating a plurality of polymer networks. The polymer binder has refractive index anisotropy indicating uniaxial orientation, low molecular liquid crystal is dispersed in the thin film, and the uniaxial optical axis of the thin film and the optical axis of the low molecular liquid crystal are substantially in the same direction. The feature is that they are aligned.
 従って、これにより、光散乱型液晶である高分子分散型液晶又はポリマーネットワーク型液晶とは異なり光散乱が起こらず偏光を用いた液晶表示素子に於いて高コントラストな表示が得られる点と、立下り時間を短くして液晶素子の応答性を向上させる、という特徴を有するものとなる。更に、本発明の液晶表示素子を構成する液晶層では、ポリマーネットワーク層が液晶表示素子全体に形成されている為、液晶素子基板上にポリマーの薄膜層を形成させてプレチルトを誘起させるPSA(Polymer Sustained Alignment)型液晶組成物と区別することができる。 Therefore, unlike a polymer dispersion type liquid crystal or polymer network type liquid crystal which is a light scattering type liquid crystal, light scattering does not occur and a high contrast display can be obtained in a liquid crystal display element using polarized light. A characteristic is that the response time of the liquid crystal element is improved by shortening the down time. Further, in the liquid crystal layer constituting the liquid crystal display element of the present invention, since the polymer network layer is formed on the entire liquid crystal display element, a thin film layer of polymer is formed on the liquid crystal element substrate to induce pretilt (Polymer). It can be distinguished from a Sustained Alignment) type liquid crystal composition.
 斯かる液晶層は、例えば、重合性単量体成分(a)及び前記液晶組成物(B)を必須成分とする重合性液晶組成物を重合させることにより製造することができる。具体的には、前記重合性液晶組成物が液晶相を示した状態で、該重合性液晶組成物中の重合性単量体成分(a)を重合させることにより、分子量が増加して液晶組成物(B)と重合体(もしくは共重合体)に相分離させることにより前記液晶層を形成することができる。 Such a liquid crystal layer can be produced, for example, by polymerizing a polymerizable liquid crystal composition containing the polymerizable monomer component (a) and the liquid crystal composition (B) as essential components. Specifically, by polymerizing the polymerizable monomer component (a) in the polymerizable liquid crystal composition in a state where the polymerizable liquid crystal composition exhibits a liquid crystal phase, the molecular weight is increased and the liquid crystal composition is increased. The liquid crystal layer can be formed by phase separation of the product (B) and the polymer (or copolymer).
 ここで、二相に分離する形態は、含有する液晶組成物(B)の種類や重合性単量体成分(a)(以下、単に「モノマー」と略記することがある。)の種類に依存する。例えば、液晶組成物(B)中に重合性単量体成分(a)の相(以下、「モノマー相」と略記する。)が無数に島状の核として発生して成長するバイノーダル分解で相分離構造を形成しても良く、液晶組成物(B)中にもモノマー相との濃度の揺らぎから相分離するスピノーダル分解により相分離構造を形成しても良い。バイノーダル分解によるポリマーネットワークを形成させるには、モノマーの反応速度が速い化合物を用いることにより可視光の波長より小さい大きさのモノマーの核を無数に発生させて線状に連結させる構造によりナノオーダーの相分離構造が形成されるので好ましい。結果としてモノマーの相に於ける重合が進むと相分離構造に依存して可視光の波長より短い空隙間隔のポリマーネットワークが形成される。一方、ポリマーネットワークの空隙は液晶組成物(B)相の相分離によるもので、この空隙の大きさが可視光の波長より小さいと、光散乱性が無く高コントラストで、且つポリマーネットワークからのアンカーリング力の影響が強まり立下り時間が短くなり高速応答の液晶表示素子が得られるようになり特に好ましい。バイノーダル分解に於けるモノマー相の核生成は、化合物の種類や組合せによる相溶性の変化や、反応速度、温度等のパラメータに影響され適宜必要に応じて調整することが好ましい。反応速度は、紫外線重合の場合は、モノマーの官能基や重合開始剤の種類及び含有量、紫外線照射強度によるもので反応性を促進するように紫外線照射条件を適宜調整すれば良く、少なくとも2mW/cm以上の紫外線照射強度が好ましい。スピノーダル分解では周期性のある二相の濃度の揺らぎによる相分離微細構造が得られるので可視光波長より小さい均一な空隙間隔を容易に形成するので好ましい。モノマーの含有量を増加させると、温度の影響で液晶組成物(B)高濃度相とモノマー高濃度相との二相分離する相転移温度が存在する。二相分離転移温度より高い温度では等方相を示すが、低いと分離が起こり均一な相分離構造が得られず好ましくない。温度変化により二相分離する場合は、二相分離温度より高い温度に於いて相分離構造を形成させることが好ましい。上述した何れの場合も、液晶組成物(B)の配向状態と同様の配向状態を保持しながらポリマーネットワークを形成させることができる。 Here, the form of separation into two phases depends on the type of the liquid crystal composition (B) to be contained and the type of the polymerizable monomer component (a) (hereinafter sometimes simply referred to as “monomer”). To do. For example, the phase of the polymerizable monomer component (a) (hereinafter abbreviated as “monomer phase”) in the liquid crystal composition (B) is generated by innumerable island-like nuclei and grows by binodal decomposition. A separated structure may be formed, or a phase separated structure may be formed in the liquid crystal composition (B) by spinodal decomposition in which phase separation is performed based on concentration fluctuations with the monomer phase. In order to form a polymer network by binodal decomposition, by using a compound with a high monomer reaction rate, a structure of nano-order is generated by generating innumerable monomer nuclei smaller than the wavelength of visible light and connecting them linearly. This is preferable because a phase separation structure is formed. As a result, when the polymerization in the monomer phase proceeds, a polymer network having a void interval shorter than the wavelength of visible light is formed depending on the phase separation structure. On the other hand, the voids in the polymer network are due to the phase separation of the liquid crystal composition (B) phase. When the size of the voids is smaller than the wavelength of visible light, there is no light scattering and high contrast and anchors from the polymer network are used. This is particularly preferable because the influence of the ring force is increased, the fall time is shortened, and a high-speed response liquid crystal display element can be obtained. The nucleation of the monomer phase in the binodal decomposition is preferably adjusted as necessary as affected by parameters such as the change in compatibility depending on the type and combination of the compounds, the reaction rate, and the temperature. In the case of UV polymerization, the UV irradiation conditions may be appropriately adjusted so as to promote the reactivity depending on the type and content of the functional group of the monomer, the polymerization initiator, the UV irradiation intensity, and at least 2 mW / An ultraviolet irradiation intensity of cm 2 or more is preferable. Spinodal decomposition is preferable because a phase-separated microstructure can be obtained by fluctuations in the concentration of two phases having periodicity, and uniform gaps smaller than the visible light wavelength can be easily formed. When the monomer content is increased, there is a phase transition temperature at which the liquid crystal composition (B) high-concentration phase and the monomer high-concentration phase are separated into two phases due to the temperature. An isotropic phase is exhibited at a temperature higher than the two-phase separation transition temperature, but if it is low, separation occurs and a uniform phase separation structure cannot be obtained. When two-phase separation is performed due to a temperature change, it is preferable to form a phase separation structure at a temperature higher than the two-phase separation temperature. In any case described above, a polymer network can be formed while maintaining the same alignment state as that of the liquid crystal composition (B).
 (重合性液晶組成物)
 ここで、前記した重合性液晶組成物は、重合性単量体成分(a)、前記液晶組成物(B)、及び必要に応じて重合開始剤を含むものであるが、前記重合性単量体成分(A)を重合性液晶組成物中、0.5~20質量%、好ましくは1~10質量%となる割合で用いることが液晶組成物(B)相の相分離とポリマーネットが良好に形成される点から好ましい。従って、本発明では、前記液相層は、ポリマーネットワーク(A)と液晶組成物(B)との総質量に対して、ポリマーネットワーク(A)が0.5~20質量%、特に1~10質量%となる割合で存在していることが好ましい。
(Polymerizable liquid crystal composition)
The polymerizable liquid crystal composition described above includes a polymerizable monomer component (a), the liquid crystal composition (B), and a polymerization initiator as necessary. The use of (A) in the polymerizable liquid crystal composition in a proportion of 0.5 to 20% by mass, preferably 1 to 10% by mass, results in good phase separation of the liquid crystal composition (B) and polymer net formation. This is preferable. Therefore, in the present invention, the liquid phase layer has a polymer network (A) of 0.5 to 20% by mass, particularly 1 to 10%, based on the total mass of the polymer network (A) and the liquid crystal composition (B). It is preferable that it exists in the ratio used as the mass%.
 重合性液晶組成物を重合させる際、重合相分離構造形成過程に於いては、モノマー高濃度相と液晶高濃度相の二相が形成されるが、重合開始剤は、通常、モノマー又は液晶の何れかの親和性の高い方に集まり易くなり濃度の局在化が起こる。 When polymerizing a polymerizable liquid crystal composition, in the process of forming a polymer phase separation structure, two phases of a monomer high concentration phase and a liquid crystal high concentration phase are formed. Concentration tends to occur in any of the higher affinity areas.
 ここで、重合開始剤がモノマー高濃度相に偏在化する場合には、モノマーの重合が促進される一方で、液晶高濃度相に残存するモノマーの重合が進み難くなる。この場合、光開始剤濃度が低くなった液晶高濃度相中の残存モノマーは、モノマー高濃度相へ凝集性などの作用により集まることで架橋する。 Here, when the polymerization initiator is unevenly distributed in the monomer high concentration phase, the polymerization of the monomer is promoted, while the polymerization of the monomer remaining in the liquid crystal high concentration phase is difficult to proceed. In this case, the residual monomer in the liquid crystal high-concentration phase having a low photoinitiator concentration is cross-linked by collecting into the monomer high-concentration phase by an action such as aggregation.
 逆に、重合開始剤が液晶高濃度相に偏在化する場合には、液晶高濃度相の残存モノマーの重合が促進されるようになり、液晶中の残存モノマーの分子量が増加すると伴に、新たに重合相分離構造を形成する場合やモノマー高濃度相へ凝集する場合などが考えられ、液晶高濃度相の残存モノマーは液晶相に溶存する光開始剤の効果で重合が進み易くなるので好ましい。又、液晶高濃度相の残存モノマーが光開始剤の効果で重合相分離が進み新たにポリマーネットワークを形成することも好ましい。 On the contrary, when the polymerization initiator is unevenly distributed in the liquid crystal high concentration phase, the polymerization of the residual monomer in the liquid crystal high concentration phase is promoted, and the molecular weight of the residual monomer in the liquid crystal increases. For example, a polymer phase separation structure may be formed or the monomer may be agglomerated into a high concentration phase of the monomer, and the residual monomer in the high concentration phase of the liquid crystal is preferable because the polymerization is facilitated by the effect of the photoinitiator dissolved in the liquid crystal phase. It is also preferable that the residual monomer in the high-concentration liquid crystal phase undergoes separation of the polymerization phase by the effect of the photoinitiator and forms a new polymer network.
 形成されたポリマーネットワーク(A)は、液晶組成物(B)の配向に倣うように光学異方性を示す。ポリマーネットワーク中の液晶層の形態としては、ポリマーの3次元ネットワーク構造中に液晶組成物(B)が連続層をなす構造、液晶組成物(B)のドロップレットがポリマー中に分散している構造、又は両者が混在する構造、更に、両基板面を起点にポリマーネットワーク層が存在し、対面基板との中心付近では液晶層のみである構造が挙げられる。何れもの構造もポリマーネットワークの作用により0~90°のプレチルト角が液晶素子基板界面に対して誘起されていることが好ましいが、前記各構造のなかでも特にポリマーの3次元ネットワーク構造中に液晶組成物(B)が連続層をなす構造のものが、液晶分子のプレチルトの安定性に優れる点から好ましい。ここで、液相層を構成するポリマーネットワークは、共存する液晶組成物(B)を液晶セルの配向膜が示す配向方向へ配向させる機能を有することが好ましく、更に、ポリマー界面方向に対して低分子液晶をプレチルトさせる機能を有していることも好ましい。ポリマー界面に対して低分子液晶をプレチルトさせるモノマーを導入すると透過率の向上や液晶素子の駆動電圧を低くさせるのに有用で好ましい。又、屈折率異方性を有しても良く、配向方向へ液晶を配向させる機能は、メソゲン基を有するモノマーを用いることが好ましい。又、電圧を印加しながら紫外線照射等によりポリマーネットワークを形成させてプレチルトを形成させても良い。 The formed polymer network (A) exhibits optical anisotropy so as to follow the orientation of the liquid crystal composition (B). The form of the liquid crystal layer in the polymer network includes a structure in which the liquid crystal composition (B) forms a continuous layer in the three-dimensional network structure of the polymer, and a structure in which the droplets of the liquid crystal composition (B) are dispersed in the polymer. Or a structure in which both are mixed, and a structure in which a polymer network layer is present starting from both substrate surfaces and only a liquid crystal layer is provided near the center of the facing substrate. In any structure, it is preferable that a pretilt angle of 0 to 90 ° is induced with respect to the liquid crystal element substrate interface by the action of the polymer network. Among these structures, the liquid crystal composition is particularly included in the three-dimensional network structure of the polymer. A structure in which the product (B) forms a continuous layer is preferable from the viewpoint of excellent pretilt stability of liquid crystal molecules. Here, the polymer network constituting the liquid phase layer preferably has a function of aligning the coexisting liquid crystal composition (B) in the alignment direction indicated by the alignment film of the liquid crystal cell, and is further low in the polymer interface direction. It is also preferable to have a function of pretilting the molecular liquid crystal. Introducing a monomer that pre-tilts a low-molecular liquid crystal with respect to the polymer interface is useful and preferable for improving the transmittance and lowering the driving voltage of the liquid crystal element. Moreover, it may have refractive index anisotropy, and it is preferable to use a monomer having a mesogenic group for the function of aligning the liquid crystal in the alignment direction. Alternatively, a pretilt may be formed by forming a polymer network by applying ultraviolet rays or the like while applying a voltage.
 斯かる観点から重合性単量体成分(a)は、液晶性のモノマーを使用することが好ましい。即ち、本発明の液晶表示素子は、液晶相中に液晶表示素子全面にポリマーネットワーク層が形成され、液晶相が連続している構造であって、ポリマーネットワークの配向容易軸や一軸の光学軸が低分子液晶の配向容易軸と略同一方向であること、また、低分子液晶のプレチルト角を誘起するようにポリマーネットワークを形成させることが、オフ応答の速度を高めることができる点から好ましく、そのため重合性単量体成分(a)は、分子構造中にメソゲン構造を持つ液晶性のモノマーであることが好ましい。なお、本発明における液晶表示素子は、前記ポリマーネットワーク層が、ポリマーネットワークの平均空隙間隔が可視光の波長より小さい大きさであること、即ち450nm未満の平均空隙間隔であることが、光散乱は起こらなくなる点から好ましい。 From such a viewpoint, the polymerizable monomer component (a) is preferably a liquid crystalline monomer. That is, the liquid crystal display element of the present invention has a structure in which the polymer network layer is formed on the entire surface of the liquid crystal display element in the liquid crystal phase and the liquid crystal phase is continuous, and the polymer network has an easy alignment axis and a single optical axis. It is preferable that the orientation direction of the low-molecular liquid crystal is substantially the same direction as that of the low-molecular liquid crystal, and that the polymer network is formed so as to induce the pretilt angle of the low-molecular liquid crystal because the off-response speed can be increased. The polymerizable monomer component (a) is preferably a liquid crystalline monomer having a mesogenic structure in the molecular structure. In the liquid crystal display element according to the present invention, the polymer network layer has a polymer network having an average gap interval smaller than the wavelength of visible light, that is, an average gap interval of less than 450 nm. This is preferable because it does not occur.
 斯かる液晶性のモノマー、即ち液晶性を示す重合性単量体成分(a)としては、下記一般式(P1) As such a liquid crystalline monomer, that is, a polymerizable monomer component (a) exhibiting liquid crystallinity, the following general formula (P1)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
で表されるものが挙げられる。 The thing represented by is mentioned.
 ここで、Zp11は、フッ素原子、シアノ基、水素原子、水素原子がハロゲン原子に置換されていてもよい炭素原子数1~15のアルキル基、水素原子がハロゲン原子に置換されていてもよい炭素原子数1~15のアルコキシ基、水素原子がハロゲン原子に置換されていてもよい炭素原子数1~15のアルケニル基、水素原子がハロゲン原子に置換されていてもよい炭素原子数1~15のアルケニルオキシ基又は-Spp12-Rp12を表す。これらのなかでも、Zp11としては、フッ素原子、酸素原子がハロゲン原子に置換されていてもよい炭素原子数1~15のアルキル基を使用することが液晶表示素子の電圧保持率を高くすることが可能になる点から好ましく、また、チルトの安定性の点から-Spp12-Rp12であることが好ましい。 Here, Z p11 is a fluorine atom, a cyano group, a hydrogen atom, an alkyl group having 1 to 15 carbon atoms in which a hydrogen atom may be substituted with a halogen atom, or a hydrogen atom in which a hydrogen atom is substituted. An alkoxy group having 1 to 15 carbon atoms, an alkenyl group having 1 to 15 carbon atoms in which a hydrogen atom may be substituted with a halogen atom, and 1 to 15 carbon atoms in which a hydrogen atom may be substituted with a halogen atom The alkenyloxy group of — or —Sp p12 —R p12 . Among these, as Z p11 , the use of an alkyl group having 1 to 15 carbon atoms in which a fluorine atom or an oxygen atom may be substituted with a halogen atom increases the voltage holding ratio of the liquid crystal display device. From the viewpoint of enabling tilting, it is preferable to be -Sp p12 -R p12 from the viewpoint of tilt stability.
 ここで、Rp11およびRp12はそれぞれ独立に以下の式(RP11-1)から式(PP11-8) Here, R p11 and R p12 are each independently represented by the following formulas (RP11-1) to (PP11-8)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
のいずれかを表し(式中、*は結合点を示す)、前記式(RP11-1)~(RP11-8)中、RP111~RP112はお互いに独立して、水素原子、炭素原子数1~5個のアルキル基であり、tM11は0、1または2を表す。これらのなかでも特に前記式(RP11-1)で表され、かつ、該式中のRP111としては水素原子又はメチル基である、(メタ)アクリロイル基であることが、液晶表示素子の製造時にモノマーを重合させる際の紫外線照射量を低くすることが可能になる、液晶材料への紫外線照射量を必要最低限に保つことができ、液晶材料及び液晶表示素子の劣化を避けることができる点から好ましい。 (Wherein, * represents a bonding point), and in the formulas (RP11-1) to (RP11-8), R P111 to R P112 are independently of each other a hydrogen atom or a carbon atom number. 1 to 5 alkyl groups, and t M11 represents 0, 1 or 2. It represented especially by the formula (RP11-1) Among these, and, as the R P111 in formula is a hydrogen atom or a methyl group, a (meth) acryloyl group, at the time of manufacturing the liquid crystal display device It is possible to reduce the amount of UV irradiation when polymerizing the monomer, the amount of UV irradiation to the liquid crystal material can be kept to the minimum necessary, and the deterioration of the liquid crystal material and the liquid crystal display element can be avoided. preferable.
 前記Rp11およびRp12として挙げた式(RP11-1)から式(PP11-8)の中でも特に、下記式(RP11-1)から式(RP11-4) Among the formulas (RP11-1) to (PP11-8) cited as R p11 and R p12 , the following formulas (RP11-1) to (RP11-4)
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
で表されるものが反応性に優れる点から好ましく、特に式(RP11-1)で表されるものが好ましい。 In view of excellent reactivity, those represented by the formula (RP11-1) are particularly preferred.
 Spp11およびSpp12は、それぞれ独立して、単結合、炭素原子数1~12の直鎖もしくは分岐状アルキレン基、又は、この直鎖もしくは分岐状のアルキレン構造の炭素原子は、酸素原子が隣接しない条件で、酸素原子もしくはカルボニル基で置換された化学構造を有する構造部位を表す。これらのなかでも、特に、炭素原子数1~12の直鎖もしくは分岐状アルキレン基は、液晶材料(B)との相溶性を高めるので好ましく、液晶分子が持つアルキル基と同程度の炭素原子数1~6のものが特に好ましい。ここで、重合性単量体成分(a)と液晶材料(B)との相溶性が十分でない場合や、前記した重合開始剤(C)の液晶材料(B)への相溶性が十分でない場合には、ポリマーネットワークの密度が粗になる部分と密になる部分ができるため素子特性に影響を及ぼし面内の特性が不均一となり易いが、本発明において重合性単量体成分(a)と液晶材料(B)との相溶性が良好なる場合には、重合開始剤(C)と液晶材料(B)との相溶性が良好なものとなることと相俟って、一様な重合相分離構造が形成され、液晶中の均一なポリマーネットワークを形成されて液晶表示素子の特性が面内で一定になる、という特長を有する。ここで、炭素原子数1~12の直鎖もしくは分岐状アルキレン基であるSpp11とSpp12とを有する場合、これらが同一のものであることが該モノマーの製造が容易であること、また、アルキレン鎖長の異なる複数種の化合物の使用割合を調整することによって物性調整が容易となる点から好ましい。一方、Spp11およびSpp12が単結合である場合には、モノマーが基板面に集まり易く、ポリマーネットワークを形成する傾向よりも垂直配向膜表面に薄膜を形成する傾向が強くなるため、ポリマーネットワーク形成による高速応答の効果よりも配向膜にプレチルトを付与し固定化する効果がより強くなる。 Sp p11 and Sp p12 are each independently a single bond, a linear or branched alkylene group having 1 to 12 carbon atoms, or a carbon atom of this linear or branched alkylene structure is adjacent to an oxygen atom. A structural moiety having a chemical structure substituted with an oxygen atom or a carbonyl group. Among these, in particular, a linear or branched alkylene group having 1 to 12 carbon atoms is preferable because it increases compatibility with the liquid crystal material (B), and has the same number of carbon atoms as the alkyl group of the liquid crystal molecule. Those of 1 to 6 are particularly preferred. Here, when the compatibility between the polymerizable monomer component (a) and the liquid crystal material (B) is not sufficient, or the compatibility of the polymerization initiator (C) with the liquid crystal material (B) is not sufficient. In the present invention, since the density of the polymer network is increased and the density is increased, the device characteristics are affected and the in-plane characteristics are likely to be uneven. In the present invention, the polymerizable monomer component (a) and When the compatibility with the liquid crystal material (B) is good, the uniform polymerization phase is combined with the good compatibility between the polymerization initiator (C) and the liquid crystal material (B). A separation structure is formed, and a uniform polymer network in the liquid crystal is formed, so that the characteristics of the liquid crystal display element are constant in the plane. Here, in the case of having Sp p11 and Sp p12 which are linear or branched alkylene groups having 1 to 12 carbon atoms, it is easy to produce the monomer that they are the same, It is preferable from the viewpoint that the physical properties can be easily adjusted by adjusting the use ratio of a plurality of kinds of compounds having different alkylene chain lengths. On the other hand, when Sp p11 and Sp p12 are single bonds, the monomer tends to collect on the substrate surface, and the tendency to form a thin film on the surface of the vertical alignment film is stronger than the tendency to form the polymer network. The effect of imparting a pretilt to the alignment film and fixing it is stronger than the effect of the high-speed response due to.
 また、重合性液晶組成物中の重合性単量体成分(a)の含有率が0.5質量%未満である場合には、前記した配向膜にプレチルト角を付与し固定化する点から、Spp11およびSpp12は単結合であることが好ましく、一方、該含有率が0.5質量%~20質量%の範囲である場合には、Spp11およびSpp12は炭素原子数1~12の直鎖もしくは分岐状アルキレン基であることがオフ応答速度を速めるポリマーネットワークを形成できる点から好ましい。特にオフ応答速度と低駆動電圧の点から1質量%~10質量%の範囲であることが好ましい。また、前記した直鎖もしくは分岐状アルキレン基は、炭素原子数としては、2~8が好ましく、2~6が更に好ましい。また、アルキレン基上の炭素原子を酸素原子が隣接しない条件で酸素原子もしくはカルボニル基で置換することは好ましい。特に酸素原子をMP11やMP13に結合する位置で導入すると、液晶材料全体としての液晶上限温度の拡大や重合時における紫外線感度を増加させることが可能になる点から好ましい。 Further, when the content of the polymerizable monomer component (a) in the polymerizable liquid crystal composition is less than 0.5% by mass, from the point of imparting a pretilt angle to the alignment film and fixing it, Sp p11 and Sp p12 are preferably single bonds. On the other hand, when the content is in the range of 0.5% by mass to 20% by mass, Sp p11 and Sp p12 have 1 to 12 carbon atoms. A linear or branched alkylene group is preferred from the viewpoint of forming a polymer network that increases the off-response speed. In particular, it is preferably in the range of 1% by mass to 10% by mass from the viewpoint of off-response speed and low driving voltage. In addition, the linear or branched alkylene group described above preferably has 2 to 8 carbon atoms, and more preferably 2 to 6 carbon atoms. Further, it is preferable to substitute a carbon atom on the alkylene group with an oxygen atom or a carbonyl group under the condition that the oxygen atom is not adjacent. In particular, it is preferable to introduce an oxygen atom at a position where it binds to M P11 or M P13 from the viewpoint that the liquid crystal material as a whole can increase the upper limit temperature of the liquid crystal and increase the ultraviolet sensitivity during polymerization.
 次に、前記一般式(P1)中、Lp11及びLp12はそれぞれ独立して、単結合、-O-、-S-、-CH-、-OCH-、-CHO-、-CO-、-C-、-COO-、-OCO-、-OCOOCH-、-CHOCOO-、-OCHCHO-、-CO-NRP113-、-NRP113-CO-、-SCH-、-CHS-、-CH=CRP113-COO-、-CH=CRP113-OCO-、-COO-CRP113=CH-、-OCO-CRaP113=CH-、-COO-CRP113=CH-COO-、-COO-CRP113=CH-OCO-、-OCO-CRP113=CH-COO-、-OCO-CRP113=CH-OCO-、-(CHtm12-C(=O)-O-、-(CHtm12-O-(C=O)-、-O-(C=O)-(CHtm12-、-(C=O)-O-(CHtm12-、-CH=CH-、-CF=CF-、-CF=CH-、-CH=CF-、-CF-、-CFO-、-OCF-、-CFCH-、-CHCF-、-CFCF-、-C≡C-、-N=N-、-CH=N-又は-C=N-N=C-(式中、RP113はそれぞれ独立して水素原子又は炭素原子数1~4のアルキル基を表し、前記式中、tm12は1~4の整数を表す。)を表す。 Next, in the general formula (P1), L p11 and L p12 each independently represent a single bond, —O—, —S—, —CH 2 —, —OCH 2 —, —CH 2 O—, — CO—, —C 2 H 4 —, —COO—, —OCO—, —OCOOCH 2 —, —CH 2 OCOO—, —OCH 2 CH 2 O—, —CO—NR P113 —, —NR P113 —CO— , -SCH 2 -, - CH 2 S -, - CH = CR P113 -COO -, - CH = CR P113 -OCO -, - COO-CR P113 = CH -, - OCO-CR aP113 = CH -, - COO —CR P113 ═CHCOO— , —COO—CR P113 ═CH —OCO—, —OCO—CR P113 ═CHCOO— , —OCO—CR P113 ═CH —OCO—, — (CH 2 ) tm12 —C ( O) -O -, - (CH 2) tm12 -O- (C = O) -, - O- (C = O) - (CH 2) tm12 -, - (C = O) -O- (CH 2 ) Tm12 −, —CH═CH— , —CF═CF— , —CF═CH— , —CH═CF— , —CF 2 —, —CF 2 O—, —OCF 2 —, —CF 2 CH 2 — , —CH 2 CF 2 —, —CF 2 CF 2 —, —C≡C—, —N═N—, —CH═N— or —C═N— N═C— (wherein R P113 represents Independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, wherein tm12 represents an integer of 1 to 4).
 これらのなかでも重合性単量体成分(a)の液晶性が高く、液晶表示素子における配向ムラ抑止の観点から、単結合、-C-、-COO-、-OCO-、-CH=CH-COO-、-OCO-CH=CH-、-(CH-C(=O)-O-、-(CH-O-(C=O)-、-O-(C=O)-(CH-、-(C=O)-O-(CH-、-CH=CH-、-CF=CF-、-CF=CH-、-CH=CF-、-CFO-、-OCF-、-CFCH-、-CHCF-、-CFCF-、-C≡C-、-N=N-、又は-C=N-N=C-が好ましい。 Among these, the polymerizable monomer component (a) has high liquid crystallinity, and from the viewpoint of suppressing alignment unevenness in the liquid crystal display element, a single bond, —C 2 H 4 —, —COO—, —OCO—, —CH ═CH—COO—, —OCO—CH═CH—, — (CH 2 ) 2 —C (═O) —O—, — (CH 2 ) 2 —O— (C═O) —, —O— ( C═O) — (CH 2 ) 2 —, — (C═O) —O— (CH 2 ) 2 —, —CH═CH—, —CF═CF—, —CF═CH—, —CH═CF —, —CF 2 O—, —OCF 2 —, —CF 2 CH 2 —, —CH 2 CF 2 —, —CF 2 CF 2 —, —C≡C—, —N═N—, or —C═ N—N═C— is preferred.
 また、モノマーに光異性化する機能を付与することによりワイゲルト効果を用いた光による光配列機能が利用できることから、-CH=CH-、-CF=CF-、-CF=CH-、-CH=CF-、または-N=N-が好ましく、-CH=CH-と-N=N-を選択すること、なかでも-N=N-であることが好ましい。また、ポリマーネットワークの配向性を高くする観点から特に-N=N-であることが好ましい。 In addition, since the photo-alignment function by light using the Weigert effect can be used by imparting a photoisomerization function to the monomer, —CH═CH—, —CF═CF—, —CF═CH—, —CH═ CF— or —N═N— is preferred, and —CH═CH— and —N═N— are preferably selected, and in particular, —N═N— is preferred. Further, from the viewpoint of increasing the orientation of the polymer network, it is particularly preferable that —N═N—.
 つぎに、一般式(P1)中のMp11、Mp12およびMp13は、それぞれ独立に1,4-フェニレン基、1,3-フェニレン基、1,2-フェニレン基、1,4-シクロヘキシレン基、1,3-シクロヘキシレン基、1,2-シクロヘキシレン基、1,4-シクロヘキセニレン基、1,3-シクロヘキセニレン基、1,2-シクロヘキセニレン基、アントラセン-2,6-ジイル基、フェナントレン-2,7-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ナフタレン-2,6-ジイル基、ナフタレン-1,4-ジイル基、インダン-2,5-ジイル基、フルオレン-2,6-ジイル基、フルオレン-1,4-ジイル基、フェナントレン-2,7-ジイル基、アントラセン-2,6-ジイル基、アントラセン-1,4-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又は1,3-ジオキサン-2,5-ジイル基、或いは、これらの芳香核に炭素原子数1~12のアルキル基、炭素原子数1~12のハロゲン化アルキル基、炭素原子数1~12のアルコキシ基、炭素原子数1~12のハロゲン化アルコキシ基、ハロゲン原子、シアノ基、又はニトロ基で置換された構造が挙げられる。 Next, M p11 , M p12 and M p13 in the general formula (P1) are each independently 1,4-phenylene group, 1,3-phenylene group, 1,2-phenylene group, 1,4-cyclohexylene. Group, 1,3-cyclohexylene group, 1,2-cyclohexylene group, 1,4-cyclohexenylene group, 1,3-cyclohexenylene group, 1,2-cyclohexenylene group, anthracene-2,6 -Diyl group, phenanthrene-2,7-diyl group, pyridine-2,5-diyl group, pyrimidine-2,5-diyl group, naphthalene-2,6-diyl group, naphthalene-1,4-diyl group, indane -2,5-diyl group, fluorene-2,6-diyl group, fluorene-1,4-diyl group, phenanthrene-2,7-diyl group, anthracene-2,6-diyl group, anthrace 1,4-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or 1,3-dioxane-2,5-diyl group, or the number of carbon atoms in the aromatic nucleus An alkyl group having 1 to 12 carbon atoms, a halogenated alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, a halogenated alkoxy group having 1 to 12 carbon atoms, a halogen atom, a cyano group, or a nitro group And a structure substituted with.
 また、前記Mp11、Mp12およびMp13は、これらの構造の芳香核に-Spp11-Rp11が置換されたものが、反応性に優れたラジカル重合性単量体となる点から好ましい。この時のRp11としては式(RP11-1)でかつ、RP111としては水素原子、もしくはメチル基である(メタ)アクリロイル基であることが好ましい。 Further, M p11 , M p12 and M p13 are preferably those in which —Sp p11 —R p11 is substituted on the aromatic nucleus of these structures from the viewpoint of becoming a radically polymerizable monomer having excellent reactivity. In this case, R p11 is preferably the formula (RP11-1), and R P111 is preferably a hydrogen atom or a (meth) acryloyl group which is a methyl group.
 これらのなかでも特に 1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニレン基、アントラセン-2,6-ジイル基、フェナントレン-2,7-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ナフタレン-2,6-ジイル基、インダン-2,5-ジイル基、フルオレン-2,6-ジイル基、フルオレン-1,4-ジイル基、フェナントレン-2,7-ジイル基、アントラセン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又は1,3-ジオキサン-2,5-ジイル基、2,3-ジフロロ-1,4-フェニレン基、2-フロロ-1,4-フェニレン基が液晶との相溶性の点から好ましい。 Among these, in particular, 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenylene group, anthracene-2,6-diyl group, phenanthrene-2,7-diyl group, pyridine-2 , 5-diyl group, pyrimidine-2,5-diyl group, naphthalene-2,6-diyl group, indan-2,5-diyl group, fluorene-2,6-diyl group, fluorene-1,4-diyl group Phenanthrene-2,7-diyl group, anthracene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or 1,3-dioxane-2,5-diyl group, A 2,3-difluoro-1,4-phenylene group and a 2-fluoro-1,4-phenylene group are preferred from the viewpoint of compatibility with liquid crystals.
 また、一般式(P1)中、mp12は1又は2を表し、mp13及びmp14はそれぞれ独立して、0、1、2又は3を表し、mp11及びmp15はそれぞれ独立して1、2又は3を表す。ここで、Zp11が複数存在する場合にはそれらは同一であっても異なっていてもよく、Rp11が複数存在する場合にはそれらは同一であっても異なっていてもよく、Rp12が複数存在する場合にはそれらは同一であっても異なっていてもよく、Spp11が複数存在する場合にはそれらは同一であっても異なっていてもよく、Spp12が複数存在する場合にはそれらは同一であっても異なっていてもよく、Lp11が複数存在する場合にはそれらは同一であっても異なっていてもよく、Lp12が複数存在する場合にはそれらは同一であっても異なっていてもよく、Mp12が複数存在する場合にはそれらは同一であっても異なっていてもよく、Mp13が複数存在する場合にはそれらは同一であっても異なっていてもよいで表される化合物であることが好ましい。また、当該材料は1種又は2種以上含有することが好ましい。 Further, in the general formula (P1), mp12 represents 1 or 2, mp13 and mp14 each independently represent 0, 1, 2 or 3, m pi 1 and m p15 is 1, 2, or independently 3 is represented. Here, may be those in the case where Z pi 1 there are a plurality have the same or different and when R pi 1 there exist a plurality they may be the same or different and is R p12 When a plurality of Sp p11 are present, they may be the same or different. When there are a plurality of Sp p11 , they may be the same or different. When there are a plurality of Sp p12 , They may be the same or different. When a plurality of L p11 are present, they may be the same or different. When there are a plurality of L p12 , they are the same. They may be the same or different when a plurality of M p12 are present, and they may be the same or different when a plurality of M p13 are present. so It is preferably a compound that is. Moreover, it is preferable to contain the said material 1 type (s) or 2 or more types.
 また、前記したmp12~mp14は、それらの合計が1~6の範囲であることが好ましく、2~4の範囲、なかでも2であることが特に好ましい。2種以上のモノマーを使用する場合には、モノマー全体中の当該モノマーの濃度とmp12~mp14の合計を乗じて計算する平均数が、1.6~2.8になるように設定することが好ましく、1.7~2.4にする事が更に好ましく、1.8~2.2にすることが特に好ましい。 Further, the total of m p12 to m p14 described above is preferably in the range of 1 to 6, particularly preferably in the range of 2 to 4, particularly 2. When two or more types of monomers are used, the average number calculated by multiplying the concentration of the monomers in the whole monomer and the sum of m p12 to m p14 is set to 1.6 to 2.8. It is preferably 1.7 to 2.4, more preferably 1.8 to 2.2.
 mp11及びmp15の合計は1~6が好ましく、2~4が更に好ましく、2が特に好ましい。2種以上のモノマーを使用する場合には、モノマー全体中の当該モノマーの濃度とmp1p15合計を乗じて計算する平均数が、1.6~2.8になるように設定することが好ましく、1.7~2.4にする事が更に好ましく、1.8~2.2にすることが特に好ましい。平均数が1に近いと、液晶表示素子の駆動電圧を低減できる傾向があり、平均数が高いとオフ応答を速くできる傾向がある。 The total of m p11 and m p15 is preferably 1 to 6, more preferably 2 to 4, and particularly preferably 2. When using two or more monomers, the average number calculated by multiplying the density and m p1 and p15 sum of the monomers in the total monomer, may be set to be 1.6 to 2.8 It is preferably 1.7 to 2.4, more preferably 1.8 to 2.2. When the average number is close to 1, the driving voltage of the liquid crystal display element tends to be reduced, and when the average number is high, the off-response tends to be quick.
 Mp11、Mp12およびMp13へのフッ素原子による置換は、液晶表示素子の電圧保持率を悪化させることなく、液晶材料と重合体もしくは共重合体との相互作用の大きさや溶解性を制御できるため好ましい。好ましい置換数は、1~4である。 Substitution with fluorine atoms for M p11 , M p12 and M p13 can control the magnitude and solubility of the interaction between the liquid crystal material and the polymer or copolymer without deteriorating the voltage holding ratio of the liquid crystal display element. Therefore, it is preferable. The preferred number of substitution is 1 to 4.
 以上詳述した式(P1)の中でも、下記式(P2-1)~(P2-11)で表される化合物を使用することは、チルト角の経時変化を抑制に有効である。 Among the formulas (P1) detailed above, the use of compounds represented by the following formulas (P2-1) to (P2-11) is effective in suppressing the change in tilt angle with time.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(式中、RP21、RP22はそれぞれ独立的に水素原子もしくはメチル基を表す)
このような化合物は有用であるものの、液晶材料中への溶解性が良好でない場合ある。従って、このような化合物は使用するモノマー全体において、90質量%以下含有することが好ましく、70質量%以下含有することが更に好ましく、50質量%以下含有することが特に好ましい。
(Wherein R P21 and R P22 each independently represents a hydrogen atom or a methyl group)
Although such a compound is useful, the solubility in a liquid crystal material may not be good. Accordingly, such a compound is preferably contained in an amount of 90% by mass or less, more preferably 70% by mass or less, and particularly preferably 50% by mass or less in the whole monomer to be used.
 また、式(P1)の中でも、下記式(P3-1)~(P3-11)で表される化合物を使用することは、チルト角の経時変化の抑制と液晶材料中への溶解性確保の両立を図れることから好ましい。 Further, among the formulas (P1), the use of compounds represented by the following formulas (P3-1) to (P3-11) can suppress the change in tilt angle with time and ensure solubility in liquid crystal materials. It is preferable because both can be achieved.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(式中、RP31、RP32はそれぞれ独立的に水素原子もしくはメチル基を表し、mP31は0または1の整数を表し、mP31が0の場合、mP32は1~6の整数を表し、mp31が1の場合、mP32は2~6の整数を表す) (In the formula, R P31 and R P32 each independently represent a hydrogen atom or a methyl group, mP31 represents an integer of 0 or 1, and when mP31 is 0, mP32 represents an integer of 1 to 6; In the case of 1, mP32 represents an integer of 2 to 6)
 式(P1)の中でも、下記式(P4-1)~(P4-11)で表される化合物を使用することは、オフ応答を効果的に改善するのに有用であることから好ましい。 Among the formulas (P1), it is preferable to use compounds represented by the following formulas (P4-1) to (P4-11) because they are useful for effectively improving the off-response.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(式中、RP41、RP42はそれぞれ独立的に水素原子もしくはメチル基を表し、mP42及びmP43はそれぞれ独立的に0または1の整数を表し、mP42が0の場合、mP41は1~6の整数を表し、mp42が1の場合、mP41は2~6の整数を表し、mP43が0の場合、mP44は1~6の整数を表し、mP43が1の場合、mp44は2~6の整数を表す)
 このような化合物は使用するモノマー全体において、40質量%以上含有することが好ましく、50質量%以上含有することが更に好ましく、60質量%以上含有することが特に好ましい。
(In the formula, R P41 and R P42 each independently represent a hydrogen atom or a methyl group, mP42 and mP43 each independently represent an integer of 0 or 1, and when mP42 is 0, mP41 is 1-6. When mp42 is 1, mP41 represents an integer of 2 to 6, when mP43 is 0, mP44 represents an integer of 1 to 6, and when mP43 is 1, mp44 represents an integer of 2 to 6. To express)
Such a compound is preferably contained in an amount of 40% by mass or more, more preferably 50% by mass or more, and particularly preferably 60% by mass or more in the whole monomer to be used.
 式(P1)の中でも、メソゲン中にアリールエステル構造を有する、式(P5-1)~(P5-11)で表される化合物は紫外線照射によって重合開始できる能力を有するため、重合開始剤の添加量を低減できるので好ましい。 Among the formulas (P1), the compounds represented by the formulas (P5-1) to (P5-11) having an aryl ester structure in the mesogen have the ability to initiate polymerization by ultraviolet irradiation. This is preferable because the amount can be reduced.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(式中、RP51、RP52はそれぞれ独立的に水素原子もしくはメチル基を表し、mP52及びmP53はそれぞれ独立的に0または1の整数を表し、mP52が0の場合、mP51は1~6の整数を表し、mp52が1の場合、mP51は2~6の整数を表し、mP53が0の場合、mP54は1~6の整数を表し、mP53が1の場合、mp54は2~6の整数を表す)
 このような化合物の添加量が多いと液晶表示素子の電圧保持率が悪化する傾向があるので、使用するモノマー全体においで30質量%以下含有することが好ましく、20質量%以下含有することが更に好ましく、10質量%以下が特に好ましい。
(In the formula, R P51 and R P52 each independently represent a hydrogen atom or a methyl group, mP52 and mP53 each independently represent an integer of 0 or 1, and when mP52 is 0, mP51 is 1-6. When mp52 is 1, mP51 represents an integer of 2 to 6, when mP53 is 0, mP54 represents an integer of 1 to 6, and when mP53 is 1, mp54 represents an integer of 2 to 6. To express)
If the amount of such a compound added is large, the voltage holding ratio of the liquid crystal display element tends to deteriorate. Therefore, it is preferably contained in an amount of 30% by mass or less and more preferably 20% by mass or less in the whole monomer used. It is preferably 10% by mass or less.
 また、式(P1)の中でも式(P6-1)~(P6-11)で表される化合物のようなメソゲン中に桂皮酸エステル基を導入することも好ましい。 It is also preferable to introduce a cinnamic ester group into a mesogen such as the compounds represented by formulas (P6-1) to (P6-11) among formula (P1).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(式中、RP61、RP62はそれぞれ独立的に水素原子もしくはメチル基を表し、mP62及びmP63はそれぞれ独立的に0または1の整数を表し、mP62が0の場合、mP61は1~6の整数を表し、mp62が1の場合、mP61は2~6の整数を表し、mP63が0の場合、mP64は1~6の整数を表し、mP63が1の場合、mp64は2~6の整数を表す) (In the formula, R P61 and R P62 each independently represent a hydrogen atom or a methyl group, mP62 and mP63 each independently represent an integer of 0 or 1, and when mP62 is 0, mP61 is 1-6. When mp62 is 1, mP61 represents an integer from 2 to 6, when mP63 is 0, mP64 represents an integer from 1 to 6, and when mP63 is 1, mp64 represents an integer from 2 to 6. To express)
 また、式(P1)の中でも下記式(P7-1)~(P7-5)で表されるような縮合環を有する化合物は、紫外線吸収域を単環化合物より可視光側にシフトさせることができるので、モノマーの感度調節の観点から好ましい。 Further, among the compounds of formula (P1), compounds having a condensed ring represented by the following formulas (P7-1) to (P7-5) can shift the ultraviolet absorption region from the monocyclic compound to the visible light side. This is preferable from the viewpoint of adjusting the sensitivity of the monomer.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(式中、RP71、RP72はそれぞれ独立的に水素原子もしくはメチル基を表し、mP72及びmP73はそれぞれ独立的に0または1の整数を表し、mP72が0の場合、mP71は1~6の整数を表し、mp72が1の場合、mP71は2~6の整数を表し、mP73が0の場合、mP74は1~6の整数を表し、mP73が1の場合、mp74は2~6の整数を表す。)
 上記では好ましい化合物として2官能モノマーを例示したが、式(P1)の中でも式(P5-1)~(P5-11)で表される化合物のような3官能モノマーの使用も好ましい。重合体もしくは共重合体の機械的強度を向上させることができる。また、メソゲン中にエステル結合を有しているものは、紫外線照射によって重合開始できる能力を有するため、重合開始剤の添加量を低減できるのでより好ましい。
(In the formula, R P71 and R P72 each independently represent a hydrogen atom or a methyl group, mP72 and mP73 each independently represent an integer of 0 or 1, and when mP72 is 0, mP71 is 1-6. When mp72 is 1, mP71 represents an integer of 2 to 6, when mP73 is 0, mP74 represents an integer of 1 to 6, and when mP73 is 1, mp74 represents an integer of 2 to 6. To express.)
In the above, a bifunctional monomer is exemplified as a preferred compound, but among the formula (P1), the use of a trifunctional monomer such as the compounds represented by the formulas (P5-1) to (P5-11) is also preferred. The mechanical strength of the polymer or copolymer can be improved. Moreover, what has an ester bond in a mesogen has the capability to start superposition | polymerization by ultraviolet irradiation, Therefore Since the addition amount of a polymerization initiator can be reduced, it is more preferable.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(式中、RP81、およびRP83はそれぞれ独立的に水素原子もしくはメチル基を表し、mP72及びmP73はそれぞれ独立的に0または1の整数を表し、mP72が0の場合、mP71は1~6の整数を表し、mp72が1の場合、mP71は2~6の整数を表し、mP73が0の場合、mP74は1~6の整数を表し、mP73が1の場合、mp74は2~6の整数を表す。) (In the formula, R P81 and R P83 each independently represent a hydrogen atom or a methyl group, mP72 and mP73 each independently represent an integer of 0 or 1, and when mP72 is 0, mP71 is 1-6. When mp72 is 1, mP71 represents an integer of 2 to 6, when mP73 is 0, mP74 represents an integer of 1 to 6, and when mP73 is 1, mp74 is an integer of 2 to 6 Represents.)
 また、式(P1)の中でも液晶表示素子の駆動電圧を調整する目的から下記式(P9-1)~(P9-11)で表される化合物のような単官能モノマーの使用も好ましい。 In addition, among the formula (P1), it is also preferable to use a monofunctional monomer such as a compound represented by the following formulas (P9-1) to (P9-11) for the purpose of adjusting the driving voltage of the liquid crystal display element.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(式中、RP91は水素原子又はメチル基を表し、およびRP92は水素原子、または炭素原子数1~18のアルキル基を表す) (Wherein R P91 represents a hydrogen atom or a methyl group, and R P92 represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms)
 また、式(P1)の中でもモノマーとして光異性化する機能を付与することは、ワイゲルト効果を用いた光による光配列機能が利用できるので好ましい。このような観点からは(P10-1)~(P10-11)で表される化合物が好ましい。 Further, in the formula (P1), it is preferable to provide a function of photoisomerization as a monomer because a light alignment function by light using the Weigert effect can be used. From such a viewpoint, the compounds represented by (P10-1) to (P10-11) are preferable.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(式中、RP101、RP102はそれぞれ独立的に水素原子もしくはメチル基を表し、mP102及びmP103はそれぞれ独立的に0または1の整数を表し、mP102が0の場合、mP101は1~6の整数を表し、mp102が1の場合、mP101は2~6の整数を表し、mP103が0の場合、mP104は1~6の整数を表し、mP103が1の場合、mp104は2~6の整数を表す) (In the formula, R P101 and R P102 each independently represent a hydrogen atom or a methyl group, mP102 and mP103 each independently represent an integer of 0 or 1, and when mP102 is 0, mP101 is 1-6. When mp102 is 1, mP101 represents an integer from 2 to 6, when mP103 is 0, mP104 represents an integer from 1 to 6, and when mP103 is 1, mp104 represents an integer from 2 to 6 To express)
 以上詳述した重合性単量体成分(a)は、上記した各種具体例で表される化合物を、下記一般式(V) The polymerizable monomer component (a) detailed above is a compound represented by the various specific examples described above, represented by the following general formula (V).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
(式中、X及びXはそれぞれ独立して、水素原子又はメチル基を表し、Sp及びSpはそれぞれ独立して、単結合、炭素原子数1~12のアルキレン基又は-O-(CH-(式中、sは1~11の整数を表し、酸素原子は芳香環に結合するものとする。)を表し、Uは炭素原子数2~20の直鎖状もしくは分岐状の多価脂肪族炭化水素基又は炭素原子数5~30の多価環状置換基を表すが、多価脂肪族炭化水素基は酸素原子が隣接しない範囲で酸素原子により置換されていてもよく、炭素原子数5~20のアルキル基(基中のアルキレン基は酸素原子が隣接しない範囲で酸素原子により置換されていてもよい。)又は環状置換基により置換されていてもよく、kは1~5の整数を表す。式中の全ての1,4-フェニレン基は、任意の水素原子が-CH、-OCH、フッ素原子、又はシアノ基に置換されていてもよい。)
または、下記一般式(VI)
(Wherein X 1 and X 2 each independently represent a hydrogen atom or a methyl group, and Sp 1 and Sp 2 each independently represent a single bond, an alkylene group having 1 to 12 carbon atoms or —O— (CH 2 ) s — (wherein s represents an integer of 1 to 11 and an oxygen atom is bonded to an aromatic ring), U represents a linear or branched group having 2 to 20 carbon atoms Represents a polyvalent aliphatic hydrocarbon group or a polyvalent cyclic substituent having 5 to 30 carbon atoms, and the polyvalent aliphatic hydrocarbon group may be substituted with an oxygen atom within a range in which the oxygen atoms are not adjacent to each other. , An alkyl group having 5 to 20 carbon atoms (the alkylene group in the group may be substituted with an oxygen atom within the range in which the oxygen atom is not adjacent) or a cyclic substituent, and k is 1 Represents an integer of up to 5. All 1,4-phenylene in the formula Is any hydrogen atom -CH 3, -OCH 3, fluorine atom, or may be substituted by a cyano group.)
Or the following general formula (VI)
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(式中、Xは、水素原子又はメチル基を表し、Spは、単結合、炭素原子数1~12のアルキレン基又は-O-(CH-(式中、tは2~11の整数を表し、酸素原子は芳香環に結合するものとする。)を表し、Vは炭素原子数2~20の直鎖状もしくは分岐状のアルキレン基又は炭素原子数5~30の多価環状置換基、炭素原子数2~20の直鎖状もしくは分岐状のアルキレン構造中の酸素原子が隣接しない範囲で酸素原子により置換された構造部位、これらの化学構造は、該構造を構成する炭素原子上の水素原子が、炭素原子数5~20のアルキル基(基中のアルキレン基は酸素原子が隣接しない範囲で酸素原子により置換されていてもよい。)又は環状置換基により置換されていてもよい。Wは水素原子、ハロゲン原子又は炭素原子数1~15のアルキル基を表す。なお、式中の全ての1,4-フェニレン基は、任意の水素原子が-CH、-OCH、フッ素原子、又はシアノ基に置換されていてもよい。)
で表すこともできる。
(Wherein X 3 represents a hydrogen atom or a methyl group, Sp 3 represents a single bond, an alkylene group having 1 to 12 carbon atoms, or —O— (CH 2 ) t — (wherein t is 2 to Represents an integer of 11 and an oxygen atom is bonded to an aromatic ring), and V is a linear or branched alkylene group having 2 to 20 carbon atoms or a polyvalent having 5 to 30 carbon atoms. A cyclic substituent, a structural site in which an oxygen atom in a linear or branched alkylene structure having 2 to 20 carbon atoms is not adjacent to each other, and these chemical structures are the carbons constituting the structure. A hydrogen atom on the atom is substituted by an alkyl group having 5 to 20 carbon atoms (the alkylene group in the group may be substituted by an oxygen atom within a range not adjacent to the oxygen atom) or a cyclic substituent; W may be a hydrogen atom or a halogen atom. Represents an alkyl group having 1 to 15 carbon atoms. In addition, all 1,4-phenylene group in the formula, any hydrogen atom is -CH 3, -OCH 3, substituted by fluorine atoms, or a cyano group May be.)
It can also be expressed as
 ここで、前記一般式(V)におけるSp及びSpが同一となるものであることが、これらが例えば炭素原子数1~12の直鎖もしくは分岐状アルキレン基である場合に、該化合物の合成が容易であり、また、アルキレン鎖長の異なる複数種の化合物の使用割合を調整することによって物性調整が容易となる点から好ましい。 Here, when Sp 1 and Sp 2 in the general formula (V) are the same, when these are, for example, a linear or branched alkylene group having 1 to 12 carbon atoms, It is preferable because it is easy to synthesize and the physical properties can be easily adjusted by adjusting the proportions of a plurality of compounds having different alkylene chain lengths.
 前記した通り、以上詳述した重合性単量体成分(A)は、重合性液晶組成物中、0.5質量%~20質量%の範囲、特に1質量%~10質量%の範囲となる割合で用いることが好ましいが、当該範囲内の何れの濃度に於いてもTgの異なる重合性単量体成分(A)を少なくとも二種類以上含有させて必要に応じてTgを調整することが好ましい。Tgが高いポリマーの前駆体である重合性単量体成分(a)は、架橋密度が高くなる分子構造を有する重合性単量体成分(a)であって、官能基数が2以上であることが好ましい。又、Tgが低いポリマーの前駆体は、官能基数が1であるか、又は2以上であって、官能基間にスペーサとしてアルキレン基等を有し分子長を長くした構造であることが好ましい。ポリマーネットワークの熱的安定性や耐衝撃性向上に対応することを目的にポリマーネットワークのTgを調整する場合、多官能モノマーと単官能モノマーの比率を適宜調整することが好ましい。又、Tgはポリマーネットワークの主鎖、及び側鎖に於ける分子レベルの熱的な運動性とも関連しており、電気光学特性にも影響を及ぼしている。例えば、架橋密度を高くすると主鎖の分子運動性が下がり低分子液晶とのアンカーリング力が高まり駆動電圧が高くなると共に立下り時間が短くなる。一方、Tgが下がるように架橋密度を下げるとポリマー主鎖の熱運動性が上がることにより、低分子液晶とのアンカーリング力が下がり駆動電圧が下がり立下り時間が長くなる傾向を示す。ポリマーネットワーク界面に於けるアンカーリング力は、上述のTgの他にポリマー側鎖の分子運動性にも影響され、1価もしくは2価であり、かつ炭素原子数が8~18のアルコール化合物のアクリレートもしくはメタクリレートを重合性単量体成分(a)として用いることでポリマー界面のアンカーリング力が下げられる。又、このような重合性単量体成分(A)は、基板界面でプレチルト角を誘起させるのに有効で極角方向のアンカーリング力を下げる方向に作用する。 As described above, the polymerizable monomer component (A) detailed above is in the range of 0.5% by mass to 20% by mass, particularly in the range of 1% by mass to 10% by mass in the polymerizable liquid crystal composition. It is preferably used in proportion, but at any concentration within the range, it is preferable to contain at least two kinds of polymerizable monomer components (A) having different Tg and adjust Tg as necessary. . The polymerizable monomer component (a), which is a precursor of a polymer having a high Tg, is a polymerizable monomer component (a) having a molecular structure that increases the crosslinking density, and has two or more functional groups. Is preferred. The precursor of the polymer having a low Tg preferably has a structure in which the number of functional groups is 1 or 2 or more, and an alkylene group or the like is provided as a spacer between the functional groups to increase the molecular length. When adjusting the Tg of the polymer network for the purpose of improving the thermal stability and impact resistance of the polymer network, it is preferable to appropriately adjust the ratio of the polyfunctional monomer to the monofunctional monomer. Tg is also related to thermal mobility at the molecular level in the main chain and side chain of the polymer network, and has an influence on electro-optical properties. For example, when the crosslink density is increased, the molecular mobility of the main chain is lowered, the anchoring force with the low molecular liquid crystal is increased, the drive voltage is increased, and the fall time is shortened. On the other hand, when the crosslinking density is lowered so that Tg is lowered, the thermal mobility of the polymer main chain is increased, so that the anchoring force with the low-molecular liquid crystal is lowered, the driving voltage is lowered, and the fall time is increased. The anchoring force at the polymer network interface is influenced by the molecular mobility of the polymer side chain in addition to the above-mentioned Tg, and is monovalent or divalent, and an acrylate of an alcohol compound having 8 to 18 carbon atoms. Alternatively, the anchoring force at the polymer interface can be lowered by using methacrylate as the polymerizable monomer component (a). Further, such a polymerizable monomer component (A) is effective in inducing a pretilt angle at the substrate interface and acts in the direction of lowering the polar anchoring force.
 (液晶組成物(B))
 次に、前記液晶層又は前記重合性液晶組成物を構成する液晶組成物(B)は、前記した通り、下記一般式(i):
(Liquid crystal composition (B))
Next, as described above, the liquid crystal composition (B) constituting the liquid crystal layer or the polymerizable liquid crystal composition has the following general formula (i):
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
(式中、Ri1及びRi2はそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Ai1は1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、ni1は0又は1を表す。)で表される化合物を10~50重量%含有するものである。 Wherein R i1 and R i2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or 2 to 8 represents an alkenyloxy group, A i1 represents a 1,4-phenylene group or a trans-1,4-cyclohexylene group, and n i1 represents 0 or 1.) % Content.
 これにより、液晶層のリタデーションを調整することができる。また、上記化合物により耐光性に対する信頼性が高い化合物を含む液晶層を構成しえるため、光源からの光、特に青色光(青色LEDからの)による劣化を抑制・防止することができる。 Thereby, the retardation of the liquid crystal layer can be adjusted. Moreover, since the liquid crystal layer containing a compound having high reliability with respect to light resistance can be constituted by the above compound, deterioration due to light from the light source, in particular, blue light (from the blue LED) can be suppressed / prevented.
 本発明における液晶層又は前記重合性液晶組成物において、上記一般式(i)で表される化合物の好ましい含有量の下限値は、本発明の液晶層又は前記重合性液晶組成物の総量に対して、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、15質量%であり、20質量%であり、25質量%であり、30質量%であり、35質量%であり、40質量%であり、45質量%であり、50質量%であり、55質量%である。好ましい含有量の上限値は、本発明の液晶層又は前記重合性液晶組成物の総量に対して、95質量%であり、90質量%であり、85質量%であり、80質量%であり、75質量%であり、70質量%であり、65質量%であり、60質量%であり、55質量%であり、50質量%であり、45質量%であり、40質量%であり、35質量%であり、30質量%であり、25質量%である。 In the liquid crystal layer or the polymerizable liquid crystal composition of the present invention, the lower limit of the preferable content of the compound represented by the general formula (i) is based on the total amount of the liquid crystal layer of the present invention or the polymerizable liquid crystal composition. 1% by mass, 2% by mass, 3% by mass, 5% by mass, 7% by mass, 10% by mass, 15% by mass, 20% by mass, It is 25% by mass, 30% by mass, 35% by mass, 40% by mass, 45% by mass, 50% by mass, and 55% by mass. The upper limit of the preferable content is 95% by mass, 90% by mass, 85% by mass, and 80% by mass with respect to the total amount of the liquid crystal layer of the present invention or the polymerizable liquid crystal composition. 75% by mass, 70% by mass, 65% by mass, 60% by mass, 55% by mass, 50% by mass, 45% by mass, 40% by mass, and 35% by mass %, 30% by mass, and 25% by mass.
 上記一般式(i)で表される化合物は下記一般式(i-1)~(i-2)で表される化合物群から選ばれる化合物であることが好ましい。 The compound represented by the general formula (i) is preferably a compound selected from the group of compounds represented by the following general formulas (i-1) to (i-2).
 一般式(i-1)で表される化合物は下記の化合物である。 The compound represented by the general formula (i-1) is the following compound.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(式中、Ri11及びRi12はそれぞれ独立して、一般式(i)におけるRL1及びRL2と同じ意味を表す。)
 Ri11及びRi12は、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。
(In the formula, R i11 and R i12 each independently represent the same meaning as R L1 and R L2 in the general formula (i).)
R i11 and R i12 are preferably a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms, and a linear alkenyl group having 2 to 5 carbon atoms. .
 一般式(i-1)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。 The compound represented by the general formula (i-1) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence. The kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
 好ましい含有量の下限値は、本発明で用いる液晶組成物(B)の総量に対して、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、15質量%であり、20質量%であり、25質量%であり、30質量%であり、35質量%であり、40質量%であり、45質量%であり、50質量%であり、55質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、95質量%であり、90質量%であり、85質量%であり、80質量%であり、75質量%であり、70質量%であり、65質量%であり、60質量%であり、55質量%であり、50質量%であり、45質量%であり、40質量%であり、35質量%であり、30質量%であり、25質量%である。 The lower limit of the preferable content is 1% by mass, 2% by mass, 3% by mass, 5% by mass, and 7% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. 10% by mass, 15% by mass, 20% by mass, 25% by mass, 30% by mass, 35% by mass, 40% by mass, and 45% by mass. Yes, 50% by mass, 55% by mass. The upper limit of the preferable content is 95% by mass, 90% by mass, 85% by mass, 80% by mass, and 75% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. %, 70% by weight, 65% by weight, 60% by weight, 55% by weight, 50% by weight, 45% by weight, 40% by weight, and 35% by weight. Yes, 30% by mass and 25% by mass.
 本発明で用いる液晶組成物(B)の粘度を低く保ち、応答速度が速い組成物が必要な場合は上記の下限値が高く上限値が高いことが好ましい。さらに、本発明で用いる液晶組成物(B)のTNIを高く保ち、温度安定性の良い組成物が必要な場合は上記の下限値が中庸で上限値が中庸であることが好ましい。また、駆動電圧を低く保つために誘電率異方性を大きくしたいときは、上記の下限値が低く上限値が低いことが好ましい。 When the composition of the liquid crystal composition (B) used in the present invention needs to maintain a low viscosity and has a fast response speed, it is preferable that the above lower limit value is high and the upper limit value is high. Additionally, keeping the liquid crystal composition used in the present invention the T NI of (B) high, it is preferred if good composition temperature stability is required is the upper limit value in the lower limit of the above is moderate is moderate. When it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable that the lower limit value is low and the upper limit value is low.
 一般式(i-1)で表される化合物は一般式(i-1-1)で表される化合物群から選ばれる化合物であることが好ましい。 The compound represented by the general formula (i-1) is preferably a compound selected from the group of compounds represented by the general formula (i-1-1).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
(式中Ri12は一般式(i-1)における意味と同じ意味を表す。)
 一般式(i-1-1)で表される化合物は、式(i-1-1.1)から式(i-1-1.3)で表される化合物群から選ばれる化合物であることが好ましく、式(i-1-1.2)又は式(i-1-1.3)で表される化合物であることが好ましく、特に、式(i-1-1.3)で表される化合物であることが好ましい。
( Wherein R i12 represents the same meaning as in general formula (i-1).)
The compound represented by the general formula (i-1-1) is a compound selected from the group of compounds represented by the formula (i-1-1.1) to the formula (i-1-1.3). And is preferably a compound represented by formula (i-1-1.2) or formula (i-1-1.3), and particularly represented by formula (i-1-1.3). It is preferable that it is a compound.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 本発明で用いる液晶組成物(B)の総量に対しての式(i-1-1.3)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、20質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%であり、7質量%であり、6質量%であり、5質量%であり、3質量%である。 The lower limit of the preferable content of the compound represented by the formula (i-1-1.3) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, Yes, 3% by mass, 5% by mass, 7% by mass, and 10% by mass. The upper limit of the preferable content is 20% by mass, 15% by mass, 13% by mass, 10% by mass, and 8% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. %, 7% by mass, 6% by mass, 5% by mass, and 3% by mass.
 一般式(i-1)で表される化合物は一般式(i-1-2)で表される化合物群から選ばれる化合物であることが、バックライトとして紫外線領域にある波長200~400nmの光が照射された場合であっても優れた耐久性を持ち、電圧保持率を発現できる点から好ましい。 The compound represented by the general formula (i-1) is a compound selected from the group of compounds represented by the general formula (i-1-2), and the light having a wavelength of 200 to 400 nm in the ultraviolet region as a backlight. Even when it is irradiated, it is preferable in that it has excellent durability and can express a voltage holding ratio.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
(式中Ri12は一般式(i-1)における意味と同じ意味を表す。)
 本発明で用いる液晶組成物(B)の総量に対しての式(i-1-2)で表される化合物の好ましい含有量の下限値は、1質量%であり、5質量%であり、10質量%であり、15質量%であり、17質量%であり、20質量%であり、23質量%であり、25質量%であり、27質量%であり、30質量%であり、35質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、60質量%であり、55質量%であり、50質量%であり、45質量%であり、42質量%であり、40質量%であり、38質量%であり、35質量%であり、33質量%であり、30質量%であり、20質量%であり、15質量%であり、10質量%である。これらの中でも青色の可視光に対する液晶層の劣化防止の観点から、含有量の上限値は、15質量%、特に10質量%であることが好ましい。
( Wherein R i12 represents the same meaning as in general formula (i-1).)
The lower limit of the preferable content of the compound represented by the formula (i-1-2) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 5% by mass, 10% by mass, 15% by mass, 17% by mass, 20% by mass, 23% by mass, 25% by mass, 27% by mass, 30% by mass, and 35% by mass %. The upper limit of the preferable content is 60% by mass, 55% by mass, 50% by mass, 45% by mass, and 42% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. %, 40% by mass, 38% by mass, 35% by mass, 33% by mass, 30% by mass, 20% by mass, 15% by mass, 10% by mass is there. Among these, from the viewpoint of preventing deterioration of the liquid crystal layer with respect to blue visible light, the upper limit of the content is preferably 15% by mass, particularly 10% by mass.
 さらに、一般式(i-1-2)で表される化合物は、式(i-1-2.1)から式(i-1-2.4)で表される化合物群から選ばれる化合物であることが好ましく、式(i-1-2.2)から式(i-1-2.4)で表される化合物であることが好ましい。特に、式(i-1-2.2)で表される化合物は本発明で用いる液晶組成物(B)の応答速度を特に改善するため好ましい。また、応答速度よりも高いTNIを求めるときは、式(i-1-2.3)又は式(i-1-2.4)で表される化合物を用いることが好ましい。式(i-1-2.3)及び式(i-1-2.4)で表される化合物の含有量は、低温での溶解度を良くするために30質量%以上にすることは好ましくない。 Further, the compound represented by the general formula (i-1-2) is a compound selected from the group of compounds represented by the formula (i-1-2.1) to the formula (i-1-2.4). Preferably, it is a compound represented by the formula (i-1-2.2) to the formula (i-1-2.4). In particular, the compound represented by the formula (i-1-2.2) is preferable because the response speed of the liquid crystal composition (B) used in the present invention is particularly improved. Further, when obtaining a T NI higher than the response speed, it is preferable to use a compound represented by the formula (i-1-2.3) or the formula (i-1-2.4). The content of the compounds represented by the formulas (i-1-2.3) and (i-1-2.4) is preferably not more than 30% by mass in order to improve the solubility at low temperatures. .
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 本発明で用いる液晶組成物(B)の総量に対しての式(i-1-2.2)で表される化合物の好ましい含有量の下限値は、10質量%であり、15質量%であり、18質量%であり、20質量%であり、23質量%であり、25質量%であり、27質量%であり、30質量%であり、33質量%であり、35質量%であり、38質量%であり、40質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、60質量%であり、55質量%であり、50質量%であり、45質量%であり、43質量%であり、40質量%であり、38質量%であり、35質量%であり、32質量%であり、30質量%であり、27質量%であり、25質量%であり、22質量%である。 The lower limit of the preferable content of the compound represented by the formula (i-1-2.2) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 10% by mass, and 15% by mass. Yes, 18% by mass, 20% by mass, 23% by mass, 25% by mass, 27% by mass, 30% by mass, 33% by mass, 35% by mass, 38% by mass and 40% by mass. The upper limit of the preferable content is 60% by mass, 55% by mass, 50% by mass, 45% by mass, and 43% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. %, 40% by mass, 38% by mass, 35% by mass, 32% by mass, 30% by mass, 27% by mass, 25% by mass, 22% by mass is there.
 本発明で用いる液晶組成物(B)の総量に対しての式(i-1-1.3)で表される化合物及び式(i-1-2.2)で表される化合物の合計の好ましい含有量の下限値は、10質量%であり、15質量%であり、20質量%であり、25質量%であり、27質量%であり、30質量%であり、35質量%であり、40質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、60質量%であり、55質量%であり、50質量%であり、45質量%であり、43質量%であり、40質量%であり、38質量%であり、35質量%であり、32質量%であり、30質量%であり、27質量%であり、25質量%であり、22質量%である。 The total amount of the compound represented by formula (i-1-1.3) and the compound represented by formula (i-1-2.2) with respect to the total amount of the liquid crystal composition (B) used in the present invention. The lower limit of the preferred content is 10% by mass, 15% by mass, 20% by mass, 25% by mass, 27% by mass, 30% by mass, and 35% by mass, 40% by mass. The upper limit of the preferable content is 60% by mass, 55% by mass, 50% by mass, 45% by mass, and 43% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. %, 40% by mass, 38% by mass, 35% by mass, 32% by mass, 30% by mass, 27% by mass, 25% by mass, 22% by mass is there.
 一般式(i-1)で表される化合物は一般式(i-1-3)で表される化合物群から選ばれる化合物であることが好ましい。 The compound represented by the general formula (i-1) is preferably a compound selected from the group of compounds represented by the general formula (i-1-3).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
(式中Ri13及びRi14はそれぞれ独立して炭素原子数1~8のアルキル基又は炭素原子数1~8のアルコキシ基を表す。)
 Ri13及びRi14は、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。
(In the formula, R i13 and R i14 each independently represent an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms.)
R i13 and R i14 are preferably a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms, and a linear alkenyl group having 2 to 5 carbon atoms. .
 本発明で用いる液晶組成物(B)の総量に対しての式(i-1-3)で表される化合物の好ましい含有量の下限値は、1質量%であり、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%であり、23質量%であり、25質量%であり、30質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、60質量%であり、55質量%であり、50質量%であり、45質量%であり、40質量%であり、37質量%であり、35質量%であり、33質量%であり、30質量%であり、27質量%であり、25質量%であり、23質量%であり、20質量%であり、17質量%であり、15質量%であり、13質量%であり、10質量%である。
さらに、一般式(i-1-3)で表される化合物は、式(i-1-3.1)から式(i-1-3.12)で表される化合物群から選ばれる化合物であることが好ましく、式(i-1-3.1)、式(i-1-3.3)又は式(i-1-3.4)で表される化合物であることが好ましい。特に、式(i-1-3.1)で表される化合物は本発明で用いる液晶組成物(B)の応答速度を特に改善するため好ましい。また、応答速度よりも高いTNIを求めるときは、式(i-1-3.3)、式(i-1-3.4)、式(L-1-3.11)及び式(i-1-3.12)で表される化合物を用いることが好ましい。式(i-1-3.3)、式(i-1-3.4)、式(i-1-3.11)及び式(i-1-3.12)で表される化合物の合計の含有量は、低温での溶解度を良くするために20質量%以上にすることは好ましくない。
The lower limit of the preferable content of the compound represented by the formula (i-1-3) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 5% by mass, 10% by mass, 13% by mass, 15% by mass, 17% by mass, 20% by mass, 23% by mass, 25% by mass, and 30% by mass. The upper limit of the preferable content is 60% by mass, 55% by mass, 50% by mass, 45% by mass, and 40% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. %, 37% by weight, 35% by weight, 33% by weight, 30% by weight, 27% by weight, 25% by weight, 23% by weight, 20% by weight Yes, 17% by mass, 15% by mass, 13% by mass, and 10% by mass.
Further, the compound represented by the general formula (i-1-3) is a compound selected from the group of compounds represented by the formula (i-1-3.1) to the formula (i-1-3.12). Preferably, it is a compound represented by formula (i-1-3.1), formula (i-1-3.3) or formula (i-1-3.4). In particular, the compound represented by the formula (i-1-3.1) is preferable because the response speed of the liquid crystal composition (B) used in the present invention is particularly improved. Further, when obtaining T NI higher than the response speed, the equation (i-1-3.3), the equation (i-1-3.4), the equation (L-1-3.11), and the equation (i It is preferable to use a compound represented by (1-3.12). Sum of compounds represented by formula (i-1-3.3), formula (i-1-3.4), formula (i-1-3.11) and formula (i-1-3.12) The content of is not preferably 20% by mass or more in order to improve the solubility at low temperatures.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 本発明で用いる液晶組成物(B)の総量に対しての式(i-1-3.1)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、13質量%であり、15質量%であり、18質量%であり、20質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、20質量%であり、17質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%であり、7質量%であり、6質量%である。 The lower limit of the preferable content of the compound represented by the formula (i-1-3.1) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, Yes, 3% by mass, 5% by mass, 7% by mass, 10% by mass, 13% by mass, 15% by mass, 18% by mass, and 20% by mass. The upper limit of the preferable content is 20% by mass, 17% by mass, 15% by mass, 13% by mass, and 10% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. %, 8% by mass, 7% by mass, and 6% by mass.
 一般式(i-1)で表される化合物は一般式(i-1-4)及び/又は(i-1-5)で表される化合物群から選ばれる化合物であることが好ましい。 The compound represented by the general formula (i-1) is preferably a compound selected from the group of compounds represented by the general formula (i-1-4) and / or (i-1-5).
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
(式中Ri15及びRi16はそれぞれ独立して炭素原子数1~8のアルキル基又は炭素原子数1~8のアルコキシ基を表す。)
 Ri15及びRi16は、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。
(In the formula, R i15 and R i16 each independently represents an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms.)
R i15 and R i16 are preferably a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms, and a linear alkenyl group having 2 to 5 carbon atoms. .
 本発明で用いる液晶組成物(B)の総量に対しての式(i-1-4)で表される化合物の好ましい含有量の下限値は、1質量%であり、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、25質量%であり、23質量%であり、20質量%であり、17質量%であり、15質量%であり、13質量%であり、10質量%である。 The lower limit of the preferable content of the compound represented by the formula (i-1-4) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 5% by mass, It is 10% by mass, 13% by mass, 15% by mass, 17% by mass, and 20% by mass. The upper limit of the preferable content is 25% by mass, 23% by mass, 20% by mass, 17% by mass, and 15% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. %, 13% by mass, and 10% by mass.
 本発明で用いる液晶組成物(B)の総量に対しての式(i-1-5)で表される化合物の好ましい含有量の下限値は、1質量%であり、5質量%であり、10質量%であり、13質量%であり、15質量%であり、17質量%であり、20質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、25質量%であり、23質量%であり、20質量%であり、17質量%であり、15質量%であり、13質量%であり、10質量%である。 The lower limit of the preferable content of the compound represented by the formula (i-1-5) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 5% by mass, It is 10% by mass, 13% by mass, 15% by mass, 17% by mass, and 20% by mass. The upper limit of the preferable content is 25% by mass, 23% by mass, 20% by mass, 17% by mass, and 15% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. %, 13% by mass, and 10% by mass.
 さらに、一般式(i-1-4)及び(i-1-5)で表される化合物は、式(i-1-4.1)から式(i-1-5.3)で表される化合物群から選ばれる化合物であることが好ましく、式(i-1-4.2)又は式(i-1-5.2)で表される化合物であることが好ましい。 Furthermore, the compounds represented by the general formulas (i-1-4) and (i-1-5) are represented by the formulas (i-1-4.1) to (i-1-5.3). Are preferably selected from the group of compounds represented by formula (i-1-4.2) or (i-1-5.2).
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 本発明で用いる液晶組成物(B)の総量に対しての式(i-1-4.2)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、13質量%であり、15質量%であり、18質量%であり、20質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、20質量%であり、17質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%であり、7質量%であり、6質量%である。 The lower limit of the preferable content of the compound represented by the formula (i-1-4.2) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, Yes, 3% by mass, 5% by mass, 7% by mass, 10% by mass, 13% by mass, 15% by mass, 18% by mass, and 20% by mass. The upper limit of the preferable content is 20% by mass, 17% by mass, 15% by mass, 13% by mass, and 10% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. %, 8% by mass, 7% by mass, and 6% by mass.
 式(i-1-1.3)、式(i-1-2.2)、式(i-1-3.1)、式(i-1-3.3)、式(i-1-3.4)、式(i-1-3.11)及び式(i-1-3.12)で表される化合物から選ばれる2種以上の化合物を組み合わせることが好ましく、式(i-1-1.3)、式(i-1-2.2)、式(i-1-3.1)、式(i-1-3.3)、式(i-1-3.4)及び式(i-1-4.2)で表される化合物から選ばれる2種以上の化合物を組み合わせることが好ましく、これら化合物の合計の含有量の好ましい含有量の下限値は、本発明で用いる液晶組成物(B)の総量に対して、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、13質量%であり、15質量%であり、18質量%であり、20質量%であり、23質量%であり、25質量%であり、27質量%であり、30質量%であり、33質量%であり、35質量%であり、上限値は、本発明で用いる液晶組成物(B)の総量に対して、80質量%であり、70質量%であり、60質量%であり、50質量%であり、45質量%であり、40質量%であり、37質量%であり、35質量%であり、33質量%であり、30質量%であり、28質量%であり、25質量%であり、23質量%であり、20質量%である。組成物の信頼性を重視する場合には、式(i-1-3.1)、式(i-1-3.3)及び式(i-1-3.4))で表される化合物から選ばれる2種以上の化合物を組み合わせることが好ましく、組成物の応答速度を重視する場合には、式(i-1-1.3)、式(i-1-2.2)で表される化合物から選ばれる2種以上の化合物を組み合わせることが好ましい。
一般式(i-1)で表される化合物は一般式(i-1-6)で表される化合物群から選ばれる化合物であることが好ましい。
Formula (i-1-1.3), Formula (i-1-2.2), Formula (i-1-3.1), Formula (i-1-3.3), Formula (i-1- 3.4), it is preferable to combine two or more compounds selected from the compounds represented by formula (i-1-3.11) and formula (i-1-3.12). -1.3), formula (i-1-2.2), formula (i-1-3.1), formula (i-1-3.3), formula (i-1-3.4) and It is preferable to combine two or more compounds selected from the compounds represented by formula (i-1-4.2), and the lower limit of the preferable content of the total content of these compounds is the liquid crystal used in the present invention. 1% by mass, 2% by mass, 3% by mass, 5% by mass, 7% by mass, 10% by mass, and 13% by mass with respect to the total amount of the composition (B) And at 15% by mass 18% by mass, 20% by mass, 23% by mass, 25% by mass, 27% by mass, 30% by mass, 33% by mass, 35% by mass, The upper limit is 80% by mass, 70% by mass, 60% by mass, 50% by mass, and 45% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. 40% by weight, 37% by weight, 35% by weight, 33% by weight, 30% by weight, 28% by weight, 25% by weight, 23% by weight, 20% by weight %. When emphasizing the reliability of the composition, compounds represented by formula (i-1-3.1), formula (i-1-3.3) and formula (i-1-3.4)) It is preferable to combine two or more compounds selected from the group consisting of formulas (i-1-1.3) and (i-1-2.2) when the response speed of the composition is important. It is preferable to combine two or more compounds selected from the following compounds.
The compound represented by the general formula (i-1) is preferably a compound selected from the group of compounds represented by the general formula (i-1-6).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
(式中Ri17及びRi18はそれぞれ独立してメチル基又は水素原子を表す。)
 本発明で用いる液晶組成物(B)の総量に対しての式(i-1-6)で表される化合物の好ましい含有量の下限値は、1質量%であり、5質量%であり、10質量%であり、15質量%であり、17質量%であり、20質量%であり、23質量%であり、25質量%であり、27質量%であり、30質量%であり、35質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、60質量%であり、55質量%であり、50質量%であり、45質量%であり、42質量%であり、40質量%であり、38質量%であり、35質量%であり、33質量%であり、30質量%である。
(In the formula, R i17 and R i18 each independently represent a methyl group or a hydrogen atom.)
The lower limit of the preferable content of the compound represented by the formula (i-1-6) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 5% by mass, 10% by mass, 15% by mass, 17% by mass, 20% by mass, 23% by mass, 25% by mass, 27% by mass, 30% by mass, and 35% by mass %. The upper limit of the preferable content is 60% by mass, 55% by mass, 50% by mass, 45% by mass, and 42% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. %, 40% by mass, 38% by mass, 35% by mass, 33% by mass, and 30% by mass.
 さらに、一般式(i-1-6)で表される化合物は、式(i-1-6.1)から式(i-1-6.3)で表される化合物群から選ばれる化合物であることが好ましい。 Further, the compound represented by the general formula (i-1-6) is a compound selected from the compound group represented by the formula (i-1-6.1) to the formula (i-1-6.3). Preferably there is.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 一般式(i-2)で表される化合物は下記の化合物である。 The compound represented by the general formula (i-2) is the following compound.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
(式中、Ri21及びRi22はそれぞれ独立して、一般式(i)におけるRi1及びRi2と同じ意味を表す。)
 Ri21は炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、RL22は炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましい。
(In the formula, R i21 and R i22 each independently represent the same meaning as R i1 and R i2 in formula (i)).
R i21 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and R L22 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or a carbon atom. An alkoxy group of 1 to 4 is preferable.
 一般式(i-2)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。 The compound represented by the general formula (i-2) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence. The kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
 低温での溶解性を重視する場合は含有量を多めに設定すると効果が高く、反対に、応答速度を重視する場合は含有量を少なめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。 When emphasizing solubility at low temperatures, it is highly effective to set a large amount of content. Conversely, when emphasizing response speed, setting a small amount of content is highly effective. Furthermore, when improving dripping marks and image sticking characteristics, it is preferable to set the content range in the middle.
 本発明で用いる液晶組成物(B)の総量に対しての式(i-2)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、20質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%であり、7質量%であり、6質量%であり、5質量%であり、3質量%である。 The lower limit of the preferable content of the compound represented by the formula (i-2) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 2% by mass, 3% by mass %, 5% by mass, 7% by mass, and 10% by mass. The upper limit of the preferable content is 20% by mass, 15% by mass, 13% by mass, 10% by mass, and 8% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. %, 7% by mass, 6% by mass, 5% by mass, and 3% by mass.
 さらに、一般式(i-2)で表される化合物は、式(i-2.1)から式(i-2.6)で表される化合物群から選ばれる化合物であることが好ましく、式(L-2.1)、式(i-2.3)、式(i-2.4)及び式(i-2.6)で表される化合物であることが好ましい。 Further, the compound represented by the general formula (i-2) is preferably a compound selected from the group of compounds represented by the formulas (i-2.1) to (i-2.6) A compound represented by formula (L-2.1), formula (i-2.3), formula (i-2.4) and formula (i-2.6) is preferred.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 (n型化合物)
 本発明で用いる液晶組成物(B)は、一般式(N-1)、(N-2)及び(N-3)で表される化合物から選ばれる化合物を1種類又は2種類以上さらに含有することが好ましい。これら化合物は誘電的に負の化合物(Δεの符号が負で、その絶対値が2より大きい。)に該当する。
(N-type compound)
The liquid crystal composition (B) used in the present invention further contains one or more compounds selected from compounds represented by formulas (N-1), (N-2) and (N-3). It is preferable. These compounds correspond to dielectrically negative compounds (the sign of Δε is negative and the absolute value is greater than 2).
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 [前記一般式(N-1)、(N-2)、(N-3)及び(N-4)中、RN11、RN12、RN21、RN22、RN31、RN32、RN41及びRN42はそれぞれ独立して炭素原子数1~8のアルキル基、又は炭素原子数2~8のアルキル鎖中の1個又は非隣接の2個以上の-CH-が、それぞれ独立して-CH=CH-、-C≡C-、-O-、-CO-、-COO-又は-OCO-によって置換された化学構造を持つ構造部位、
 AN11、AN12、AN21、AN22、AN31、AN32、AN41及びAN42はそれぞれ独立して
(a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-に置き換えられてもよい。)及び
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)
(c) ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられても良い。)
(d) 1,4-シクロヘキセニレン基
からなる群より選ばれる基を表し、上記の基(a)、基(b)、基(c)及び基(d)は、その構造中の水素原子が、それぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
 ZN11、ZN12、ZN21、ZN22、ZN31、ZN32、ZN41及びZN42は、それぞれ独立して、単結合、-CHCH-、-(CH-、-OCH-、-CHO-、-COO-、-OCO-、-OCF-、-CFO-、-CH=N-N=CH-、-CH=CH-、-CF=CF-又は-C≡C-を表し、
 XN21は水素原子又はフッ素原子を表し、TN31は-CH-又は酸素原子を表し、XN41は、酸素原子、窒素原子、又は-CH-を表し、YN41は、単結合、又は-CH-を表し、nN11、nN12、nN21、nN22、nN31、nN32、nN41、及びnN42は、それぞれ独立して0~3の整数を表すが、nN11+nN12、nN21+nN22及びnN31+nN32はそれぞれ独立して1、2又は3であり、AN11~AN32、ZN11~ZN32が複数存在する場合は、それらは同一であっても異なっていても良く、nN41+nN42は0~3の整数を表すが、AN41及びAN42、ZN41及びZN42が複数存在する場合は、それらは同一であっても異なっていても良い。]
 一般式(N-1)、(N-2)、(N-3)及び(N-4)で表される化合物は、Δεが負でその絶対値が2よりも大きな化合物であることが好ましい。
[In the general formulas (N-1), (N-2), (N-3) and (N-4), R N11 , R N12 , R N21 , R N22 , R N31 , R N32 , R N41 and R N42 each independently represents an alkyl group having 1 to 8 carbon atoms, or one or two or more non-adjacent —CH 2 — in the alkyl chain having 2 to 8 carbon atoms, each independently A structural moiety having a chemical structure substituted by CH═CH—, —C≡C—, —O—, —CO—, —COO— or —OCO—,
A N11 , A N12 , A N21 , A N22 , A N31 , A N32 , A N41 and A N42 each independently represents (a) a 1,4-cyclohexylene group (one —CH present in this group) 2 or two or more non-adjacent —CH 2 — may be replaced by —O—) and (b) a 1,4-phenylene group (one —CH═ present in this group) Or two or more non-adjacent —CH═ may be replaced by —N═.)
(C) Naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or decahydronaphthalene-2,6-diyl group (naphthalene-2,6-diyl group or One —CH═ present in the 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or two or more non-adjacent —CH═ may be replaced by —N═. )
(D) represents a group selected from the group consisting of 1,4-cyclohexenylene groups, and the group (a), the group (b), the group (c) and the group (d) are each a hydrogen atom in the structure Each independently may be substituted with a cyano group, a fluorine atom or a chlorine atom,
Z N11 , Z N12 , Z N21 , Z N22 , Z N31 , Z N32 , Z N41 and Z N42 are each independently a single bond, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH. 2 —, —CH 2 O—, —COO—, —OCO—, —OCF 2 —, —CF 2 O—, —CH═N—N═CH—, —CH═CH—, —CF═CF— or -C≡C-
X N21 represents a hydrogen atom or a fluorine atom, T N31 represents —CH 2 — or an oxygen atom, X N41 represents an oxygen atom, a nitrogen atom, or —CH 2 —, and Y N41 represents a single bond, or —CH 2 — and n N11 , n N12 , n N21 , n N22 , n N31 , n N32 , n N41 , and n N42 each independently represent an integer of 0 to 3, but n N11 + n N12 N N21 + n N22 and n N31 + n N32 are each independently 1, 2 or 3, and when there are a plurality of A N11 to A N32 and Z N11 to Z N32 , they are the same or different. at best, the n N41 + n N42 represents an integer of 0 to 3, if a N41 and a N42, Z N41 and Z N42 there are multiple, they differ even for the same Even though it may. ]
The compounds represented by the general formulas (N-1), (N-2), (N-3) and (N-4) are preferably compounds whose Δε is negative and whose absolute value is larger than 2. .
 一般式(N-1)、(N-2)及び(N-3)中、RN11、RN12、RN21、RN22、RN31及びRN32はそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数2~8のアルケニル基又は炭素原子数2~8のアルケニルオキシ基が好ましく、炭素原子数1~5のアルキル基、炭素原子数1~5のアルコキシ基、炭素原子数2~5のアルケニル基又は炭素原子数2~5のアルケニルオキシ基が好ましく、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が更に好ましく、炭素原子数2~5のアルキル基又は炭素原子数2~3のアルケニル基が更に好ましく、炭素原子数3のアルケニル基(プロペニル基)が特に好ましい。 In the general formulas (N-1), (N-2) and (N-3), R N11 , R N12 , R N21 , R N22 , R N31 and R N32 each independently represent 1 to 8 carbon atoms. An alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or an alkenyloxy group having 2 to 8 carbon atoms, preferably an alkyl group having 1 to 5 carbon atoms, An alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms or an alkenyloxy group having 2 to 5 carbon atoms is preferable, and an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms is preferable. More preferably, an alkyl group having 2 to 5 carbon atoms or an alkenyl group having 2 to 3 carbon atoms is more preferable, and an alkenyl group having 3 carbon atoms (propenyl group) is particularly preferable.
 また、それが結合する環構造がフェニル基(芳香族)である場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び炭素原子数4~5のアルケニル基が好ましく、それが結合する環構造がシクロヘキサン、ピラン及びジオキサンなどの飽和した環構造の場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。ネマチック相を安定化させるためには炭素原子及び存在する場合酸素原子の合計が5以下であることが好ましく、直鎖状であることが好ましい。 Further, when the ring structure to which it is bonded is a phenyl group (aromatic), a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms and carbon An alkenyl group having 4 to 5 atoms is preferable, and when the ring structure to which the alkenyl group is bonded is a saturated ring structure such as cyclohexane, pyran and dioxane, a linear alkyl group having 1 to 5 carbon atoms, a straight chain A straight-chain alkoxy group having 1 to 4 carbon atoms and a straight-chain alkenyl group having 2 to 5 carbon atoms are preferred. In order to stabilize the nematic phase, the total of carbon atoms and oxygen atoms, if present, is preferably 5 or less, and is preferably linear.
 アルケニル基としては、式(R1)から式(R5)のいずれかで表される基から選ばれることが好ましい。(各式中の黒点は環構造中の炭素原子を表す。) The alkenyl group is preferably selected from groups represented by any of the formulas (R1) to (R5). (The black dots in each formula represent carbon atoms in the ring structure.)
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 AN11、AN12、AN21、AN22、AN31及びAN32はそれぞれ独立してΔnを大きくすることが求められる場合には芳香族であることが好ましく、応答速度を改善するためには脂肪族であることが好ましく、トランス-1,4-シクロへキシレン基、1,4-フェニレン基、2-フルオロ-1,4-フェニレン基、3-フルオロ-1,4-フェニレン基、3,5-ジフルオロ-1,4-フェニレン基、2,3-ジフルオロ-1,4-フェニレン基、1,4-シクロヘキセニレン基、1,4-ビシクロ[2.2.2]オクチレン基、ピペリジン-1,4-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基を表すことが好ましく、下記の構造を表すことがより好ましく、 A N11 , A N12 , A N21 , A N22 , A N31, and A N32 are preferably aromatic when it is required to increase Δn independently, and in order to improve the response speed, fat Preferably a trans-1,4-cyclohexylene group, 1,4-phenylene group, 2-fluoro-1,4-phenylene group, 3-fluoro-1,4-phenylene group, 3,5 -Difluoro-1,4-phenylene group, 2,3-difluoro-1,4-phenylene group, 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1 , 4-diyl group, naphthalene-2,6-diyl group, decahydronaphthalene-2,6-diyl group or 1,2,3,4-tetrahydronaphthalene-2,6-diyl group Preferred, it is more preferable that represents the following structures,
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
トランス-1,4-シクロへキシレン基、1,4-シクロヘキセニレン基又は1,4-フェニレン基を表すことがより好ましい。 More preferably, it represents a trans-1,4-cyclohexylene group, a 1,4-cyclohexenylene group or a 1,4-phenylene group.
 ZN11、ZN12、ZN21、ZN22、ZN31及びZN32はそれぞれ独立して-CHO-、-CFO-、-CHCH-、-CFCF-又は単結合を表すことが好ましく、-CHO-、-CHCH-又は単結合が更に好ましく、-CHO-又は単結合が特に好ましい。 Z N11, Z N12, Z N21 , Z N22, Z N31 and Z N32 -CH 2 each independently O -, - CF 2 O - , - CH 2 CH 2 -, - CF 2 CF 2 - or a single bond preferably represents an, -CH 2 O -, - CH 2 CH 2 - or a single bond is more preferable, -CH 2 O-or a single bond is particularly preferred.
 XN21はフッ素原子が好ましい。 XN21 is preferably a fluorine atom.
 TN31は酸素原子が好ましい。 T N31 is preferably an oxygen atom.
 nN11+nN12、nN21+nN22及びnN31+nN32は1又は2が好ましく、nN11が1でありnN12が0である組み合わせ、nN11が2でありnN12が0である組み合わせ、nN11が1でありnN12が1である組み合わせ、nN11が2でありnN12が1である組み合わせ、nN21が1でありnN22が0である組み合わせ、nN21が2でありnN22が0である組み合わせ、nN31が1でありnN32が0である組み合わせ、nN31が2でありnN32が0である組み合わせ、が好ましい。 n N11 + n N12 , n N21 + n N22 and n N31 + n N32 are preferably 1 or 2, a combination in which n N11 is 1 and n N12 is 0, a combination in which n N11 is 2 and n N12 is 0, n A combination in which N11 is 1 and n N12 is 1, a combination in which n N11 is 2 and n N12 is 1, a combination in which n N21 is 1 and n N22 is 0, n N21 is 2 and n N22 is n A combination in which n N31 is 1 and n N32 is 0, and a combination in which n N31 is 2 and n N32 is 0 are preferable.
 本発明で用いる液晶組成物(B)の総量に対しての式(N-1)で表される化合物の好ましい含有量の下限値は、1質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%であり、20質量%である。 The lower limit of the preferable content of the compound represented by the formula (N-1) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 10% by mass, and 20% by mass. %, 30% by mass, 40% by mass, 50% by mass, 55% by mass, 60% by mass, 65% by mass, 70% by mass, and 75% by mass. Yes, 80% by mass. The upper limit of the preferable content is 95% by mass, 85% by mass, 75% by mass, 65% by mass, 55% by mass, 45% by mass, and 35% by mass, 25% by mass and 20% by mass.
 本発明で用いる液晶組成物(B)の総量に対しての式(N-2)で表される化合物の好ましい含有量の下限値は、1質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%であり、20質量%である。 The lower limit of the preferable content of the compound represented by the formula (N-2) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 10% by mass, and 20% by mass. %, 30% by mass, 40% by mass, 50% by mass, 55% by mass, 60% by mass, 65% by mass, 70% by mass, and 75% by mass. Yes, 80% by mass. The upper limit of the preferable content is 95% by mass, 85% by mass, 75% by mass, 65% by mass, 55% by mass, 45% by mass, and 35% by mass, 25% by mass and 20% by mass.
 本発明で用いる液晶組成物(B)の総量に対しての式(N-3)で表される化合物の好ましい含有量の下限値は、1質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%であり、20質量%である。 The lower limit of the preferable content of the compound represented by the formula (N-3) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 10% by mass, and 20% by mass. %, 30% by mass, 40% by mass, 50% by mass, 55% by mass, 60% by mass, 65% by mass, 70% by mass, and 75% by mass. Yes, 80% by mass. The upper limit of the preferable content is 95% by mass, 85% by mass, 75% by mass, 65% by mass, 55% by mass, 45% by mass, and 35% by mass, 25% by mass and 20% by mass.
 本発明で用いる液晶組成物(B)の粘度を低く保ち、応答速度が速い組成物が必要な場合は上記の下限値が低く上限値が低いことが好ましい。さらに、本発明で用いる液晶組成物(B)のTNIを高く保ち、温度安定性の良い組成物が必要な場合は上記の下限値が低く上限値が低いことが好ましい。また、駆動電圧を低く保つために誘電率異方性を大きくしたいときは、上記の下限値を高く上限値が高いことが好ましい。 When the viscosity of the liquid crystal composition (B) used in the present invention is kept low and a composition having a high response speed is required, the above lower limit value is preferably low and the upper limit value is preferably low. Additionally, keeping the liquid crystal composition used in the present invention the T NI of (B) high, it is preferred if good composition temperature stability is required a low upper limit lower the lower limit of the above. When it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable that the above lower limit value is increased and the upper limit value is high.
 本発明に係る液晶組成物は、一般式(N-1)~(N-4)で表される化合物のうち、特に一般式(N-1)で表される化合物が、液晶表示素子における電圧保持率に優れ、かつ、低い回転粘度を有する点から好ましい。 In the liquid crystal composition according to the present invention, among the compounds represented by the general formulas (N-1) to (N-4), the compound represented by the general formula (N-1) is particularly a voltage in a liquid crystal display device. This is preferable from the viewpoint of excellent retention and low rotational viscosity.
 (p型化合物)
 本発明で用いる液晶組成物(B)は、一般式(J)で表される化合物を1種類又は2種類以上さらに含有することが好ましい。これら化合物は誘電的に正の化合物(Δεが2より大きい。)に該当する。
(P-type compound)
It is preferable that the liquid crystal composition (B) used in the present invention further contains one or more compounds represented by the general formula (J). These compounds correspond to dielectrically positive compounds (Δε is greater than 2).
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
(式中、RJ1は炭素原子数1~8のアルキル基を表し、該アルキル基中の1個又は非隣接の2個以上の-CH-はそれぞれ独立して-CH=CH-、-C≡C-、-O-、-CO-、-COO-又は-OCO-によって置換されていてもよく、
 nJ1は、0、1、2、3又は4を表し、
 AJ1、AJ2及びAJ3はそれぞれ独立して、
(a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-に置き換えられてもよい。)
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)及び
(c) ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられても良い。)
からなる群より選ばれる基を表し、上記の基(a)、基(b)及び基(c)はそれぞれ独立してシアノ基、フッ素原子、塩素原子、メチル基、トリフルオロメチル基又はトリフルオロメトキシ基で置換されていても良く、
 ZJ1及びZJ2はそれぞれ独立して単結合、-CHCH-、-(CH-、-OCH-、-CHO-、-OCF-、-CFO-、-COO-、-OCO-又は-C≡C-を表し、
 nJ1が2、3又は4であってAJ2が複数存在する場合は、それらは同一であっても異なっていても良く、nJ1が2、3又は4であってZJ1が複数存在する場合は、それらは同一であっても異なっていても良く、
 XJ1は、水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基又は2,2,2-トリフルオロエチル基を表す。)
 一般式(J)中、RJ1は、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数2~8のアルケニル基又は炭素原子数2~8のアルケニルオキシ基が好ましく、炭素原子数1~5のアルキル基、炭素原子数1~5のアルコキシ基、炭素原子数2~5のアルケニル基又は炭素原子数2~5のアルケニルオキシ基が好ましく、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が更に好ましく、炭素原子数2~5のアルキル基又は炭素原子数2~3のアルケニル基が更に好ましく、炭素原子数3のアルケニル基(プロペニル基)が特に好ましい。
(Wherein R J1 represents an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are each independently —CH═CH—, — Optionally substituted by C≡C—, —O—, —CO—, —COO— or —OCO—,
n J1 represents 0, 1, 2, 3 or 4;
A J1 , A J2 and A J3 are each independently
(A) 1,4-cyclohexylene group (this is present in the group one -CH 2 - or nonadjacent two or more -CH 2 - may be replaced by -O-.)
(B) a 1,4-phenylene group (one —CH═ present in the group or two or more non-adjacent —CH═ may be replaced by —N═) and (c) Naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or decahydronaphthalene-2,6-diyl group (naphthalene-2,6-diyl group or 1,2 , 3,4-tetrahydronaphthalene-2,6-diyl group, one —CH═ or two or more non-adjacent —CH═ may be replaced by —N═.
The group (a), the group (b) and the group (c) are each independently selected from the group consisting of cyano group, fluorine atom, chlorine atom, methyl group, trifluoromethyl group or trifluoro May be substituted with a methoxy group,
Z J1 and Z J2 are each independently a single bond, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH 2 —, —CH 2 O—, —OCF 2 —, —CF 2 O—, Represents —COO—, —OCO— or —C≡C—,
When n J1 is 2, 3 or 4 and a plurality of A J2 are present, they may be the same or different, and n J1 is 2, 3 or 4 and a plurality of Z J1 is present. If they are the same or different,
X J1 represents a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, a fluoromethoxy group, a difluoromethoxy group, a trifluoromethoxy group, or a 2,2,2-trifluoroethyl group. )
In general formula (J), R J1 represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or alkenyloxy having 2 to 8 carbon atoms. A group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms or an alkenyloxy group having 2 to 5 carbon atoms is preferable. An alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms is more preferable, an alkyl group having 2 to 5 carbon atoms or an alkenyl group having 2 to 3 carbon atoms is more preferable, and an alkenyl group having 3 carbon atoms. (Propenyl group) is particularly preferred.
 信頼性を重視する場合にはRJ1はアルキル基であることが好ましく、粘性の低下を重視する場合にはアルケニル基であることが好ましい。 R J1 is preferably an alkyl group when emphasizing reliability, and is preferably an alkenyl group when emphasizing a decrease in viscosity.
 また、それが結合する環構造がフェニル基(芳香族)である場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び炭素原子数4~5のアルケニル基が好ましく、それが結合する環構造がシクロヘキサン、ピラン及びジオキサンなどの飽和した環構造の場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。ネマチック相を安定化させるためには炭素原子及び存在する場合酸素原子の合計が5以下であることが好ましく、直鎖状であることが好ましい。 Further, when the ring structure to which it is bonded is a phenyl group (aromatic), a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms and carbon An alkenyl group having 4 to 5 atoms is preferable, and when the ring structure to which the alkenyl group is bonded is a saturated ring structure such as cyclohexane, pyran and dioxane, a linear alkyl group having 1 to 5 carbon atoms, a straight chain A straight-chain alkoxy group having 1 to 4 carbon atoms and a straight-chain alkenyl group having 2 to 5 carbon atoms are preferred. In order to stabilize the nematic phase, the total of carbon atoms and oxygen atoms, if present, is preferably 5 or less, and is preferably linear.
 アルケニル基としては、式(R1)から式(R5)のいずれかで表される基から選ばれることが好ましい。(各式中の黒点はアルケニル基が結合している環構造中の炭素原子を表す。) The alkenyl group is preferably selected from groups represented by any of the formulas (R1) to (R5). (The black dot in each formula represents the carbon atom in the ring structure to which the alkenyl group is bonded.)
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 AJ1、AJ2及びAJ3はそれぞれ独立してΔnを大きくすることが求められる場合には芳香族であることが好ましく、応答速度を改善するためには脂肪族であることが好ましく、トランス-1,4-シクロへキシレン基、1,4-フェニレン基、1,4-シクロヘキセニレン基、1,4-ビシクロ[2.2.2]オクチレン基、ピペリジン-1,4-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基を表すことが好ましく、それらはフッ素原子により置換されていてもよく、下記の構造を表すことがより好ましく、 A J1 , A J2 and A J3 are preferably aromatic when it is required to independently increase Δn, and are preferably aliphatic to improve the response speed. 1,4-cyclohexylene group, 1,4-phenylene group, 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1,4-diyl group, naphthalene -2,6-diyl group, decahydronaphthalene-2,6-diyl group or 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, preferably substituted by a fluorine atom It is more preferable to represent the following structure,
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
下記の構造を表すことがより好ましい。 It is more preferable to represent the following structure.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 ZJ1及びZJ2はそれぞれ独立して-CHO-、-OCH-、-CFO-、-CHCH-、-CFCF-又は単結合を表すことが好ましく、-OCH-、-CFO-、-CHCH-又は単結合が更に好ましく、-OCH-、-CFO-又は単結合が特に好ましい。 Z J1 and Z J2 each independently preferably represent —CH 2 O—, —OCH 2 —, —CF 2 O—, —CH 2 CH 2 —, —CF 2 CF 2 — or a single bond, OCH 2 —, —CF 2 O—, —CH 2 CH 2 — or a single bond is more preferred, and —OCH 2 —, —CF 2 O— or a single bond is particularly preferred.
 XJ1はフッ素原子又はトリフルオロメトキシ基が好ましく、フッ素原子が好ましい。 X J1 is preferably a fluorine atom or a trifluoromethoxy group, and more preferably a fluorine atom.
 nJ1は、0、1、2又は3が好ましく、0、1又は2が好ましく、Δεの改善に重点を置く場合には0又は1が好ましく、TNIを重視する場合には1又は2が好ましい。 n J1 is preferably 0, 1, 2 or 3, preferably 0, 1 or 2, preferably 0 or 1 when emphasizing the improvement of Δε, and 1 or 2 when emphasizing TNI. preferable.
 組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの所望の性能に応じて組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類である。またさらに、本発明の別の実施形態では4種類であり、5種類であり、6種類であり、7種類以上である。 There are no particular restrictions on the types of compounds that can be combined, but they are used in combination according to desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence. For example, in one embodiment of the present invention, there are one kind, two kinds, and three kinds of compounds to be used. Furthermore, in another embodiment of the present invention, there are four types, five types, six types, and seven or more types.
 本発明で用いる液晶組成物(B)において、一般式(J)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。 In the liquid crystal composition (B) used in the present invention, the content of the compound represented by the general formula (J) is low temperature solubility, transition temperature, electrical reliability, birefringence, process suitability, It is necessary to adjust appropriately according to required performance such as dripping marks, image sticking, and dielectric anisotropy.
 本発明で用いる液晶組成物(B)の総量に対しての一般式(J)で表される化合物の好ましい含有量の下限値は、1質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、例えば本発明の一つの形態では95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%である。 The lower limit of the preferable content of the compound represented by the general formula (J) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 10% by mass, and 20% by mass. 30% by mass 40% by mass 50% by mass 55% by mass 60% by mass 65% by mass 70% by mass 75% by mass 80% by mass. The upper limit of the preferable content is, for example, 95% by mass, 85% by mass, and 75% by mass in one embodiment of the present invention with respect to the total amount of the liquid crystal composition (B) used in the present invention. 65% by mass, 55% by mass, 45% by mass, 35% by mass, and 25% by mass.
 本発明で用いる液晶組成物(B)の粘度を低く保ち、応答速度が速い組成物が必要な場合は上記の下限値を低めに、上限値を低めにすることが好ましい。さらに、本発明で用いる液晶組成物(B)のTNIを高く保ち、温度安定性の良い組成物が必要な場合は上記の下限値を低めに、上限値を低めにすることが好ましい。また、駆動電圧を低く保つために誘電率異方性を大きくしたいときは、上記の下限値を高めに、上限値を高めにすることが好ましい。 When the composition of the liquid crystal composition (B) used in the present invention is kept low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Additionally, keeping the liquid crystal composition used in the present invention the T NI of (B) high, if the temperature stability with good composition is required for lowering the lower limit of the above, it is preferable to set the upper limit to lower. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
 信頼性を重視する場合にはRJ1はアルキル基であることが好ましく、粘性の低下を重視する場合にはアルケニル基であることが好ましい。 R J1 is preferably an alkyl group when emphasizing reliability, and is preferably an alkenyl group when emphasizing a decrease in viscosity.
 一般式(J)で表される化合物としては一般式(M)で表される化合物及び一般式(K)で表される化合物が好ましい。 As the compound represented by the general formula (J), a compound represented by the general formula (M) and a compound represented by the general formula (K) are preferable.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
(式中、RM1は炭素原子数1~8のアルキル基を表し、該アルキル基中の1個又は非隣接の2個以上の-CH-はそれぞれ独立して-CH=CH-、-C≡C-、-O-、-CO-、-COO-又は-OCO-によって置換されていてもよく、
 nM1は、0、1、2、3又は4を表し、
 AM1及びAM2はそれぞれ独立して、
(a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-又は-S-に置き換えられてもよい。)及び
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)
からなる群より選ばれる基を表し、上記の基(a)及び基(b)上の水素原子はそれぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
 ZM1及びZM2はそれぞれ独立して単結合、-CHCH-、-(CH-、-OCH-、-CHO-、-OCF-、-CFO-、-COO-、-OCO-又は-C≡C-を表し、
 nM1が2、3又は4であってAM2が複数存在する場合は、それらは同一であっても異なっていても良く、nM1が2、3又は4であってZM1が複数存在する場合は、それらは同一であっても異なっていても良く、
 XM1及びXM3はそれぞれ独立して水素原子、塩素原子又はフッ素原子を表し、
 XM2は、水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基又は2,2,2-トリフルオロエチル基を表す。)
(Wherein R M1 represents an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are each independently —CH═CH—, — Optionally substituted by C≡C—, —O—, —CO—, —COO— or —OCO—,
n M1 represents 0, 1, 2, 3 or 4;
A M1 and A M2 are each independently
(A) 1,4-cyclohexylene group (this is present in the group one -CH 2 - or nonadjacent two or more -CH 2 - may be replaced by -O- or -S- And (b) a 1,4-phenylene group (one —CH═ present in this group or two or more non-adjacent —CH═ may be replaced by —N═).
A hydrogen atom on the group (a) and the group (b) may be independently substituted with a cyano group, a fluorine atom or a chlorine atom,
Z M1 and Z M2 are each independently a single bond, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH 2 —, —CH 2 O—, —OCF 2 —, —CF 2 O—, Represents —COO—, —OCO— or —C≡C—,
When n M1 is 2, 3 or 4 and a plurality of A M2 are present, they may be the same or different, and n M1 is 2, 3 or 4 and a plurality of Z M1 is present If they are the same or different,
X M1 and X M3 each independently represent a hydrogen atom, a chlorine atom or a fluorine atom,
X M2 represents a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, a fluoromethoxy group, a difluoromethoxy group, a trifluoromethoxy group, or a 2,2,2-trifluoroethyl group. )
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
(式中、RK1は炭素原子数1~8のアルキル基を表し、該アルキル基中の1個又は非隣接の2個以上の-CH-はそれぞれ独立して-CH=CH-、-C≡C-、-O-、-CO-、-COO-又は-OCO-によって置換されていてもよく、
 nK1は、0、1、2、3又は4を表し、
 AK1及びAK2はそれぞれ独立して、
(a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-又は-S-に置き換えられてもよい。)及び
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)
からなる群より選ばれる基を表し、上記の基(a)及び基(b)上の水素原子はそれぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
 ZK1及びZK2はそれぞれ独立して単結合、-CHCH-、-(CH-、-OCH-、-CHO-、-OCF-、-CFO-、-COO-、-OCO-又は-C≡C-を表し、
 nK1が2、3又は4であってAK2が複数存在する場合は、それらは同一であっても異なっていても良く、nK1が2、3又は4であってZK1が複数存在する場合は、それらは同一であっても異なっていても良く、
 XK1及びXK3はそれぞれ独立して水素原子、塩素原子又はフッ素原子を表し、
 XK2は、水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基又は2,2,2-トリフルオロエチル基を表す。)
 一般式(M)中、RM1は、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数2~8のアルケニル基又は炭素原子数2~8のアルケニルオキシ基が好ましく、炭素原子数1~5のアルキル基、炭素原子数1~5のアルコキシ基、炭素原子数2~5のアルケニル基又は炭素原子数2~5のアルケニルオキシ基が好ましく、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が更に好ましく、炭素原子数2~5のアルキル基又は炭素原子数2~3のアルケニル基が更に好ましく、炭素原子数3のアルケニル基(プロペニル基)が特に好ましい。
(Wherein R K1 represents an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are each independently —CH═CH—, — Optionally substituted by C≡C—, —O—, —CO—, —COO— or —OCO—,
n K1 represents 0, 1, 2, 3 or 4;
A K1 and A K2 are each independently
(A) 1,4-cyclohexylene group (this is present in the group one -CH 2 - or nonadjacent two or more -CH 2 - may be replaced by -O- or -S- And (b) a 1,4-phenylene group (one —CH═ present in this group or two or more non-adjacent —CH═ may be replaced by —N═).
A hydrogen atom on the group (a) and the group (b) may be independently substituted with a cyano group, a fluorine atom or a chlorine atom,
Z K1 and Z K2 are each independently a single bond, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH 2 —, —CH 2 O—, —OCF 2 —, —CF 2 O—, Represents —COO—, —OCO— or —C≡C—,
When n K1 is 2, 3 or 4 and a plurality of A K2 are present, they may be the same or different, and n K1 is 2, 3 or 4 and a plurality of Z K1 is present If they are the same or different,
X K1 and X K3 each independently represent a hydrogen atom, a chlorine atom or a fluorine atom,
X K2 represents a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, a fluoromethoxy group, a difluoromethoxy group, a trifluoromethoxy group, or a 2,2,2-trifluoroethyl group. )
In the general formula (M), R M1 represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or an alkenyloxy having 2 to 8 carbon atoms. A group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms or an alkenyloxy group having 2 to 5 carbon atoms is preferable. An alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms is more preferable, an alkyl group having 2 to 5 carbon atoms or an alkenyl group having 2 to 3 carbon atoms is more preferable, and an alkenyl group having 3 carbon atoms. (Propenyl group) is particularly preferred.
 信頼性を重視する場合にはRM1はアルキル基であることが好ましく、粘性の低下を重視する場合にはアルケニル基であることが好ましい。 R M1 is preferably an alkyl group when emphasizing reliability, and is preferably an alkenyl group when emphasizing a decrease in viscosity.
 また、それが結合する環構造がフェニル基(芳香族)である場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び炭素原子数4~5のアルケニル基が好ましく、それが結合する環構造がシクロヘキサン、ピラン及びジオキサンなどの飽和した環構造の場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。ネマチック相を安定化させるためには炭素原子及び存在する場合酸素原子の合計が5以下であることが好ましく、直鎖状であることが好ましい。 Further, when the ring structure to which it is bonded is a phenyl group (aromatic), a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms and carbon An alkenyl group having 4 to 5 atoms is preferable, and when the ring structure to which the alkenyl group is bonded is a saturated ring structure such as cyclohexane, pyran and dioxane, a linear alkyl group having 1 to 5 carbon atoms, a straight chain A straight-chain alkoxy group having 1 to 4 carbon atoms and a straight-chain alkenyl group having 2 to 5 carbon atoms are preferred. In order to stabilize the nematic phase, the total of carbon atoms and oxygen atoms, if present, is preferably 5 or less, and is preferably linear.
 アルケニル基としては、式(R1)から式(R5)のいずれかで表される基から選ばれることが好ましい。(各式中の黒点はアルケニル基が結合している環構造中の炭素原子を表す。) The alkenyl group is preferably selected from groups represented by any of the formulas (R1) to (R5). (The black dot in each formula represents the carbon atom in the ring structure to which the alkenyl group is bonded.)
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 AM1及びAM2はそれぞれ独立してΔnを大きくすることが求められる場合には芳香族であることが好ましく、応答速度を改善するためには脂肪族であることが好ましく、トランス-1,4-シクロへキシレン基、1,4-フェニレン基、2-フルオロ-1,4-フェニレン基、3-フルオロ-1,4-フェニレン基、3,5-ジフルオロ-1,4-フェニレン基、2,3-ジフルオロ-1,4-フェニレン基、1,4-シクロヘキセニレン基、1,4-ビシクロ[2.2.2]オクチレン基、ピペリジン-1,4-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基を表すことが好ましく、下記の構造を表すことがより好ましく、 A M1 and A M2 are preferably aromatic when it is required to independently increase Δn, and are preferably aliphatic for improving the response speed, and trans-1,4 -Cyclohexylene group, 1,4-phenylene group, 2-fluoro-1,4-phenylene group, 3-fluoro-1,4-phenylene group, 3,5-difluoro-1,4-phenylene group, 2, 3-difluoro-1,4-phenylene group, 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1,4-diyl group, naphthalene-2,6- It preferably represents a diyl group, decahydronaphthalene-2,6-diyl group or 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, and more preferably represents the following structure:
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
下記の構造を表すことがより好ましい。 It is more preferable to represent the following structure.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 ZM1及びZM2はそれぞれ独立して-CHO-、-CFO-、-CHCH-、-CFCF-又は単結合を表すことが好ましく、-CFO-、-CHCH-又は単結合が更に好ましく、-CFO-又は単結合が特に好ましい。 Z M1 and Z M2 each independently -CH 2 O -, - CF 2 O -, - CH 2 CH 2 -, - CF 2 CF 2 - or preferably a single bond, -CF 2 O-, —CH 2 CH 2 — or a single bond is more preferable, and —CF 2 O— or a single bond is particularly preferable.
 nM1は、0、1、2又は3が好ましく、0、1又は2が好ましく、Δεの改善に重点を置く場合には0又は1が好ましく、TNIを重視する場合には1又は2が好ましい。 n M1 is preferably 0, 1, 2 or 3, preferably 0, 1 or 2, preferably 0 or 1 when emphasizing the improvement of Δε, and 1 or 2 when emphasizing T NI preferable.
 組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの所望の性能に応じて組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類である。またさらに、本発明の別の実施形態では4種類であり、5種類であり、6種類であり、7種類以上である。 There are no particular restrictions on the types of compounds that can be combined, but they are used in combination according to desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence. For example, in one embodiment of the present invention, there are one kind, two kinds, and three kinds of compounds to be used. Furthermore, in another embodiment of the present invention, there are four types, five types, six types, and seven or more types.
 本発明で用いる液晶組成物(B)において、一般式(M)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。 In the liquid crystal composition (B) used in the present invention, the content of the compound represented by the general formula (M) is low temperature solubility, transition temperature, electrical reliability, birefringence, process suitability, It is necessary to adjust appropriately according to required performance such as dripping marks, image sticking, and dielectric anisotropy.
 本発明で用いる液晶組成物(B)の総量に対しての式(M)で表される化合物の好ましい含有量の下限値は、1質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、例えば本発明の一つの形態では95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%である。 The lower limit of the preferable content of the compound represented by the formula (M) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 10% by mass, and 20% by mass. Yes, 30% by weight, 40% by weight, 50% by weight, 55% by weight, 60% by weight, 65% by weight, 70% by weight, 75% by weight, 80% by mass. The upper limit of the preferable content is, for example, 95% by mass, 85% by mass, and 75% by mass in one embodiment of the present invention with respect to the total amount of the liquid crystal composition (B) used in the present invention. 65% by mass, 55% by mass, 45% by mass, 35% by mass, and 25% by mass.
 本発明で用いる液晶組成物(B)の粘度を低く保ち、応答速度が速い組成物が必要な場合は上記の下限値を低めに、上限値を低めにすることが好ましい。さらに、本発明で用いる液晶組成物(B)のTNIを高く保ち、温度安定性の良い組成物が必要な場合は上記の下限値を低めに、上限値を低めにすることが好ましい。また、駆動電圧を低く保つために誘電率異方性を大きくしたいときは、上記の下限値を高めに、上限値を高めにすることが好ましい。 When the composition of the liquid crystal composition (B) used in the present invention is kept low and a composition having a high response speed is required, it is preferable to lower the lower limit and lower the upper limit. Additionally, keeping the liquid crystal composition used in the present invention the T NI of (B) high, if the temperature stability with good composition is required for lowering the lower limit of the above, it is preferable to set the upper limit to lower. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable to increase the upper limit value while increasing the lower limit value.
 (np化合物)
 本発明の液晶組成物は、一般式(L)で表される化合物を1種類又は2種類以上さらに含有することが好ましい。一般式(L)で表される化合物は誘電的にほぼ中性の化合物(Δεの値が-2~2)に該当する。
(Np compound)
The liquid crystal composition of the present invention preferably further contains one or more compounds represented by the general formula (L). The compound represented by the general formula (L) corresponds to a dielectrically neutral compound (Δε value is −2 to 2).
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
(式中、RL1及びRL2はそれぞれ独立して炭素原子数1~8のアルキル基を表し、該アルキル基中の1個又は非隣接の2個以上の-CH-はそれぞれ独立して-CH=CH-、-C≡C-、-O-、-CO-、-COO-又は-OCO-によって置換されていてもよく、
 nL1は0、1、2又は3を表し、
 AL1、AL2及びAL3はそれぞれ独立して
(a) 1,4-シクロヘキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-に置き換えられてもよい。)及び
(b) 1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられてもよい。)
(c) ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基(ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられても良い。)
からなる群より選ばれる基を表し、上記の基(a)、基(b)及び基(c)はそれぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
 ZL1及びZL2はそれぞれ独立して単結合、-CHCH-、-(CH-、-OCH-、-CHO-、-COO-、-OCO-、-OCF-、-CFO-、-CH=N-N=CH-、-CH=CH-、-CF=CF-又は-C≡C-を表し、
 nL1が2又は3であってAL2が複数存在する場合は、それらは同一であっても異なっていても良く、nL1が2又は3であってZL2が複数存在する場合は、それらは同一であっても異なっていても良いが、一般式(N-1)、(N-2)、(N-3)、(J)及び(i)で表される化合物を除く。)
 一般式(L)で表される化合物は単独で用いてもよいが、組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの所望の性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類である。あるいは本発明の別の実施形態では2種類であり、3種類であり、4種類であり、5種類であり、6種類であり、7種類であり、8種類であり、9種類であり、10種類以上である。
(Wherein R L1 and R L2 each independently represents an alkyl group having 1 to 8 carbon atoms, and one or two or more non-adjacent —CH 2 — in the alkyl group are each independently Optionally substituted by —CH═CH—, —C≡C—, —O—, —CO—, —COO— or —OCO—,
n L1 represents 0, 1, 2 or 3,
A L1 , A L2 and A L3 each independently represent (a) a 1,4-cyclohexylene group (one —CH 2 — present in the group or two or more —CH 2 — not adjacent to each other). May be replaced by —O—) and (b) a 1,4-phenylene group (one —CH═ present in this group or two or more —CH═ not adjacent to each other —N May be replaced by =.)
(C) Naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or decahydronaphthalene-2,6-diyl group (naphthalene-2,6-diyl group or One —CH═ present in the 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or two or more non-adjacent —CH═ may be replaced by —N═. )
The group (a), the group (b) and the group (c) may be each independently substituted with a cyano group, a fluorine atom or a chlorine atom,
Z L1 and Z L2 are each independently a single bond, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH 2 —, —CH 2 O—, —COO—, —OCO—, —OCF 2 -, -CF 2 O-, -CH = NN-CH-, -CH = CH-, -CF = CF- or -C≡C-
When n L1 is 2 or 3, and a plurality of A L2 are present, they may be the same or different, and when n L1 is 2 or 3, and a plurality of Z L2 are present, May be the same or different, but excludes compounds represented by general formulas (N-1), (N-2), (N-3), (J) and (i). )
Although the compound represented by general formula (L) may be used independently, it can also be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to desired properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence. The kind of the compound used is, for example, one kind as one embodiment of the present invention. Alternatively, in another embodiment of the present invention, there are two types, three types, four types, five types, six types, seven types, eight types, nine types, 10 types, More than types.
 本発明で用いる液晶組成物(B)において、一般式(L)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。 In the liquid crystal composition (B) used in the present invention, the content of the compound represented by the general formula (L) is low temperature solubility, transition temperature, electrical reliability, birefringence, process suitability, It is necessary to adjust appropriately according to required performance such as dripping marks, image sticking, and dielectric anisotropy.
 本発明で用いる液晶組成物(B)の総量に対しての式(L)で表される化合物の好ましい含有量の下限値は、1質量%であり、10質量%であり、20質量%であり、30質量%であり、40質量%であり、50質量%であり、55質量%であり、60質量%であり、65質量%であり、70質量%であり、75質量%であり、80質量%である。好ましい含有量の上限値は、95質量%であり、85質量%であり、75質量%であり、65質量%であり、55質量%であり、45質量%であり、35質量%であり、25質量%である。 The lower limit of the preferable content of the compound represented by the formula (L) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 10% by mass, and 20% by mass. Yes, 30% by weight, 40% by weight, 50% by weight, 55% by weight, 60% by weight, 65% by weight, 70% by weight, 75% by weight, 80% by mass. The upper limit of the preferable content is 95% by mass, 85% by mass, 75% by mass, 65% by mass, 55% by mass, 45% by mass, and 35% by mass, 25% by mass.
 本発明で用いる液晶組成物(B)の粘度を低く保ち、応答速度が速い組成物が必要な場合は上記の下限値が高く上限値が高いことが好ましい。さらに、本発明で用いる液晶組成物(B)のTNIを高く保ち、温度安定性の良い組成物が必要な場合は上記の下限値が高く上限値が高いことが好ましい。また、駆動電圧を低く保つために誘電率異方性を大きくしたいときは、上記の下限値を低く上限値が低いことが好ましい。 When the composition of the liquid crystal composition (B) used in the present invention needs to maintain a low viscosity and has a fast response speed, it is preferable that the above lower limit value is high and the upper limit value is high. Additionally, keeping the liquid crystal composition used in the present invention the T NI of (B) high, it is preferable if the temperature stability with good composition is required upper limit higher the lower limit of the above is high. Further, when it is desired to increase the dielectric anisotropy in order to keep the driving voltage low, it is preferable that the above lower limit value is lowered and the upper limit value is low.
 信頼性を重視する場合にはRL1及びRL2はともにアルキル基であることが好ましく、化合物の揮発性を低減させることを重視する場合にはアルコキシ基であることが好ましく、粘性の低下を重視する場合には少なくとも一方はアルケニル基であることが好ましい。 When importance is attached to reliability, R L1 and R L2 are preferably both alkyl groups, and when importance is placed on reducing the volatility of the compound, it is preferably an alkoxy group, and importance is placed on viscosity reduction. In this case, at least one is preferably an alkenyl group.
  分子内に存在するハロゲン原子は0、1、2又は3個が好ましく、0又は1が好ましく、他の液晶分子との相溶性を重視する場合には1が好ましい。 The number of halogen atoms present in the molecule is preferably 0, 1, 2 or 3, preferably 0 or 1, and 1 is preferred when importance is attached to compatibility with other liquid crystal molecules.
 RL1及びRL2は、それが結合する環構造がフェニル基(芳香族)である場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び炭素原子数4~5のアルケニル基が好ましく、それが結合する環構造がシクロヘキサン、ピラン及びジオキサンなどの飽和した環構造の場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。ネマチック相を安定化させるためには炭素原子及び存在する場合酸素原子の合計が5以下であることが好ましく、直鎖状であることが好ましい。 R L1 and R L2 are each a linear alkyl group having 1 to 5 carbon atoms or a linear alkyl group having 1 to 4 carbon atoms when the ring structure to which R L1 is bonded is a phenyl group (aromatic). When the ring structure to which it is bonded is a saturated ring structure such as cyclohexane, pyran and dioxane, a straight-chain C 1-5 carbon atom is preferred. Alkyl groups, linear alkoxy groups having 1 to 4 carbon atoms and linear alkenyl groups having 2 to 5 carbon atoms are preferred. In order to stabilize the nematic phase, the total of carbon atoms and oxygen atoms, if present, is preferably 5 or less, and is preferably linear.
 アルケニル基としては、式(R1)から式(R5)のいずれかで表される基から選ばれることが好ましい。(各式中の黒点は環構造中の炭素原子を表す。) The alkenyl group is preferably selected from groups represented by any of the formulas (R1) to (R5). (The black dots in each formula represent carbon atoms in the ring structure.)
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 nL1は応答速度を重視する場合には0が好ましく、ネマチック相の上限温度を改善するためには2又は3が好ましく、これらのバランスをとるためには1が好ましい。また、組成物として求められる特性を満たすためには異なる値の化合物を組み合わせることが好ましい。 n L1 is preferably 0 when importance is attached to the response speed, 2 or 3 is preferred for improving the upper limit temperature of the nematic phase, and 1 is preferred for balancing these. In order to satisfy the properties required for the composition, it is preferable to combine compounds having different values.
 AL1、AL2及びAL3はΔnを大きくすることが求められる場合には芳香族であることが好ましく、応答速度を改善するためには脂肪族であることが好ましく、それぞれ独立してトランス-1,4-シクロへキシレン基、1,4-フェニレン基、2-フルオロ-1,4-フェニレン基、3-フルオロ-1,4-フェニレン基、3,5-ジフルオロ-1,4-フェニレン基、1,4-シクロヘキセニレン基、1,4-ビシクロ[2.2.2]オクチレン基、ピペリジン-1,4-ジイル基、ナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基を表すことが好ましく、下記の構造を表すことがより好ましく、 A L1 , A L2, and A L3 are preferably aromatic when it is required to increase Δn, and are preferably aliphatic for improving the response speed, and are each independently trans- 1,4-cyclohexylene group, 1,4-phenylene group, 2-fluoro-1,4-phenylene group, 3-fluoro-1,4-phenylene group, 3,5-difluoro-1,4-phenylene group 1,4-cyclohexenylene group, 1,4-bicyclo [2.2.2] octylene group, piperidine-1,4-diyl group, naphthalene-2,6-diyl group, decahydronaphthalene-2,6 -It preferably represents a diyl group or a 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, and more preferably represents the following structure:
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
トランス-1,4-シクロへキシレン基又は1,4-フェニレン基を表すことがより好ましい。 More preferably, it represents a trans-1,4-cyclohexylene group or a 1,4-phenylene group.
 ZL1及びZL2は応答速度を重視する場合には単結合であることが好ましい。 Z L1 and Z L2 are preferably single bonds when the response speed is important.
 一般式(L)で表される化合物は分子内のハロゲン原子数が0個又は1個であることが好ましい。 The compound represented by the general formula (L) preferably has 0 or 1 halogen atom in the molecule.
 一般式(L)で表される化合物は一般式(L-3)~(L-8)で表される化合物群から選ばれる化合物であることが好ましい。 The compound represented by the general formula (L) is preferably a compound selected from the group of compounds represented by the general formulas (L-3) to (L-8).
 一般式(L-3)で表される化合物は下記の化合物である。 The compound represented by the general formula (L-3) is the following compound.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
(式中、RL31及びRL32はそれぞれ独立して、一般式(L)におけるRL1及びRL2と同じ意味を表す。)
 RL31及びRL32はそれぞれ独立して炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましい。
(In the formula, R L31 and R L32 each independently represent the same meaning as R L1 and R L2 in General Formula (L).)
R L31 and R L32 are each independently preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms.
 一般式(L-3)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。 The compound represented by the general formula (L-3) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence. The kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
 本発明で用いる液晶組成物(B)の総量に対しての式(L-3)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%である。好ましい含有量の上限値は、本発明で用いる液晶組成物(B)の総量に対して、20質量%であり、15質量%であり、13質量%であり、10質量%であり、8質量%であり、7質量%であり、6質量%であり、5質量%であり、3質量%である。 The lower limit of the preferable content of the compound represented by the formula (L-3) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 2% by mass, 3% by mass %, 5% by mass, 7% by mass, and 10% by mass. The upper limit of the preferable content is 20% by mass, 15% by mass, 13% by mass, 10% by mass, and 8% by mass with respect to the total amount of the liquid crystal composition (B) used in the present invention. %, 7% by mass, 6% by mass, 5% by mass, and 3% by mass.
 高い複屈折率を得る場合は含有量を多めに設定すると効果が高く、反対に、高いTNIを重視する場合は含有量を少なめに設定すると効果が高い。さらに、滴下痕や焼き付き特性を改良する場合は、含有量の範囲を中間に設定することが好ましい。 When a high birefringence is obtained, the effect is high when the content is set to be large. On the other hand, when the high TNI is emphasized, the effect is high when the content is set low. Furthermore, when improving dripping marks and image sticking characteristics, it is preferable to set the content range in the middle.
 一般式(L-4)で表される化合物は下記の化合物である。 The compound represented by the general formula (L-4) is the following compound.
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
(式中、RL41及びRL42はそれぞれ独立して、一般式(L)におけるRL1及びRL2と同じ意味を表す。)
 RL41は炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、RL42は炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましい。)
 一般式(L-4)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。
(In the formula, R L41 and R L42 each independently represent the same meaning as R L1 and R L2 in General Formula (L).)
R L41 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and R L42 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or a carbon atom. An alkoxy group of 1 to 4 is preferable. )
The compound represented by the general formula (L-4) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence. The kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
 本発明で用いる液晶組成物(B)において、一般式(L-4)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。 In the liquid crystal composition (B) used in the present invention, the content of the compound represented by the general formula (L-4) is low temperature solubility, transition temperature, electrical reliability, birefringence, process suitability. It is necessary to adjust appropriately according to required properties such as property, dripping marks, image sticking, and dielectric anisotropy.
 本発明で用いる液晶組成物(B)の総量に対しての式(L-4)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、14質量%であり、16質量%であり、20質量%であり、23質量%であり、26質量%であり、30質量%であり、35質量%であり、40質量%である。本発明で用いる液晶組成物(B)の総量に対しての式(L-4)で表される化合物の好ましい含有量の上限値は、50質量%であり、40質量%であり、35質量%であり、30質量%であり、20質量%であり、15質量%であり、10質量%であり、5質量%である。 The lower limit of the preferable content of the compound represented by the formula (L-4) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 2% by mass, 3% by mass %, 5% by mass, 7% by mass, 10% by mass, 14% by mass, 16% by mass, 20% by mass, 23% by mass and 26% by mass. Yes, 30% by mass, 35% by mass, and 40% by mass. The upper limit of the preferable content of the compound represented by the formula (L-4) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 50% by mass, 40% by mass, and 35% by mass. %, 30% by mass, 20% by mass, 15% by mass, 10% by mass, and 5% by mass.
 一般式(L-5)で表される化合物は下記の化合物である。 The compound represented by the general formula (L-5) is the following compound.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
(式中、RL51及びRL52はそれぞれ独立して、一般式(L)におけるRL1及びRL2と同じ意味を表す。)
 RL51は炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、RL52は炭素原子数1~5のアルキル基、炭素原子数4~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましい。
(In the formula, R L51 and R L52 each independently represent the same meaning as R L1 and R L2 in the general formula (L).)
R L51 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and R L52 is an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 4 to 5 carbon atoms, or a carbon atom. An alkoxy group of 1 to 4 is preferable.
 一般式(L-5)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。 The compound represented by the general formula (L-5) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence. The kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
 本発明で用いる液晶組成物(B)において、一般式(L-5)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。 In the liquid crystal composition (B) used in the present invention, the content of the compound represented by the general formula (L-5) is low temperature solubility, transition temperature, electrical reliability, birefringence, process suitability. It is necessary to adjust appropriately according to required properties such as property, dripping marks, image sticking, and dielectric anisotropy.
 本発明で用いる液晶組成物(B)の総量に対しての式(L-5)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、14質量%であり、16質量%であり、20質量%であり、23質量%であり、26質量%であり、30質量%であり、35質量%であり、40質量%である。本発明で用いる液晶組成物(B)の総量に対しての式(L-5)で表される化合物の好ましい含有量の上限値は、50質量%であり、40質量%であり、35質量%であり、30質量%であり、20質量%であり、15質量%であり、10質量%であり、5質量%である The lower limit of the preferable content of the compound represented by the formula (L-5) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 2% by mass, 3% by mass %, 5% by mass, 7% by mass, 10% by mass, 14% by mass, 16% by mass, 20% by mass, 23% by mass and 26% by mass. Yes, 30% by mass, 35% by mass, and 40% by mass. The upper limit of the preferable content of the compound represented by the formula (L-5) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 50% by mass, 40% by mass, and 35% by mass. %, 30% by mass, 20% by mass, 15% by mass, 10% by mass, and 5% by mass.
 一般式(L-6)で表される化合物は下記の化合物である。 The compound represented by the general formula (L-6) is the following compound.
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
(式中、RL61及びRL62はそれぞれ独立して、一般式(L)におけるRL1及びRL2と同じ意味を表し、XL61及びXL62はそれぞれ独立して水素原子又はフッ素原子を表す。)
 RL61及びRL62はそれぞれ独立して炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基が好ましく、XL61及びXL62のうち一方がフッ素原子他方が水素原子であることが好ましい。
(In the formula, R L61 and R L62 each independently represent the same meaning as R L1 and R L2 in the general formula (L), and X L61 and X L62 each independently represent a hydrogen atom or a fluorine atom. )
R L61 and R L62 are each independently preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms, and one of X L61 and X L62 is a fluorine atom and the other is a hydrogen atom. Is preferred.
 一般式(L-6)で表される化合物は単独で使用することもできるが、2以上の化合物を組み合わせて使用することもできる。組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて適宜組み合わせて使用する。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類であり、5種類以上である。 The compound represented by the general formula (L-6) can be used alone, or two or more compounds can be used in combination. There are no particular restrictions on the types of compounds that can be combined, but they are used in appropriate combinations according to the required properties such as solubility at low temperatures, transition temperatures, electrical reliability, and birefringence. The kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, four kinds, and five kinds or more.
 本発明で用いる液晶組成物(B)の総量に対しての式(L-6)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、14質量%であり、16質量%であり、20質量%であり、23質量%であり、26質量%であり、30質量%であり、35質量%であり、40質量%である。本発明で用いる液晶組成物(B)の総量に対しての式(L-6)で表される化合物の好ましい含有量の上限値は、50質量%であり、40質量%であり、35質量%であり、30質量%であり、20質量%であり、15質量%であり、10質量%であり、5質量%である。Δnを大きくすることに重点を置く場合には含有量を多くした方が好ましく、低温での析出に重点を置いた場合には含有量は少ない方が好ましい。 The lower limit of the preferable content of the compound represented by the formula (L-6) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 2% by mass, 3% by mass %, 5% by mass, 7% by mass, 10% by mass, 14% by mass, 16% by mass, 20% by mass, 23% by mass and 26% by mass. Yes, 30% by mass, 35% by mass, and 40% by mass. The upper limit of the preferable content of the compound represented by the formula (L-6) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 50% by mass, 40% by mass, and 35% by mass. %, 30% by mass, 20% by mass, 15% by mass, 10% by mass, and 5% by mass. When emphasizing to increase Δn, it is preferable to increase the content, and when emphasizing the precipitation at low temperature, it is preferable to decrease the content.
 一般式(L-7)で表される化合物は下記の化合物である。 The compound represented by the general formula (L-7) is the following compound.
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
(式中、RL71及びRL72はそれぞれ独立して一般式(L)におけるRL1及びRL2と同じ意味を表し、AL71及びAL72はそれぞれ独立して一般式(L)におけるAL2及びAL3と同じ意味を表すが、AL71及びAL72上の水素原子はそれぞれ独立してフッ素原子によって置換されていてもよく、ZL71は一般式(L)におけるZL2と同じ意味を表し、XL71及びXL72はそれぞれ独立してフッ素原子又は水素原子を表す。)
 式中、RL71及びRL72はそれぞれ独立して炭素原子数1~5のアルキル基、炭素原子数2~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましく、AL71及びAL72はそれぞれ独立して1,4-シクロヘキシレン基又は1,4-フェニレン基が好ましく、AL71及びAL72上の水素原子はそれぞれ独立してフッ素原子によって置換されていてもよく、ZL71は単結合又はCOO-が好ましく、単結合が好ましく、XL71及びXL72は水素原子が好ましい。
(Wherein, R L71 and R L72 each independently represent the same meaning as R L1 and R L2 in Formula (L), A L71 and A L72 is A L2 and in the general formula (L) independently A L3 represents the same meaning, but the hydrogen atoms on A L71 and A L72 may be each independently substituted with a fluorine atom, Z L71 represents the same meaning as Z L2 in formula (L), X L71 and X L72 each independently represent a fluorine atom or a hydrogen atom.)
In the formula, R L71 and R L72 are each independently preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and A L71 and A L72 Are each independently preferably a 1,4-cyclohexylene group or a 1,4-phenylene group, the hydrogen atoms on A L71 and A L72 may be each independently substituted with a fluorine atom, and Z L71 is a single group. A bond or COO- is preferable, a single bond is preferable, and X L71 and X L72 are preferably a hydrogen atom.
 組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて組み合わせる。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類である。 There are no particular restrictions on the types of compounds that can be combined, but they are combined according to the required performance, such as solubility at low temperatures, transition temperature, electrical reliability, and birefringence. The kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, and four kinds.
 本発明で用いる液晶組成物(B)において、一般式(L-7)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。 In the liquid crystal composition (B) used in the present invention, the content of the compound represented by the general formula (L-7) is the solubility at low temperature, transition temperature, electrical reliability, birefringence, process suitability It is necessary to adjust appropriately according to required properties such as property, dripping marks, image sticking, and dielectric anisotropy.
 本発明で用いる液晶組成物(B)の総量に対しての式(L-7)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、14質量%であり、16質量%であり、20質量%である。本発明で用いる液晶組成物(B)の総量に対しての式(L-7)で表される化合物の好ましい含有量の上限値は、30質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、10質量%であり、5質量%である。 The lower limit of the preferable content of the compound represented by the formula (L-7) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 2% by mass, 3% by mass %, 5% by mass, 7% by mass, 10% by mass, 14% by mass, 16% by mass, and 20% by mass. The upper limit of the preferable content of the compound represented by the formula (L-7) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 30% by mass, 25% by mass, and 23% by mass. %, 20% by mass, 18% by mass, 15% by mass, 10% by mass, and 5% by mass.
 本発明で用いる液晶組成物(B)が高いTNIの実施形態が望まれる場合は式(L-7)で表される化合物の含有量を多めにすることが好ましく、低粘度の実施形態が望まれる場合は含有量を少なめにすることが好ましい。 When an embodiment of TNI having a high liquid crystal composition (B) used in the present invention is desired, the content of the compound represented by formula (L-7) is preferably increased, and an embodiment having a low viscosity is used. If desired, it is preferable to reduce the content.
 一般式(L-8)で表される化合物は下記の化合物である。 The compound represented by the general formula (L-8) is the following compound.
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
(式中、RL81及びRL82はそれぞれ独立して一般式(L)におけるRL1及びRL2と同じ意味を表し、AL81は一般式(L)におけるAL1と同じ意味又は単結合を表すが、AL81上の水素原子はそれぞれ独立してフッ素原子によって置換されていてもよく、XL81~XL86はそれぞれ独立してフッ素原子又は水素原子を表す。)
 式中、RL81及びRL82はそれぞれ独立して炭素原子数1~5のアルキル基、炭素原子数2~5のアルケニル基又は炭素原子数1~4のアルコキシ基が好ましく、AL81は1,4-シクロヘキシレン基又は1,4-フェニレン基が好ましく、AL71及びAL72上の水素原子はそれぞれ独立してフッ素原子によって置換されていてもよく、一般式(L-8)中の同一の環構造上にフッ素原子は0個又は1個が好ましく、分子内にフッ素原子は0個又は1個であることが好ましい。
(In the formula, R L81 and R L82 each independently represent the same meaning as R L1 and R L2 in General Formula (L), and A L81 represents the same meaning or single bond as A L1 in General Formula (L)). However, each hydrogen atom on A L81 may be independently substituted with a fluorine atom, and X L81 to X L86 each independently represent a fluorine atom or a hydrogen atom.)
Wherein, R L81 and R L82 are each independently an alkyl group having 1 to 5 carbon atoms, an alkenyl group or an alkoxy group having 1 to 4 carbon atoms of 2 to 5 carbon atoms preferably, A L81 is 1, A 4-cyclohexylene group or a 1,4-phenylene group is preferable, and the hydrogen atoms on A L71 and A L72 may be each independently substituted with a fluorine atom, and the same in general formula (L-8) The number of fluorine atoms in the ring structure is preferably 0 or 1, and the number of fluorine atoms in the molecule is preferably 0 or 1.
 組み合わせることができる化合物の種類に特に制限は無いが、低温での溶解性、転移温度、電気的な信頼性、複屈折率などの求められる性能に応じて組み合わせる。使用する化合物の種類は、例えば本発明の一つの実施形態としては1種類であり、2種類であり、3種類であり、4種類である。 There are no particular restrictions on the types of compounds that can be combined, but they are combined according to the required performance, such as solubility at low temperatures, transition temperature, electrical reliability, and birefringence. The kind of the compound used is, for example, one kind as one embodiment of the present invention, two kinds, three kinds, and four kinds.
 本発明で用いる液晶組成物(B)において、一般式(L-8)で表される化合物の含有量は、低温での溶解性、転移温度、電気的な信頼性、複屈折率、プロセス適合性、滴下痕、焼き付き、誘電率異方性などの求められる性能に応じて適宜調整する必要がある。 In the liquid crystal composition (B) used in the present invention, the content of the compound represented by the general formula (L-8) is the solubility at low temperature, transition temperature, electrical reliability, birefringence, process suitability It is necessary to adjust appropriately according to required properties such as property, dripping marks, image sticking, and dielectric anisotropy.
 本発明で用いる液晶組成物(B)の総量に対しての式(L-8)で表される化合物の好ましい含有量の下限値は、1質量%であり、2質量%であり、3質量%であり、5質量%であり、7質量%であり、10質量%であり、14質量%であり、16質量%であり、20質量%である。本発明で用いる液晶組成物(B)の総量に対しての式(L-8)で表される化合物の好ましい含有量の上限値は、30質量%であり、25質量%であり、23質量%であり、20質量%であり、18質量%であり、15質量%であり、10質量%であり、5質量%である。 The lower limit of the preferable content of the compound represented by the formula (L-8) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 1% by mass, 2% by mass, 3% by mass %, 5% by mass, 7% by mass, 10% by mass, 14% by mass, 16% by mass, and 20% by mass. The upper limit of the preferable content of the compound represented by the formula (L-8) with respect to the total amount of the liquid crystal composition (B) used in the present invention is 30% by mass, 25% by mass, and 23% by mass. %, 20% by mass, 18% by mass, 15% by mass, 10% by mass, and 5% by mass.
 本発明で用いる液晶組成物(B)が高いTNIの実施形態が望まれる場合は式(L-8)で表される化合物の含有量を多めにすることが好ましく、低粘度の実施形態が望まれる場合は含有量を少なめにすることが好ましい。 When an embodiment of TNI having a high liquid crystal composition (B) used in the present invention is desired, the content of the compound represented by formula (L-8) is preferably increased, and an embodiment having a low viscosity is used. If desired, it is preferable to reduce the content.
 本発明で用いる液晶組成物(B)の総量に対しての一般式(i)、一般式(L)、(N-1)、(N-2)、(N-3)及び(J)で表される化合物の合計の好ましい含有量の下限値は、80質量%であり、85質量%であり、88質量%であり、90質量%であり、92質量%であり、93質量%であり、94質量%であり、95質量%であり、96質量%であり、97質量%であり、98質量%であり、99質量%であり、100質量%である。好ましい含有量の上限値は、100質量%であり、99質量%であり、98質量%であり、95質量%である。ただし、Δεの絶対値が大きい組成物を得る観点からは、一般式(N-1)、(N-2)、(N-3)又は(J)で表される化合物のいずれか一方は0質量%であることが好ましい。 In general formula (i), general formula (L), (N-1), (N-2), (N-3) and (J) with respect to the total amount of liquid crystal composition (B) used in the present invention. The lower limit of the preferable total content of the compounds represented is 80% by mass, 85% by mass, 88% by mass, 90% by mass, 92% by mass, and 93% by mass. 94% by mass, 95% by mass, 96% by mass, 97% by mass, 98% by mass, 99% by mass and 100% by mass. The upper limit of preferable content is 100% by mass, 99% by mass, 98% by mass, and 95% by mass. However, from the viewpoint of obtaining a composition having a large absolute value of Δε, any one of the compounds represented by the general formula (N-1), (N-2), (N-3) or (J) is 0. It is preferable that it is mass%.
 本発明で用いる液晶組成物(B)の総量に対しての一般式(i)、一般式(L-1)から(L-7)、一般式(M-1)から(M-8)、一般式(N-1)~(N-4)で表される化合物の合計の好ましい含有量の下限値は、80質量%であり、85質量%であり、88質量%であり、90質量%であり、92質量%であり、93質量%であり、94質量%であり、95質量%であり、96質量%であり、97質量%であり、98質量%であり、99質量%であり、100質量%である。好ましい含有量の上限値は、100質量%であり、99質量%であり、98質量%であり、95質量%である。 General formula (i), general formulas (L-1) to (L-7), general formulas (M-1) to (M-8) with respect to the total amount of the liquid crystal composition (B) used in the present invention, The lower limit of the preferable total content of the compounds represented by the general formulas (N-1) to (N-4) is 80% by mass, 85% by mass, 88% by mass, 90% by mass 92% by mass 93% by mass 94% by mass 95% by mass 96% by mass 97% by mass 98% by mass 99% by mass , 100% by mass. The upper limit of preferable content is 100% by mass, 99% by mass, 98% by mass, and 95% by mass.
 本発明で用いる液晶組成物(B)は、分子内に過酸(-CO-OO-)構造等の酸素原子同士が結合した構造を持つ化合物を含有しないことが好ましい。 The liquid crystal composition (B) used in the present invention preferably does not contain a compound having a structure in which oxygen atoms such as a peracid (—CO—OO—) structure are bonded in the molecule.
 本発明で用いる液晶組成物(B)において、組成物の信頼性及び長期安定性を重視する場合にはカルボニル基を有する化合物の含有量を前記組成物の総質量に対して5質量%以下とすることが好ましく、3質量%以下とすることがより好ましく、1質量%以下とすることが更に好ましく、実質的に含有しないことが最も好ましい。 In the liquid crystal composition (B) used in the present invention, when emphasizing the reliability and long-term stability of the composition, the content of the compound having a carbonyl group is 5% by mass or less based on the total mass of the composition. Preferably, the content is 3% by mass or less, more preferably 1% by mass or less, and most preferably not substantially contained.
 本発明で用いる液晶組成物(B)において、UV照射による安定性を重視する場合、塩素原子が置換している化合物の含有量を前記組成物の総質量に対して15質量%以下とすることが好ましく、10質量%以下とすることが好ましく、8質量%以下とすることが好ましく、5質量%以下とすることがより好ましく、3質量%以下とすることが好ましく、実質的に含有しないことが更に好ましい。 In the liquid crystal composition (B) used in the present invention, when importance is attached to the stability by UV irradiation, the content of the compound substituted with chlorine atoms is 15% by mass or less based on the total mass of the composition. Is preferably 10% by mass or less, preferably 8% by mass or less, more preferably 5% by mass or less, and preferably 3% by mass or less, and substantially does not contain. Is more preferable.
 本発明で用いる液晶組成物(B)において、分子内の環構造がすべて6員環である化合物の含有量を多くすることが好ましく、分子内の環構造がすべて6員環である化合物の含有量を前記組成物の総質量に対して80質量%以上とすることが好ましく、90質量%以上とすることがより好ましく、95質量%以上とすることが更に好ましく、実質的に分子内の環構造がすべて6員環である化合物のみで組成物を構成することが最も好ましい。 In the liquid crystal composition (B) used in the present invention, it is preferable to increase the content of a compound whose ring structure in the molecule is a 6-membered ring, and the inclusion of a compound whose ring structure in the molecule is a 6-membered ring. The amount is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and substantially the ring in the molecule. Most preferably, the composition is composed of only compounds having a 6-membered ring structure.
 本発明で用いる液晶組成物(B)において、組成物の酸化による劣化を抑えるためには、環構造としてシクロヘキセニレン基を有する化合物の含有量を少なくすることが好ましく、シクロヘキセニレン基を有する化合物の含有量を前記組成物の総質量に対して10質量%以下とすることが好ましく、8質量%以下とすることが好ましく、5質量%以下とすることがより好ましく、3質量%以下とすることが好ましく、実質的に含有しないことが更に好ましい。 In the liquid crystal composition (B) used in the present invention, in order to suppress deterioration due to oxidation of the composition, it is preferable to reduce the content of a compound having a cyclohexenylene group as a ring structure, and to have a cyclohexenylene group. The content of the compound is preferably 10% by mass or less with respect to the total mass of the composition, preferably 8% by mass or less, more preferably 5% by mass or less, and 3% by mass or less. Preferably, it is more preferable not to contain substantially.
 本発明で用いる液晶組成物(B)において、粘度の改善及びTNIの改善を重視する場合には、水素原子がハロゲンに置換されていてもよい2-メチルベンゼン-1,4-ジイル基を分子内に持つ化合物の含有量を少なくすることが好ましく、前記2-メチルベンゼン-1,4-ジイル基を分子内に持つ化合物の含有量を前記組成物の総質量に対して10質量%以下とすることが好ましく、8質量%以下とすることが好ましく、5質量%以下とすることがより好ましく、3質量%以下とすることが好ましく、実質的に含有しないことが更に好ましい。 In the liquid crystal composition (B) used in the present invention, when importance is attached to improvement of viscosity and improvement of TNI, a 2-methylbenzene-1,4-diyl group in which a hydrogen atom may be substituted with a halogen is substituted. The content of the compound having in the molecule is preferably reduced, and the content of the compound having the 2-methylbenzene-1,4-diyl group in the molecule is 10% by mass or less based on the total mass of the composition. The content is preferably 8% by mass or less, more preferably 5% by mass or less, further preferably 3% by mass or less, and still more preferably substantially not contained.
 本願において実質的に含有しないとは、意図せずに含有する物を除いて含有しないという意味である。 “Substantially not contained” in the present application means that it is not contained except for an unintentionally contained product.
 本発明の第一実施形態の組成物に含有される化合物が、側鎖としてアルケニル基を有する場合、前記アルケニル基がシクロヘキサンに結合している場合には当該アルケニル基の炭素原子数は2~5であることが好ましく、前記アルケニル基がベンゼンに結合している場合には当該アルケニル基の炭素原子数は4~5であることが好ましく、前記アルケニル基の不飽和結合とベンゼンは直接結合していないことが好ましい。 When the compound contained in the composition of the first embodiment of the present invention has an alkenyl group as a side chain, when the alkenyl group is bonded to cyclohexane, the alkenyl group has 2 to 5 carbon atoms. When the alkenyl group is bonded to benzene, the number of carbon atoms of the alkenyl group is preferably 4 to 5, and the unsaturated bond of the alkenyl group and benzene are directly bonded. Preferably not.
 本発明で用いる重合性液晶組成物は、重合開始剤が存在しない場合でも重合は進行するが、重合を促進するために重合開始剤を含有していてもよい。 Polymerization proceeds in the polymerizable liquid crystal composition used in the present invention even in the absence of a polymerization initiator, but may contain a polymerization initiator in order to accelerate the polymerization.
 ここで、重合方法としては、ラジカル重合、アニオン重合、カチオン重合等を用いることが可能であるが、ラジカル重合により重合することが好ましく、光フリース転位によるラジカル重合、光重合開始剤によるラジカル重合がより好ましい。 Here, radical polymerization, anionic polymerization, cationic polymerization, and the like can be used as the polymerization method. Polymerization is preferably performed by radical polymerization, and radical polymerization by photo-Fries rearrangement, radical polymerization by a photopolymerization initiator is used. More preferred.
 ラジカル重合開始剤としては、熱重合開始剤、光重合開始剤を用いることができるが、光重合開始剤が好ましい。具体的には以下の化合物が好ましい。 As the radical polymerization initiator, a thermal polymerization initiator or a photopolymerization initiator can be used, but a photopolymerization initiator is preferable. Specifically, the following compounds are preferable.
 ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン、4′-フェノキシアセトフェノン、4′-エトキシアセトフェノン等のアセトフェノン系;
 ベンゾイン、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾインメチルエーテル、ベンゾインエチルエーテル等のベンゾイン系;
 2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等のアシルホスフィンオキサイド系;
 ベンジル、メチルフェニルグリオキシエステル系;
 ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4,4′-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4′-メチル-ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3′,4,4′-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、3,3′-ジメチル-4-メトキシベンゾフェノン、2,5-ジメチルベンゾフェノン、3,4-ジメチルベンゾフェノン等のベンゾフェノン系;
 2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン等のチオキサントン系;
 ミヒラーケトン、4,4′-ジエチルアミノベンゾフェノン等のアミノベンゾフェノン系;
 10-ブチル-2-クロロアクリドン、2-エチルアンスラキノン、9,10-フェナンスレンキノン、カンファーキノン等が好ましい。この中でも、ベンジルジメチルケタールが最も好ましい。
Diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- ( 2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl- Acetophenone series such as 2-dimethylamino-1- (4-morpholinophenyl) -butanone, 4′-phenoxyacetophenone, 4′-ethoxyacetophenone;
Benzoins such as benzoin, benzoin isopropyl ether, benzoin isobutyl ether, benzoin methyl ether, benzoin ethyl ether;
Acylphosphine oxides such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide;
Benzyl, methylphenylglyoxyesters;
Benzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4,4'-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4'-methyl-diphenyl sulfide, acrylated benzophenone, 3,3 ', 4,4' -Benzophenone series such as tetra (t-butylperoxycarbonyl) benzophenone, 3,3'-dimethyl-4-methoxybenzophenone, 2,5-dimethylbenzophenone, 3,4-dimethylbenzophenone;
Thioxanthone systems such as 2-isopropylthioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone;
Aminobenzophenone series such as Michler's ketone and 4,4'-diethylaminobenzophenone;
10-butyl-2-chloroacridone, 2-ethylanthraquinone, 9,10-phenanthrenequinone, camphorquinone and the like are preferable. Of these, benzyldimethyl ketal is most preferred.
 又、ラジカルの寿命や反応性を考慮して複数の重合開始剤を用いることも好ましい。 It is also preferable to use a plurality of polymerization initiators in consideration of radical lifetime and reactivity.
 本発明における重合性液晶組成物は、さらに、一般式(Q)で表される化合物を酸化防止剤又は光安定剤として含有することができる。 The polymerizable liquid crystal composition in the present invention can further contain a compound represented by the general formula (Q) as an antioxidant or a light stabilizer.
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
(式中、Rは炭素原子数1から22の直鎖アルキル基又は分岐鎖アルキル基を表し、該アルキル基中の1つ又は2つ以上のCH基は、酸素原子が直接隣接しないように、-O-、-CH=CH-、-CO-、-OCO-、-COO-、-C≡C-、-CFO-、-OCF-で置換されてよく、Mはトランス-1,4-シクロへキシレン基、1,4-フェニレン基又は単結合を表す。)
 Rは炭素原子数1から22の直鎖アルキル基又は分岐鎖アルキル基を表し、該アルキル基中の1つ又は2つ以上のCH基は、酸素原子が直接隣接しないように、-O-、-CH=CH-、-CO-、-OCO-、-COO-、-C≡C-、-CFO-、-OCF-で置換されてよいが、炭素原子数1から10の直鎖アルキル基、直鎖アルコキシ基、1つのCH基が-OCO-又は-COO-に置換された直鎖アルキル基、分岐鎖アルキル基、分岐アルコキシ基、1つのCH基が-OCO-又は-COO-に置換された分岐鎖アルキル基が好ましく、炭素原子数1から20の直鎖アルキル基、1つのCH基が-OCO-又は-COO-に置換された直鎖アルキル基、分岐鎖アルキル基、分岐アルコキシ基、1つのCH基が-OCO-又は-COO-に置換された分岐鎖アルキル基が更に好ましい。Mはトランス-1,4-シクロへキシレン基、1,4-フェニレン基又は単結合を表すが、トランス-1,4-シクロへキシレン基又は1,4-フェニレン基が好ましい。
(Wherein, R Q represents a straight-chain alkyl group or branched alkyl group having from 1 22 carbon atoms, one or two or more CH 2 groups in the alkyl group, so that the oxygen atoms are not directly adjacent a, -O -, - CH = CH -, - CO -, - OCO -, - COO -, - C≡C -, - CF 2 O -, - OCF 2 - may be replaced by, M Q is trans Represents a 1,4-cyclohexylene group, a 1,4-phenylene group or a single bond.)
RQ represents a straight-chain alkyl group or a branched-chain alkyl group having 1 to 22 carbon atoms, and one or more CH 2 groups in the alkyl group are —O—so that oxygen atoms are not directly adjacent to each other. —, —CH═CH—, —CO—, —OCO—, —COO—, —C≡C—, —CF 2 O—, —OCF 2 — may be substituted. Linear alkyl group, linear alkoxy group, linear alkyl group in which one CH 2 group is substituted with —OCO— or —COO—, branched alkyl group, branched alkoxy group, one CH 2 group is —OCO— Or a branched alkyl group substituted with —COO—, a linear alkyl group having 1 to 20 carbon atoms, a linear alkyl group in which one CH 2 group is substituted with —OCO— or —COO—, branched Chain alkyl group, branched alkoxy group, one CH 2 group Is more preferably a branched alkyl group substituted with —OCO— or —COO—. MQ represents a trans-1,4-cyclohexylene group, a 1,4-phenylene group or a single bond, and a trans-1,4-cyclohexylene group or a 1,4-phenylene group is preferred.
 上記一般式(Q)で表される化合物として、より具体的には以下の(III-1)~(III-38)で表される化合物が好ましい。 As the compound represented by the general formula (Q), more specifically, compounds represented by the following (III-1) to (III-38) are preferable.
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
(式中、nは0から20の整数を表す。)
 本願発明の重合性液晶組成物において、一般式(Q)で表される化合物又は一般式(III-1)~(III-38)から選ばれる化合物を1種又は2種以上含有することが好ましく、1種から5種含有することが更に好ましく、その含有量は0.001から1%であることが好ましく、0.001から0.1%が更に好ましく、0.001から0.05%が特に好ましい。
(In the formula, n represents an integer of 0 to 20.)
The polymerizable liquid crystal composition of the present invention preferably contains one or more compounds represented by general formula (Q) or compounds selected from general formulas (III-1) to (III-38). It is more preferable to contain 1 to 5 types, and the content is preferably 0.001 to 1%, more preferably 0.001 to 0.1%, and 0.001 to 0.05%. Particularly preferred.
 上記した液晶層を形成する方法につき、更に詳述すれば、2枚の基板を透明電極層が内側となるように対向させ、スペーサーを介して、基板の間隔を調整し、基板間に重合性液晶組成物を狭持させ、該組成物中の重合性単量体成分(a)を重合させる方法が挙げられる。 The above-described method for forming the liquid crystal layer will be described in more detail. The two substrates are opposed so that the transparent electrode layer is on the inside, the distance between the substrates is adjusted via a spacer, and the polymerizable property is maintained between the substrates. Examples include a method of sandwiching the liquid crystal composition and polymerizing the polymerizable monomer component (a) in the composition.
 ここで、液晶層の厚さは1~100μmとなるように調整するのが好ましく、1.5から10μmが更に好ましく、偏光板を使用する場合は、コントラストが最大になるように液晶の屈折率異方性Δnとセル厚dとの積を調整することが好ましい。又、二枚の偏光板がある場合は、各偏光板の偏光軸を調整して視野角やコントラトが良好になるように調整することもできる。更に、視野角を広げるための位相差フィルムも使用することもできる。 Here, the thickness of the liquid crystal layer is preferably adjusted to be 1 to 100 μm, more preferably 1.5 to 10 μm. When a polarizing plate is used, the refractive index of the liquid crystal is maximized so that the contrast is maximized. It is preferable to adjust the product of the anisotropy Δn and the cell thickness d. In addition, when there are two polarizing plates, the polarizing axis of each polarizing plate can be adjusted so that the viewing angle and contrast are good. Furthermore, a retardation film for widening the viewing angle can also be used.
 ここで、スペーサーとしては、例えば、ガラス粒子、プラスチック粒子、アルミナ粒子、フォトレジスト材料などからなる柱状スペーサー等が挙げられる。 Here, examples of the spacer include columnar spacers made of glass particles, plastic particles, alumina particles, a photoresist material, and the like.
 2枚の基板間に重合性液晶組成物を狭持させる方法は、通常の真空注入法又はODF法などを用いることができる。ODF法の液晶表示素子製造工程においては、バックプレーンまたはフロントプレーンのどちらか一方の基板にエポキシ系光熱併用硬化性などのシール剤を、ディスペンサーを用いて閉ループ土手状に描画し、その中に脱気下で所定量の
重合性液晶組成物を滴下後、フロントプレーンとバックプレーンを接合することによって液晶表示素子を製造することができる。本発明に用いられる重合性液晶組成物は、ODF工程における液晶及び重合性単量体成分(a)の複合材料の滴下が安定的に行えるため、好適に使用することができる。
As a method for sandwiching the polymerizable liquid crystal composition between two substrates, a normal vacuum injection method, an ODF method, or the like can be used. In the ODF liquid crystal display device manufacturing process, a sealant such as epoxy photothermal curing is drawn on a backplane or frontplane substrate using a dispenser in a closed-loop bank shape, and then removed. A liquid crystal display element can be produced by bonding a front plane and a back plane after dropping a predetermined amount of the polymerizable liquid crystal composition under air. The polymerizable liquid crystal composition used in the present invention can be preferably used because it can stably drop the composite material of the liquid crystal and the polymerizable monomer component (a) in the ODF process.
 重合性単量体成分(a)を重合させる方法としては、液晶の良好な配向性能を得るためには、適度な重合速度が望ましいので、活性エネルギー線である紫外線又は電子線を単一又は併用又は順番に照射することによって重合させる方法が好ましい。紫外線を使用する場合、偏光光源を用いても良いし、非偏光光源を用いても良い。また、液晶表示素子製造用の液晶組成物を2枚の基板間に挟持させて状態で重合を行う場合には、少なくとも照射面側の基板は活性エネルギー線に対して適当な透明性が与えられていなければならない。また、重合性単量体成分(a)を含有した重合性液晶組成物に対し、-50℃から20℃の温度範囲で交流電界を印加するとともに、紫外線もしくは電子線を照射することが好ましい。印加する交流電界は、周波数10Hzから10kHzの交流が好ましく、周波数100Hzから5kHzがより好ましく、電圧は液晶表示素子の所望のプレチルト角に依存して選ばれる。つまり、印加する電圧により液晶表示素子のプレチルト角を制御することができる。横電界型MVAモードの液晶表示素子においては、配向安定性及びコントラストの観点からプレチルト角を80度から89.9度に制御することが好ましい。 As a method for polymerizing the polymerizable monomer component (a), in order to obtain good alignment performance of the liquid crystal, an appropriate polymerization rate is desirable. Therefore, ultraviolet rays or electron beams which are active energy rays are used singly or in combination. Or the method of superposing | polymerizing by irradiating in order is preferable. When ultraviolet rays are used, a polarized light source or a non-polarized light source may be used. In addition, when polymerization is performed in a state where a liquid crystal composition for manufacturing a liquid crystal display element is sandwiched between two substrates, at least the substrate on the irradiation surface side is given appropriate transparency to active energy rays. Must be. In addition, it is preferable to apply an alternating electric field in the temperature range of −50 ° C. to 20 ° C. and irradiate the polymerizable liquid crystal composition containing the polymerizable monomer component (a) with ultraviolet rays or electron beams. The alternating electric field to be applied is preferably an alternating current having a frequency of 10 Hz to 10 kHz, more preferably a frequency of 100 Hz to 5 kHz, and the voltage is selected depending on a desired pretilt angle of the liquid crystal display element. That is, the pretilt angle of the liquid crystal display element can be controlled by the applied voltage. In a horizontal electric field type MVA mode liquid crystal display element, the pretilt angle is preferably controlled from 80 degrees to 89.9 degrees from the viewpoint of alignment stability and contrast.
照射時の温度は、重合性液晶組成物の温度が-50℃から30℃の範囲であることが好ましい。さらに20℃~-10℃の範囲であることが、液晶分子の配向度が上昇した状態で重合できること、ポリマーと液晶組成物との相溶性が低下し相分離が容易になってポリマーネットワークの空隙間隔が微細になることから、オフ応答速度がより向上する点から好ましい。 The temperature during irradiation is preferably such that the temperature of the polymerizable liquid crystal composition is in the range of −50 ° C. to 30 ° C. Furthermore, the range of 20 ° C. to −10 ° C. allows polymerization with an increased degree of orientation of the liquid crystal molecules, lowers the compatibility between the polymer and the liquid crystal composition, and facilitates phase separation, thereby causing voids in the polymer network. Since the interval becomes fine, it is preferable from the point that the off-response speed is further improved.
 紫外線を発生させるランプとしては、メタルハライドランプ、高圧水銀ランプ、超高圧水銀ランプ等を用いることができる。また、照射する紫外線の波長としては、液晶組成物の吸収波長域でない波長領域の紫外線を照射することが好ましく、必要に応じて、365nm未満の紫外線をカットして使用することが好ましい。照射する紫外線の強度は、0.1mW/cm~100W/cmが好ましく、2mW/cm~50W/cmがより好ましい。照射する紫外線のエネルギー量は、適宜調整することができるが、10mJ/cmから500J/cmが好ましく、100mJ/cmから200J/cmがより好ましい。紫外線を照射する際に、強度を変化させても良い。紫外線を照射する時間は照射する紫外線強度により適宜選択されるが、10秒から3600秒が好ましく、10秒から600秒がより好ましい。 As a lamp for generating ultraviolet rays, a metal halide lamp, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, or the like can be used. Moreover, as a wavelength of the ultraviolet rays to be irradiated, it is preferable to irradiate ultraviolet rays in a wavelength region other than the absorption wavelength region of the liquid crystal composition, and it is preferable to cut and use ultraviolet rays of less than 365 nm as necessary. Intensity of ultraviolet irradiation is preferably from 0.1mW / cm 2 ~ 100W / cm 2, 2mW / cm 2 ~ 50W / cm 2 is more preferable. The amount of energy of ultraviolet rays to be irradiated can be adjusted as appropriate, but is preferably 10 mJ / cm 2 to 500 J / cm 2, and more preferably 100 mJ / cm 2 to 200 J / cm 2 . When irradiating with ultraviolet rays, the intensity may be changed. The time for irradiating with ultraviolet rays is appropriately selected depending on the intensity of the irradiated ultraviolet rays, but is preferably from 10 seconds to 3600 seconds, and more preferably from 10 seconds to 600 seconds.
 垂直配向セルを用いて液晶層を形成した場合、繊維状、又は柱状のポリマーネットワーク(A)が液晶セル基板に対して液晶組成物(B)の垂直方向と略同一の方向に形成されていることが好ましい。又、セル基板表面にある垂直配向膜に液晶が傾斜配向を誘起するようにラビング処理等を施してプレチルト角を誘起するようにした垂直配向膜が用いられた場合は、プレチルトして配向している液晶組成物(B)と同方向に繊維状、又は柱状のポリマーネットワーク(A)が傾斜して形成されていることが好ましい。 When a liquid crystal layer is formed using a vertically aligned cell, a fibrous or columnar polymer network (A) is formed in a direction substantially the same as the vertical direction of the liquid crystal composition (B) with respect to the liquid crystal cell substrate. It is preferable. In addition, when a vertical alignment film that induces a pretilt angle by rubbing the liquid crystal on the cell substrate surface so as to induce a tilted alignment is used, the liquid crystal is pretilted and aligned. It is preferable that the fibrous or columnar polymer network (A) is formed to be inclined in the same direction as the liquid crystal composition (B).
 ポリマーネットワーク(A)の傾斜は、基板界面で自発的に起こるようにモノマーを選定するか、或いは、後述する自発配向剤、光配向膜を利用するものであってもよい。又、電圧を印加して液晶を傾斜配向状態にして紫外線等を照射させてポリマーネットワーク(A)を形成させても良い。 The inclination of the polymer network (A) may be such that a monomer is selected so as to spontaneously occur at the substrate interface, or a spontaneous orientation agent and a photo-alignment film described later are used. Alternatively, the polymer network (A) may be formed by applying a voltage to place the liquid crystal in an inclined alignment state and irradiating with ultraviolet rays or the like.
 更に、電圧を印加しながらプレチルト角を誘起する方法としては、液晶表示素子製造用の液晶の閾値電圧よりも0.9V程度低い電圧から2V程度高い電圧の範囲で電圧を印加しながら重合させる方法、或いは、閾値電圧以上の電圧をポリマーネットワーク(A)形成過程中に数秒~数十秒の短時間印加した後、閾値電圧未満にしてポリマーネットワークを形成させる方法が挙げられる。 Furthermore, as a method for inducing the pretilt angle while applying a voltage, a method of polymerizing while applying a voltage in a voltage range of about 0.9 V to 2 V higher than a threshold voltage of a liquid crystal for manufacturing a liquid crystal display element. Alternatively, a method of forming a polymer network by applying a voltage higher than the threshold voltage for a short time of several seconds to several tens of seconds during the process of forming the polymer network (A) and then forming the polymer network below the threshold voltage.
 液晶層中に形成された繊維状又は柱状のポリマーネットワーク(A)は、透明基板平面に対して90度~80度のプレチルト角を誘起するように傾斜して形成されていることが好ましく、斯かるプレチルト角は、90度~85度の範囲、89.9度~85度の範囲、89.9度~87度の範囲、89.9度~88度の範囲であることが特に好ましい。何れの方法で形成された繊維状、又は柱状のポリマーネットワークは、二枚のセル基板間を連結していることが特徴である。これにより、プレチルト角の熱的安定性が向上して液晶表示素子の信頼性を高めることができる。 The fibrous or columnar polymer network (A) formed in the liquid crystal layer is preferably formed to be inclined so as to induce a pretilt angle of 90 to 80 degrees with respect to the transparent substrate plane. The pretilt angle is particularly preferably in the range of 90 ° to 85 °, in the range of 89.9 ° to 85 °, in the range of 89.9 ° to 87 °, and in the range of 89.9 ° to 88 °. The fibrous or columnar polymer network formed by any method is characterized in that the two cell substrates are connected to each other. As a result, the thermal stability of the pretilt angle can be improved and the reliability of the liquid crystal display element can be increased.
 他に、繊維状、又は柱状のポリマーネットワーク(A)を傾斜配向させて形成することにより液晶組成物(B)のプレチルト角を誘起させる方法として、重合性官能基とメソゲン基の間にあるアルキレン基の炭素原子数が6以上のプレチルト角の誘起角度が小さい二官能アクリレートと官能基と、メソゲン基の間にあるアルキレン基の炭素原子数が5以上のプレチルト角の誘起角度が大きい二官能アクリレートを組合せ用いる方法が挙げられる。これらの化合物の配合比を調整することにより所望のプレチルト角を界面近傍で誘起させることができる。 In addition, as a method for inducing the pretilt angle of the liquid crystal composition (B) by forming the fibrous or columnar polymer network (A) by tilting orientation, an alkylene between the polymerizable functional group and the mesogenic group is used. Bifunctional acrylates having a small pretilt angle induction angle with 6 or more carbon atoms and functional groups, and bifunctional acrylates having a large pretilt angle induction angle with 5 or more carbon atoms in the alkylene group between the mesogenic groups A method using a combination of A desired pretilt angle can be induced in the vicinity of the interface by adjusting the compounding ratio of these compounds.
 更に、可逆性の光配向機能を有するモノマーを少なくとも0.01質量%以上1質量%以下の範囲で添加して繊維状、又は柱状のポリマーネットワーク(A)を形成させる方法が挙げられる。 Furthermore, a method of forming a fibrous or columnar polymer network (A) by adding a monomer having a reversible photo-alignment function in a range of at least 0.01% by mass to 1% by mass.
 この場合、トランス体に於いて低分子液晶と同様の棒状の形態になり低分子液晶の配向状態へ影響を及ぼす。液晶表示素子製造用の重合性液晶組成物に含有されている該トランス体は、紫外線をセル上面から平行光として照射すると紫外線の進む方向と該棒状の分子長軸方向が平行になるように揃い、低分子液晶も同時に該トランス体の分子長軸方向へ揃うように配向する。セルに対して傾斜して紫外線を照射すると、該トランス体の分子長軸が傾斜方向に向き液晶を紫外線の傾斜方向へ配向させるようになる。即ち、プレチルト角を誘起するようになり光配向機能を示す。この段階でモノマーを架橋させると誘起したプレチルト角が重合相分離で形成された繊維状、又は柱状のポリマーネットワークにより固定化される。従って、VAモードで重要なプレチルト角の誘起は、電圧印加しながら重合相分離させる方法、誘起するプレチルト角が異なるモノマーを複数添加して重合相分離させる方法、可逆性の光配向機能を有するモノマーが示す光配向機能を用いて紫外線が進む方向へ液晶組成物(B)及びモノマーを配向させ重合相分離する方法、が挙げられ、必要に応じてこれらの中から選択して本発明の液晶素子を作製することができる。 In this case, the transformer body has a rod-like shape similar to that of the low-molecular liquid crystal, which affects the alignment state of the low-molecular liquid crystal. The trans isomer contained in the polymerizable liquid crystal composition for producing a liquid crystal display element is aligned so that the direction of ultraviolet light travels parallel to the direction of the long axis of the rod when irradiated with ultraviolet light as parallel light from the top surface of the cell. The low-molecular liquid crystals are also aligned so as to be aligned in the molecular major axis direction of the trans form at the same time. When the cell is tilted and irradiated with ultraviolet rays, the molecular long axis of the trans body is oriented in the tilt direction and the liquid crystal is oriented in the tilt direction of the ultraviolet rays. That is, a pre-tilt angle is induced and a photo-alignment function is exhibited. When the monomer is crosslinked at this stage, the pretilt angle induced is fixed by a fibrous or columnar polymer network formed by polymerization phase separation. Therefore, the pretilt angle that is important in the VA mode is induced by a method of separating the polymerization phase while applying a voltage, a method of adding a plurality of monomers with different pretilt angles to induce polymerization phase separation, and a monomer having a reversible photo-alignment function. The liquid crystal composition (B) and the monomer are aligned in the direction in which ultraviolet rays travel using the photo-alignment function shown in FIG. Can be produced.
 ここで、光配向機能を有するモノマーは、紫外線を吸収してトランス体になる光異性化合物であっても良く、紫外線を吸収してシス体になる光異性化化合物であっても良い。更に、光配向機能を有するモノマーの反応速度が光配向機能を有するモノマー以外のモノマーの反応速度より遅いことが好ましい。紫外線照射されると、直ちに光配向機能を有するモノマーはトランス体になり光の進む方向に配向すると、周囲のモノマーや非重合液晶組成物も同様の方向へ配向する。この時、重合相分離が進行して液晶組成物(B)とポリマーネットワークの配向容易軸方向が光配向機能を有するモノマーの配向容易軸と同一方向へ揃い紫外線光が進む方向へプレチルト角が誘起される。 Here, the monomer having a photo-alignment function may be a photoisomeric compound that absorbs ultraviolet rays and becomes a trans isomer, or may be a photoisomerizable compound that absorbs ultraviolet rays and becomes a cis isomer. Furthermore, it is preferable that the reaction rate of the monomer having the photo-alignment function is slower than the reaction rate of the monomer other than the monomer having the photo-alignment function. When irradiated with ultraviolet rays, the monomer having a photo-alignment function immediately becomes a trans form, and when it is aligned in the light traveling direction, surrounding monomers and non-polymerized liquid crystal compositions are aligned in the same direction. At this time, the polymerization phase separation proceeds, and the pretilt angle is induced in the direction in which the easy alignment direction of the liquid crystal composition (B) and the polymer network is aligned with the easy alignment direction of the monomer having the photo-alignment function and the ultraviolet light travels. Is done.
 更に、IPSやFFSモード等の平行配向セルを適用する場合には、液晶表示素子製造用の液晶組成物を用いて相分離重合により繊維状、又は柱状のポリマーネットワーク(A)が液晶セル基板面に有る配向膜の配向方向に対して液晶組成物(B)は平行配向するが、形成された繊維状、又は柱状のポリマーネットワークの屈折率異方性又は配向容易軸方向と液晶組成物(B)の配向方向と略同一の方向に形成されていることが好ましい。更に、繊維状、又は柱状のポリマーネットワークは、液晶組成物(B)が分散している空隙を除いて略セル全体に存在していることがより好ましい。ポリマー界面方向に対して該プレチルト角を誘起させることを目的に、1価もしくは2価であり、かつ炭素原子数が8~18のアルコール化合物のアクリレートもしくはメタクリレートをモノマーとして、メソゲン基を有するモノマーと用いることが好ましい。 Further, when a parallel alignment cell such as IPS or FFS mode is applied, a fibrous or columnar polymer network (A) is formed on the surface of the liquid crystal cell substrate by phase separation polymerization using a liquid crystal composition for manufacturing a liquid crystal display element. Although the liquid crystal composition (B) is aligned in parallel with the alignment direction of the alignment film in the liquid crystal composition (B), the refractive index anisotropy or the easy axis direction of the formed fibrous or columnar polymer network and the liquid crystal composition (B ) In the direction substantially the same as the orientation direction. Furthermore, it is more preferable that the fibrous or columnar polymer network is present in substantially the entire cell except for the voids in which the liquid crystal composition (B) is dispersed. For the purpose of inducing the pretilt angle with respect to the polymer interface direction, a monomer having a mesogenic group using a monovalent or divalent acrylate or methacrylate of an alcohol compound having 8 to 18 carbon atoms as a monomer; It is preferable to use it.
 更に、電気光学特性は、ポリマーネットワーク界面の表面積、及びポリマーネットワークの空隙間隔に影響されるが、光散乱を起こさないことが重要で、平均空隙間隔を可視光の波長より小さくすることが好ましい。例えば、該界面の表面積を広げて該空隙間隔を小さくさせるにはモノマー組成物含有量を増加させる方法がある。これにより、重合相分離構造が変化して該空隙間隔が微細になることにより該界面の表面積が増加するようにポリマーネットワークが形成され駆動電圧、及び立ち下がり時間が短くなる。重合相分離構造は、重合温度にも影響される。 Furthermore, although the electro-optical characteristics are affected by the surface area of the polymer network interface and the gap spacing of the polymer network, it is important not to cause light scattering, and the average gap spacing is preferably smaller than the wavelength of visible light. For example, there is a method of increasing the monomer composition content in order to increase the surface area of the interface and reduce the gap interval. As a result, the polymer phase is formed so that the surface area of the interface is increased by changing the polymerization phase separation structure and making the gap interval fine, and the drive voltage and the fall time are shortened. The polymerization phase separation structure is also affected by the polymerization temperature.
 液晶表示素子において、高いコントラストの表示を得るには光散乱が起こらないようにする必要があるが、上述した方法を考慮して目的の電圧-透過率特性、及びスイッチング特性を得られるように相分離構造を制御して適切なポリマーネットワーク層構造を形成させることが望ましい。 In order to obtain a high contrast display in a liquid crystal display element, it is necessary to prevent light scattering. However, in consideration of the above-described method, it is necessary to obtain a desired voltage-transmittance characteristic and switching characteristic. It is desirable to control the separation structure to form a suitable polymer network layer structure.
 斯かるポリマーネットワーク(A)を有する液晶層を更に具体的に詳述すれば、該液晶層は、液晶相中に液晶表示素子全面にポリマーネットワーク層が形成され液晶相が連続している構造であって、ポリマーネットワーク(A)の配向容易軸や一軸の光学軸が低分子液晶の配向容易軸と略同一方向であることが好ましく、低分子液晶のプレチルト角を誘起するようにポリマーネットワークを形成させることが好ましく、ポリマーネットワーク(A)の平均空隙間隔をより小さくすることにより、光散乱は起こり難くなる。 The liquid crystal layer having such a polymer network (A) will be described in more detail. The liquid crystal layer has a structure in which a polymer network layer is formed on the entire surface of the liquid crystal display element in the liquid crystal phase and the liquid crystal phase is continuous. In addition, it is preferable that the easy axis of alignment of the polymer network (A) and the uniaxial optical axis are substantially in the same direction as the easy alignment axis of the low molecular liquid crystal, and the polymer network is formed so as to induce the pretilt angle of the low molecular liquid crystal. Preferably, the light scattering is less likely to occur by making the average gap distance of the polymer network (A) smaller.
 更に、応答の立下り時間をポリマーネットワーク(A)と低分子液晶との相互作用効果(アンカーリング力)により低分子液晶単体の応答時間より短くするには、ポリマーネットワーク(A)の平均空隙間隔を50nm~450nmの範囲にする事が好ましい。立下り時間が液晶のセル厚の影響が少なくなりセル厚が厚くても薄厚並の立下り時間を示すようにするには、少なくとも平均空隙間隔が下限は200nm付近で且つ上限は450nm付近の範囲に入るようにすることが好ましい。平均空隙間隔を減少させると駆動電圧の増加が課題になるが、駆動電圧の増加を25V以下に抑制して立ち下がり応答時間を短くするには250nm近傍から450nmの範囲に入るようにすれば良く、立下り応答時間が約5msecから約1msecの範囲に改善ができるので好ましい。又、駆動電圧が5V程度以内の増加に抑制するには、平均空隙間隔が300nm付近から450nmの範囲にすることが好ましい。更に、ポリマーネットワーク(A)の平均空隙間隔を制御して立下り応答時間を1msec以下の高速応答にすることも可能である。 Furthermore, in order to make the fall time of the response shorter than the response time of the low molecular liquid crystal alone due to the interaction effect (anchoring force) between the polymer network (A) and the low molecular liquid crystal, the average gap interval of the polymer network (A) Is preferably in the range of 50 nm to 450 nm. In order that the influence of the cell thickness of the liquid crystal is small and the fall time is as long as the cell thickness is large, at least the average gap interval is in the range of around 200 nm and the upper limit is around 450 nm. It is preferable to enter. Increasing the drive gap increases the average gap spacing. However, in order to suppress the increase in drive voltage to 25 V or less and shorten the fall response time, it is sufficient to enter the range from about 250 nm to 450 nm. The fall response time can be improved in the range of about 5 msec to about 1 msec, which is preferable. Further, in order to suppress the drive voltage from increasing within about 5V, it is preferable that the average gap interval is in the range of about 300 nm to 450 nm. Furthermore, it is also possible to control the average gap interval of the polymer network (A) to make the falling response time a high-speed response of 1 msec or less.
 このような高速応答にする場合、駆動電圧を30V以上に増加する場合があるが、平均空隙間隔を50nm付近から250nm付近の間にすれば良く、0.5msec以下にするには50nm近傍から200nm付近にすることが好ましい。ポリマーネットワークの平均直径は、平均空隙間隔と相反し、20nmから700nmの範囲にあることが好ましい。モノマーの含有量が増えると平均直径は増加する傾向にある。反応性を高くして重合相分離速度を高めるとポリマーネットワークの密度が増加してポリマーネットワークの平均直径が減少するので必要に応じて相分離条件を調整すれば良い。モノマー含有量が10質量%以下の場合は、平均直径が20nmから160nmにあることが好ましく、平均空隙間隔が200nmから450nm範囲に於いては、平均直径が40nmから160nmの範囲であることが好ましい。モノマー含有量が10質量%より大きくなると50nmから700nmの範囲が好ましく、50nmから400nmの範囲がより好ましい。 In order to achieve such a high-speed response, the drive voltage may be increased to 30 V or more, but the average gap interval may be set between about 50 nm and about 250 nm, and in order to make 0.5 msec or less, from about 50 nm to 200 nm. It is preferable to make it near. The average diameter of the polymer network is in the range of 20 nm to 700 nm, contrary to the average gap spacing. The average diameter tends to increase as the monomer content increases. Increasing the polymerization phase separation rate by increasing the reactivity increases the density of the polymer network and decreases the average diameter of the polymer network. Therefore, the phase separation conditions may be adjusted as necessary. When the monomer content is 10% by mass or less, the average diameter is preferably from 20 nm to 160 nm, and when the average gap distance is from 200 nm to 450 nm, the average diameter is preferably from 40 nm to 160 nm. . When the monomer content is larger than 10% by mass, the range of 50 nm to 700 nm is preferable, and the range of 50 nm to 400 nm is more preferable.
 液晶表示素子全面にポリマーネットワーク層が形成され液晶相が連続している構造に対して、重合性単量体成分(a)含有量が低くなりセル全体にポリマーネットワーク層が被うのに必要な量が不足するとポリマーネットワーク層が不連続に形成される。基板表面の極性が高い場合には、重合性単量体成分(a)が液晶セル基板界面付近に集まり易く、基板表面からポリマーネットワークが成長して基板界面に付着するようにポリマーネットワーク層が形成され、セル基板表面からポリマーネットワーク層、液晶層、ポリマーネットワーク層、対向基板の順で積層されるように形成される。ポリマーネットワーク層/液晶層/ポリマーネットワーク層の積層構造を示し、且つセル断面方向に対して少なくともセル厚の0.5%以上、好ましくは1%以上、より好ましくは5%以上の厚さのポリマーネットワーク層が形成されているとポリマーネットワークと低分子液晶とのアンカーリング力の作用により立下り時間が短くなる効果が発現して好ましい傾向を示す。但し、セル厚の影響が大きくなるのでセル厚を増すと立ち下がり時間が長くなる場合は、ポリマーネットワーク層の厚さを必要に応じて増加させれば良い。ポリマーネットワーク層に於けるポリマーネットワークの構造は、低分子液晶と配向容易軸や一軸の光学軸が略同一の方向へ揃っていれば良く、低分子液晶がプレチルト角を誘起するように形成されていれば良い。平均空隙間隔は90nmから450nmの範囲が好ましい。 In contrast to the structure in which the polymer network layer is formed on the entire surface of the liquid crystal display element and the liquid crystal phase is continuous, the content of the polymerizable monomer component (a) is low and the polymer network layer is required to cover the entire cell. When the amount is insufficient, the polymer network layer is formed discontinuously. When the polarity of the substrate surface is high, the polymerizable monomer component (a) tends to gather near the liquid crystal cell substrate interface, and a polymer network layer is formed so that the polymer network grows from the substrate surface and adheres to the substrate interface. The polymer network layer, the liquid crystal layer, the polymer network layer, and the counter substrate are stacked in this order from the cell substrate surface. Polymer having a laminated structure of polymer network layer / liquid crystal layer / polymer network layer and having a thickness of at least 0.5%, preferably 1%, more preferably 5% or more of the cell thickness in the cell cross-sectional direction When the network layer is formed, the effect of shortening the fall time due to the action of the anchoring force between the polymer network and the low-molecular liquid crystal is exhibited and a favorable tendency is exhibited. However, since the influence of the cell thickness increases, if the fall time becomes longer as the cell thickness is increased, the thickness of the polymer network layer may be increased as necessary. The polymer network structure in the polymer network layer is such that the low-molecular liquid crystal and the easy-orientation axis or uniaxial optical axis are aligned in substantially the same direction, and the low-molecular liquid crystal is formed so as to induce a pretilt angle. Just do it. The average gap distance is preferably in the range of 90 nm to 450 nm.
 例えば、モノマー含有量が6質量%未満にする場合は、アンカーリング力の高いメソゲン基を有する二官能モノマーを用いることが好ましく、官能基間の距離が短い構造で重合速度が速い二官能モノマーを用いることが好ましく、0℃以下の低温で重合相分離構造を形成させることが好ましい。モノマー含有量を6質量%から10質量%未満にする場合は、該二官能モノマーとアンカーリング力が低い単官能モノマーとの組み合わせが好ましく、必要に応じて25℃から-20℃の範囲で重合相分離構造を形成させることが好ましい。更に、該融点が室温以上であれば該融点より5℃程度低くすると低温重合と同様な効果が得られるので好ましい。液晶表示素子製造用の液晶組成物中のモノマー濃度が高いほど、液晶組成物(B)とポリマー界面とのアンカーリング力は大きくなり、τdは高速化する。一方、液晶組成物(B)とポリマー界面とのアンカーリング力は大きくなると、τrは低速化する。τdとτrの和を1.5ms未満とするためには、液晶表示素子製造用の液晶組成物中のモノマーの濃度は、1質量%以上10質量%未満であり、1.5質量%以上8質量%以下が好ましく、1.8質量%以上5質量%以下がより好ましい。 For example, when the monomer content is less than 6% by mass, it is preferable to use a bifunctional monomer having a mesogenic group having a high anchoring force, and a bifunctional monomer having a structure with a short distance between functional groups and a high polymerization rate. It is preferable to use, and it is preferable to form a polymer phase separation structure at a low temperature of 0 ° C. or lower. When the monomer content is from 6% by mass to less than 10% by mass, a combination of the bifunctional monomer and a monofunctional monomer having a low anchoring force is preferable, and polymerization is performed in the range of 25 ° C. to −20 ° C. as necessary. It is preferable to form a phase separation structure. Furthermore, if the melting point is room temperature or higher, it is preferable to lower the melting point by about 5 ° C. because the same effect as low temperature polymerization can be obtained. The higher the monomer concentration in the liquid crystal composition for producing a liquid crystal display element, the greater the anchoring force between the liquid crystal composition (B) and the polymer interface, and the higher the τd. On the other hand, when the anchoring force between the liquid crystal composition (B) and the polymer interface increases, τr decreases. In order to make the sum of τd and τr less than 1.5 ms, the concentration of the monomer in the liquid crystal composition for producing a liquid crystal display element is 1% by mass or more and less than 10% by mass, and 1.5% by mass or more and 8% by mass. % By mass or less is preferable, and 1.8% by mass or more and 5% by mass or less is more preferable.
 TFT駆動液晶表示素子に用いる場合は、フリッカーの抑制、焼付けによる残像等の信頼性を向上させる必要があり電圧保持率が重要な特性になる。電圧保持率を低下させる原因は、液晶表示素子製造用の液晶組成物内に含有しているイオン性不純物、特に、可動イオンがにある為、少なくとも比抵抗を1014Ω・cm以上が得られるように精製処理等を施し可動イオンを取り除くことが好ましい。又、ラジカル重合でポリマーネットワークを形成させると光重合開始剤等から発生するイオン性不純物により電圧保持率が低下する場合があるが、有機酸や低分子の副生成物発生量が少ない重合開始剤を選定することが好ましい。 When used in a TFT drive liquid crystal display element, it is necessary to improve the reliability such as suppression of flicker and afterimages caused by printing, and the voltage holding ratio is an important characteristic. The cause of lowering the voltage holding ratio is the presence of ionic impurities contained in the liquid crystal composition for producing a liquid crystal display element, particularly mobile ions, so that at least a specific resistance of 10 14 Ω · cm or more can be obtained. Thus, it is preferable to remove the mobile ions by performing a purification treatment or the like. In addition, when a polymer network is formed by radical polymerization, the voltage holding ratio may decrease due to ionic impurities generated from the photopolymerization initiator, etc., but the polymerization initiator generates a small amount of organic acid and low-molecular byproducts. Is preferably selected.
 更に、本発明の液晶表示素子が、配向膜を有する場合、該配向膜の配向容易軸方向とポリマーネットワーク(A)の配向容易軸方向が同一であることが好ましい。この場合、偏光板、位相差フィルムなどを具備させることにより、この配向状態を利用して表示させることができる。 Furthermore, when the liquid crystal display element of the present invention has an alignment film, it is preferable that the alignment easy axis direction of the alignment film is the same as the alignment easy axis direction of the polymer network (A). In this case, by providing a polarizing plate, a retardation film, etc., it is possible to display using this orientation state.
 液晶層5中のポリマーネットワークの含有量は、前記した通り、該液晶組成物(B)及びポリマーネットワークの合計の質量の0.5質量%以上20質量%以下であることが好ましいが、下限値としては0.7質量%以上が好ましく、0.9質量%以上、特に1質量%が好ましく、他方、上限値としては10質量%以下、9質量%以下が好ましく、7質量%以下であることがオフ応答速度と駆動電圧とのバランスに優れる点から好ましい。 The content of the polymer network in the liquid crystal layer 5 is preferably 0.5% by mass or more and 20% by mass or less of the total mass of the liquid crystal composition (B) and the polymer network, as described above. Is preferably 0.7% by mass or more, 0.9% by mass or more, particularly preferably 1% by mass, and the upper limit is preferably 10% by mass or less, 9% by mass or less, and preferably 7% by mass or less. Is preferable from the viewpoint of excellent balance between the off-response speed and the drive voltage.
 PSA型液晶表示素子では、ラビング配向処理の代わりに電極に3~5μm幅の複数のスリットを設けスリット方向へ液晶を傾斜配向させることにより配向処理が省略される。量産技術では、数十ボルトとの電圧を印加しながら紫外線照射すると、基板界面にプレチルト角(基板法線に対しての傾斜角)が得られるように液晶の配向が高分子安定化され、ポリマーの薄膜が形成される。この高分子薄膜の作用でプレチルト角が誘起されることを利用してPSVA(polymer-stabilized vertical alignment)LCD又はPSALCDの製造に用いられている。又、視野角向上を目的に、マルチドメインが形成できるように設計されたパターン電極を用い一つの画素内のプレチルト角方向を複数に分割している。 In the PSA-type liquid crystal display element, the alignment treatment is omitted by providing a plurality of slits with a width of 3 to 5 μm in the electrode instead of the rubbing alignment treatment and tilting the liquid crystal in the slit direction. In mass production technology, when UV irradiation is applied while applying a voltage of several tens of volts, the alignment of the liquid crystal is stabilized so that a pretilt angle (tilt angle with respect to the substrate normal) is obtained at the substrate interface, and the polymer is stabilized. A thin film is formed. Utilizing the fact that the pretilt angle is induced by the action of the polymer thin film, it is used for the production of PSVA (polymer-stabilized vertical alignment) LCD or PSALCD. Further, for the purpose of improving the viewing angle, a pattern electrode designed so that a multi-domain can be formed is used to divide the pretilt angle direction in one pixel into a plurality of parts.
 しかしながら、セル全体にポリマーネットワーク等を形成させて応答の緩和時間を改善させることが可能な液晶表示素子にこの方法を適用させると、飽和電圧以上の数十ボルトの電圧を印加して紫外線照射するのでポリマーネットワークが液晶を水平配向状態で高分子安定してしまう。よって、該方法では、ポリマーネットワークの屈折異方性又は配向容易軸が液晶分子を水平配向状態に保持するように形成されるため、垂直配向を得ることができなくなる。 However, when this method is applied to a liquid crystal display element that can improve the response relaxation time by forming a polymer network or the like in the entire cell, it is irradiated with ultraviolet rays by applying a voltage of several tens of volts above the saturation voltage. Therefore, the polymer network stabilizes the liquid crystal in the horizontal alignment state. Therefore, in this method, since the refractive anisotropy or the easy alignment axis of the polymer network is formed so as to hold the liquid crystal molecules in the horizontal alignment state, the vertical alignment cannot be obtained.
 他方、閾値電圧近傍の低い電圧を印加してポリマーネットワークの屈折異方性又は配向容易軸を形成させると液晶の傾斜配向方位が定まらないことが理由で透過率が低下する。 On the other hand, when a low voltage in the vicinity of the threshold voltage is applied to form the refractive anisotropy of the polymer network or the easy alignment axis, the transmittance decreases because the tilted orientation of the liquid crystal is not determined.
 そこで、本発明では、重合性液晶組成物を閾値電圧以上の高い電圧を印加し、ポリマーネットワークを一部形成させ、次いで、紫外線照射中に電圧を閾値電圧未満にし、更に、この状態で紫外線照射を継続させることが好ましい。即ち、先ず、閾値電圧以上の高い電圧を印加し、モノマーの一部を重合させて液晶の傾斜配向方位が安定化するようにポリマーネットワークを一部形成させ、次いで、紫外線照射中に電圧を閾値電圧未満にすることにより液晶は略垂直配向に戻り、更に、この状態で紫外線照射を継続させると、略垂直配向になるようにポリマーネットワークの屈折異方性又は配向容易軸が形成され傾斜配向方位が軌跡としてポリマーネットワークに残すことが可能になり電圧印加時の配向制御と電圧無印加時の垂直配向とを両立させることができる。 Therefore, in the present invention, a voltage higher than the threshold voltage is applied to the polymerizable liquid crystal composition to form a part of the polymer network, and then the voltage is set to be lower than the threshold voltage during the ultraviolet irradiation. Is preferably continued. That is, first, a voltage higher than the threshold voltage is applied, a part of the monomer is polymerized to form a part of the polymer network so that the tilt alignment orientation of the liquid crystal is stabilized, and then the voltage is set to the threshold during ultraviolet irradiation. When the voltage is lower than the voltage, the liquid crystal returns to a substantially vertical alignment. Further, when UV irradiation is continued in this state, the refractive anisotropy of the polymer network or the easy alignment axis is formed so that the substantially vertical alignment is formed, and the tilted alignment orientation is formed. Can be left in the polymer network as a trajectory, and it is possible to achieve both orientation control when a voltage is applied and vertical orientation when no voltage is applied.
 よって、本発明の液晶表示素子を製造する方法は、少なくとも一方に電極を有する2枚の透明基板間に挟持した液晶表示素子製造用の重合性液晶組成物に、該素子製造用の液晶の閾値電圧以上の電圧を印加しながら紫外線を照射して重合相分離させる工程、及びその後紫外線を照射したまま電圧を閾値電圧未満にして更に紫外線を照射させる工程を含有する方法が好ましい。 Therefore, the method for producing a liquid crystal display element of the present invention includes a polymerizable liquid crystal composition for producing a liquid crystal display element sandwiched between two transparent substrates having electrodes on at least one side, and a liquid crystal threshold value for producing the element. A method comprising a step of irradiating ultraviolet rays while applying a voltage higher than the voltage to cause polymerization phase separation, and a step of further irradiating with ultraviolet rays by setting the voltage below the threshold voltage while irradiating with ultraviolet rays is preferable.
 ここで、パターン電極セル等を含む垂直配向モード液晶表示素子の場合、液晶表示素子製造用の液晶の閾値電圧以上の電圧を印加しながら紫外線を照射して重合相分離させる工程において、素子製造用の液晶中の液晶分子が透明基板平面に対して0度から30度の範囲で傾斜して配向しており、次いで、紫外線を照射したまま前記電圧を閾値電圧未満にして更に紫外線を照射させる工程において、前記液晶分子が透明基板平面に対して80度から90度に傾斜して配向しているのが好ましい。 Here, in the case of a vertical alignment mode liquid crystal display element including a pattern electrode cell, etc., in the process of polymerizing phase separation by applying ultraviolet rays while applying a voltage higher than the threshold voltage of the liquid crystal for liquid crystal display element manufacture, The liquid crystal molecules in the liquid crystal are aligned with an inclination in the range of 0 ° to 30 ° with respect to the transparent substrate plane, and then the above-mentioned voltage is made lower than the threshold voltage while irradiating with ultraviolet rays, and further irradiating with ultraviolet rays In the above, it is preferable that the liquid crystal molecules are aligned with an inclination of 80 to 90 degrees with respect to the transparent substrate plane.
 液晶分子が透明基板平面に対して0度から30度の範囲で傾斜して配向している状態は、液晶の複屈折率が電圧印加で増加した状態を示し液晶の配向状態が透明基板平面に対して0度になると複屈折率が最大になり好ましいが、基板平面に対して30度傾斜した配向であっても好ましい。特に、PVAセルでは傾斜方位が一定にすることが出来るので好ましい。何れも、電圧印加による液晶の傾斜配向方位が一定方向になるように配向が安定化させるポリマーネットワークを形成させることが好ましい。 The state in which the liquid crystal molecules are aligned with an inclination in the range of 0 to 30 degrees with respect to the transparent substrate plane indicates a state in which the birefringence of the liquid crystal is increased by voltage application, and the alignment state of the liquid crystal is in the plane of the transparent substrate. On the other hand, when it is 0 degree, the birefringence is maximized, which is preferable. However, an orientation inclined by 30 degrees with respect to the substrate plane is also preferable. In particular, the PVA cell is preferable because the tilt direction can be made constant. In any case, it is preferable to form a polymer network in which the orientation is stabilized so that the tilt orientation direction of the liquid crystal by voltage application becomes a constant direction.
 液晶分子が透明基板平面に対して80度から90度に傾斜して配向している状態は、電圧無印加時において透明基板平面に対して90度に液晶が配向すると複屈折率が最小になり液晶表示素子の高コントラスト化に有用で好ましいが、電圧を印加した際に一定方向へ傾斜配向させるためには基板平面に対して89.9度から85度以内に傾斜していることがより好ましい。基板平面に対して80度を超えると複屈折率が増加して透過光量が増加するため表示のコントラストが低下して好ましくなく、基板平面に対して85度以上で表示黒レベルが良好になり高コントラストが得られるので好ましい。 When the liquid crystal molecules are aligned at an angle of 80 to 90 degrees with respect to the transparent substrate plane, the birefringence becomes minimum when the liquid crystal is aligned at 90 degrees with respect to the transparent substrate plane when no voltage is applied. It is useful and preferable for increasing the contrast of the liquid crystal display element, but it is more preferable that the liquid crystal display device is tilted within 89.9 degrees to 85 degrees with respect to the substrate plane in order to tilt and align in a certain direction when a voltage is applied. . If the angle exceeds 80 degrees with respect to the substrate plane, the birefringence increases and the amount of transmitted light increases, which is not preferable because the display contrast is lowered. Since contrast is obtained, it is preferable.
 また、IPS(In-plane switching)表示モード、FFSモードの液晶表示素子においては、液晶表示素子製造用の液晶組成物の閾値電圧以上の電圧を印加しながら紫外線を照射して重合相分離させる工程において、液晶表示素子製造用の液晶組成物中の液晶分子が透明基板平面に対して0度から90度の範囲で傾斜して配向しており、紫外線を照射したまま前記電圧を閾値電圧未満にして更に紫外線を照射させる工程において、前記液晶分子が透明基板平面に対して0度から30度に傾斜して配向しているのも好ましい。 In the IPS (In-plane switching) display mode and FFS mode liquid crystal display element, a process of polymerizing phase separation by irradiating ultraviolet rays while applying a voltage higher than a threshold voltage of a liquid crystal composition for liquid crystal display element production. The liquid crystal molecules in the liquid crystal composition for manufacturing a liquid crystal display element are aligned with an inclination in the range of 0 to 90 degrees with respect to the transparent substrate plane, and the voltage is set to be lower than the threshold voltage while being irradiated with ultraviolet rays. In the step of further irradiating with ultraviolet rays, it is also preferable that the liquid crystal molecules are aligned with an inclination of 0 to 30 degrees with respect to the transparent substrate plane.
 液晶分子が透明基板平面に対して0度から90度の範囲で傾斜して配向は、電圧を印加した液晶の配向状態を安定化させるようにポリマーネットワークを形成させる。IPSモードの場合は、素子に用いられる配向膜の性質の傾斜角度が大きく依存し、1度から2度程度の範囲になっても良く、プレチルト角が捩れ配向を含む液晶分子の傾斜角度が0.5度から3度が好ましく、0度から2度以内が好ましい。 The liquid crystal molecules are tilted in the range of 0 to 90 degrees with respect to the transparent substrate plane, and the alignment forms a polymer network so as to stabilize the alignment state of the liquid crystal to which a voltage is applied. In the case of the IPS mode, the tilt angle of the properties of the alignment film used in the element greatly depends on the tilt angle, and may be in the range of 1 to 2 degrees. The tilt angle of the liquid crystal molecules including the twisted orientation is 0. .5 to 3 degrees is preferable, and 0 to 2 degrees is preferable.
 FFSモードの場合は、閾値電圧以上の電圧を印加すると液晶の配向状態は、素子内の電界分布に依存してスプレイ配向、ベンド配向、捩れ配向状態が共存するが主にスプレイ配向と捩れ配向状態を示す。この状態の液晶分子の配向状態の傾斜角は、0度から45度の範囲に入り、配向をポリマーネットワークで安定化させると同様の範囲が安定化されることが好ましい。TNモードでは、45度から90度範囲の傾斜角度になっていることが好ましい。 In the FFS mode, when a voltage higher than the threshold voltage is applied, the alignment state of the liquid crystal depends on the electric field distribution in the device, and the splay alignment, bend alignment, and twist alignment states coexist. Indicates. The inclination angle of the alignment state of the liquid crystal molecules in this state is preferably in the range of 0 to 45 degrees, and the same range is preferably stabilized when the alignment is stabilized by the polymer network. In the TN mode, the tilt angle is preferably in the range of 45 degrees to 90 degrees.
 一方、閾値電圧未満の電圧を印加して液晶の配向状態を安定化するようにポリマーネットワークを形成させるが、IPSモード、FFSモード、及びTNモードの場合は、ラビング配向処理により基板界面にプレチルト角が1度~3度程度あるので、閾値電圧未満の電圧を印加した液晶の配向状態を安定化させるようにポリマーネットワークを形成させることが好ましく、液晶の配向の角度がこの範囲に傾斜しても良いく、光配向膜等の他の配向処理方法を用いてプレチルト角が捩れ配向を含む液晶分子の傾斜角度が0.5度から3度が好ましく、0度から2度以内が広視野角を得るには有用でより好ましい。 On the other hand, a polymer network is formed so as to stabilize the alignment state of the liquid crystal by applying a voltage lower than the threshold voltage. In the IPS mode, FFS mode, and TN mode, the pretilt angle is applied to the substrate interface by rubbing alignment treatment. Therefore, it is preferable to form a polymer network so as to stabilize the alignment state of the liquid crystal to which a voltage less than the threshold voltage is applied, even if the liquid crystal alignment angle is inclined within this range. The tilt angle of the liquid crystal molecules including the twist orientation is preferably 0.5 to 3 degrees using other alignment processing methods such as a photo-alignment film, and a wide viewing angle is within 0 to 2 degrees. Useful and more preferred to obtain.
 また、印加する電圧は、交流波形であって、液晶表示素子製造用の液晶組成物(B)が誘電異方性を示す範囲の周波数を有するものであるのが好ましい。波形は、ピーク電圧が一定にした場合に実効電圧が高くできる矩形波が好ましい。周波数の上限は、液晶表示素子に用いられる駆動回路により画素に伝達される信号が減衰しない範囲の周波数であれば良く、少なくとも周波数が2kHz以下であることが好ましい。紫外線照射前の液晶表示素子製造用の液晶組成物が示す誘電率の周波数依存性において誘電異方性が示す周波数で10kHz以下であれば良い。下限値は、素子を駆動した際にフリッカーが起こる場合があり、この場合にフリッカーが最小になる周波数であれば良く、少なくとも20Hz以上が好ましい。 Further, it is preferable that the voltage to be applied is an alternating current waveform and has a frequency in a range in which the liquid crystal composition (B) for producing a liquid crystal display element exhibits dielectric anisotropy. The waveform is preferably a rectangular wave that can increase the effective voltage when the peak voltage is constant. The upper limit of the frequency may be a frequency that does not attenuate the signal transmitted to the pixel by the driving circuit used for the liquid crystal display element, and it is preferable that the frequency is at least 2 kHz or less. The frequency shown by the dielectric anisotropy in the frequency dependence of the dielectric constant exhibited by the liquid crystal composition for producing a liquid crystal display element before ultraviolet irradiation may be 10 kHz or less. The lower limit value may be a frequency at which flicker occurs when the element is driven. In this case, the frequency may be any frequency that minimizes flicker, and is preferably at least 20 Hz or more.
 このように二つの液晶配向状態を保持するようにポリマーネットワークを形成することが好ましいが、それぞれの液晶配向状態を保持するように形成されたポリマーネットワークは、ポリマーネットワークの屈折率異方性又は配向容易軸が閾値電圧以上の液晶配向方向、又は閾値電圧未満の液晶配向方向に一致するように形成される。これにより、電圧印加時の液晶の配向を安定化させるポリマーネットワークと、電圧無印加時の液晶の配向の安定化させるポリマーネットワークが共存させた状態を作ることになり、電圧無印加時の液晶配向状態から電圧印加により配向変形させる際に起こる配向歪を抑制させてコントラストの向上等の表示特性を改善させることが可能になる。一方、電圧無印加時の液晶配向状態を保持するように形成されるポリマーネットワークのみだけでは、電圧印加時の液晶配向状態へ変移する際に、閾値電圧未満の液晶配向を保持するように形成されたポリマーネットワークの影響力が強いので閾値電圧以上の液晶配向状態に変移するとき配向歪を与えて透過率を下げる原因になる。電圧印加時の液晶の配向を安定化させるポリマーネットワークをポリマーネットワークの一部に形成させることによりスイッチングで起きる配向変移の歪を抑制させ、本来必要とする液晶配向の変移が得られるようになり透過率を向上させられる。尚、電圧印加時及び電圧無印加時の各液晶の配向状態を安定化させるように形成されるポリマーネットワークは、二つの異なる液晶の配向に沿うようにポリマーネットワークの屈折率異方性又は、配向容易軸を形成させることが特徴である。 In this way, it is preferable to form a polymer network so as to maintain two liquid crystal alignment states. However, the polymer network formed so as to maintain each liquid crystal alignment state has a refractive index anisotropy or alignment of the polymer network. It is formed so that the easy axis coincides with the liquid crystal alignment direction not less than the threshold voltage or the liquid crystal alignment direction less than the threshold voltage. This creates a state in which the polymer network that stabilizes the alignment of the liquid crystal when a voltage is applied and the polymer network that stabilizes the alignment of the liquid crystal when no voltage is applied coexist, and the liquid crystal alignment when no voltage is applied It is possible to improve display characteristics such as an improvement in contrast by suppressing orientation distortion that occurs when orientation deformation is caused by voltage application from the state. On the other hand, only the polymer network formed so as to maintain the liquid crystal alignment state when no voltage is applied is formed so as to maintain the liquid crystal alignment below the threshold voltage when changing to the liquid crystal alignment state when the voltage is applied. Since the influence of the polymer network is strong, when the liquid crystal alignment state is shifted to a threshold voltage or higher, an alignment strain is applied to cause a decrease in transmittance. By forming a polymer network that stabilizes the alignment of the liquid crystal when a voltage is applied to a part of the polymer network, distortion of the alignment change caused by switching is suppressed, and the originally required change in liquid crystal alignment can be obtained and transmitted. The rate can be improved. The polymer network formed so as to stabilize the alignment state of each liquid crystal when a voltage is applied and when no voltage is applied is the refractive index anisotropy or alignment of the polymer network along the alignment of two different liquid crystals. It is characterized by forming an easy axis.
 更に、紫外線照射中の閾値電圧以上の電圧の印加時間により、閾値電圧以上の液晶状態を安定化させるために形成されたポリマーネットワークの影響力が変化し、電気光学特性を変化させることが可能になる。例えば、電圧印加時の液晶の配向状態が基板平面に対して0度から30度の傾斜配向を含む平行配向としてポリマーネットワークを形成させた場合、紫外線照射中の閾値電圧以上の電圧の印加時間を短くすると、平行配向を保持しようとする作用が僅かなため、垂直配向を保持しようとするポリマーネットワークの作用に従い液晶が配向しようとする。更に、二つの異なる配向を保持したポリマーネットワークからの両配向の影響力が均衡して透明基板法線方向に対してプレチルトが1度以内と小さな角度が誘起される。紫外線照射中の閾値電圧以上の電圧の印加時間を長くするのにともない、水平配向を保持しようとするポリマーネットワークの影響が強まるので垂直配向を保持する力と平行配向を保持する力の均衡からプレチルト角が増加し、プレチルト角が増加して透明基板法線方向に対して10度以上にすることが可能になる。又、紫外線照射中の閾値電圧以上の電圧の印加時間は、用いられる液晶表示素子製造用の重合性液晶組成物が持つ反応性に大きく依存するので適宜調整して所望のプレチルト角が得られるようにすることが好ましい。特に、基板平面に対し80度から90度の範囲でプレチルト角が得られるようにすることが好ましく、85度から89.9度にすることがより好ましく、87度から89.9度にすることが更に好ましい。 Furthermore, the influence of the polymer network formed to stabilize the liquid crystal state above the threshold voltage changes depending on the application time of the voltage above the threshold voltage during UV irradiation, making it possible to change the electro-optical characteristics. Become. For example, when the polymer network is formed with the alignment state of the liquid crystal at the time of voltage application as a parallel alignment including a tilted alignment of 0 to 30 degrees with respect to the substrate plane, the voltage application time equal to or higher than the threshold voltage during ultraviolet irradiation is set. When shortened, the action to maintain the parallel alignment is small, so that the liquid crystal tends to align according to the action of the polymer network to maintain the vertical alignment. Furthermore, the influence of both orientations from the polymer network holding two different orientations is balanced, and a small pre-tilt angle of less than 1 degree is induced with respect to the normal direction of the transparent substrate. As the application time of the voltage exceeding the threshold voltage during UV irradiation is increased, the influence of the polymer network that tries to maintain the horizontal alignment becomes stronger, so the pretilt is based on the balance between the force that maintains the vertical alignment and the force that maintains the parallel alignment. The angle increases and the pretilt angle increases, and it becomes possible to make it 10 degrees or more with respect to the normal direction of the transparent substrate. In addition, since the application time of the voltage higher than the threshold voltage during ultraviolet irradiation largely depends on the reactivity of the polymerizable liquid crystal composition used for manufacturing the liquid crystal display element used, it can be adjusted appropriately to obtain a desired pretilt angle. It is preferable to make it. In particular, it is preferable to obtain a pretilt angle in the range of 80 to 90 degrees with respect to the substrate plane, more preferably 85 to 89.9 degrees, and 87 to 89.9 degrees. Is more preferable.
 閾値電圧以上の電圧を印加して得られる液晶の配向状態を保持しようと形成されたポリマーネットワークは、負の誘電異方性を用いた垂直配向モードの液晶表示素子に於いては、水平配向状態か、又は方位角が一定の傾斜配向が望ましい。閾値電圧未満で得られる配向状態は、略垂直配向であることが好ましく、特に、基板平面に対して80度から90度の略垂直の配向が好ましく、高コントラストが得られるような良好な黒レベルを示す配向状態であることが好ましい。 The polymer network formed to maintain the alignment state of the liquid crystal obtained by applying a voltage higher than the threshold voltage is the horizontal alignment state in the vertical alignment mode liquid crystal display element using negative dielectric anisotropy. Alternatively, a tilted orientation with a constant azimuth is desirable. The alignment state obtained at a voltage lower than the threshold voltage is preferably a substantially vertical alignment, and in particular, a substantially vertical alignment of 80 to 90 degrees with respect to the substrate plane is preferable, and a good black level that provides high contrast is obtained. It is preferable that it is the orientation state which shows.
 負の誘電異方性、又は正の誘電異方性を用いた横電界によるIPS表示モードに於いては、紫外線照射中の閾値電圧以上の電圧を印加して得られる液晶の配向状態は、捩れ配向であることが好ましい。閾値電圧未満で得られる配向状態は、方位角が一定の平行配向であることが好ましい。FFSモードに於いては、紫外線照射中の閾値電圧以上の電圧を印加して得られる配向状態が少なくともベンド配向、スプレイ配向、傾斜配向の何れか、又は複数混在した配向状態であることが好ましい。閾値電圧未満に於いては略平行配向であることが好ましい。電圧印加時の液晶の配向状態を保持するようにポリマーネットワークを形成させた後、閾値電圧未満の液晶の配向状態を高分子安定化させることにより、ポリマーネットワーク形成完了後に電圧を印加した場合の液晶の配向状態へ容易に配向変形できるようになり、高透過率と高速応答を両立させることができる。 In the IPS display mode by a lateral electric field using negative dielectric anisotropy or positive dielectric anisotropy, the alignment state of the liquid crystal obtained by applying a voltage higher than the threshold voltage during ultraviolet irradiation is twisted. The orientation is preferable. The alignment state obtained at a voltage lower than the threshold voltage is preferably parallel alignment with a constant azimuth angle. In the FFS mode, the alignment state obtained by applying a voltage equal to or higher than the threshold voltage during ultraviolet irradiation is preferably at least one of bend alignment, splay alignment, inclined alignment, or a mixed alignment state. When the voltage is lower than the threshold voltage, it is preferable to have a substantially parallel orientation. After forming the polymer network to maintain the alignment state of the liquid crystal when a voltage is applied, the polymer is stabilized after the formation of the polymer network by stabilizing the alignment state of the liquid crystal below the threshold voltage. The alignment state can be easily changed to the alignment state, and both high transmittance and high-speed response can be achieved.
 紫外線照射時の印加電圧は、ポリマーネットワーク形成後の液晶表示素子の表示が高コントラストになるように適宜調整することが好ましく、紫外線照射前の液晶表示素子製造用の液晶組成物の電気光学効果の特性に大きく依存するので液晶表示素子製造用の液晶が示す電圧-透過率特性に合わせる必要がある。閾値電圧以上の電圧としては、液晶表示素子製造用の液晶の電圧-透過率特性電圧における透過率の全変化量に対して10%以上になる電圧V10以上であることが好ましく、透過率の全変化量が20%以上になる電圧V20以上がより好ましく、透過率の全変化量が50%以上になる電圧V50以上がより好ましい。但し、閾値電圧の6倍以下の電圧であることが好ましい。紫外線照射中に印加する閾値電圧以上の電圧は、交流電圧を印加することが好ましく、矩形波を印加することが好ましい。周波数は、フリッカーが目視で認識できない周波数にすることが好ましく、TFT基板等の電子回路がガラス基板上に形成されている場合は、重合電圧の減衰が起きない周波数であれば良く、30Hzから5kHz程度あることが好ましい。 The applied voltage at the time of ultraviolet irradiation is preferably adjusted as appropriate so that the display of the liquid crystal display element after the formation of the polymer network has a high contrast, and the electro-optic effect of the liquid crystal composition for manufacturing the liquid crystal display element before the ultraviolet irradiation Since it greatly depends on the characteristics, it is necessary to match the voltage-transmittance characteristics exhibited by the liquid crystal for manufacturing the liquid crystal display element. The voltage above the threshold voltage is preferably a voltage V10 or higher, which is 10% or higher with respect to the total change in transmittance in the voltage-transmittance characteristic voltage of the liquid crystal for manufacturing a liquid crystal display element. The voltage V20 or more at which the change amount is 20% or more is more preferable, and the voltage V50 or more at which the total change in transmittance is 50% or more is more preferable. However, the voltage is preferably not more than 6 times the threshold voltage. As the voltage that is equal to or higher than the threshold voltage applied during the ultraviolet irradiation, an alternating voltage is preferably applied, and a rectangular wave is preferably applied. The frequency is preferably a frequency that cannot be visually recognized by the flicker, and when an electronic circuit such as a TFT substrate is formed on a glass substrate, it may be a frequency at which the polymerization voltage does not attenuate, and is 30 Hz to 5 kHz. It is preferable that there is a degree.
 紫外線照射の途中で印加する電圧を閾値電圧以上から閾値電圧未満にするが、閾値電圧未満の電圧としては、液晶の配向が電圧で変化しない範囲であればよく、0V以上で閾値値電圧の90%未満の電圧が好ましく、80%未満の電圧が好ましく、70%以下であることがより好ましい。また、紫外線照射中に印加電圧を閾値電圧以下にするが、この時に液晶表示素子に於けるOFF時の液晶配向状態になるように戻すことが好ましく、例えば、上述したように垂直配向モードに於いては垂直配向に戻せば良く、FFSモードやIPSモードでは平行配向にすれば良い。液晶表示素子OFF時の液晶配向状態になるように戻す為には、電圧印加時の液晶の配向を安定化させるポリマーネットワークの影響力が僅かな状態で閾値電圧未満の電圧へ下げることが好ましい。 The voltage applied in the middle of the ultraviolet irradiation is changed from the threshold voltage to less than the threshold voltage, but the voltage less than the threshold voltage may be in a range where the orientation of the liquid crystal does not change with the voltage. The voltage is preferably less than 80%, more preferably less than 80%, and even more preferably 70% or less. In addition, the applied voltage is set to the threshold voltage or lower during the ultraviolet irradiation, but at this time, it is preferable to return to the liquid crystal alignment state at the OFF time in the liquid crystal display element. For example, in the vertical alignment mode as described above. In other words, it may be returned to the vertical alignment, and in the FFS mode or the IPS mode, the parallel alignment may be used. In order to return to the liquid crystal alignment state when the liquid crystal display element is OFF, it is preferable that the influence of the polymer network that stabilizes the liquid crystal alignment during voltage application is lowered to a voltage lower than the threshold voltage in a slight state.
 閾値電圧以上の電圧を印加した後に紫外線を照射するが、紫外線照射中に電圧印加時間が長くなると、紫外線照射中に電圧印加時の液晶の配向を安定化させるポリマーネットワークの影響力が増大して必要とする液晶表示素子OFF時の液晶配向状態へ戻らなくなり好ましくなくなる。そのため、最適な紫外線照射中の電圧を適宜最適化して本発明の液晶液晶表示素子を製造することが好ましい。又、紫外線照射中の電圧を閾値電圧未満にする際、素子製造用の液晶組成物の液晶に於ける応答の緩和時間を調整する目的で、電圧を紫外線照射途中で徐々に低くして印加電圧の降下時間を紫外線照射中の液晶に於ける応答緩和時間よりも長くすることにより応答緩和過程で起こるバックフローの影響を最小限にするようにしても良く、印加電圧の降下時間は、10ms以上から1000ms以内であることが好ましい。又、反対に速く下げる場合も良く、少なくとも液晶表示素子製造用の液晶組成物が示す緩和時間より短くすることが好ましく、100ms以下が好ましい。 The ultraviolet rays are irradiated after applying a voltage higher than the threshold voltage. However, if the voltage application time becomes longer during the ultraviolet irradiation, the influence of the polymer network that stabilizes the orientation of the liquid crystal during voltage application during the ultraviolet irradiation increases. It becomes unpreferable because it does not return to the liquid crystal alignment state when the required liquid crystal display element is OFF. Therefore, it is preferable to produce the liquid crystal liquid crystal display element of the present invention by appropriately optimizing the optimum voltage during ultraviolet irradiation. In addition, when the voltage during ultraviolet irradiation is made lower than the threshold voltage, the voltage is gradually lowered during the ultraviolet irradiation in order to adjust the response relaxation time in the liquid crystal of the liquid crystal composition for device manufacture. It is possible to minimize the influence of backflow that occurs in the response relaxation process by making the fall time of the liquid crystal longer than the response relaxation time in the liquid crystal during ultraviolet irradiation. The fall time of the applied voltage is 10 ms or more. Is preferably within 1000 ms. On the contrary, it may be lowered quickly, and it is preferably at least shorter than the relaxation time indicated by the liquid crystal composition for producing a liquid crystal display element, and preferably 100 ms or less.
 このように閾値電圧以上の電圧が印加された状態で紫外線照射することで水平配向成分のポリマーネットワークを部分的に形成させ、紫外線照射を継続しながら電圧を閾値電圧未満にすることで液晶を垂直配向に戻すことで重合相分離を完了させる。フィッシュボーン型電極液晶セルに於いては、上述の平行配向成分と垂直配向成分の比率でプレチルト角は変化させることが可能でポリマーネットワーク形成初期過程で電圧を切ると傾斜配向方位が定まり、垂直配向を残存モノマーで形成することにより垂直配向と傾斜配向方位の両立が可能になりナノ相分離液晶に於ける配向制御技術となる。 In this way, a polymer network of the horizontal alignment component is partially formed by irradiating with ultraviolet rays in a state where a voltage equal to or higher than the threshold voltage is applied, and the liquid crystal is vertically aligned by keeping the voltage below the threshold voltage while continuing the ultraviolet irradiation. The polymerization phase separation is completed by returning to the orientation. In the fishbone type liquid crystal cell, the pretilt angle can be changed by the ratio of the above-mentioned parallel alignment component and vertical alignment component. When the voltage is turned off in the initial stage of polymer network formation, the tilt alignment direction is determined and the vertical alignment is determined. By using the residual monomer, it becomes possible to achieve both the vertical alignment and the tilt alignment orientation, which is an alignment control technique in the nanophase separation liquid crystal.
 尚、平行配向状態とは、電圧が印加されて負の誘電異方性液晶が略平行配向状態になることを意味し、基板面に対して0.1度から30度の範囲が好ましく、0.1度から10度の範囲で傾斜配向していることが好ましい。電圧が無印加の場合の垂直配向は、垂直配向膜の作用で略垂直配向状態になることを意味し、液晶の配向が基板平面に対して80から89.9度に傾斜して配向していることが好ましく、85度から89.9度に傾斜していることがより好ましい。 The parallel alignment state means that a negative dielectric anisotropic liquid crystal is in a substantially parallel alignment state when a voltage is applied, and is preferably in the range of 0.1 to 30 degrees with respect to the substrate surface. It is preferable that the tilt orientation is in the range of 1 to 10 degrees. The vertical alignment when no voltage is applied means that the vertical alignment film is brought into a substantially vertical alignment state. The alignment of the liquid crystal is inclined at 80 to 89.9 degrees with respect to the substrate plane. It is preferable that the angle is inclined from 85 degrees to 89.9 degrees.
 正の誘電異方性液晶の場合は、電圧が印加されると垂直配向が得られるが、液晶配向状態が基板平面に対して45度から89.9度の範囲で液晶が傾斜して配向していることも含まれる。電圧が無印加の場合の平行配向は、平行配向膜の作用で略平行配向状態になることを意味し、液晶の配向が基板平面に対して0.1から30度に傾斜して配向していることが含まれる。 In the case of a positive dielectric anisotropic liquid crystal, a vertical alignment is obtained when a voltage is applied, but the liquid crystal is tilted and aligned in the range of 45 to 89.9 degrees with respect to the substrate plane. It is also included. The parallel alignment when no voltage is applied means that the parallel alignment film is brought into a substantially parallel alignment state. The alignment of the liquid crystal is tilted from 0.1 to 30 degrees with respect to the substrate plane. It is included.
 本発明の液晶表示素子における基板間の距離(d)は、2~5μmの範囲が好ましく、3.5μm以下が更に好ましい。一般に、液晶組成物の複屈折率とセル厚の積が0.275近傍になるように複屈折率を調整するが、本発明に用いられる素子製造用の液晶組成物では重合相分離後にポリマーネットワークが形成されるため、ポリマーネットワークのアンカーリング力作用とポリマーネットワークの光学的な性質により電界印加時の液晶表示素子の複屈折率が低くなるので液晶組成物、及び重合組成物、又は液晶表示素子製造用の液晶組成物に含まれる液晶組成物の複屈折率(Δn)と基板間の距離(d)の積は、駆動電圧がポリマーネットワーク形成により5V程度以内の増加では0.3~0.4μmの範囲が特に好ましく、3V程度以内の増加では0.30~0.35μmの範囲が更に好ましく、駆動電圧が1V以内の増加では0.29~0.33μmの範囲が特に好ましい。液晶表示素子の基板間の距離(d)及び液晶組成物の複屈折(Δn)と基板間の距離(d)の積をそれぞれ上記範囲内とすることにより、透過率は、低分子液晶のみに匹敵して高く、高速応答で色再現性が好ましい表示を得ることができる。液晶表示素子製造用の液晶組成物に用いる液晶組成物の複屈折率を、セル厚(d)と複屈折率(Δn)の積が0.275に対して1から1.9倍になるようにすることが好ましい。 The distance (d) between the substrates in the liquid crystal display element of the present invention is preferably in the range of 2 to 5 μm, more preferably 3.5 μm or less. In general, the birefringence is adjusted so that the product of the birefringence of the liquid crystal composition and the cell thickness is close to 0.275. In the liquid crystal composition for manufacturing an element used in the present invention, the polymer network is separated after the polymerization phase separation. Since the birefringence of the liquid crystal display element when an electric field is applied is lowered due to the anchoring force action of the polymer network and the optical properties of the polymer network, the liquid crystal composition, the polymer composition, or the liquid crystal display element The product of the birefringence (Δn) of the liquid crystal composition contained in the liquid crystal composition for production and the distance (d) between the substrates is 0.3 to 0.00 when the driving voltage is increased within about 5 V due to the formation of the polymer network. The range of 4 μm is particularly preferable, the range of 0.30 to 0.35 μm is more preferable when the increase is within about 3 V, and the range of 0.29 to 0.33 μm when the drive voltage is within 1 V. It is particularly preferred. By making the product of the distance (d) between the substrates of the liquid crystal display element and the product of the birefringence (Δn) of the liquid crystal composition and the distance (d) between the substrates within the above ranges, the transmittance is limited to only low-molecular liquid crystals. It is possible to obtain a display that is relatively high and has a high-speed response and favorable color reproducibility. The birefringence of the liquid crystal composition used in the liquid crystal composition for manufacturing the liquid crystal display element is such that the product of the cell thickness (d) and the birefringence (Δn) is 1 to 1.9 times with respect to 0.275. It is preferable to make it.
 本発明の液晶表示素子の駆動電圧は、液晶組成物の誘電異方性や弾性定数だけで決まるものではなく、液晶組成物とポリマー界面との間で作用するアンカーリング力に大きく影響される。 The driving voltage of the liquid crystal display element of the present invention is not determined only by the dielectric anisotropy or elastic constant of the liquid crystal composition, but is greatly influenced by the anchoring force acting between the liquid crystal composition and the polymer interface.
 例えば高分子分散型液晶表示素子の駆動電圧に関する記述として、特開平6-222320号公報において次式の関係が示されている。 For example, Japanese Patent Laid-Open No. 6-222320 discloses the relationship of the following formula as a description regarding the driving voltage of a polymer dispersion type liquid crystal display element.
Figure JPOXMLDOC01-appb-M000073
Figure JPOXMLDOC01-appb-M000073
(Vthはしきい値電圧を表わし、1Kii及び2Kiiは弾性定数を表わし、iは1、2又は3を表わし、Δεは誘電率異方性を表わし、<r>は透明性高分子物質界面の平均空隙間隔を表わし、Aは液晶組成物に対する透明性高分子物質のアンカーリング力を表わし、dは透明性電極を有する基板間の距離を表わす。) (Vth represents a threshold voltage, 1Kii and 2Kii represent elastic constants, i represents 1, 2 or 3, Δε represents dielectric anisotropy, and <r> represents a transparent polymer substance interface. (Indicates the average gap distance, A indicates the anchoring force of the transparent polymer substance to the liquid crystal composition, and d indicates the distance between the substrates having transparent electrodes.)
これによると、光散乱型液晶表示素子の駆動電圧は、透明性高分子物質界面の平均空隙間隔、基板間の距離、液晶組成物の弾性定数・誘電率異方性、及び液晶組成物と透明性高分子物質間のアンカーリングエネルギーによって決定される。このうち本発明の液晶表示素子で制御できるパラメータは、液晶物性とポリマー間のアンカーリング力である。アンカーリング力は、該ポリマーの分子構造、及び低分子液晶の分子構造に大きく依存するため、アンカーリング力が強いモノマーを選定すれば応答時間を1.5ms以下に速くすることが可能であるが同時に、駆動電圧が30V以上に増加するので、駆動電圧が30V以下で応答速度が1.5ms以下になるように適宜液晶化合物、及びモノマーの選定を行い組成を調整することが好ましい。アンカーリング力の強いポリマー前駆体とアンカーリング力の弱いポリマー前駆体を適宜配合して駆動電圧と応答速度のバランスが取れるように組成を調整することが好ましい。一方、駆動電圧を低くするのに求められる液晶組成物の物性としては、P型液晶では誘電異方性が6以上で、N型液晶では誘電異方性が-3以下にすることが特に好ましい。又、複屈折率を0.09以上にすることが好ましい。更に、液晶組成物の複屈折率と繊維状、又は柱状ポリマーネットワークの屈折率を可能な限り近づけ光散乱を無くすとより好ましくなる。但し、ポリマー前駆体の濃度に液晶素子のリターデーションが影響されるので、適宜、必要なリターデーションが得られるように液晶組成物の複屈折率を増減させて使用することが好ましい。 According to this, the driving voltage of the light-scattering liquid crystal display element is determined by the average gap spacing at the interface of the transparent polymer material, the distance between the substrates, the elastic constant / dielectric anisotropy of the liquid crystal composition, and the transparency with the liquid crystal composition. Determined by the anchoring energy between the conductive polymer materials. Among these, parameters that can be controlled by the liquid crystal display device of the present invention are liquid crystal properties and anchoring force between polymers. Since the anchoring force largely depends on the molecular structure of the polymer and the molecular structure of the low-molecular liquid crystal, if a monomer having a strong anchoring force is selected, the response time can be shortened to 1.5 ms or less. At the same time, since the drive voltage increases to 30 V or more, it is preferable to adjust the composition by appropriately selecting the liquid crystal compound and the monomer so that the drive voltage is 30 V or less and the response speed is 1.5 ms or less. It is preferable to adjust the composition so that the driving voltage and the response speed are balanced by appropriately blending a polymer precursor having a strong anchoring force and a polymer precursor having a weak anchoring force. On the other hand, as the physical properties of the liquid crystal composition required for lowering the driving voltage, it is particularly preferable that the dielectric anisotropy is 6 or more for the P-type liquid crystal and -3 or less for the N-type liquid crystal. . The birefringence is preferably 0.09 or more. Furthermore, it is more preferable to make the birefringence of the liquid crystal composition and the refractive index of the fibrous or columnar polymer network as close as possible to eliminate light scattering. However, since the retardation of the liquid crystal element is affected by the concentration of the polymer precursor, it is preferable to use the liquid crystal composition with an increased or decreased birefringence so that the necessary retardation can be obtained.
 以上詳述した液晶層は、液晶表示素子における前記光源部からの入射光の波長が450nmで25℃の場合において、下記数式(1)で定義されるリタデーション(Re)が、
 Re=Δn×d
(上記数式(1)中、Δnは589nmでの屈折率異方性を表し、dは液晶表示素子の液晶層のセル厚(μm)を表す。)
220~300nmであることが好ましい。
The liquid crystal layer described in detail above has a retardation (Re) defined by the following mathematical formula (1) when the wavelength of incident light from the light source unit in the liquid crystal display element is 450 nm and 25 ° C.
Re = Δn × d
(In the above formula (1), Δn represents the refractive index anisotropy at 589 nm, and d represents the cell thickness (μm) of the liquid crystal layer of the liquid crystal display element.)
It is preferably 220 to 300 nm.
 即ち、通常の白色光源を用いた液晶表示素子と、当該量子ドットの励起を引き起こす約500nm以下の青色可視光(いわゆる短波長領域の光)または紫外線の透過をスイッチングする液晶表示素子とでは、透過する光および当該透過する光の光学的な性質が異なるため、それぞれの素子に求められる特性等も相違する。しかしながら、従来、量子ドットなどの発光用ナノ結晶を発光素子として用いた液晶表示素子で用いられる光源と、量子ドットなどの発光用ナノ結晶を含まない通常の液晶表示素子で使用する光源との違いに起因する液晶材料の光学特性についての最適化がなされておらず、量子ドットなどの発光用ナノ結晶を用いた表示素子の光学特性を最大限に利用できない問題が生じていた。そこで、上記リタデーションの条件を満足させることにより、500nm以下の青色可視光(いわゆる短波長領域の光)または紫外線を入射光とした場合において液晶表示素子の透過率を向上することができる。そのため、液晶表示素子の透過率の低下を抑制または防止することができる。 In other words, a liquid crystal display element using a normal white light source and a liquid crystal display element that switches transmission of blue visible light (so-called short wavelength region light) or ultraviolet light of about 500 nm or less that causes excitation of the quantum dots are transmitted. Since the optical properties of the transmitted light and the transmitted light are different, the characteristics required for each element are also different. However, the difference between a light source used in a conventional liquid crystal display element using a light emitting nanocrystal such as a quantum dot as a light emitting element and a light source used in a normal liquid crystal display element not including a light emitting nanocrystal such as a quantum dot. The optical characteristics of the liquid crystal material resulting from the above have not been optimized, and there has been a problem that the optical characteristics of display elements using light emitting nanocrystals such as quantum dots cannot be utilized to the maximum. Therefore, by satisfying the retardation condition, the transmittance of the liquid crystal display element can be improved when blue visible light (so-called short wavelength region light) of 500 nm or less or ultraviolet light is used as incident light. Therefore, it is possible to suppress or prevent a decrease in transmittance of the liquid crystal display element.
 [配向層]
 本発明の液晶表示素子は、前記した通り、配向層4を有するものであってもよいが、例えばVA型液晶表示素子の場合、液晶化合物を垂直配向させる場合に、配向層を設けることなく、前記重合性液晶組成物中に自発配向剤を含ませ、配向膜なしで液晶を自立させるか、溶剤可溶型の垂直配向型ポリイミドを用いて配向させるか、或いは、光配向膜、とりわけ非ポリイミド系の光配向膜によって液晶を配向させることが液晶表示素子の製造が容易である点から好ましい。
[Alignment layer]
The liquid crystal display element of the present invention may have the alignment layer 4 as described above. For example, in the case of a VA liquid crystal display element, when the liquid crystal compound is vertically aligned, without providing an alignment layer, A self-aligning agent is included in the polymerizable liquid crystal composition so that the liquid crystal is self-supported without an alignment film, or is aligned using a solvent-soluble vertical alignment polyimide, or a photo-alignment film, particularly a non-polyimide. It is preferable from the viewpoint that the liquid crystal display element can be easily manufactured by aligning the liquid crystal with the photo alignment film of the system.
 ここで使用し得る当該自発配向剤としては、液晶層を構成する液晶組成物(B)に含まれる液晶分子の配向方向を制御することができる。液晶層の界面に自発配向剤の成分が集積する、または当該界面に吸着することで液晶分子の配向方向を制御することができると考えられる。これにより、重合性液晶組成物中に自発配向剤を含む場合は、液晶パネルの配向層を無くすことができる。 As the spontaneous alignment agent that can be used here, the alignment direction of the liquid crystal molecules contained in the liquid crystal composition (B) constituting the liquid crystal layer can be controlled. It is considered that the alignment direction of the liquid crystal molecules can be controlled by accumulating or adsorbing the components of the spontaneous alignment agent at the interface of the liquid crystal layer. Thereby, when a spontaneous orientation agent is included in the polymerizable liquid crystal composition, the orientation layer of the liquid crystal panel can be eliminated.
 本発明に係る重合性液晶組成物における自発配向剤の含有量は、重合性液晶組成物の全体のうち0.1~10質量%含むことが好ましい。 The content of the spontaneous alignment agent in the polymerizable liquid crystal composition according to the present invention is preferably 0.1 to 10% by mass in the entire polymerizable liquid crystal composition.
 当該自発配向剤としては、以下の一般式(al-1)および/または一般式(al-2)であることが好ましい。 The spontaneous alignment agent is preferably the following general formula (al-1) and / or general formula (al-2).
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
 (式中、Ral1、Ral2、Zal1、Zal2、Lal1、Lal2、Lal3、Spal1、Spal2、Spal3、Xal1、Xal2、Xal3、mal1、mal2、mal3、nal1、nal2、nal3、pal1およびpal2はそれぞれ互いに独立して、
 Ral1は、水素原子、ハロゲン、1~20個の炭素原子を有する直鎖状、分枝状もしくは環状アルキルを示し、ここで当該アルキル基において、1または2つ以上の隣接していないCH基は、-O-、-S-、-CO-、-CO-O-、-O-CO-、-O-CO-O-によって、Oおよび/またはS原子が互いに直接結合しないように置換されてもよく、さらに1個または2個以上の水素原子は、FまたはClによって置き換えられていてもよい、
 Ral2は、以下のいずれかの部分構造を備えた基を表し、
(In the formula, Ral1 , Ral2 , Zal1 , Zal2 , Lal1 , Lal2 , Lal3 , Spal1 , Spal2 , Spal3 , Xal1 , Xal2 , Xal3 , mal1 , mal2 al3 , nal1 , nal2 , nal3 , pal1 and pal2 are each independently of each other,
R al1 represents a hydrogen atom, a halogen, a straight chain, branched or cyclic alkyl having 1 to 20 carbon atoms, wherein in the alkyl group, one or two or more non-adjacent CH 2 The group is substituted by —O—, —S—, —CO—, —CO—O—, —O—CO—, —O—CO—O— so that the O and / or S atoms are not directly bonded to each other. In addition, one or more hydrogen atoms may be replaced by F or Cl.
R al2 represents a group having any of the following partial structures:
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
  Spal1、Spal2およびSpal3はそれぞれ互いに独立して、炭素原子数1~12個のアルキル基または単結合を表し、
 Xal1、Xal2およびXal3はそれぞれ互いに独立して、アルキル基、アクリル基、メタクリル基またはビニル基を示し、
 Zal1は、-O-、-S-、-CO-、-CO-O-、-OCO-、-O-CO-O-、-OCH-、-CHO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-(CH al-、-CFCH-、-CHCF-、-(CF al-、-CH=CH-、-CF=CF-、-C≡C-、-CH=CH-COO-、-OCO-CH=CH-、-(CRal3al4 a1-、-CH(-Spal1-Xal1)-、-CHCH(-Spal1-Xal1)-、-CH(-Spal1-Xal1)CH(-Spal1-Xal1)-を示し、
 Zal2はそれぞれ互いに独立して、単結合、-O-、-S-、-CO-、-CO-O-、-OCO-、-O-CO-O-、-OCH-、-CHO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-(CH)n1-、-CFCH-、-CHCF-、-(CF al-、-CH=CH-、-CF=CF-、-C≡C-、-CH=CH-COO-、-OCO-CH=CH-、-(CRal3al4na1-、-CH(-Spal1-Xal1)-、-CHCH(-Spal1-Xal1)-、-CH(-Spal1-Xal1)CH(-Spal1-Xal1)-を示し、
 Lal1、Lal2、Lal3はそれぞれ互いに独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、-CN、-NO、-NCO、-NCS、-OCN、-SCN、-C(=O)N(Ral3、-C(=O)Ral3、3~15個の炭素原子を有する任意に置換されたシリル基、任意に置換されたアリール基もしくはシクロアルキル基または1~25個の炭素原子を表すが、ここで、1個もしくは2個以上の水素原子がハロゲン原子(フッ素原子、塩素原子)によって置き換えられていてもよく、
上記Ral3は、1~12個の炭素原子を有するアルキル基を表し、上記Ral4は、水素原子または1~12個の炭素原子を有するアルキル基を表し、上記nalは、1~4の整数を表し、
 pal1およびpal2はそれぞれ互いに独立して、0または1を表し、mal1、mal2およびmal3はそれぞれ互いに独立して、0~3の整数を表し、nal1、nal2およびnal3はそれぞれ互いに独立して、0~3の整数を表す。)
 一般式(Al-2):
Spal1 , Spal2 and Spal3 each independently represent an alkyl group having 1 to 12 carbon atoms or a single bond,
Xal1 , Xal2 and Xal3 each independently represent an alkyl group, an acrylic group, a methacrylic group or a vinyl group,
Z al1 is —O—, —S—, —CO— , —CO—O— , —OCO— , —O—CO—O—, —OCH 2 —, —CH 2 O—, —SCH 2 —, —CH 2 S—, —CF 2 O—, —OCF 2 —, —CF 2 S—, —SCF 2 —, — (CH 2 ) n al —, —CF 2 CH 2 —, —CH 2 CF 2 — , — (CF 2 ) n al —, —CH═CH—, —CF═CF—, —C≡C—, —CH═CH— COO—, —OCO— CH═CH— , — (CR al3 R al4 ) n a1 -, - CH ( -Sp al1 -X al1) -, - CH 2 CH (-Sp al1 -X al1) -, - CH (-Sp al1 -X al1) CH (-Sp al1 -X al1) -
Z al2 is each independently a single bond, —O—, —S—, —CO—, —CO—O—, —OCO— , —O—CO—O—, —OCH 2 —, —CH 2. O—, —SCH 2 —, —CH 2 S—, —CF 2 O—, —OCF 2 —, —CF 2 S—, —SCF 2 —, — (CH 2 ) n1-, —CF 2 CH 2 — , —CH 2 CF 2 —, — (CF 2 ) n al —, —CH═CH—, —CF═CF—, —C≡C—, —CH═CH—COO—, —OCO—CH═CH— , - (CR al3 R al4) na1 -, - CH (-Sp al1 -X al1) -, - CH 2 CH (-Sp al1 -X al1) -, - CH (-Sp al1 -X al1) CH (- Sp al1 -X al1 )-
L al1 , L al2 and L al3 are each independently a hydrogen atom, fluorine atom, chlorine atom, bromine atom, iodine atom, —CN, —NO 2 , —NCO, —NCS, —OCN, —SCN, — C (═O) N (R al3 ) 2 , —C (═O) R al3 , an optionally substituted silyl group having 3 to 15 carbon atoms, an optionally substituted aryl group or cycloalkyl group, or Represents 1 to 25 carbon atoms, wherein one or more hydrogen atoms may be replaced by halogen atoms (fluorine atoms, chlorine atoms),
The R AL3 represents an alkyl group having 1 to 12 carbon atoms, the R AL4 represents an alkyl group having a hydrogen atom or 1 to 12 carbon atoms, the n al is 1-4 Represents an integer,
pal1 and pal2 each independently represent 0 or 1, mal1 , mal2 and mal3 each independently represent an integer of 0 to 3, and nal1 , nal2 and nal3 are Each independently represents an integer of 0 to 3. )
General formula (Al-2):
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
(式中、Zi1およびZi2はそれぞれ独立して、単結合、-CH=CH-、-CF=CF-、-C≡C-、-COO-、-OCO-、-OCOO-、-OOCO-、-CFO-、-OCF-、-CH=CHCOO-、-OCOCH=CH-、-CH-CHCOO-、-OCOCH―CH-、-CH=C(CH)COO-、-OCOC(CH)=CH-、-CH-CH(CH)COO-、-OCOCH(CH)―CH-、-OCHCHO-、又は炭素原子数2~20のアルキレン基を表し、このアルキレン基中の1個又は隣接しない2個以上の-CH-は-O-、-COO-又は-OCO-で置換されてもよく、ただしKi1が(K-11)の場合はメソゲン基に少なくとも-CH-CHCOO-、-OCOCH―CH-、-CH=C(CH)COO-、-OCOC(CH)=CH-、-CH-CH(CH)COO-、-OCOCH(CH)―CH-、-OCHCHO-の何れか一つを含み、
 Aal21およびAa122はそれぞれ独立して、2価の6員環芳香族基又は2価の6員環脂肪族基を表すが、2価の無置換の6員環芳香族基、2価の無置換の6員環脂肪族基又はこれらの環構造中の水素原子は、置換されていないか炭素原子数1~6のアルキル基、炭素原子数1~6のアルコキシ基、ハロゲン原子で置換されていていることが好ましく、2価の無置換の6員環芳香族基若しくはこの環構造中の水素原子がフッ素原子で置換された基、又は2価の無置換の6員環脂肪族基が好ましく、置換基上の水素原子が、ハロゲン原子、アルキル基又はアルコキシ基によって置換されていても良い1,4-フェニレン基、2,6-ナフタレン基又は1,4-シクロヘキシル基が好ましいが、少なくとも一つの置換基はPi1-Spi1-で置換されており、
 Zi1、Aal21およびAa122がそれぞれ複数存在する場合は、それぞれ互いに同一であっても異なっていてもよく、
 Spi1は、好ましくは炭素原子数1~18の直鎖状アルキレン基又は単結合を表し、より好ましくは炭素原子数2~15の直鎖状アルキレン基又は単結合を表し、更に好ましくは炭素原子数3~12の直鎖状アルキレン基又は単結合を表し、
 Ral21は、水素原子、炭素原子数1~20の直鎖又は分岐のアルキル基、ハロゲン化アルキル基、又はPi1-Spi1-を表し、該アルキル基中の-CH-は、-O-、-OCO-、又は-COO-が好ましく(ただし-O-は連続にはならない)、より好ましくは、水素原子、炭素原子数1~18の直鎖又は分岐のアルキル基、又はPi1-Spi1-を表し、該アルキル基中の-CH-は、-O-、-OCO-(ただし-O-は連続にはならない)を表す。
Wherein Z i1 and Z i2 are each independently a single bond, —CH═CH—, —CF═CF—, —C≡C—, —COO—, —OCO—, —OCOO—, —OOCO. -, - CF 2 O -, - OCF 2 -, - CH = CHCOO -, - OCOCH = CH -, - CH 2 -CH 2 COO -, - OCOCH 2 -CH 2 -, - CH = C (CH 3) COO—, —OCOC (CH 3 ) ═CH—, —CH 2 —CH (CH 3 ) COO—, —OCOCH (CH 3 ) —CH 2 —, —OCH 2 CH 2 O—, or 2 to 20 represents an alkylene group, and one or two or more non-adjacent —CH 2 — in the alkylene group may be substituted with —O—, —COO— or —OCO—, provided that K i1 is (K In the case of -11), at least —CH 2 is added to the mesogenic group. —CH 2 COO—, —OCOCH 2 —CH 2 —, —CH═C (CH 3 ) COO—, —OCOC (CH 3 ) ═CH—, —CH 2 —CH (CH 3 ) COO—, —OCOCH ( Including any one of CH 3 ) —CH 2 —, —OCH 2 CH 2 O—,
A AL21 and Aa 122 each independently represents a divalent 6-membered ring aromatic group or a divalent 6-membered ring aliphatic group, a divalent unsubstituted 6-membered ring aromatic group, a divalent An unsubstituted 6-membered cycloaliphatic group or a hydrogen atom in these ring structures is unsubstituted or substituted with an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a halogen atom It is preferable that a divalent unsubstituted 6-membered aromatic group, a group in which a hydrogen atom in the ring structure is substituted with a fluorine atom, or a divalent unsubstituted 6-membered cyclic aliphatic group Preferably, the hydrogen atom on the substituent is preferably a 1,4-phenylene group, a 2,6-naphthalene group or a 1,4-cyclohexyl group, which may be substituted by a halogen atom, an alkyl group or an alkoxy group, one of the substituents is P i1 -Sp i - it has been replaced by,
If Z i1, A AL21 and Aa 122 is present in plural may each also being the same or different,
Sp i1 preferably represents a linear alkylene group or a single bond having 1 to 18 carbon atoms, more preferably a linear alkylene group or a single bond having 2 to 15 carbon atoms, and more preferably a carbon atom. Represents a linear alkylene group or a single bond of several 3 to 12,
R al21 represents a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms, a halogenated alkyl group, or P i1 —Sp i1 —, and —CH 2 — in the alkyl group represents —O —, —OCO—, or —COO— is preferable (where —O— is not continuous), more preferably a hydrogen atom, a linear or branched alkyl group having 1 to 18 carbon atoms, or P i1 —. Sp i1 — represents —CH 2 — in the alkyl group represents —O— or —OCO— (however, —O— is not continuous).
 Ki1は、以下の一般式(K-1)~一般式(K-11)で表される置換基を表し、 K i1 represents a substituent represented by the following general formula (K-1) to general formula (K-11),
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
 Pi1は、重合性基を表し、以下の一般式(P-1)~一般式(P-15)で表される群より選ばれる置換基を表し(式中、右端の黒点は結合手を表す。)、 P i1 represents a polymerizable group, and represents a substituent selected from the group represented by the following general formulas (P-1) to (P-15) (in the formula, the black dot on the right end represents a bond). To express.),
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
 Zi1、Zi2、Aal21、miii1及び/又はAal22がそれぞれ複数存在する場合は、それぞれ互いに同一であっても異なっていてもよく、ただしAi1及びAi2の何れか一つは少なくとも一つのPi1-Spi1-で置換されており、Ki1が(K-11)の場合は、Zii1は少なくとも-CH-CHCOO-、-OCOCH―CH-、-CH-CH(CH)COO-、-OCOCH(CH)―CH-、-OCHCHO-の何れか一つを含み、
 miii1は、1~5の整数を表し、
 miii2は、1~5の整数を表し、
 Gi1は、2価、3価、4価のいずれかの分岐構造、または2価、3価、4価のいずれかの脂肪族または芳香族の環構造を表し、
 miii3は、Gi1の価数より1小さい整数を表す。)
 具体的には、以下の化合物が挙げられる。
When there are a plurality of Z i1 , Z i2 , A al21 , m iii1 and / or A al22 , they may be the same or different from each other, provided that any one of A i1 and A i2 is at least When substituted with one P i1 —Sp i1 — and K i1 is (K-11), Z ii1 is at least —CH 2 —CH 2 COO—, —OCOCH 2 —CH 2 —, —CH 2 Including —CH (CH 3 ) COO—, —OCOCH (CH 3 ) —CH 2 —, —OCH 2 CH 2 O—,
m iii1 represents an integer of 1 to 5,
m iii2 represents an integer of 1 to 5,
G i1 represents a divalent, trivalent or tetravalent branched structure, or a divalent, trivalent or tetravalent aliphatic or aromatic ring structure;
m iii3 represents an integer smaller than the valence of G i1 . )
Specifically, the following compounds are mentioned.
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
 その他、液晶パネルの配向層を無くす手段としては、重合性化合物を含有する液晶組成物を第1の基板および第2の基板間に充填する際に、当該晶組成物をTni以上の状態で充填し、重合性化合物を含有する液晶組成物に対してUV照射を行い重合性化合物を硬化させる方法などが挙げられる。 In addition, as a means for eliminating the alignment layer of the liquid crystal panel, when the liquid crystal composition containing the polymerizable compound is filled between the first substrate and the second substrate, the crystal composition is filled in a state of Tni or higher. And a method of curing the polymerizable compound by irradiating the liquid crystal composition containing the polymerizable compound with UV.
 その他、液晶パネルの配向層を無くす手段としては、重合性化合物を含有する液晶組成物を第1の基板および第2の基板間に充填する際に、当該晶組成物をTni以上の状態で充填し、重合性化合物を含有する液晶組成物に対してUV照射を行い重合性化合物を硬化させる方法などが挙げられる。 In addition, as a means for eliminating the alignment layer of the liquid crystal panel, when the liquid crystal composition containing the polymerizable compound is filled between the first substrate and the second substrate, the crystal composition is filled in a state of Tni or higher. And a method of curing the polymerizable compound by irradiating the liquid crystal composition containing the polymerizable compound with UV.
 一方、配向膜4として光配向膜を用いる場合は、該光配向膜は、光応答性分子又は光応答性高分子を主たる成分して構成されているものが挙げられる。斯かる光応答性分子又は光応答性高分子としては、
(1)光に応答して異性化し偏光軸に対して略垂直または平行に配向する
光応答性異性化型分子又はその重合体、
(2)光に応答して二量化により架橋構造を形成する光応答性二量化型分子、および
(3)光に応答して高分子鎖が切断する光応答性分解型高分子
が挙げられる。これらのなかでも特に光応答性異性化型分子又はその重合体(3)が、感度、配向規制力の点から特に好ましい。
On the other hand, when a photo-alignment film is used as the alignment film 4, the photo-alignment film may be composed of a photoresponsive molecule or a photoresponsive polymer as a main component. As such a photoresponsive molecule or photoresponsive polymer,
(1) a photoresponsive isomerized molecule or polymer thereof that isomerizes in response to light and is oriented substantially perpendicularly or parallel to the polarization axis;
(2) Photoresponsive dimerization-type molecules that form a crosslinked structure by dimerization in response to light, and (3) Photoresponsive decomposable polymers in which a polymer chain is cleaved in response to light. Among these, the photoresponsive isomerized molecule or the polymer (3) is particularly preferable from the viewpoints of sensitivity and orientation regulating ability.
 [光源部]
 次に、本発明の液晶表示素子を構成する光源部は、紫外または可視光を発光する発光素子を有する。当該発光素子は、波長領域について特に制限されることはないが、青色領域に主発光ピークを有することが好ましい。例えば、420nm以上480nm以下の波長領域に主発光ピークを有する発光ダイオード(青色発光ダイオード)を好適に使用できる。
[Light source]
Next, the light source part which comprises the liquid crystal display element of this invention has a light emitting element which light-emits ultraviolet or visible light. The light-emitting element is not particularly limited with respect to the wavelength region, but preferably has a main light emission peak in the blue region. For example, a light emitting diode (blue light emitting diode) having a main light emission peak in a wavelength region of 420 nm or more and 480 nm or less can be suitably used.
 本発明に係る発光素子(または発光ダイオード)は、波長領域について特に制限されることはないが、青色領域に主発光ピークを有することが好ましい。例えば、430nm以上500nm以下(420nm以上480nm以下)の波長領域に主発光ピークを有する発光ダイオードを好適に使用できる。当該青色領域に主発光ピークを有する発光ダイオードは、公知のものを使用することができる。青色領域に主発光ピークを有する発光ダイオードとしては、例えば、サファイア基板の上に形成されるAlNからなるシード層と、シード層上に形成される下地層と、GaNを主体とする積層半導体層とを少なくとも備えたものなどが例示として挙げられる。また、積層半導体層は、基板側から下地層、n型半導体層、発光層およびp型半導体層の順に積層されて構成されたものが挙げられる。 The light-emitting element (or light-emitting diode) according to the present invention is not particularly limited in the wavelength region, but preferably has a main light emission peak in the blue region. For example, a light emitting diode having a main emission peak in a wavelength region of 430 nm to 500 nm (420 nm to 480 nm) can be suitably used. A known light emitting diode having a main light emission peak in the blue region can be used. As a light emitting diode having a main light emission peak in a blue region, for example, a seed layer made of AlN formed on a sapphire substrate, an underlayer formed on the seed layer, a laminated semiconductor layer mainly composed of GaN, The thing provided with at least etc. is mentioned as an example. In addition, the stacked semiconductor layer may be configured by stacking a base layer, an n-type semiconductor layer, a light emitting layer, and a p-type semiconductor layer in this order from the substrate side.
 紫外線の光源としては、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、無電極ランプ、メタルハライドランプ、キセノンアークランプ、LED等が挙げられるが、本発明に係る発光素子Lは、上記の420nm以上480nm以下の波長領域に主発光ピークを有するLED以外として、紫外光を発生するLEDが好ましい。 Examples of the ultraviolet light source include a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a carbon arc lamp, an electrodeless lamp, a metal halide lamp, a xenon arc lamp, and an LED. L is preferably an LED that generates ultraviolet light other than the LED having the main emission peak in the wavelength region of 420 nm to 480 nm.
 なお、本明細書において、420~480nmの波長帯域に発光中心波長を有する光を青色光と称し、500~560nmの波長帯域に発光中心波長を有する光を緑色光と称し、605~665nmの波長帯域に発光中心波長を有する光を赤色光と称する。また、本明細書の紫外光とは、300nm以上420nm未満の波長帯域に発光中心波長を有する光をいう。さらに本明細書において、「半値幅」とは、ピーク高さ1/2でのピークの幅のことを言う。 In this specification, light having an emission center wavelength in the wavelength band of 420 to 480 nm is referred to as blue light, light having an emission center wavelength in the wavelength band of 500 to 560 nm is referred to as green light, and wavelength of 605 to 665 nm. The light having the emission center wavelength in the band is referred to as red light. Further, the ultraviolet light in this specification refers to light having an emission center wavelength in a wavelength band of 300 nm or more and less than 420 nm. Further, in the present specification, the “half-value width” refers to the width of the peak at the peak height ½.
 (偏光層)
 本発明の液晶表示素子に使用される偏光層は公知の偏光板(偏光層)を使用することができる。例えば、二色性有機色素偏光子、塗布型偏光層、ワイヤーグリッド型偏光子、またはコレステリック液晶型偏光子などが挙げられる。たとえば、ワイヤーグリッド型偏光子は、第1基板、第2基板、カラーフィルタ上に形成され、ナノインプリント法、ブロックコポリマー法、Eビームリソグラフィ法またはグランシングアングル蒸着法のうちいずれか一つによって形成されることが好ましい。また、塗布型偏光層を形成する場合、本明細書の以下で説明する配向層をさらに設けてもよい。そのため、本発明に係る偏光層が塗布型偏光層である場合、塗布型偏光層と配向層とを有することが好ましい。
(Polarizing layer)
As the polarizing layer used in the liquid crystal display element of the present invention, a known polarizing plate (polarizing layer) can be used. Examples thereof include a dichroic organic dye polarizer, a coating type polarizing layer, a wire grid type polarizer, or a cholesteric liquid crystal type polarizer. For example, the wire grid polarizer is formed on the first substrate, the second substrate, and the color filter, and is formed by any one of nanoimprint method, block copolymer method, E-beam lithography method, and glansing angle deposition method. It is preferable. Moreover, when forming a coating type polarizing layer, you may further provide the orientation layer demonstrated by this specification below. Therefore, when the polarizing layer which concerns on this invention is a coating type polarizing layer, it is preferable to have a coating type polarizing layer and an orientation layer.
 (基板)    
 本発明の液晶表示素子に使用される2枚の基板、具体的には前記第一の基板2及び前記第二の基板7は、ガラス又はプラスチックの如き柔軟性をもつ透明な材料を用いることができる。透明電極層を有する透明基板は、例えば、ガラス板等の透明基板上にインジウムスズオキシド(ITO)をスパッタリングすることにより得ることができる。
(substrate)
The two substrates used in the liquid crystal display element of the present invention, specifically, the first substrate 2 and the second substrate 7 are made of a transparent material having flexibility such as glass or plastic. it can. A transparent substrate having a transparent electrode layer can be obtained, for example, by sputtering indium tin oxide (ITO) on a transparent substrate such as a glass plate.
 以上、詳述した各要素から構成される本発明の液晶表示素子の具体的な構造につき、図12~19を用いて説明する。 The specific structure of the liquid crystal display element of the present invention composed of the elements described above will be described with reference to FIGS.
 図12は、液晶表示部の電極層3の構造図の模式図を表し、より詳細には図12は、画素部分を等価回路で示した模式図であり、図13および14は画素電極の形状の一例を示す模式図である。また、図13~図14は、本実施形態の一例として、FFS型の液晶表示素子の電極構造を示す模式図である。また、図15は、本実施形態の一例として、IPS型の液晶表示素子の電極構造を示す模式図である。さらに、図18は、本実施形態の一例として、VA型の液晶表示素子の電極構造を示す模式図である。図1~4に示すように、液晶パネル10に対して背面側から照明する照明手段として上記バックライトユニットを設けることで液晶表示素子として駆動する。 FIG. 12 shows a schematic diagram of a structure diagram of the electrode layer 3 of the liquid crystal display unit. More specifically, FIG. 12 is a schematic diagram showing the pixel portion in an equivalent circuit, and FIGS. 13 and 14 show the shape of the pixel electrode. It is a schematic diagram which shows an example. 13 to 14 are schematic views showing electrode structures of FFS type liquid crystal display elements as an example of the present embodiment. FIG. 15 is a schematic diagram showing an electrode structure of an IPS liquid crystal display element as an example of the present embodiment. Further, FIG. 18 is a schematic diagram showing an electrode structure of a VA liquid crystal display element as an example of the present embodiment. As shown in FIGS. 1 to 4, a liquid crystal display element is driven by providing the backlight unit as illumination means for illuminating the liquid crystal panel 10 from the back side.
 当該図13において、本発明に係る電極層3は、共通電極および複数の画素電極を備えている。画素電極は、絶縁層(例えば、窒化シリコン(SiN)など)を介して共通電極上に配置されている。画素電極は表示画素毎に配置され、スリット状の開口部が形成されている。共通電極と画素電極とは、例えばITO(Indium Tin Oxide)によって形成された透明電極であり、電極層3は、表示部において、複数の表示画素が配列する行に沿って延びるゲートバスラインGBL(GBL1、GBL2・・・GBLm)と、複数の表示画素が配列する列に沿って延びるソースバスラインSBL(SBL1、SBL2・・・SBLm)と、ゲートバスラインとソースバスラインとが交差する位置近傍に画素スイッチとして薄膜トランジスタを備えている。また、当該薄膜トランジスタのゲート電極は対応するゲートバスラインGBLと電気的に接続されており、当該薄膜トランジスタのソース電極は対応する信号線SBLと電気的に接続されている。さらに、薄膜トランジスタのドレイン電極は、対応する画素電極と電気的に接続されている。 In FIG. 13, the electrode layer 3 according to the present invention includes a common electrode and a plurality of pixel electrodes. The pixel electrode is disposed on the common electrode via an insulating layer (for example, silicon nitride (SiN)). The pixel electrode is disposed for each display pixel, and a slit-shaped opening is formed. The common electrode and the pixel electrode are transparent electrodes formed of, for example, ITO (Indium Tin Oxide), and the electrode layer 3 has a gate bus line GBL (extending along a row in which a plurality of display pixels are arranged in the display unit. GBL1, GBL2,... GBLm), a source bus line SBL (SBL1, SBL2,... SBLm) extending along a column in which a plurality of display pixels are arranged, and a vicinity of a position where the gate bus line and the source bus line intersect. In addition, a thin film transistor is provided as a pixel switch. The gate electrode of the thin film transistor is electrically connected to the corresponding gate bus line GBL, and the source electrode of the thin film transistor is electrically connected to the corresponding signal line SBL. Further, the drain electrode of the thin film transistor is electrically connected to the corresponding pixel electrode.
 電極層3は、複数の表示画素を駆動する駆動手段として、ゲートドライバとソースドライバとを備えており、前記ゲートドライバおよび前記ソースドライバは、液晶表示部の周囲に配置されている。また、複数のゲートバスラインはゲートドライバの出力端子と電気的に接続され、複数のソースバスラインはソースドライバの出力端子と電気的に接続されている。ゲートドライバは複数のゲートバスラインにオン電圧を順次印加して、選択されたゲートバスラインに電気的に接続された薄膜トランジスタのゲート電極にオン電圧を供給する。ゲート電極にオン電圧が供給された薄膜トランジスタのソース-ドレイン電極間が導通する。 The electrode layer 3 includes a gate driver and a source driver as driving means for driving a plurality of display pixels, and the gate driver and the source driver are arranged around the liquid crystal display unit. The plurality of gate bus lines are electrically connected to the output terminal of the gate driver, and the plurality of source bus lines are electrically connected to the output terminal of the source driver. The gate driver sequentially applies an ON voltage to the plurality of gate bus lines, and supplies the ON voltage to the gate electrode of the thin film transistor electrically connected to the selected gate bus line. Conduction is established between the source and drain electrodes of the thin film transistor in which the ON voltage is supplied to the gate electrode.
 ソースドライバは、複数のソースバスラインのそれぞれに対応する出力信号を供給する。ソースバスラインに供給された信号は、ソース-ドレイン電極間が導通した薄膜トランジスタを介して対応する画素電極に印加される。ゲートドライバおよびソースドライバは、液晶表示素子の外部に配置された表示処理部(制御回路とも称する)により動作を制御される。 The source driver supplies an output signal corresponding to each of the plurality of source bus lines. The signal supplied to the source bus line is applied to the corresponding pixel electrode through a thin film transistor in which the source and drain electrodes are electrically connected. The operations of the gate driver and the source driver are controlled by a display processing unit (also referred to as a control circuit) arranged outside the liquid crystal display element.
 本発明に係る表示処理部は、通常駆動のほかに駆動電力低減のために低周波駆動の機能と間欠駆動の機能とを備えてもよく、TFT液晶パネルのゲートバスラインを駆動するためのLSIであるゲートドライバの動作およびTFT液晶パネルのソースバスラインを駆動するためのLSIであるソースドライバの動作を制御するものである。また、共通電極に共通電圧VCOMを供給し、バックライトの動作も制御している。。例えば、本発明に係る表示処理部は、表示画面全体を複数の区画に分けて、それぞれの区画に映す画像の明るさに合わせてバックライトの光の強度を調整するローカルディミング手段を有してもよい。 The display processing unit according to the present invention may have a low frequency driving function and an intermittent driving function for reducing driving power in addition to normal driving, and an LSI for driving a gate bus line of a TFT liquid crystal panel. The operation of the gate driver and the operation of the source driver which is an LSI for driving the source bus line of the TFT liquid crystal panel are controlled. In addition, the common voltage V COM is supplied to the common electrode to control the operation of the backlight. . For example, the display processing unit according to the present invention includes a local dimming unit that divides the entire display screen into a plurality of sections and adjusts the intensity of the backlight light according to the brightness of the image displayed in each section. Also good.
 図13は、画素電極の形状の一例として櫛形の画素電極を示した図であり、図1における基板2上に形成された電極層3のII線で囲まれた領域を拡大した平面図である。図13に示すように、第1の基板2の表面に形成されている薄膜トランジスタを含む電極層3は、走査信号を供給するための複数のゲートバスライン26と表示信号を供給するための複数のソースバスライン25とが、互いに交差してマトリクス状に配置されている。当該複数のゲートバスライン26と当該複数のソースバスライン25とにより囲まれた領域により、液晶表示装置の単位画素が形成され、該単位画素内には、画素電極21及び共通電極22が形成されている。ゲートバスライン26とソースバスライン25が互いに交差している交差部近傍には、ソース電極27、ドレイン電極24およびゲート電極28を含む薄膜トランジスタが設けられている。この薄膜トランジスタは、画素電極21に表示信号を供給するスイッチ素子として、画素電極21と連結している。また、ゲートバスライン26と並行して、共通ライン29が設けられる。この共通ライン29は、共通電極22に共通信号を供給するために、共通電極22と連結している。 FIG. 13 is a diagram illustrating a comb-shaped pixel electrode as an example of the shape of the pixel electrode, and is an enlarged plan view of a region surrounded by the II line of the electrode layer 3 formed on the substrate 2 in FIG. . As shown in FIG. 13, the electrode layer 3 including the thin film transistor formed on the surface of the first substrate 2 includes a plurality of gate bus lines 26 for supplying scanning signals and a plurality of gate bus lines 26 for supplying display signals. The source bus lines 25 are arranged in a matrix so as to cross each other. A unit pixel of the liquid crystal display device is formed by a region surrounded by the plurality of gate bus lines 26 and the plurality of source bus lines 25, and a pixel electrode 21 and a common electrode 22 are formed in the unit pixel. ing. A thin film transistor including a source electrode 27, a drain electrode 24, and a gate electrode 28 is provided in the vicinity of the intersection where the gate bus line 26 and the source bus line 25 intersect each other. The thin film transistor is connected to the pixel electrode 21 as a switch element that supplies a display signal to the pixel electrode 21. A common line 29 is provided in parallel with the gate bus line 26. The common line 29 is connected to the common electrode 22 in order to supply a common signal to the common electrode 22.
 画素電極21の背面には絶縁層18(図示せず)を介して共通電極22が一面に形成されている。そして、隣接する共通電極と画素電極との最短離間距離は配向層同士の最短離間距離(セルギャップ)より短い。前記画素電極の表面には保護絶縁膜及び配向膜層によって被覆されていることが好ましい。ここで言う「最短離間経路の水平成分」とは、隣接する共通電極と画素電極とを結ぶ最短離間経路を、基板に対して水平方向と基板に対して垂直方向(=厚み方向)とに分解した成分のうち、基板に対して水平方向の成分をいう。なお、前記複数のゲートバスライン26と複数のソースバスライン25とに囲まれた領域にはソースバスライン25を介して供給される表示信号を保存するストレイジキャパシタを設けてもよい。 A common electrode 22 is formed on the back surface of the pixel electrode 21 through an insulating layer 18 (not shown). The shortest separation distance between the adjacent common electrode and the pixel electrode is shorter than the shortest separation distance (cell gap) between the alignment layers. The surface of the pixel electrode is preferably covered with a protective insulating film and an alignment film layer. The “horizontal component of the shortest separation path” here means that the shortest separation path connecting the adjacent common electrode and the pixel electrode is decomposed into a horizontal direction with respect to the substrate and a vertical direction (= thickness direction) with respect to the substrate. Among the components, the component in the horizontal direction with respect to the substrate. Note that a storage capacitor for storing a display signal supplied through the source bus line 25 may be provided in a region surrounded by the plurality of gate bus lines 26 and the plurality of source bus lines 25.
 また、図14は、図13の変形例であり、画素電極の形状の一例としてスリット状の画素電極を示した図である。当該図13に示す画素電極21は、略長方形の平板体の電極を、当該平板体の中央部および両端部が三角形状の切欠き部でくり抜かれ、その他の部分は略矩形枠状の切欠き部でくり抜かれた形状である。なお、切欠き部の形状は特に制限されるものではなく、楕円、円形、長方形状、菱形、三角形、または平行四辺形など公知の形状の切欠き部を使用できる。 FIG. 14 is a modification of FIG. 13 and shows a slit pixel electrode as an example of the shape of the pixel electrode. The pixel electrode 21 shown in FIG. 13 is formed by cutting out a substantially rectangular flat plate electrode at the center and both ends of the flat plate with a triangular cutout, and the other portions are cut out in a substantially rectangular frame shape. The shape is hollowed out at the part. The shape of the notch is not particularly limited, and a notch having a known shape such as an ellipse, a circle, a rectangle, a rhombus, a triangle, or a parallelogram can be used.
 なお、図13および図14には、一画素における一対のゲートバスライン26及び一対のソースバスライン25のみが示されている。 13 and 14 show only a pair of gate bus lines 26 and a pair of source bus lines 25 in one pixel.
 図16は、図13または図14におけるIII-III線方向に図1に示す液晶表示素子を切断した断面図の例の一つである。配向層4および薄膜トランジスタを含む電極層3が表面に形成された第1の基板2と、配向層4が表面に形成された第2の基板7とが所定の間隔Gで配向層同士向かい合うよう離間しており、この空間に液晶組成物を含む液晶層5が充填されている。第1の基板2の表面の一部にゲート絶縁膜12、共通電極22、パッシベーション膜18、画素電極21および配向層4の順で積層されている。 FIG. 16 is one example of a cross-sectional view of the liquid crystal display element shown in FIG. 1 cut along the line III-III in FIG. 13 or FIG. The first substrate 2 having the alignment layer 4 and the electrode layer 3 including the thin film transistor formed on the surface thereof is separated from the second substrate 7 having the alignment layer 4 formed on the surface so that the alignment layers face each other with a predetermined gap G. This space is filled with a liquid crystal layer 5 containing a liquid crystal composition. A gate insulating film 12, a common electrode 22, a passivation film 18, a pixel electrode 21, and an alignment layer 4 are sequentially stacked on a part of the surface of the first substrate 2.
 薄膜トランジスタの構造の好適な一態様は、例えば、図16で示すように、基板2表面に形成されたゲート電極11と、当該ゲート電極11を覆い、且つ前記基板2の略全面を覆うように設けられたゲート絶縁層12と、前記ゲート電極11と対向するよう前記ゲート絶縁層12の表面に形成された半導体層13と、前記半導体層13の表面の一部を覆うように設けられた保護膜14と、前記保護層14および前記半導体層13の一方の側端部を覆い、かつ前記基板2表面に形成された前記ゲート絶縁層12と接触するように設けられたドレイン電極16と、前記保護膜14および前記半導体層13の他方の側端部を覆い、かつ前記基板2表面に形成された前記ゲート絶縁層12と接触するように設けられたソース電極17と、前記ドレイン電極16および前記ソース電極17を覆うように設けられたパッシベーション膜18と、を有している。ゲート電極11の表面にゲート電極との段差を無くす等の理由により陽極酸化被膜(図示せず)を形成してもよい。 A preferred embodiment of the structure of the thin film transistor is provided, for example, as shown in FIG. 16 so as to cover the gate electrode 11 formed on the surface of the substrate 2 and the gate electrode 11 and cover the substantially entire surface of the substrate 2. A gate insulating layer 12, a semiconductor layer 13 formed on the surface of the gate insulating layer 12 so as to face the gate electrode 11, and a protective film provided so as to cover a part of the surface of the semiconductor layer 13 14, a drain electrode 16 provided so as to cover one side end of the protective layer 14 and the semiconductor layer 13 and to be in contact with the gate insulating layer 12 formed on the surface of the substrate 2, and the protection A source electrode 17 which covers the film 14 and the other side edge of the semiconductor layer 13 and is in contact with the gate insulating layer 12 formed on the surface of the substrate 2; It has a passivation film 18 provided so as to cover the electrode 16 and the source electrode 17, a. An anodic oxide film (not shown) may be formed on the surface of the gate electrode 11 for reasons such as eliminating a step with the gate electrode.
 図13及び図14に示す実施の形態では、共通電極22はゲート絶縁層12上のほぼ全面に形成された平板状の電極であり、一方、画素電極21は共通電極22を覆う絶縁保護層18上に形成された櫛形の電極である。 In the embodiment shown in FIGS. 13 and 14, the common electrode 22 is a flat electrode formed on almost the entire surface of the gate insulating layer 12, while the pixel electrode 21 is an insulating protective layer 18 covering the common electrode 22. It is a comb-shaped electrode formed on the top.
 すなわち、共通電極22は画素電極21よりも第1の基板2に近い位置に配置され、これらの電極は絶縁保護層18を介して互いに重なりあって配置される。画素電極21と共通電極22は、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IZTO(Indium Zinc Tin Oxide)等の透明導電性材料により形成される。画素電極21と共通電極22が透明導電性材料により形成されるため、単位画素面積で開口される面積が大きくなり、開口率及び透過率が増加する。 That is, the common electrode 22 is disposed at a position closer to the first substrate 2 than the pixel electrode 21, and these electrodes are disposed so as to overlap each other via the insulating protective layer 18. The pixel electrode 21 and the common electrode 22 are formed of a transparent conductive material such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IZTO (Indium Zinc Tin Oxide), and the like. Since the pixel electrode 21 and the common electrode 22 are formed of a transparent conductive material, the area opened by the unit pixel area increases, and the aperture ratio and transmittance increase.
 また、画素電極21と共通電極22とは、これらの電極間にフリンジ電界を形成するために、画素電極21と共通電極22との間の電極間距離(最小離間距離とも称する)Rが、第1の基板2と第2の基板7との間の液晶層5の厚さGより小さくなるように形成される。ここで、電極間距離Rは各電極間の基板に水平方向の距離を表す。図12では、平板状の共通電極22と櫛形の画素電極21とが重なり合っているため、最小離間距離(または電極間距離):R=0となる例が示されており、最小離間距離Rが第1の基板2と第2の基板7との間の液晶層の厚さ(セルギャップとも称される):Gよりも小さくなるため、フリンジの電界Eが形成される。したがって、FFS型の液晶表示素子は、画素電極21の櫛形を形成するラインに対して垂直な方向に形成される水平方向の電界と、放物線状の電界を利用することができる。画素電極21の櫛状部分の電極幅:l、及び、画素電極21の櫛状部分の間隙の幅:mは、発生する電界により液晶層5内の液晶分子が全て駆動され得る程度の幅に形成することが好ましい。 Further, the pixel electrode 21 and the common electrode 22 have an interelectrode distance (also referred to as a minimum separation distance) R between the pixel electrode 21 and the common electrode 22 in order to form a fringe electric field between these electrodes. It is formed to be smaller than the thickness G of the liquid crystal layer 5 between the first substrate 2 and the second substrate 7. Here, the inter-electrode distance R represents the distance in the horizontal direction on the substrate between the electrodes. In FIG. 12, since the flat common electrode 22 and the comb-shaped pixel electrode 21 are overlapped, an example in which the minimum separation distance (or interelectrode distance): R = 0 is shown, and the minimum separation distance R is The thickness of the liquid crystal layer between the first substrate 2 and the second substrate 7 (also referred to as a cell gap): smaller than G, and thus a fringe electric field E is formed. Therefore, the FFS type liquid crystal display element can use a horizontal electric field formed in a direction perpendicular to a line forming the comb shape of the pixel electrode 21 and a parabolic electric field. The electrode width of the comb-shaped portion of the pixel electrode 21: l and the width of the gap of the comb-shaped portion of the pixel electrode 21: m are such that all the liquid crystal molecules in the liquid crystal layer 5 can be driven by the generated electric field. It is preferable to form.
 本発明に係る液晶表示素子の液晶パネルのFFS型の変形例であるIPS型の液晶表示素子の例を図1、図15および図17を用いて説明する。IPS型の液晶表示素子の液晶パネル10の構成は、上記図1のFFS型と同様に片側の基板上に電極層3(共通電極と画素電極とTFTを含む)が設けられた構造であり、第1の偏光板1と、第1の基板2と、電極層3と、配向層4と、液晶組成物を含む液晶層5と、配向層4と、カラーフィルタ6と、第2の基板7と、第2の偏光板8と、が順次積層された構成である。 An example of an IPS liquid crystal display element, which is a modification of the FFS type of the liquid crystal panel of the liquid crystal display element according to the present invention, will be described with reference to FIGS. The configuration of the liquid crystal panel 10 of the IPS type liquid crystal display element is a structure in which an electrode layer 3 (including a common electrode, a pixel electrode, and a TFT) is provided on one substrate as in the FFS type of FIG. First polarizing plate 1, first substrate 2, electrode layer 3, alignment layer 4, liquid crystal layer 5 containing a liquid crystal composition, alignment layer 4, color filter 6, and second substrate 7 And the second polarizing plate 8 are sequentially laminated.
 図15は、IPS型の液晶表示部における図1の第1の基板2上に形成された電極層3のII線で囲まれた領域の一部を拡大した平面図である。図15に示すように、走査信号を供給するための複数のゲートバスライン26と表示信号を供給するための複数のソースバスライン25とにより囲まれた領域内(単位画素内)で、櫛歯形の第1の電極(例えば、画素電極)21と櫛歯型の第2の電極(例えば、共通電極)22とが互いに遊嵌した状態(両電極が一定距離を保った状態で離間して噛合した状態)で設けられている。該単位画素内には、ゲートバスライン26とソースバスライン25が互いに交差している交差部近傍には、ソース電極27、ドレイン電極24およびゲート電極28を含む薄膜トランジスタが設けられている。この薄膜トランジスタは、第1の電極21に表示信号を供給するスイッチ素子として、第1の電極21と連結している。また、ゲートバスライン26と並行して、共通ライン(Vcom)29が設けられる。この共通ライン29は、第2の電極22に共通信号を供給するために、第2の電極22と連結している。 FIG. 15 is an enlarged plan view of a part of the region surrounded by the II line of the electrode layer 3 formed on the first substrate 2 of FIG. 1 in the IPS liquid crystal display unit. As shown in FIG. 15, in a region surrounded by a plurality of gate bus lines 26 for supplying scanning signals and a plurality of source bus lines 25 for supplying display signals (in a unit pixel), a comb-tooth shape is formed. The first electrode (for example, pixel electrode) 21 and the comb-shaped second electrode (for example, common electrode) 22 are loosely engaged with each other (the two electrodes are spaced apart and meshed with each other while maintaining a certain distance). Is provided). In the unit pixel, a thin film transistor including a source electrode 27, a drain electrode 24, and a gate electrode 28 is provided in the vicinity of an intersection where the gate bus line 26 and the source bus line 25 intersect each other. The thin film transistor is connected to the first electrode 21 as a switch element that supplies a display signal to the first electrode 21. Further, a common line (V com ) 29 is provided in parallel with the gate bus line 26. The common line 29 is connected to the second electrode 22 in order to supply a common signal to the second electrode 22.
 図17は、図15におけるIII-III線方向にIPS型の液晶パネルを切断した断面図である。第1の基板2上には、ゲートバスライン26(図示せず)を覆い、且つ第1の基板2の略全面を覆うように設けられたゲート絶縁層32と、ゲート絶縁層32の表面に形成された絶縁保護層31とが設けられ、絶縁保護膜31上に、第1の電極(画素電極)21及び第2の電極(共通電極)22が離間して設けられる。絶縁保護層31は、絶縁機能を有する層であり、窒化ケイ素、二酸化ケイ素、ケイ素酸窒化膜等で形成される。 FIG. 17 is a cross-sectional view of the IPS liquid crystal panel cut in the direction of the line III-III in FIG. On the first substrate 2, a gate insulating layer 32 is provided so as to cover the gate bus line 26 (not shown) and to cover substantially the entire surface of the first substrate 2, and on the surface of the gate insulating layer 32. The formed insulating protective layer 31 is provided, and on the insulating protective film 31, a first electrode (pixel electrode) 21 and a second electrode (common electrode) 22 are provided separately. The insulating protective layer 31 is a layer having an insulating function, and is formed of silicon nitride, silicon dioxide, silicon oxynitride film, or the like.
 図15及び図17に示すような実施の形態では、第1の電極21及び第2の電極22は、絶縁保護層31上に、すなわち同一の層上に形成された櫛形の電極であり、互いに離間して噛合した状態で設けられている。IPS型の液晶表示部では、第1の電極21と第2の電極22との間の電極間距離Gと、第1の基板2と第2の基板7との間の液晶層の厚さ(セルギャップ):Hは、G≧Hの関係を満たす。電極間距離:Gとは、第1の電極21と第2の電極22との間の、基板に水平方向の最短距離を表し、図15及び図17で示す例においては、第1の電極21と第2の電極22とが遊嵌して交互に形成されたラインに対して、水平方向の距離を表す。第1の基板2と第2の基板7との距離:Hとは、第1の基板2と第2の基板7との間の液晶層の厚さを表し、具体的には、第1の基板2及び第2の基板7のそれぞれに設けられた配向層4(最表面)間の距離(すなわちセルギャップ)、液晶層の厚みを表す。 In the embodiment as shown in FIG. 15 and FIG. 17, the first electrode 21 and the second electrode 22 are comb-shaped electrodes formed on the insulating protective layer 31, that is, on the same layer. It is provided in a state of being separated and meshed. In the IPS liquid crystal display unit, the interelectrode distance G between the first electrode 21 and the second electrode 22 and the thickness of the liquid crystal layer between the first substrate 2 and the second substrate 7 ( Cell gap): H satisfies the relationship G ≧ H. The distance between electrodes: G represents the shortest distance in the horizontal direction on the substrate between the first electrode 21 and the second electrode 22. In the example shown in FIGS. 15 and 17, the first electrode 21 is used. And a distance in the horizontal direction with respect to the line formed by alternately fitting the second electrode 22 and the second electrode 22. The distance H between the first substrate 2 and the second substrate 7 represents the thickness of the liquid crystal layer between the first substrate 2 and the second substrate 7, specifically, the first The distance (namely, cell gap) between the alignment layers 4 (outermost surfaces) provided on each of the substrate 2 and the second substrate 7 and the thickness of the liquid crystal layer are represented.
 一方、先述のFFS型の液晶表示部では、第1の基板2と第二の基板7との間の液晶層5の厚さが、第1の電極21と第2の電極22との間の、基板に水平方向の最短距離以上であり、IPS型の液晶表示部は、第1の基板2と第二の基板7との間の液晶層5の厚さが、第1の電極21と第2の電極22との間の、基板に水平方向の最短距離未満である。したがって、IPSとFFSの違いは、第1の電極21及び第2の電極22の厚み方向の位置関係に依存しない。 On the other hand, in the aforementioned FFS type liquid crystal display unit, the thickness of the liquid crystal layer 5 between the first substrate 2 and the second substrate 7 is between the first electrode 21 and the second electrode 22. The IPS type liquid crystal display unit has a thickness of the liquid crystal layer 5 between the first substrate 2 and the second substrate 7 that is equal to or more than the shortest distance in the horizontal direction with respect to the substrate. The distance between the two electrodes 22 is less than the shortest distance in the horizontal direction on the substrate. Therefore, the difference between IPS and FFS does not depend on the positional relationship between the first electrode 21 and the second electrode 22 in the thickness direction.
 IPS型の液晶表示素子は、第1の電極21及び第2の電極22間に形成される基板面に対して水平方向の電界を利用して液晶分子を駆動させる。第1の電極21の電極幅:Q、及び第2の電極22の電極幅:Rは、発生する電界により液晶層5内の液晶分子が全て駆動され得る程度の幅に形成することが好ましい。 The IPS liquid crystal display element drives liquid crystal molecules by using an electric field in a horizontal direction with respect to a substrate surface formed between the first electrode 21 and the second electrode 22. The electrode width Q of the first electrode 21 and the electrode width R of the second electrode 22 are preferably formed such that all the liquid crystal molecules in the liquid crystal layer 5 can be driven by the generated electric field.
 本発明の好ましい液晶パネルの他の実施形態は、垂直配向型の液晶表示素子である。図18は、前記図3における基板上に形成された薄膜トランジスタを含む電極層3(または薄膜トランジスタ層3とも称する。)のII線で囲まれた領域を拡大した平面図である。図18は、図17におけるIII-III線方向に図2に示す液晶表示素子を切断した断面図である。以下、図2および図17~18を参照して、本発明に係る垂直配向型の液晶表示部を説明する。 Another embodiment of the preferred liquid crystal panel of the present invention is a vertical alignment type liquid crystal display element. 18 is an enlarged plan view of a region surrounded by the II line of the electrode layer 3 (or also referred to as a thin film transistor layer 3) including a thin film transistor formed on the substrate in FIG. 18 is a cross-sectional view of the liquid crystal display element shown in FIG. 2 taken along the line III-III in FIG. Hereinafter, a vertical alignment type liquid crystal display unit according to the present invention will be described with reference to FIG. 2 and FIGS.
 本発明に係る液晶表示素子における液晶パネル10の構成は、図3に記載するように透明導電性材料からなる透明電極(層)3’(または共通電極3’とも称する。)を具備した第2の基板7と、画素電極および各画素に具備した前記画素電極を制御する薄膜トランジスタを形成した電極層3を含む第1の基板2と、前記第1の基板2と第2の基板7との間に挟持された液晶組成物(または液晶層5)を有し、該液晶組成物中の液晶分子の電圧無印加時の配向が前記基板2,7に対して略垂直である液晶表示素子であって、該液晶組成物として前記本発明の液晶組成物を用いたことに特徴を有するものである。また図19に示すように、前記第1の基板2および前記第2の基板7は、一対の偏光板1,8により挟持されてもよい。さらに、図19では、前記第2の基板7と共通電極3’との間にカラーフィルタ6が設けられている。またさらに、本発明に係る液晶層5と隣接し、かつ当該液晶層5を構成する液晶組成物と直接当接するよう一対の配向層4を透明電極(層)3,3’表面に形成してもよい。 The configuration of the liquid crystal panel 10 in the liquid crystal display element according to the present invention includes a second electrode having a transparent electrode (layer) 3 ′ (also referred to as a common electrode 3 ′) made of a transparent conductive material, as shown in FIG. A first substrate 2 including a pixel electrode and an electrode layer 3 on which a thin film transistor for controlling the pixel electrode included in each pixel is formed; and between the first substrate 2 and the second substrate 7 A liquid crystal display element having a liquid crystal composition (or a liquid crystal layer 5) sandwiched between the substrates, wherein the alignment of liquid crystal molecules in the liquid crystal composition when no voltage is applied is substantially perpendicular to the substrates 2 and 7. The liquid crystal composition of the present invention is used as the liquid crystal composition. Further, as shown in FIG. 19, the first substrate 2 and the second substrate 7 may be sandwiched between a pair of polarizing plates 1 and 8. Further, in FIG. 19, a color filter 6 is provided between the second substrate 7 and the common electrode 3 '. Furthermore, a pair of alignment layers 4 are formed on the surfaces of the transparent electrodes (layers) 3 and 3 ′ so as to be in direct contact with the liquid crystal composition constituting the liquid crystal layer 5 adjacent to the liquid crystal layer 5 according to the present invention. Also good.
 図18は、画素電極21の形状の一例として逆L字型の画素電極を示した図であり、図3における基板2上に形成された電極層3のII線で囲まれた領域を拡大した平面図である。前記画素電極21は、上記図13、14および15と同様に、ゲートバスライン26とソースバスライン25とに囲まれた領域の略全面に逆L字型に形成されているが、画素電極の形状は限定されるものではない。 FIG. 18 is a diagram illustrating an inverted L-shaped pixel electrode as an example of the shape of the pixel electrode 21, and an area surrounded by the II line of the electrode layer 3 formed on the substrate 2 in FIG. 3 is enlarged. It is a top view. 13, 14 and 15, the pixel electrode 21 is formed in an inverted L shape over substantially the entire area surrounded by the gate bus line 26 and the source bus line 25. The shape is not limited.
 垂直配向型の液晶表示素子の液晶表示部は、上記のIPS型やFFS型とは異なり、共通電極22(図示せず)が画素電極21と対向離間して形成されている。換言すると、画素電極21と、共通電極22とは別の基板上に形成されている。一方、先述のFFSやIPS型の液晶表示素子は、画素電極21および共通電極22が同一基板上に形成されている。 Unlike the IPS type and FFS type, the liquid crystal display part of the vertical alignment type liquid crystal display element is formed with a common electrode 22 (not shown) facing and separating from the pixel electrode 21. In other words, the pixel electrode 21 and the common electrode 22 are formed on different substrates. On the other hand, in the aforementioned FFS or IPS type liquid crystal display element, the pixel electrode 21 and the common electrode 22 are formed on the same substrate.
 また、当該カラーフィルタ6は、光の漏れを防止する観点で、薄膜トランジスタおよびストレイジキャパシタに対応する部分にブラックマトリックス(図示せず)を形成することが好ましい。 The color filter 6 is preferably formed with a black matrix (not shown) in a portion corresponding to the thin film transistor and the storage capacitor from the viewpoint of preventing light leakage.
 図19は、図18おけるIII-III線方向に図2に示す液晶表示素子を切断した断面図である。すなわち、本発明に係る液晶表示素子の液晶パネル10は、第1の偏光板1と、第1の基板2と、薄膜トランジスタを含む電極層(又は薄膜トランジスタ層とも称する)3と、液晶を垂直配向させる配向層4と、液晶組成物を含む層5と、該配向層4と、共通電極3’と、カラーフィルタ6と、第2の基板7と、第1の偏光板8と、が順次積層された構成である。 FIG. 19 is a cross-sectional view of the liquid crystal display element shown in FIG. 2 taken along the line III-III in FIG. That is, the liquid crystal panel 10 of the liquid crystal display element according to the present invention has a first polarizing plate 1, a first substrate 2, an electrode layer (also referred to as a thin film transistor layer) 3 including a thin film transistor, and a liquid crystal vertically aligned. An alignment layer 4, a layer 5 containing a liquid crystal composition, the alignment layer 4, a common electrode 3 ′, a color filter 6, a second substrate 7, and a first polarizing plate 8 are sequentially stacked. It is a configuration.
 以上詳述した垂直配向型の液晶表示素子は、視野角依存を改善する為に画素が2分割乃至8分割されたマルチドメインを有する分割配向させたものが好ましい。斯かる分割配向は配向膜4をマスクラビングによって作成してもよいが、
1)第1の基板2側及び第2の基板7の双方にリブを形成させる手段、
2)第1の画素電極21に電極スリットを用い、第2の基板7上にリブを形成させる手段、
3)第1の画素電極21に微細スリット電極を用い、第2の基板7上にリブを形成させる手段、
4)第1の画素電極21、及び第2の共通電極22にスリット電極を用いる手段、
5)第1の画素電極21に微細スリット電極を用い、かつ、ポリマーによって液晶にプレチルトを形成させる手段、
6)配向膜として直線偏光紫外線照射によって均一な配向方位を液晶に付与できる所謂光配向膜を用いる手段等によって液晶の配向方位が規定されたマルチドメイン型のVA素子であることが、素子の製造が容易であることから好ましい。これらのなかでも、特に、液晶層5のポリマーネットワークを形成しやすいこと、また、液相層5内でポリマーネットワーク(A)の光軸方向又は配向容易軸方向と、前記液晶組成物(B)の配向容易軸方向が同一乃至略同一方向に制御することが容易であることから、前記5)ポリマーによって液晶にプレチルトを形成させる手段、又は前記6)の光配向膜を用いる手段によって得られた液晶表示素子であることが好ましい。
The vertical alignment type liquid crystal display element described in detail above is preferably one in which a pixel is divided and aligned having a multi-domain in which the pixel is divided into two to eight in order to improve the viewing angle dependency. Such divisional alignment may be produced by mask rubbing the alignment film 4,
1) means for forming ribs on both the first substrate 2 side and the second substrate 7;
2) means for forming ribs on the second substrate 7 using electrode slits in the first pixel electrode 21;
3) Means for forming a rib on the second substrate 7 using a fine slit electrode for the first pixel electrode 21;
4) Means using slit electrodes for the first pixel electrode 21 and the second common electrode 22;
5) Means for using a fine slit electrode for the first pixel electrode 21 and forming a pretilt in the liquid crystal with a polymer,
6) It is a multi-domain type VA device in which the alignment orientation of the liquid crystal is defined by means using a so-called photo-alignment film capable of imparting a uniform alignment orientation to the liquid crystal by irradiation with linearly polarized ultraviolet rays as the alignment film. Is preferable because it is easy. Among these, in particular, it is easy to form a polymer network of the liquid crystal layer 5, the optical axis direction or the easy axis direction of the polymer network (A) in the liquid phase layer 5, and the liquid crystal composition (B). It is easy to control the alignment easy axis directions to the same or substantially the same direction. Therefore, it was obtained by means of 5) means for forming a pretilt in liquid crystal with a polymer, or means for using 6) a photo-alignment film. A liquid crystal display element is preferable.
 ここで、前記した画素電極22として微細スリット電極を用いる場合、図24に示す様な所謂フィッシュボーン型電極であることが配向方位の安定性の点から好ましい。該フィッシュボーン型電極を図24に基づいて詳述すれば、該電極はITOなどの透明電極から構成され、その電極材料(ITO)の一部を抜いたスリット部512cが設けられている。長方形のセルの各対向辺の中点を結ぶ十字状で幅3~5μm程度のスリット部512cが配向規制用構造物として機能し、スリット部512cから斜め45°方向に延びて幅5μmのスリット部512cがピッチ8μmで複数形成されており、これらが傾斜時の方位角方向の乱れを抑える補助的な配向制御因子として機能する。表示用画素電極の幅は例えば3μmである。図24では、画素幹部電極512aと画素枝部電極512bは45度の角度を有しながら、画素中央を対称中心として90度ずつ異なる4方向に枝部電極が延在された構造を有している。液晶分子は電圧印加により傾斜配向するが、傾斜配向の方位がこれらの4方向と一致しするように傾斜配向するので、4分割されたドメインを一つの画素内に形成させて表示の視野角を広くすることができる。 Here, when a fine slit electrode is used as the pixel electrode 22 described above, a so-called fishbone type electrode as shown in FIG. 24 is preferable from the viewpoint of stability of the orientation direction. The fishbone type electrode will be described in detail with reference to FIG. 24. The electrode is made of a transparent electrode such as ITO, and is provided with a slit portion 512c from which a part of the electrode material (ITO) is removed. A slit portion 512c having a cross shape connecting the midpoints of the opposing sides of the rectangular cell and having a width of about 3 to 5 μm functions as an alignment regulating structure, and extends from the slit portion 512c in an oblique 45 ° direction and has a width of 5 μm. A plurality of 512c are formed with a pitch of 8 μm, and these function as an auxiliary orientation control factor that suppresses disturbance in the azimuth direction during tilting. The width of the display pixel electrode is 3 μm, for example. In FIG. 24, the pixel trunk electrode 512a and the pixel branch electrode 512b have an angle of 45 degrees, and have a structure in which the branch electrodes extend in four directions that differ by 90 degrees with respect to the center of the pixel. Yes. The liquid crystal molecules are tilted when a voltage is applied, but tilted so that the orientation of the tilted alignment coincides with these four directions. Therefore, a four-divided domain is formed in one pixel to increase the display viewing angle. Can be wide.
 本発明に係る液晶表示素子は、バックライトユニット100を液晶の画素数より少ない複数の区画毎に輝度を制御することで、コントラストを向上させるローカルディミングの手法を有していても良い。 The liquid crystal display element according to the present invention may have a local dimming technique for improving the contrast by controlling the brightness of the backlight unit 100 for each of a plurality of sections smaller than the number of pixels of the liquid crystal.
 ローカルディミングの手法としては、複数存在する発光素子Lを液晶パネル上の特定の領域の光源として使用し、各発光素子Lを表示領域の輝度に応じて制御することが可能である。この場合、当該複数の発光素子Lが、平面状に配列された形態であっても、液晶パネル10の一側面側に一列に並べられた形態であっても良い。 As a local dimming method, it is possible to use a plurality of light emitting elements L as light sources in a specific area on the liquid crystal panel and control each light emitting element L according to the luminance of the display area. In this case, the plurality of light emitting elements L may be arranged in a planar shape, or may be arranged in a line on one side of the liquid crystal panel 10.
 上記ローカルディミングの手法としてバックライトユニット100の導光部102と液晶パネル10とを有する構造になっている場合において、導光板(および/または光拡散板)と液晶パネルの光源側の基板との間に当該導光部102として、液晶の画素数より少ない特定領域毎にバックライトの光量を制御する制御層を有していても良い。 In the case of a structure having the light guide portion 102 of the backlight unit 100 and the liquid crystal panel 10 as the local dimming method, the light guide plate (and / or the light diffusing plate) and the substrate on the light source side of the liquid crystal panel In the meantime, the light guide unit 102 may include a control layer that controls the amount of light of the backlight for each specific region smaller than the number of pixels of the liquid crystal.
 バックライトの光量を制御する手法としては、液晶の画素数より少ない液晶素子を更に有していても良く、液晶素子としては既存の様々手法を用いることができるが、ポリマーネットワークが形成された液晶を含むLCD層が透過率の点で好ましい。当該ポリマーネットワークが形成された(ネマチック)液晶を含む層(必要により一対の透明電極で挟持されたポリマーネットワークが形成された(ネマチック)液晶を含む層)は、電圧OFF時は光を散乱し、電圧ON時は光を透過するため、表示画面全体を複数の区画に分けるように区画されたポリマーネットワークが形成された液晶を含むLCD層を、導光板(および/または光拡散板)と液晶パネルの光源側の基板との間に設けることでローカルディミングを実現できる。 As a method for controlling the amount of light of the backlight, a liquid crystal element having fewer than the number of pixels of the liquid crystal may be further included, and various existing methods can be used as the liquid crystal element. An LCD layer containing is preferable in terms of transmittance. The layer containing the (nematic) liquid crystal in which the polymer network is formed (if necessary, the layer containing the (nematic) liquid crystal in which the polymer network is sandwiched between a pair of transparent electrodes) scatters light when the voltage is OFF, In order to transmit light when the voltage is turned on, an LCD layer including a liquid crystal formed with a polymer network partitioned so as to divide the entire display screen into a plurality of partitions, a light guide plate (and / or a light diffusion plate) and a liquid crystal panel Local dimming can be realized by providing it between the substrate on the light source side.
 以上詳述した本発明の液晶表示素子は、TN、STN、ECB、VA、VA-TN、IPS、FFS、πセル、OCB、コレステリック液晶などの動作モードに適用できる。これらの中でも、VA、IPS、FFS、VA-TN、TN、ECBが特に好ましい。尚、本発明の液晶表示素子は、液晶層中にポリマーネットワークを形成する点において配向膜上に重合体又は共重合体を有するPSA(Polymer Sustained Alignment)型液晶表示素子と区別することができる。 The liquid crystal display element of the present invention described in detail above can be applied to operation modes such as TN, STN, ECB, VA, VA-TN, IPS, FFS, π cell, OCB, cholesteric liquid crystal. Among these, VA, IPS, FFS, VA-TN, TN, and ECB are particularly preferable. The liquid crystal display element of the present invention can be distinguished from a PSA (Polymer Sustained Alignment) type liquid crystal display element having a polymer or copolymer on the alignment film in that a polymer network is formed in the liquid crystal layer.
 以下、例を挙げて本願発明を更に詳述するが、本願発明はこれらによって限定されるものではない。なお、各実施例において化合物の記載について以下の略号を用いる。また、nは自然数を表す。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. In the examples, the following abbreviations are used for describing the compounds. N represents a natural number.
 「n型化合物」
 (側鎖)
 -n    -C2n+1 炭素原子数nの直鎖状のアルキル基
 n-    C2n+1- 炭素原子数nの直鎖状のアルキル基
 -On   -OC2n+1 炭素原子数nの直鎖状のアルコキシル基
 nO-   C2n+1O- 炭素原子数nの直鎖状のアルコキシル基
 -V    -CH=CH
 V-    CH=CH-
 -V1   -CH=CH-CH
 1V-   CH-CH=CH-
 -2V   -CH-CH-CH=CH
 V2-   CH=CH-CH-CH
 -2V1  -CH-CH-CH=CH-CH
 1V2-  CH-CH=CH-CH-CH
 (連結基)
-n-     -C2n
-nO-    -C2n-O-
-On-    -O-C2n
-COO-   -C(=O)-O-
-OCO-   -O-C(=O)-
-CF2O-  -CF-O-
-OCF2-  -O-CF
"N-type compounds"
(Side chain)
-N -C n H 2n + 1 linear alkyl group with n carbon atoms n- C n H 2n + 1 -linear alkyl group with n carbon atoms -On -OC n H 2n + 1 linear chain with n carbon atoms -Like alkoxyl group nO- C n H 2n + 1 O- linear alkoxyl group having n carbon atoms -V -CH = CH 2
V- CH 2 = CH-
-V1 -CH = CH-CH 3
1V- CH 3 —CH═CH—
-2V -CH 2 -CH 2 -CH = CH 3
V2- CH 2 = CH-CH 2 -CH 2-
-2V1 -CH 2 -CH 2 -CH = CH-CH 3
1V2- CH 3 —CH═CH—CH 2 —CH 2
(Linking group)
-N- -C n H 2n-
—NO— —C n H 2n —O—
—On— —O—C n H 2n
—COO— —C (═O) —O—
-OCO- -OC (= O)-
—CF 2 O——CF 2 —O—
-OCF2- -O-CF 2-
 (環構造) (Ring structure)
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
 (環構造) (Ring structure)
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
 各実施例にて使用した重合性単量体は以下のとおりである。 The polymerizable monomers used in each example are as follows.
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
 各実施例にて使用した重合開始剤はイルガキュア651である。 The polymerization initiator used in each example is Irgacure 651.
 各実施例中、測定した特性は以下の通りである。 The characteristics measured in each example are as follows.
 TNI :ネマチック相-等方性液体相転移温度(℃)
 Δn :25℃における屈折率異方性
 Δε :25℃における誘電率異方性
 η  :25℃における粘度(mPa・s)
 γ :25℃における回転粘度(mPa・s)
 VHR測定
(周波数60Hz,印加電圧1Vの条件下で333Kにおける電圧保持率(%))
 450nmに主発光ピークを有するLED耐光試験:
 2万cd/mの450nmに主発光ピークを有する可視光LED光源を液晶パネルに対して1週間暴露する前と後のVHRを測定した。
T NI : Nematic phase-isotropic liquid phase transition temperature (° C)
Δn: Refractive index anisotropy at 25 ° C. Δε: Dielectric anisotropy at 25 ° C. η: Viscosity at 25 ° C. (mPa · s)
γ 1 : rotational viscosity at 25 ° C. (mPa · s)
VHR measurement (voltage holding ratio (%) at 333K under conditions of frequency 60Hz and applied voltage 1V)
LED light resistance test with main emission peak at 450 nm:
The VHR before and after the visible light LED light source having a main emission peak at 450 nm of 20,000 cd / m 2 was exposed to the liquid crystal panel for 1 week was measured.
 385nmに主発光ピークを有するLED耐光試験:
 385nmをピークにもつ単色LEDで60秒130J照射する前と後のVHRを測定した。
LED light resistance test with main emission peak at 385 nm:
The VHR before and after irradiation with 130 J for 60 seconds was measured with a monochromatic LED having a peak at 385 nm.
(重合性液晶組成物の調整)
 N型液晶組成物として下記表1~表15の配合に従って液晶組成物を調整し、次いで、60℃に加熱し、各表に記載の重合性単量体[(P2-1M)、(P2-2M)、又は(P4-4M)]を混合し溶解させた。室温で各重合性液晶組成物が均一に溶解してネマチック液晶相を示していることを偏光顕微鏡で確認した。この溶液に重合光開始剤(イルガキュア651)を混合して重合性液晶組成物を調製した。
(Adjustment of polymerizable liquid crystal composition)
Liquid crystal compositions were prepared as N-type liquid crystal compositions according to the formulations shown in Tables 1 to 15 below, then heated to 60 ° C., and polymerizable monomers [(P2-1M), (P2- 2M) or (P4-4M)] was mixed and dissolved. It was confirmed with a polarizing microscope that each polymerizable liquid crystal composition was uniformly dissolved at room temperature to show a nematic liquid crystal phase. A polymerizable photoinitiator (Irgacure 651) was mixed with this solution to prepare a polymerizable liquid crystal composition.
[液晶パネル、バックライトユニットおよび液晶表示素子の作製方法]
 (1)液晶パネルの作製
 (光変換層またはカラーフィルタの製造)
 (A)赤色発光用ナノ結晶含有組成物、緑色発光用ナノ結晶含有組成物および青色(発光用ナノ結晶含有)組成物の作製
(A)赤色発光用ナノ結晶含有組成物、緑色発光用ナノ結晶含有組成物および青色(発光用ナノ結晶含有)組成物の作製
 [赤色発光用ナノ結晶含有組成物]
 赤色発光用ナノ結晶30質量部と、ジぺンタエリストールヘキサアクリレート(KAYARAD(商標名)DPHA、日本化薬株式会社製)30質量部と、重合開始剤(Irgacure-907(商標名) BASF社製)5質量部と、ポリエステルアクリレート樹脂(アロニックス(商標名)M7100、東亜合成化学工業株式会社製)30質量部とを混合して、固形分が20質量%となるようにプロピレングリコールモノメチルエーテルアセテートで希釈し、分散撹拌機で撹拌し、孔径1.0μmのフィルタで濾過し、赤色発光用ナノ結晶含有組成物を得た。
[Liquid Crystal Panel, Backlight Unit, and Liquid Crystal Display Element Manufacturing Method]
(1) Production of liquid crystal panel (Manufacture of light conversion layer or color filter)
(A) Preparation of red light-emitting nanocrystal-containing composition, green light-emitting nanocrystal-containing composition, and blue (light-emitting nanocrystal-containing) composition (A) Red light-emitting nanocrystal-containing composition, green light-emitting nanocrystal Preparation of containing composition and blue (containing nanocrystal for light emission) composition [containing nanocrystal for red light emission]
30 parts by mass of red light emitting nanocrystals, 30 parts by mass of dipentaerystol hexaacrylate (KAYARAD (trade name) DPHA, manufactured by Nippon Kayaku Co., Ltd.) and a polymerization initiator (Irgacure-907 (trade name)) BASF 5 parts by mass) and 30 parts by mass of a polyester acrylate resin (Aronix (trade name) M7100, manufactured by Toa Gosei Chemical Co., Ltd.) are mixed, and propylene glycol monomethyl ether acetate is mixed so that the solid content becomes 20% by mass. The mixture was stirred with a dispersion stirrer and filtered through a filter having a pore size of 1.0 μm to obtain a nanocrystal-containing composition for red light emission.
 [赤色着色用組成物]
 赤色顔料(水溶分0.3%、比電導度30μS/cmのC.I.Pigment Red 254)10部をポリビンに入れ、プロピレングリコールモノメチルエーテルアセテート55部、ディスパービックLPN21116(ビックケミー株式会社製)7.0部、0.3-0.4mmφセプルビーズを加え、ペイントコンディショナー(東洋精機株式会社製)で4時間分散した後、5μmのフィルタで濾過し顔料分散液を得た。この顔料分散液75.00部とポリエステルアクリレート樹脂(アロニックス(商標名)M7100、東亜合成化学工業株式会社製)5.50部、ジぺンタエリストールヘキサアクリレート(KAYARAD(商標名)DPHA、日本化薬株式会社製)5.00部、ベンゾフェノン(KAYACURE(商標名)BP-100、日本化薬株式会社製)1.00部、ユーカーエステルEEP13.5部を分散撹拌機で撹拌し、孔径1.0μmのフィルタで濾過し、赤色顔料着色組成物1を得た。
[Red coloring composition]
10 parts of a red pigment (CI Pigment Red 254 having a water content of 0.3% and a specific electric conductivity of 30 μS / cm) are placed in a plastic bottle, 55 parts of propylene glycol monomethyl ether acetate, Dispersic LPN21116 (manufactured by Big Chemie Co., Ltd.) 7 0.0 parts, 0.3-0.4 mmφ Sepul beads were added, and dispersed for 4 hours with a paint conditioner (manufactured by Toyo Seiki Co., Ltd.), followed by filtration with a 5 μm filter to obtain a pigment dispersion. 75.00 parts of this pigment dispersion, 5.50 parts of polyester acrylate resin (Aronix (trade name) M7100, manufactured by Toa Gosei Chemical Co., Ltd.), dipentaerystol hexaacrylate (KAYARAD (trade name) DPHA, Nippon Kayaku) 5.00 parts of Yakuhin Co., Ltd., 1.00 parts of benzophenone (KAYACURE (trade name) BP-100, Nippon Kayaku Co., Ltd.) and 13.5 parts of Euker Ester EEP are stirred with a dispersion stirrer. Filtration through a 0 μm filter gave a red pigment coloring composition 1.
 なお、顔料の水溶分は、JIS K5101-16-1(顔料試験方法-第16部:水溶分-第1節:煮沸抽出法)に基づくものである。 The water content of the pigment is based on JIS K5101-16-1 (Pigment test method-Part 16: Water content-Section 1: Boiling extraction method).
 具体的には、
1.顔料5.00gを500mLの硬質ビーカーに正しく計り取り、イオン交換水(電導度5μS/cm以下、pH=7.0±1.0)200mLを、初め少量ずつ加え、試薬一級メタノール5mLを加えてよく濡らした後、全量を加え5分間煮沸する。
2.これを室温まで冷却し、250mLメスシリンダーに移し、更に上記イオン交換水を加えて250mLとし、よくかき混ぜてアドバンテック社製ろ紙No.5Cにてろ過する。
3.ろ液の最初の約50mLを捨て、残りの中から100mLをメスシリンダーで計り取り、質量既知の蒸発皿に移す。メスシリンダーに付着したろ液は少量のイオン交換水で蒸発皿に洗い流す。
4.この蒸発皿を水浴上で蒸発乾固させ、105~110℃に保った乾燥器中で2時間乾燥した後デシケーターに入れ、放冷した後の質量を計り、蒸発残量を求める。
5.次式により水溶分を算出する。
In particular,
1. Weigh 5.00 g of pigment correctly in a 500 mL hard beaker, add 200 mL of ion-exchanged water (conductivity 5 μS / cm or less, pH = 7.0 ± 1.0) in small portions, and add 5 mL of reagent primary methanol. After wetting well, add the whole amount and boil for 5 minutes.
2. This was cooled to room temperature, transferred to a 250 mL graduated cylinder, further added with the above ion-exchanged water to 250 mL, and stirred well to make a filter paper No. 1 manufactured by Advantech. Filter at 5C.
3. Discard the first approximately 50 mL of the filtrate, and weigh out 100 mL from the remainder with a graduated cylinder and transfer to an evaporating dish of known mass. Rinse the filtrate adhering to the graduated cylinder into the evaporating dish with a small amount of ion exchange water.
4). The evaporating dish is evaporated to dryness on a water bath, dried in a drier kept at 105 to 110 ° C. for 2 hours, placed in a desiccator, allowed to cool, and weighed to determine the remaining evaporation.
5). The water content is calculated by the following formula.
  顔料の水溶分(%)=蒸発残量(g)×2.5 / 顔料の質量(g) ×100
 また、顔料の比電導度は、イオン交換水の比電導度を電導度計(東亜ディーケーケー株式会社社製CM-30V型等)を使用して測定した後、上記3で100mLをメスシリンダーで計り取ったろ液を同じ電導度計を使用して測定し、次式により測定値を補正して算出する。
Water content of pigment (%) = remaining evaporation (g) × 2.5 / mass of pigment (g) × 100
The specific conductivity of the pigment was measured using a conductivity meter (such as CM-30V manufactured by Toa DKK Corporation) after measuring the specific conductivity of ion-exchanged water, and 100 mL was measured with a graduated cylinder in 3 above. The filtrate obtained is measured using the same conductivity meter, and the measured value is corrected by the following formula.
   顔料の比電導度=ろ液の比電導度-用いたイオン交換水の比電導度 Specific conductivity of pigment = specific conductivity of filtrate-specific conductivity of ion-exchanged water used
 [緑色発光用ナノ結晶含有組成物]
 上記赤色発光用ナノ結晶含有組成物の赤色発光用ナノ結晶に代え、緑色発光用ナノ結晶を用いて、上記と同様にして、緑色発光用ナノ結晶含有組成物を得た。
[Nanocrystal-containing composition for green light emission]
Instead of the red light emitting nanocrystal of the red light emitting nanocrystal-containing composition, a green light emitting nanocrystal-containing composition was obtained in the same manner as described above using a green light emitting nanocrystal.
 [緑色着色用組成物]
 上記赤色顔料着色組成物1の赤色顔料1 10部に代え、緑色顔料1(水溶分0.3%、比電導度40μS/cmのC.I.Pigment Green 36)6部と黄色顔料2(水溶分0.6%、比電導度70μS/cmのC.I.Pigment Yellow 150)4部を混合した顔料(水溶分0.4%、比電導度50μS/cm)を用いて、上記と同様にして、緑色着色用組成物を得た。
[Green coloring composition]
Instead of 10 parts of the red pigment 1 of the red pigment coloring composition 1, 6 parts of green pigment 1 (CI Pigment Green 36 having a water content of 0.3% and a specific conductivity of 40 μS / cm) and a yellow pigment 2 (water solution) Using a pigment (water content: 0.4%, specific conductivity: 50 μS / cm) mixed with 4 parts of CI Pigment Yellow 150 (0.6% min, specific conductivity: 70 μS / cm) in the same manner as above. Thus, a green coloring composition was obtained.
 [青色(発光用ナノ結晶含有)組成物]
 青色(発光用ナノ結晶含有)組成物は、上記赤色発光用ナノ結晶含有組成物1の赤色発光用ナノ結晶に代え、青色発光用ナノ結晶を用いて、上記と同様にして、青色発光用ナノ結晶含有組成物を得た。
[Blue (containing nanocrystals for light emission) composition]
The blue light-emitting nanocrystal-containing composition is replaced with the blue light-emitting nanocrystal instead of the red light-emitting nanocrystal of the red light-emitting nanocrystal-containing composition 1. A crystal-containing composition was obtained.
 [青色着色用組成物1]
 青色着色用組成物は、プロピレングリコールモノメチルエーテルアセテート、ディスパービックLPN21116(ビックケミー株式会社製)、Saint-Gobain社製0.3-0.4mmφジルコニアビーズ「ER-120S」を混合し、ペイントコンディショナー(東洋精機株式会社製)で4時間分散した後、1μmのフィルタで濾過して分散液を調製した。次いで、当該分散液75質量部、ポリエステルアクリレート樹脂(アロニックス(商標名)M7100、東亜合成化学工業株式会社製)5.5質量部、ジぺンタエリストールヘキサアクリレート(KAYARAD(商標名)DPHA、日本化薬株式会社製)5質量部、ベンゾフェノン(KAYACURE(商標名)BP-100、日本化薬株式会社製)1質量部およびユーカーエステルEEP13.5質量部を分散撹拌機で撹拌し、孔径1.0μmのフィルタで濾過し、青色着色組成物1を得た。
[Blue Coloring Composition 1]
The blue coloring composition was prepared by mixing propylene glycol monomethyl ether acetate, Dispersic LPN21116 (manufactured by Big Chemie Co., Ltd.), 0.3-0.4 mmφ zirconia beads “ER-120S” manufactured by Saint-Gobain, and paint conditioner (Toyo After dispersion for 4 hours by Seiki Co., Ltd., a 1 μm filter was used to prepare a dispersion. Next, 75 parts by mass of the dispersion, 5.5 parts by mass of polyester acrylate resin (Aronix (trade name) M7100, manufactured by Toa Gosei Chemical Co., Ltd.), dipentaerystol hexaacrylate (KAYARAD (trade name) DPHA, Japan) 5 parts by mass of Kayaku Co., Ltd.), 1 part by mass of benzophenone (KAYACURE ™ BP-100, Nippon Kayaku Co., Ltd.) and 13.5 parts by mass of Euker Ester EEP are stirred with a dispersion stirrer. Filtration through a 0 μm filter gave a blue colored composition 1.
 [青色着色用組成物2]
 青色着色組成物は、青色染料1(C.I.Solvent Blue 7)をポリビンに入れ、プロピレングリコールモノメチルエーテルアセテート、ディスパービックLPN21116(ビックケミー株式会社製)、Saint-Gobain社製0.3-0.4mmφジルコニアビーズ「ER-120S」を加え、ペイントコンディショナー(東洋精機株式会社製)で4時間分散した後、1μmのフィルタで濾過し顔料分散液を得た。
[Blue Coloring Composition 2]
In the blue coloring composition, blue dye 1 (CI Solvent Blue 7) is put in a polybin, propylene glycol monomethyl ether acetate, Dispersic LPN21116 (manufactured by Big Chemie Co., Ltd.), 0.3-0. 4 mmφ zirconia beads “ER-120S” was added and dispersed with a paint conditioner (manufactured by Toyo Seiki Co., Ltd.) for 4 hours, followed by filtration with a 1 μm filter to obtain a pigment dispersion.
 この顔料分散液75質量部とポリエステルアクリレート樹脂(アロニックス(商標名)M7100、東亜合成化学工業株式会社製)5.5質量部、ジぺンタエリストールヘキサアクリレート(KAYARAD(商標名)DPHA、日本化薬株式会社製)5質量部、ベンゾフェノン(KAYACURE(商標名)BP-100、日本化薬株式会社製)1.00部、ユーカーエステルEEP13.5部を分散撹拌機で撹拌し、孔径1.0μmのフィルタで濾過し、青色着色組成物2を得た。 75 parts by mass of this pigment dispersion, 5.5 parts by mass of polyester acrylate resin (Aronix (trade name) M7100, manufactured by Toa Gosei Chemical Co., Ltd.), dipentaerystol hexaacrylate (KAYARAD (trade name) DPHA, Nippon Kayaku) 5 parts by mass of Yakuhin Co., Ltd., 1.00 parts of benzophenone (KAYACURE (trade name) BP-100, manufactured by Nippon Kayaku Co., Ltd.) and 13.5 parts of Euker Ester EEP are stirred with a dispersion stirrer, and the pore size is 1.0 μm. The blue colored composition 2 was obtained by filtering with a filter.
 [黄色発光用ナノ結晶含有組成物]
 黄色発光用ナノ結晶含有組成物も上記赤色発光用ナノ結晶に代え、黄色色発光用ナノ結晶を用いて、上記と同様にして、黄色発光用ナノ結晶含有組成物を得た。
[Nanocrystal-containing composition for yellow light emission]
The yellow light-emitting nanocrystal-containing composition was replaced with the red light-emitting nanocrystal, and a yellow light-emitting nanocrystal was used in the same manner as described above to obtain a yellow light-emitting nanocrystal-containing composition.
 [黄色着色用組成物]
 上記赤色顔料組成物の赤色顔料に代え、黄色顔料(水溶分0.6%、比電導度70μS/cmのC.I.Pigment Yellow 150)10部を用いて上記と同様にして、黄色着色用組成物を得た。
[Yellow coloring composition]
Instead of the red pigment of the red pigment composition, yellow pigment (CI Pigment Yellow 150 having a water content of 0.6% and a specific conductivity of 70 μS / cm) was used in the same manner as above for yellow coloring. A composition was obtained.
 (B)光変換層の製造
 予めブラックマトリックスが形成されてあるガラス基板に、赤色発光用ナノ結晶含有組成物をスピンコートにより膜厚2μmとなるように塗布した。70℃で20分間乾燥の後、超高圧水銀ランプを備えた露光機にて紫外線をフォトマスクを介してストライプ状のパターン露光をした。アルカリ現像液にて90秒間スプレー現像、イオン交換水で洗浄し、風乾した。さらに、クリーンオーブン中で、180℃で30分間ポストベークを行い、ストライプ状の着色層である赤色画素を透明基板上に形成した。
(B) Manufacture of light conversion layer The nanocrystal containing composition for red light emission was apply | coated to the glass substrate in which the black matrix was previously formed so that it might become a film thickness of 2 micrometers by spin coating. After drying at 70 ° C. for 20 minutes, striped pattern exposure was performed using a photomask with ultraviolet rays using an exposure machine equipped with an ultrahigh pressure mercury lamp. Spray development with an alkali developer for 90 seconds, washing with ion exchange water, and air drying. Further, post-baking was performed at 180 ° C. for 30 minutes in a clean oven to form red pixels, which are striped colored layers, on a transparent substrate.
 次に、緑色発光用ナノ結晶含有組成物も同様にスピンコートにて膜厚が2μmとなるように塗布。乾燥後、露光機にてストライプ状の着色層を前述の赤色画素とはずらした場所に露光し現像することで、前述赤色画素と隣接した緑色画素を形成した。 Next, the nanocrystal-containing composition for green light emission is similarly applied by spin coating so that the film thickness becomes 2 μm. After drying, the striped colored layer was exposed and developed at a place different from the above-mentioned red pixel by an exposure machine, thereby forming a green pixel adjacent to the above-mentioned red pixel.
 以下、下記表1の構成となるように、各色の発光用ナノ結晶含有組成物又は着色用組成物を用いて、赤、緑、青の3色のストライプ状の画素を持つ光変換層1,3,5又は赤、緑、青、黄の4色のストライプ状の画素を持つ光変換層2を得た。 Hereinafter, the light conversion layer 1 having stripe-like pixels of three colors of red, green, and blue, using the light emitting nanocrystal-containing composition or the coloring composition so as to have the configuration shown in Table 1 below. A light conversion layer 2 having stripe-like pixels of 3, 5 or four colors of red, green, blue, and yellow was obtained.
 また、光変換層1上の全面に青色着色組成物2を塗布・紫外線照射することにより赤、緑、青の3色のストライプ状の画素全面の上に青色層を形成させた光変換層4を得た。 Further, a light conversion layer 4 in which a blue layer is formed on the entire surface of the stripe-shaped pixels of three colors of red, green, and blue by applying the blue coloring composition 2 on the entire surface of the light conversion layer 1 and irradiating with ultraviolet rays. Got.
Figure JPOXMLDOC01-appb-T000109
Figure JPOXMLDOC01-appb-T000109
 (インセル偏光層を備えた電極基板の製造方法)
 前記光変換層1上にクラレ社製「ポバール103」水溶液(固形分濃度4質量%)を塗布・乾燥させた後、ラビング処理を施した。
(Method of manufacturing an electrode substrate having an in-cell polarizing layer)
On the light conversion layer 1, an aqueous solution of “Poval 103” manufactured by Kuraray Co., Ltd. (solid content concentration: 4% by mass) was applied and dried, followed by rubbing treatment.
 次いで、ラビング処理面に、メガファックF‐554(DIC株式会社製)0.03質量部、以下の式(az-1)のアゾ色素1質量部、以下の式(az-2)のアゾ色素1質量部、 Next, on the rubbing surface, 0.03 parts by mass of Megafac F-554 (manufactured by DIC Corporation), 1 part by mass of an azo dye of the following formula (az-1), and an azo dye of the following formula (az-2) 1 part by mass,
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
クロロホルム98質量部、エチレンオキサイド変性トリメチロールプロパントリアクリレート(V#360、大阪有機化学社製)2質量部、ジペンタエリスルトールヘキサアクリレート(KAYARAD DPHA、日本化薬社製)2質量部、イルガキュア907(チバ・スペシャルティ・ケミカルズ社製)0.06質量部およびカヤキュアDETX(日本化薬社製)からなる偏光層用塗布液を塗布・乾燥させて、偏光層および光変換層を備えた基板を作成した。その後、ITOをスパッタリング法により堆積させ、対向基板(=第2(電極)基板)を作製した。 98 parts by mass of chloroform, 2 parts by mass of ethylene oxide-modified trimethylolpropane triacrylate (V # 360, manufactured by Osaka Organic Chemical Co., Ltd.), 2 parts by mass of dipentaerythritol hexaacrylate (KAYARAD DPHA, manufactured by Nippon Kayaku Co., Ltd.), Irgacure A substrate having a polarizing layer and a light conversion layer is prepared by applying and drying a polarizing layer coating solution consisting of 0.06 parts by mass of 907 (manufactured by Ciba Specialty Chemicals) and Kayacure DETX (manufactured by Nippon Kayaku Co., Ltd.). Created. Thereafter, ITO was deposited by sputtering to produce a counter substrate (= second (electrode) substrate).
 (VA型液晶パネル1)
 上記第2(電極)基板のITO上および第1基板の透明電極上に、ポリイミド系垂直配向層をそれぞれ形成した後、前記透明電極およびポリイミド系垂直配向層が形成された第1基板と、前記ポリイミド系垂直配向層が形成された第2(電極)基板とを、それぞれの配向層が対向し、当該配向層の配向方向がアンチパラレル方向(180°)となるように配置し、2枚の基板間に一定の間隙(4μm)を保った状態で、周辺部をシール剤により貼り合わせた。次に、配向層表面及びシール剤により区画されたセルギャップ内に、下記の実施例1~27の重合性液晶組成物を、真空注入法により、充填し、偏光板を第1基板上に貼りあわせることでVA型の液晶パネル1を作製した。このように作製した液晶パネルを評価用素子とし、VHR測定およびUVに対する表示品位の評価を行った。
(VA type liquid crystal panel 1)
After forming a polyimide-based vertical alignment layer on ITO of the second (electrode) substrate and a transparent electrode of the first substrate, respectively, the first substrate on which the transparent electrode and the polyimide-based vertical alignment layer are formed, The second (electrode) substrate on which the polyimide-based vertical alignment layer is formed is disposed so that the alignment layers face each other and the alignment direction of the alignment layer is an antiparallel direction (180 °). The peripheral part was bonded with a sealing agent in a state where a constant gap (4 μm) was maintained between the substrates. Next, the polymerizable liquid crystal compositions of Examples 1 to 27 described below are filled into the cell gap defined by the alignment layer surface and the sealing agent by vacuum injection, and a polarizing plate is attached to the first substrate. By combining them, a VA type liquid crystal panel 1 was produced. The liquid crystal panel thus fabricated was used as an evaluation element, and VHR measurement and display quality evaluation for UV were performed.
 その結果を以下の表2~16に示す。 The results are shown in Tables 2 to 16 below.
 この液晶パネルに周波数1kHzで2.43Vの矩形波の電圧を印加しながら、波長365nmの紫外線LEDの光源を用いて照射強度が15mW/cmの紫外線を12秒間照射した後、紫外線照射を継続した状態で、電圧を0Vにして垂直配向に戻し、電圧を0Vに戻した時点から紫外線を68秒間照射した。このように作製した液晶パネルを評価用素子とし、VHR測定およびUVに対する表示品位の評価を行った。 While applying a rectangular wave voltage of 2.43 V at a frequency of 1 kHz to this liquid crystal panel, irradiation with ultraviolet light having an irradiation intensity of 15 mW / cm 2 for 12 seconds was performed using a light source of an ultraviolet LED with a wavelength of 365 nm, and then ultraviolet irradiation was continued. In this state, the voltage was set to 0V to return to the vertical alignment, and ultraviolet rays were irradiated for 68 seconds from the time when the voltage was returned to 0V. The liquid crystal panel thus fabricated was used as an evaluation element, and VHR measurement and display quality evaluation for UV were performed.
 その結果を以下の表に示す。 The results are shown in the following table.
Figure JPOXMLDOC01-appb-T000111
Figure JPOXMLDOC01-appb-T000111
Figure JPOXMLDOC01-appb-T000112
Figure JPOXMLDOC01-appb-T000112
Figure JPOXMLDOC01-appb-T000113
Figure JPOXMLDOC01-appb-T000113
Figure JPOXMLDOC01-appb-T000114
Figure JPOXMLDOC01-appb-T000114
Figure JPOXMLDOC01-appb-T000115
Figure JPOXMLDOC01-appb-T000115
Figure JPOXMLDOC01-appb-T000116
Figure JPOXMLDOC01-appb-T000116
Figure JPOXMLDOC01-appb-T000117
Figure JPOXMLDOC01-appb-T000117
Figure JPOXMLDOC01-appb-T000118
Figure JPOXMLDOC01-appb-T000118
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000120
Figure JPOXMLDOC01-appb-T000120
Figure JPOXMLDOC01-appb-T000121
Figure JPOXMLDOC01-appb-T000121
Figure JPOXMLDOC01-appb-T000122
Figure JPOXMLDOC01-appb-T000122
Figure JPOXMLDOC01-appb-T000123
Figure JPOXMLDOC01-appb-T000123
Figure JPOXMLDOC01-appb-T000124
Figure JPOXMLDOC01-appb-T000124
Figure JPOXMLDOC01-appb-T000125
Figure JPOXMLDOC01-appb-T000125
 上記表2~16において、低下率は、「初期(=1W耐光試験前)のVHR値/1W(=1週間)耐光試験後のVHR値」である。したがって、低下率が1に近いほど、450nmに主発光ピークを有する光または385nmに主発光ピークを有する光に対して安定であるため、耐光性に優れており、短波長の可視光線や紫外光といった高エネルギー光線に対しても劣化しにくいと考えられる。 In Tables 2 to 16 above, the decrease rate is “the initial (= 1 W before the light resistance test) VHR value / 1 W (= 1 week) after the light resistance test”. Therefore, the closer the reduction rate is to 1, the more stable it is to light having a main emission peak at 450 nm or light having a main emission peak at 385 nm, so that the light resistance is excellent, and visible light or ultraviolet light having a short wavelength is excellent. It is considered that it is difficult to deteriorate even for such high energy rays.
 上記の実験データから、450nmに主発光ピークを有する光を1週間照射した場合は、組成例2が最も低下率が低いことが確認される。また、385nmに主発光ピークを有する光を60秒照射した場合も、実施例2、11、20が最も低下率が低いことが確認された。一方、液晶表示素子の高速応答性に関係するγ1をみると、実施例3、12、21が最も高いことが確認された。前者の原因としては、縮合環(ナフタレン)を含む2環以上の液晶化合物を含むため、光を吸収しやすいことに関係すると考えられる。また、後者の原因としては、クロマン環を含む2環以上液晶化合物であるため、粘性が高くなることが考えられる。 From the above experimental data, it is confirmed that composition example 2 has the lowest decrease rate when irradiated with light having a main emission peak at 450 nm for one week. In addition, when the light having the main emission peak at 385 nm was irradiated for 60 seconds, it was confirmed that Examples 2, 11 and 20 had the lowest reduction rate. On the other hand, when γ1 related to the high-speed response of the liquid crystal display element was observed, it was confirmed that Examples 3, 12, and 21 were the highest. The cause of the former is considered to be related to the fact that it contains two or more liquid crystal compounds including a condensed ring (naphthalene) and thus easily absorbs light. In addition, the latter is considered to be due to the increase in viscosity because the liquid crystal compound contains two or more rings including a chroman ring.
 次に、実施例1、10、19に記載の重合性液晶組成物を、VA型液晶パネル1の間隙(4μm)を間隙(3.5μm)に変更したVA型液晶パネル2と、VA型液晶パネル1の間隙(4μm)を間隙(2.8μm)に変更したVA型液晶パネル3とを用いて、透過率のシミュレーションを行った(シンテック社製LCDMasterを使用)。その結果を以下に示す。 Next, the polymerizable liquid crystal composition described in Examples 1, 10, and 19 was applied to the VA liquid crystal panel 2 in which the gap (4 μm) of the VA liquid crystal panel 1 was changed to the gap (3.5 μm), and the VA liquid crystal. The transmittance was simulated using the VA liquid crystal panel 3 in which the gap (4 μm) of the panel 1 was changed to the gap (2.8 μm) (using LCD Master manufactured by Shintech Co., Ltd.). The results are shown below.
Figure JPOXMLDOC01-appb-T000126
Figure JPOXMLDOC01-appb-T000126
 上記結果から、リタデーションを325nmから260nmに変えると、透過率が約2割向上することが確認された。 From the above results, it was confirmed that when the retardation was changed from 325 nm to 260 nm, the transmittance was improved by about 20%.
 リタデーション(Re)は、以下の式(1)で表される Retardation (Re) is expressed by the following formula (1).
Figure JPOXMLDOC01-appb-M000127
(上記数式(1)中、Δnは589nmでの屈折率異方性を表し、dは液晶表示素子の液晶層のセル厚(μm)を表す。)
 同様に、上記実施例2~9、11~18、20~27においても透過率が向上することが確認される。そのため、220~300nmの範囲であると透過率が向上すると考えられる。
Figure JPOXMLDOC01-appb-M000127
(In the above formula (1), Δn represents the refractive index anisotropy at 589 nm, and d represents the cell thickness (μm) of the liquid crystal layer of the liquid crystal display element.)
Similarly, it is confirmed that the transmittance is improved in Examples 2 to 9, 11 to 18, and 20 to 27. Therefore, it is considered that the transmittance is improved in the range of 220 to 300 nm.
 また、上記実施例8、17、26については初期のVHRが他の組成例より低い為、組成例8の液晶組成物100質量部に対して、以下の式(III-22)の酸化防止剤を0.03質量部添加した。 In Examples 8, 17, and 26, the initial VHR is lower than that of the other composition examples. Therefore, the antioxidant of the following formula (III-22) is used with respect to 100 parts by mass of the liquid crystal composition of Composition Example 8. Was added in an amount of 0.03 parts by mass.
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000128
その結果、初期のVHRが98%以上になり、上記の450nmに主発光ピークを有するLED耐光試験および385nmに主発光ピークを有するLED耐光試験を確認したが、低下率は上記表4に示した値とほぼ同様の結果であった。 As a result, the initial VHR was 98% or more, and the LED light resistance test having the main emission peak at 450 nm and the LED light resistance test having the main emission peak at 385 nm were confirmed. The rate of decrease is shown in Table 4 above. The result was almost the same as the value.
 (VA型液晶パネル4の製造)
 透明電極が形成された第1基板と、上記インセル偏光層を表面に備えた光変換層1が形成された上記第2の透明電極基板とを、それぞれの電極が対向するように配置し、2枚の基板間に一定の間隙(4μm)を保った状態で、周辺部をシール剤により貼り合わせた。次に、配向層表面及びシール剤により区画されたセルギャップ内に、実施例1の重合性液晶組成物(100質量部)に対して、自発配向剤(以下の式(al-1))2質量部を
(Manufacture of VA type liquid crystal panel 4)
The first substrate on which the transparent electrode is formed and the second transparent electrode substrate on which the light conversion layer 1 having the in-cell polarizing layer on the surface is disposed so that the respective electrodes face each other. The peripheral part was bonded with a sealant in a state where a constant gap (4 μm) was maintained between the substrates. Next, in the cell gap defined by the alignment layer surface and the sealing agent, the spontaneous alignment agent (the following formula (al-1)) 2 with respect to the polymerizable liquid crystal composition of Example 1 (100 parts by mass) 2 Parts by mass
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000129
添加した液晶組成物を、真空注入法により、充填し、偏光板を第1基板上に貼りあわせることでVA型の液晶パネル4を作製した。 The added liquid crystal composition was filled by a vacuum injection method, and a polarizing plate was bonded onto the first substrate, whereby a VA liquid crystal panel 4 was produced.
 (VA型液晶パネル5の製造)
 透明電極が形成された第1基板と、上記インセル偏光層を表面備えた光変換層1が形成された上記第2の透明電極基板とを、それぞれの電極が対向するように配置し、2枚の基板間に一定の間隙(4μm)を保った状態で、周辺部をシール剤により貼り合わせた。次に、配向層表面及びシール剤により区画されたセルギャップ内に、実施例1の重合性液晶組成物(100質量部)に対して、自発配向剤(以下の式(P-1-2))2質量部を
(Manufacture of VA type liquid crystal panel 5)
The first substrate on which the transparent electrode is formed and the second transparent electrode substrate on which the light conversion layer 1 having the surface of the in-cell polarizing layer is formed are arranged so that the respective electrodes face each other. The peripheral part was bonded with a sealing agent in a state where a constant gap (4 μm) was maintained between the substrates. Next, in the cell gap defined by the alignment layer surface and the sealing agent, the spontaneous alignment agent (formula (P-1-2) below) is used with respect to the polymerizable liquid crystal composition of Example 1 (100 parts by mass). 2 parts by mass
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000130
添加した液晶組成物を、真空注入法により、充填し、偏光板を第1基板上に貼りあわせることでVA型の液晶パネル5を作製した。 The added liquid crystal composition was filled by a vacuum injection method, and a polarizing plate was bonded to the first substrate, whereby a VA liquid crystal panel 5 was produced.
 (VA型液晶パネル6の製造)
 第1基板に形成された透明電極の上に、国際公開2013/002260号パンフレットの実施例22で用いられた垂直配向層溶液を備えた垂直配向層用溶液をスピンコート法により形成し、乾燥厚さ0.1μmの配向層を形成した。偏光層を表面に備えた光変換層1が形成された上記第2の透明電極基板にも同様にして表面に配向層を形成した。透明電極および配向層が形成された第1基板と、上記光変換層1が形成された対向基板である第2(電極)基板を、それぞれの配向層が対向し、当該配向層の配向方向がアンチパラレル方向(180°)となるように配置し、2枚の基板間に一定の間隙(4μm)を保った状態で、周辺部をシール剤により貼り合わせた。次に、配向層表面及びシール剤により区画されたセルギャップ内に、下記の実施例1の重合性液晶組成物を、真空注入法により、充填し、偏光板を第1基板上に貼りあわせることでVA型の液晶パネル6を作製した。
(Manufacture of VA liquid crystal panel 6)
On the transparent electrode formed on the first substrate, a vertical alignment layer solution including the vertical alignment layer solution used in Example 22 of International Publication No. 2013/002260 pamphlet is formed by spin coating, and then dried. An alignment layer having a thickness of 0.1 μm was formed. Similarly, an alignment layer was formed on the surface of the second transparent electrode substrate on which the light conversion layer 1 having the polarizing layer on the surface was formed. The first substrate on which the transparent electrode and the alignment layer are formed and the second (electrode) substrate, which is the counter substrate on which the light conversion layer 1 is formed, are opposed to each other, and the alignment direction of the alignment layer is The peripheral portions were bonded together with a sealant in a state of being arranged in an antiparallel direction (180 °) and maintaining a constant gap (4 μm) between the two substrates. Next, the polymerizable liquid crystal composition of Example 1 below is filled into the cell gap defined by the alignment layer surface and the sealing agent by vacuum injection, and the polarizing plate is bonded onto the first substrate. Thus, a VA type liquid crystal panel 6 was produced.
 (IPS型液晶パネル)
 第1基板に形成された一対の櫛歯電極の上に、配向層溶液をスピンコート法により形成し、配向層を形成した。櫛形透明電極および配向層が形成された第1基板と、配向層、上記インセル偏光層、光変換層1および前記光変換層1上に平坦化膜が形成された形成された第2基板を、それぞれの配向層が対向し、かつ直線偏光を照射した、または水平方向にラビングした方向がアンチパラレル方向(180°)となるように配置し、2枚の基板間に一定の間隙(4μm)を保った状態で、周辺部をシール剤により張り合わせた。次に、配向層表面及びシール剤により区画されたセルギャップ内に、実施例6の重合性液晶組成物(液晶組成物6)を、真空注入法により充填し、その後一対の偏光板を第1基板および第2基板上に貼りあわせIPS型の液晶パネルを作製した。
(IPS liquid crystal panel)
An alignment layer solution was formed on the pair of comb-shaped electrodes formed on the first substrate by a spin coating method to form an alignment layer. A first substrate on which a comb-shaped transparent electrode and an alignment layer are formed; and an alignment layer, the in-cell polarizing layer, the light conversion layer 1, and a second substrate on which a planarizing film is formed on the light conversion layer 1. The alignment layers face each other and are arranged so that the direction of linearly polarized light irradiation or rubbing in the horizontal direction is the anti-parallel direction (180 °), and a constant gap (4 μm) is provided between the two substrates. In the state kept, the peripheral part was pasted together with a sealant. Next, the polymerizable liquid crystal composition of Example 6 (liquid crystal composition 6) is filled into the cell gap defined by the alignment layer surface and the sealing agent by a vacuum injection method, and then the pair of polarizing plates is first bonded. An IPS type liquid crystal panel was bonded to the substrate and the second substrate.
 (FFS型液晶パネル)
 第1の透明基板に平板状の共通電極を形成した後、絶縁層膜を形成し、さらに当該絶縁層膜上に透明櫛歯電極を形成した後、当該透明櫛歯電極上に配向層溶液をスピンコート法により形成し、第1の電極基板を形成した。配向層、上記インセル偏光層、光変換層1および平坦化膜が形成された第2基板にも同様にして配向層を形成した。次いで、櫛形透明電極および配向層が形成された第1基板と、配向層、偏光層、光変換層1および光変換層1上に平坦化膜が形成された第2基板を、それぞれの配向層が対向し、かつ直線偏光を照射した、またはラビングした方向がアンチパラレル方向(180°)となるように配置し、2枚の基板間に一定の間隙(4μm)を保った状態で、周辺部をシール剤により張り合わせた。次に、配向層表面及びシール剤により区画されたセルギャップ内に、実施例9の重合性液晶組成物を、滴下法により充填しFFS型の液晶パネルを作製した。
(FFS type liquid crystal panel)
After forming a flat common electrode on the first transparent substrate, an insulating layer film is formed, a transparent comb electrode is further formed on the insulating layer film, and an alignment layer solution is then applied on the transparent comb electrode. A first electrode substrate was formed by spin coating. The alignment layer was formed in the same manner on the second substrate on which the alignment layer, the in-cell polarizing layer, the light conversion layer 1 and the planarizing film were formed. Next, the first substrate on which the comb-shaped transparent electrode and the alignment layer are formed, and the alignment layer, the polarizing layer, the light conversion layer 1, and the second substrate on which the planarizing film is formed on the light conversion layer 1, Are arranged in such a way that the direction where the linearly polarized light is radiated or rubbed is in the anti-parallel direction (180 °) and a constant gap (4 μm) is maintained between the two substrates. Were pasted together with a sealant. Next, the polymerizable liquid crystal composition of Example 9 was filled into the cell gap partitioned by the alignment layer surface and the sealing agent by a dropping method, to produce an FFS type liquid crystal panel.
 (2)バックライトユニットの作製
 (バックライトユニット1の作製)
 青色LED光源を導光板の一辺の端部に設置し、反射シートで照射面を除く部分を覆い、導光板の照射側に拡散シートを配置してバックライトユニット1を作製した。
(2) Production of backlight unit (Production of backlight unit 1)
A blue LED light source was installed at the end of one side of the light guide plate, the portion excluding the irradiated surface was covered with a reflective sheet, and a diffusion sheet was placed on the irradiation side of the light guide plate to produce a backlight unit 1.
 (バックライトユニット2の作製)
 光を散乱反射する下側反射板上に格子状に青色LEDが配置され、さらにその照射側直上には拡散板を配置し、さらにその照射側に拡散シートを配置しバックライトユニット2を作製した。
(Preparation of backlight unit 2)
A blue LED is arranged in a lattice pattern on the lower reflection plate that scatters and reflects light, a diffusion plate is arranged immediately above the irradiation side, and a diffusion sheet is further arranged on the irradiation side to produce a backlight unit 2. .
 (3)液晶表示素子の作製と色再現領域の測定
 上記得られたVA型液晶パネル1およびVA型液晶パネル2に対して、上記で作製したバックライトユニット1及び2を取り付けて色再現領域を測定した。その結果、いずれも光変換部を備えた液晶表示素子と光変換部を備えていない従来の液晶表示素子とでは、前者の方が、色再現領域が拡大することが確認された。
(3) Production of liquid crystal display element and measurement of color reproduction region The above-obtained backlight units 1 and 2 are attached to the obtained VA type liquid crystal panel 1 and VA type liquid crystal panel 2, and the color reproduction region is set. It was measured. As a result, it was confirmed that the color reproduction region was expanded in the former in both the liquid crystal display element having the light conversion unit and the conventional liquid crystal display element not having the light conversion unit.
 同様に、上記で得られたIPS型液晶パネル(オンセル)およびIPS型液晶パネル(インセル)に対して、上記で作製したバックライトユニット1及び2を取り付けて色再現領域を測定した。その結果、いずれも光変換部を備えた液晶表示素子と光変換部を備えていない従来の液晶表示素子とでは、前者の方が色再現領域が拡大することが確認された。 Similarly, the backlight units 1 and 2 prepared above were attached to the IPS liquid crystal panel (on-cell) and IPS liquid crystal panel (in-cell) obtained above, and the color reproduction region was measured. As a result, it was confirmed that the color reproducible region was expanded in the former in both the liquid crystal display element having the light conversion unit and the conventional liquid crystal display element not having the light conversion unit.
 上記得られたFFS型液晶パネル(オンセル)およびFFS型液晶パネル(インセル)に対して、上記で作製したバックライトユニット1~4を取り付けて色再現領域を色再現領域を測定した。その結果、いずれも光変換部を備えた液晶表示素子と光変換部を備えていない従来の液晶表示素子とでは、前者の方が色再現領域が拡大することが確認された。 The backlight units 1 to 4 prepared above were attached to the obtained FFS type liquid crystal panel (on-cell) and FFS type liquid crystal panel (in-cell), and the color reproduction area was measured. As a result, it was confirmed that the color reproducible region was expanded in the former in both the liquid crystal display element having the light conversion unit and the conventional liquid crystal display element not having the light conversion unit.
1000:液晶表示素子
100:バックライトユニット(101:光源部、102:導光部、103:光変換部)
101:光源部(L:発光素子(105:発光ダイオード、110:光源基板)、112a、b:固定部材)
102:導光部(106:拡散板、104:導光板)
103:光変換部
110:光源基板
111:透明充填容器
112a、b:固定部材
113:凹部容器
SUB1:(透明)電極基板
SUB2:(透明)基板(電極を備えている場合も含む)
SUB3:(透明)基板
NC:発光用ナノ結晶(化合物半導体)
1、8:偏光層
2、7:透明基板
3:第一の電極層
3’:第二の電極層
4:配向膜
5:液晶層
6:カラーフィルタ(樹脂に色素が含まれて場合も含む)
11:ゲート電極
12:ゲート絶縁膜
13:半導体層
14:保護層
16:ドレイン電極
17:ソース電極
18:パッシベーション膜
21:画素電極
22:共通電極
33:平坦膜
35:絶縁膜
1000: Liquid crystal display element 100: Backlight unit (101: light source unit, 102: light guide unit, 103: light conversion unit)
101: light source part (L: light emitting element (105: light emitting diode, 110: light source substrate), 112a, b: fixing member)
102: Light guide section (106: diffusion plate, 104: light guide plate)
103: light conversion unit 110: light source substrate 111: transparent filling container 112a, b: fixing member 113: recessed container SUB1: (transparent) electrode substrate SUB2: (transparent) substrate (including a case where electrodes are provided)
SUB3: (Transparent) substrate NC: Nanocrystal for light emission (compound semiconductor)
DESCRIPTION OF SYMBOLS 1, 8: Polarizing layer 2, 7: Transparent substrate 3: 1st electrode layer 3 ': 2nd electrode layer 4: Alignment film 5: Liquid crystal layer 6: Color filter (The case where the pigment | dye is contained in resin is also included. )
11: gate electrode 12: gate insulating film 13: semiconductor layer 14: protective layer 16: drain electrode 17: source electrode 18: passivation film 21: pixel electrode 22: common electrode 33: flat film 35: insulating film

Claims (19)

  1.  第一の基板および第二の基板が対向して設けられる一対の基板と、
     前記第一の基板と第二の基板と間に挟持された液晶層と、
     前記第一の基板または第二の基板の少なくとも一方に設けられた画素電極と、
     前記第一の基板または第二の基板の少なくとも一方に設けられた共通電極と、
     発光素子を備えた光源部と、
     赤色(R)、緑色(G)および青色(B)の三原色画素を備え、前記三原色の内少なくとも一色に入射した前記光源部からの光により赤色(R)、緑色(G)、青色(B)の何れかに発光スペクトルを有する発光用ナノ結晶を含有する光変換層と、を備え、
     前記液晶層が、ポリマーネットワーク(A)と、一般式(i)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1及びR2はそれぞれ独立して、炭素原子数1~8のアルキル基、炭素原子数2~8のアルケニル基、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基を表し、Aは1,4-フェニレン基又はトランス-1,4-シクロヘキシレン基を表し、nは0又は1を表す。)で表される化合物を10~50質量%含有する液晶組成物(B)を含有することを特徴とする液晶表示素子。
    A pair of substrates provided so that the first substrate and the second substrate are opposed to each other;
    A liquid crystal layer sandwiched between the first substrate and the second substrate;
    A pixel electrode provided on at least one of the first substrate and the second substrate;
    A common electrode provided on at least one of the first substrate and the second substrate;
    A light source unit including a light emitting element;
    It has three primary color pixels of red (R), green (G), and blue (B), and red (R), green (G), and blue (B) by light from the light source unit incident on at least one of the three primary colors. A light conversion layer containing a light-emitting nanocrystal having an emission spectrum,
    The liquid crystal layer comprises a polymer network (A) and a general formula (i)
    Figure JPOXMLDOC01-appb-C000001
    Wherein R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, or an alkyl group having 2 to 8 carbon atoms. A alkenyloxy group, A represents a 1,4-phenylene group or trans-1,4-cyclohexylene group, and n represents 0 or 1). A liquid crystal display element comprising the composition (B).
  2.  前記光変換層は、ブラックマトリクスを有し、青色光を吸収し赤色光を発光する第一の発光用ナノ結晶及び青色光を吸収し緑色光を発光する第二の発光用ナノ結晶を含有し、前記発光素子が青色領域に発光スペクトルを有する請求項1記載の液晶表示素子。 The light conversion layer has a black matrix and contains a first light emitting nanocrystal that absorbs blue light and emits red light and a second light emitting nanocrystal that absorbs blue light and emits green light. The liquid crystal display element according to claim 1, wherein the light emitting element has an emission spectrum in a blue region.
  3.  前記光源部からの発光が青色光であって、かつ、光変換層における青色画素を形成する青色画素領域が該青色光を透過させるものである請求項2記載の表示素子。 The display element according to claim 2, wherein light emitted from the light source unit is blue light, and a blue pixel region forming a blue pixel in the light conversion layer transmits the blue light.
  4.  前記光変換層は、ブラックマトリクスを有し、紫外光を吸収し赤色光を発光する第三の発光用ナノ結晶、紫外光を吸収し緑色光を発光する第四の発光用ナノ結晶及び紫外光を吸収し青色光を発光する第五の発光用ナノ結晶を含有し、前記発光素子が紫外領域に発光スペクトルを有する請求項1記載の液晶表示素子。 The light conversion layer has a black matrix, absorbs ultraviolet light and emits red light, a third light emitting nanocrystal, absorbs ultraviolet light and emits green light, and emits green light and ultraviolet light. The liquid crystal display element according to claim 1, comprising a fifth light-emitting nanocrystal that absorbs light and emits blue light, and the light-emitting element has an emission spectrum in an ultraviolet region.
  5.   前記光変換層は、前記光源部側の基板と対向する基板側に設けられる、請求項1~4のいずれか1つに記載の液晶表示素子。 5. The liquid crystal display element according to claim 1, wherein the light conversion layer is provided on a substrate side facing the substrate on the light source unit side.
  6.  前記第一の基板と第二の基板間に少なくとも一つの偏光板挟持した請求項1~5のいずれか1項に記載の表示素子。 The display element according to any one of claims 1 to 5, wherein at least one polarizing plate is sandwiched between the first substrate and the second substrate.
  7. 赤色(R)、緑色(G)及び青色(B)域の少なくとも一つの発光スペクトルの半値幅が20から50nmである請求項1~6のいずれか1つに記載の液晶表示素子。 The liquid crystal display element according to any one of claims 1 to 6, wherein a half-value width of at least one emission spectrum in a red (R), green (G), and blue (B) region is 20 to 50 nm.
  8.  前記発光用ナノ結晶は、第一の半導体材料を少なくとも1種又は2種以上含むコアと、 前記コアを被覆し、かつ前記コアと同一または異なる第二の半導体材料を含むシェルとを有する、請求項1~7のいずれか1項に記載の液晶表示素子。 The nanocrystal for light emission has a core including at least one or more first semiconductor materials, and a shell that covers the core and includes a second semiconductor material that is the same as or different from the core. Item 8. The liquid crystal display device according to any one of items 1 to 7.
  9.  前記第一の半導体材料は、II-VI族半導体、III-V族半導体、I-III-VI族半導体、IV族半導体及びI-II-IV-VI族半導体からなる群から選択される1種又は2種以上である、請求項8に記載の液晶表示素子。 The first semiconductor material is one selected from the group consisting of II-VI semiconductors, III-V semiconductors, I-III-VI semiconductors, IV semiconductors and I-II-IV-VI semiconductors Or the liquid crystal display element of Claim 8 which is 2 or more types.
  10.  前記液晶層が、ポリマーネットワーク(A)の光軸方向又は配向容易軸方向と、前記液晶組成物(B)の配向容易軸方向が同一方向となっているものである請求項1記載の液晶表示素子。 2. The liquid crystal display according to claim 1, wherein in the liquid crystal layer, the optical axis direction or the easy axis direction of the polymer network (A) is the same as the easy axis direction of the liquid crystal composition (B). element.
  11.  前記液晶層が、重合性単量体成分(a)、及び前記液晶組成物(B)を必須成分とする重合性液晶組成物を重合してなるものである請求項1又は10記載の液晶表示素子。 The liquid crystal display according to claim 1 or 10, wherein the liquid crystal layer is formed by polymerizing a polymerizable liquid crystal composition containing the polymerizable monomer component (a) and the liquid crystal composition (B) as essential components. element.
  12.  前記液晶層が、重合性単量体成分(a)及び前記液晶組成物(B)に加え、更に重合開始剤(c)を必須成分とする重合性液晶組成物を重合してなる請求項11記載の液晶表示素子。 12. The liquid crystal layer is obtained by polymerizing a polymerizable liquid crystal composition having a polymerization initiator (c) as an essential component in addition to the polymerizable monomer component (a) and the liquid crystal composition (B). The liquid crystal display element as described.
  13.   重合性液晶組成物が、前記重合性液晶組成物中、重合性単量体成分(a)を0.5~20質量%となる割合で含有するものである請求項11記載の液晶表示素子。 The liquid crystal display element according to claim 11, wherein the polymerizable liquid crystal composition contains the polymerizable monomer component (a) in a proportion of 0.5 to 20% by mass in the polymerizable liquid crystal composition.
  14.  透明基板に対して前記液晶材料(B)を構成する液晶分子が、基板法線方向に対して、0.1~30°のプレチルト角を成すように形成された請求項1又は10記載の液晶表示素子。 The liquid crystal according to claim 1, wherein the liquid crystal molecules constituting the liquid crystal material (B) with respect to the transparent substrate are formed so as to form a pretilt angle of 0.1 to 30 ° with respect to the normal direction of the substrate. Display element.
  15.  セル断面において、セル厚の0.5%以上の厚さのポリマーネットワーク層が形成されている請求項1又は10記載の液晶表示素子。 The liquid crystal display element according to claim 1 or 10, wherein a polymer network layer having a thickness of 0.5% or more of the cell thickness is formed in the cell cross section.
  16.  前記重合性単量体成分(a)が、下記一般式(P1)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Zp11は、フッ素原子、シアノ基、水素原子、水素原子がハロゲン原子に置換されていてもよい炭素原子数1~15のアルキル基、水素原子がハロゲン原子に置換されていてもよい炭素原子数1~15のアルコキシ基、水素原子がハロゲン原子に置換されていてもよい炭素原子数1~15のアルケニル基、水素原子がハロゲン原子に置換されていてもよい炭素原子数1~15のアルケニルオキシ基又は-Spp12-Rp12を表し、
    p11およびRp12はそれぞれ独立に以下の式(RP11-1)から式(RP11-8)
    Figure JPOXMLDOC01-appb-C000003
    のいずれかを表し(式中、*は結合点を示す)、前記式(RP11-1)~(RP11-8)中、RP111~RP112はお互いに独立して、水素原子、炭素原子数1~5個のアルキル基であり、tM11は0、1または2を表し、
     Spp11およびSpp12は、それぞれ独立して、単結合、炭素原子数1~12の直鎖もしくは分岐状アルキレン基、又は、この直鎖もしくは分岐状のアルキレン構造の炭素原子は酸素原子が隣接しない条件で酸素原子もしくはカルボニル基で置換された化学構造を有する構造部位を表し、
     Lp11及びLp12はそれぞれ独立して、単結合、-O-、-S-、-CH-、-OCH-、-CHO-、-CO-、-C-、-COO-、-OCO-、-OCOOCH-、-CHOCOO-、-OCHCHO-、-CO-NRP113-、-NRP113-CO-、-SCH-、-CHS-、-CH=CRP113-COO-、-CH=CRP113-OCO-、-COO-CRP113=CH-、-OCO-CRaP113=CH-、-COO-CRP113=CH-COO-、-COO-CRP113=CH-OCO-、-OCO-CRP113=CH-COO-、-OCO-CRP113=CH-OCO-、-(CHtm12-C(=O)-O-、-(CHtm12-O-(C=O)-、-O-(C=O)-(CHtm12-、-(C=O)-O-(CHtm12-、-CH=CH-、-CF=CF-、-CF=CH-、-CH=CF-、-CF-、-CFO-、-OCF-、-CFCH-、-CHCF-、-CFCF-、-C≡C-、-N=N-、-CH=N-又は-C=N-N=C-(式中、RP113はそれぞれ独立して水素原子又は炭素原子数1~4のアルキル基を表し、前記式中、tm12は1~4の整数を表す。)を表し、
     Mp11、Mp12およびMp13は、それぞれ独立に1,4-フェニレン基、1,3-フェニレン基、1,2-フェニレン基、1,4-シクロヘキシレン基、1,3-シクロヘキシレン基、1,2-シクロヘキシレン基、1,4-シクロヘキセニレン基、1,3-シクロヘキセニレン基、1,2-シクロヘキセニレン基、アントラセン-2,6-ジイル基、フェナントレン-2,7-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ナフタレン-2,6-ジイル基、ナフタレン-1,4-ジイル基、インダン-2,5-ジイル基、フルオレン-2,6-ジイル基、フルオレン-1,4-ジイル基、フェナントレン-2,7-ジイル基、アントラセン-2,6-ジイル基、アントラセン-1,4-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又は1,3-ジオキサン-2,5-ジイル基を表すが、
     Mp11、Mp12およびMp13はそれぞれ独立に無置換であるか又は炭素原子数1~12のアルキル基、炭素原子数1~12のハロゲン化アルキル基、炭素原子数1~12のアルコキシ基、炭素原子数1~12のハロゲン化アルコキシ基、ハロゲン原子、シアノ基、ニトロ基又は-Spp11-Rp11同じ意味の基で置換されていても良く、mp12は1又は2を表し、mp13~mp14はそれぞれ独立して、0、1、2又は3を表し、mp11及びmp15はそれぞれ独立して1、2又は3を表すが、Zp11が複数存在する場合にはそれらは同一であっても異なっていてもよく、Rp11が複数存在する場合にはそれらは同一であっても異なっていてもよく、Rp12が複数存在する場合にはそれらは同一であっても異なっていてもよく、Spp11が複数存在する場合にはそれらは同一であっても異なっていてもよく、Spp12が複数存在する場合にはそれらは同一であっても異なっていてもよく、Lp11が複数存在する場合にはそれらは同一であっても異なっていてもよく、Lp12が複数存在する場合にはそれらは同一であっても異なっていてもよく、Mp12が複数存在する場合にはそれらは同一であっても異なっていてもよく、Mp13が複数存在する場合にはそれらは同一であっても異なっていてもよい。)で表されるものである請求項11記載の液晶表示素子。
    The polymerizable monomer component (a) is represented by the following general formula (P1)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, Z p11 is a fluorine atom, a cyano group, a hydrogen atom, an alkyl group having 1 to 15 carbon atoms in which a hydrogen atom may be substituted with a halogen atom, or a hydrogen atom in which a hydrogen atom is substituted with a halogen atom) A suitable alkoxy group having 1 to 15 carbon atoms, an alkenyl group having 1 to 15 carbon atoms in which a hydrogen atom may be substituted with a halogen atom, or 1 to carbon atoms in which a hydrogen atom may be substituted with a halogen atom 15 alkenyloxy groups or -Sp p12 -R p12 ,
    R p11 and R p12 are each independently the following formulas (RP11-1) to (RP11-8)
    Figure JPOXMLDOC01-appb-C000003
    (Wherein, * represents a bonding point), and in the formulas (RP11-1) to (RP11-8), R P111 to R P112 are independently of each other a hydrogen atom or a carbon atom number. 1 to 5 alkyl groups, t M11 represents 0, 1 or 2;
    Sp p11 and Sp p12 are each independently a single bond, a linear or branched alkylene group having 1 to 12 carbon atoms, or a carbon atom of this linear or branched alkylene structure is not adjacent to an oxygen atom. Represents a structural moiety having a chemical structure substituted with an oxygen atom or a carbonyl group under conditions,
    L p11 and L p12 each independently represent a single bond, —O—, —S—, —CH 2 —, —OCH 2 —, —CH 2 O—, —CO—, —C 2 H 4 —, — COO—, —OCO—, —OCOOCH 2 —, —CH 2 OCOO—, —OCH 2 CH 2 O—, —CO—NR P113 —, —NR P113 —CO—, —SCH 2 —, —CH 2 S— , -CH = CR P113 -COO -, - CH = CR P113 -OCO -, - COO-CR P113 = CH -, - OCO-CR aP113 = CH -, - COO-CR P113 = CH-COO -, - COO —CR P113 ═CH —OCO—, —OCO—CR P113 ═CHCOO— , —OCO—CR P113 ═CH —OCO—, — (CH 2 ) tm12 —C (═O) —O—, — (CH 2) m12 -O- (C = O) - , - O- (C = O) - (CH 2) tm12 -, - (C = O) -O- (CH 2) tm12 -, - CH = CH -, - CF═CF—, —CF═CH—, —CH═CF—, —CF 2 —, —CF 2 O—, —OCF 2 —, —CF 2 CH 2 —, —CH 2 CF 2 —, —CF 2 CF 2 —, —C≡C—, —N═N—, —CH═N— , or —C═N—N═C— (wherein R P113 each independently represents a hydrogen atom or 1 to 4 in which tm12 represents an integer of 1 to 4).
    M p11 , M p12 and M p13 are each independently 1,4-phenylene group, 1,3-phenylene group, 1,2-phenylene group, 1,4-cyclohexylene group, 1,3-cyclohexylene group, 1,2-cyclohexylene group, 1,4-cyclohexenylene group, 1,3-cyclohexenylene group, 1,2-cyclohexenylene group, anthracene-2,6-diyl group, phenanthrene-2,7- Diyl group, pyridine-2,5-diyl group, pyrimidine-2,5-diyl group, naphthalene-2,6-diyl group, naphthalene-1,4-diyl group, indane-2,5-diyl group, fluorene- 2,6-diyl group, fluorene-1,4-diyl group, phenanthrene-2,7-diyl group, anthracene-2,6-diyl group, anthracene-1,4-diyl group, 1, Represents a 2,3,4-tetrahydronaphthalene-2,6-diyl group or a 1,3-dioxane-2,5-diyl group,
    M p11 , M p12 and M p13 are each independently unsubstituted or an alkyl group having 1 to 12 carbon atoms, a halogenated alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, A halogenated alkoxy group having 1 to 12 carbon atoms, a halogen atom, a cyano group, a nitro group or —Sp p11 —R p11 may be substituted with the same meaning, mp12 represents 1 or 2, and mp13 to mp14 each independently represent 0, 1, 2 or 3, mp11 and mp15 represents an 1, 2 or 3 independently, they when Z pi 1 there are a plurality of independently identical or different And when there are a plurality of R p11 , they may be the same or different, and when there are a plurality of R p12 , they may be the same or different. And when there are a plurality of Sp p11 , they may be the same or different, and when there are a plurality of Sp p12 , they may be the same or different, When a plurality of L p11 are present, they may be the same or different, and when a plurality of L p12 are present, they may be the same or different, and a plurality of M p12 are present. In some cases, they may be the same or different. When a plurality of Mp13 are present, they may be the same or different. The liquid crystal display element according to claim 11, which is represented by:
  17.  前記液晶組成物(B)が、前記一般式(i)で表される化合物に加え、下記一般式(N-1)、(N-2)、(N-3)及び(N-4)
    Figure JPOXMLDOC01-appb-C000004
    (式中、RN11、RN12、RN21、RN22、RN31、RN32、RN41及びRN42はそれぞれ独立して炭素原子数1~8のアルキル基、又は炭素原子数2~8のアルキル鎖中の1個又は非隣接の2個以上の-CH-が、それぞれ独立して-CH=CH-、-C≡C-、-O-、-CO-、-COO-又は-OCO-によって置換された化学構造を持つ構造部位、て炭素原子数1~8のアルキル基、又は炭素原子数2~8のアルキル鎖中の1個又は非隣接の2個以上の-CH-が、それぞれ独立して-CH=CH-、-C≡C-、-O-、-CO-、-COO-又は-OCO-によって置換された化学構造を持つ構造部位、
    N11、AN12、AN21、AN22、AN31、AN32、AN41及びAN42は、それぞれ独立して
    (a) 1,4-シクロヘキシレン基、
    (b) 1,4-シクロヘキシレン構造中に存在する1個の-CH-又は隣接していない2個以上の-CH-が-O-に置き換えられた構造を有する2価の有機基
     及び
    (c) 1,4-フェニレン基
    (d) 1,4-フェニレン構造中に存在する1個の-CH=又は隣接していない2個以上の-CH=が-N=に置き換えられた構造を有する2価の有機基、
    (e) ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基
    (f) ナフタレン-2,6-ジイル構造又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル構造中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられた構造を有する2価の有機基、及び
    (g) 1,4-シクロヘキセニレン基
    からなる群より選ばれる基を表し、
    上記の基(a)、基(b)、基(c)、基(d)、基(e)、基(f)、及び基(g)は、それぞれ独立してシアノ基、フッ素原子又は塩素原子で置換されていても良く、
     ZN11、ZN12、ZN21、ZN22、ZN31、ZN32、ZN41及びZN42はそれぞれ独立して単結合、-CHCH-、-(CH-、-OCH-、-CHO-、-COO-、-OCO-、-OCF-、-CFO-、-CH=N-N=CH-、-CH=CH-、-CF=CF-又は-C≡C-を表し、
     XN21は水素原子又はフッ素原子を表し、
     TN31は-CH-又は酸素原子を表し、
     XN41は、酸素原子、窒素原子、又は-CH-を表し、
     YN41は、単結合、又は-CH-を表し、
     nN11、nN12、nN21、nN22、nN31、nN32、nN41、及びnN42は、それぞれ独立して0~3の整数を表すが、
    N11+nN12、nN21+nN22及びnN31+nN32はそれぞれ独立して1、2又は3であり、AN11、AN12、AN21、AN22、AN31、AN32、ZN11、ZN12、ZN21、ZN22、ZN31、及びZN32が複数存在する場合は、それらは同一であっても異なっていても良く、
    N41+nN42は0~3の整数を表すが、A41及びAN42、ZN41及びZN42が複数存在する場合は、それらは同一であっても異なっていても良い。)
    で表される化合物からなる群から選択され、かつ、誘電率の異方性が負である1種以上の化合物を含むものである請求項1又は10記載の液晶表示素子。
    In addition to the compound represented by the general formula (i), the liquid crystal composition (B) includes the following general formulas (N-1), (N-2), (N-3) and (N-4)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, R N11 , R N12 , R N21 , R N22 , R N31 , R N32 , R N41 and R N42 are each independently an alkyl group having 1 to 8 carbon atoms, or a group having 2 to 8 carbon atoms. One or two or more non-adjacent —CH 2 — in the alkyl chain are each independently —CH═CH—, —C≡C—, —O—, —CO—, —COO— or —OCO. A structural portion having a chemical structure substituted by —, an alkyl group having 1 to 8 carbon atoms, or one or non-adjacent two or more —CH 2 — in an alkyl chain having 2 to 8 carbon atoms. A structural moiety having a chemical structure each independently substituted by —CH═CH—, —C≡C—, —O—, —CO—, —COO— or —OCO—,
    A N11 , A N12 , A N21 , A N22 , A N31 , A N32 , A N41 and A N42 are each independently (a) a 1,4-cyclohexylene group,
    (B) a divalent organic group having a structure in which one —CH 2 — existing in a 1,4-cyclohexylene structure or two or more non-adjacent —CH 2 — is replaced by —O— And (c) 1,4-phenylene group (d) A structure in which one —CH═ or two or more non-adjacent —CH═ present in the 1,4-phenylene structure is replaced by —N═. A divalent organic group having
    (E) Naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or decahydronaphthalene-2,6-diyl group (f) Naphthalene-2,6-diyl A structure in which one —CH═ present in a 1,2,3,4-tetrahydronaphthalene-2,6-diyl structure or two or more non-adjacent —CH═ are replaced by —N═ And (g) a group selected from the group consisting of 1,4-cyclohexenylene group,
    The group (a), group (b), group (c), group (d), group (e), group (f), and group (g) are each independently a cyano group, a fluorine atom or chlorine. May be substituted with atoms,
    Z N11 , Z N12 , Z N21 , Z N22 , Z N31 , Z N32 , Z N41 and Z N42 are each independently a single bond, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH 2 —. , —CH 2 O—, —COO—, —OCO—, —OCF 2 —, —CF 2 O—, —CH═N—N═CH—, —CH═CH—, —CF═CF— or —C Represents ≡C-
    XN21 represents a hydrogen atom or a fluorine atom,
    T N31 represents —CH 2 — or an oxygen atom,
    X N41 represents an oxygen atom, a nitrogen atom, or —CH 2 —,
    Y N41 represents a single bond or —CH 2 —;
    n N11 , n N12 , n N21 , n N22 , n N31 , n N32 , n N41 , and n N42 each independently represent an integer of 0 to 3,
    n N11 + n N12 , n N21 + n N22 and n N31 + n N32 are each independently 1, 2 or 3, and A N11 , A N12 , A N21 , A N22 , A N31 , A N32 , Z N11 , Z N12 , Z N21 , Z N22 , Z N31 , and Z N32 , they may be the same or different,
    n N41 + n N42 represents an integer of 0 to 3, but when there are a plurality of A 41 and A N42 , Z N41 and Z N42 , they may be the same or different. )
    The liquid crystal display element according to claim 1, wherein the liquid crystal display element comprises one or more compounds selected from the group consisting of the compounds represented by formula (1) and a negative dielectric anisotropy.
  18.  前記液晶組成物(B)が、前記一般式(i)で表される化合物に加え、下記一般式(J)
    Figure JPOXMLDOC01-appb-C000005
    (式中、RJ1は炭素原子数1~8のアルキル基、又は炭素原子数2~8のアルキル鎖中の1個又は非隣接の2個以上の-CH-が、それぞれ独立して-CH=CH-、-C≡C-、-O-、-CO-、-COO-又は-OCO-によって置換された化学構造を持つ構造部位、
     nJ1は、0、1、2、3又は4を表し、
     AJ1、AJ2及びAJ3はそれぞれ独立して、
    (a) 1,4-シクロヘキシレン基
    (b) 1,4-シクロヘキシレン構造中に存在する1個の-CH-又は隣接していない2個以上の-CH-が-O-に置き換えられた化学構造を有する2価の有機基、
    (c) 1,4-フェニレン基
    (d) 1,4-フェニレン構造中に存在する1個の-CH=又は隣接していない2個以上の-CH=が-N=に置き換えられた化学構造を有する2価の有機基、
    (e) ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基又はデカヒドロナフタレン-2,6-ジイル基
    (f)ナフタレン-2,6-ジイル構造又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル構造中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられた構造を有する2価の有機基からなる群より選ばれる基を表し、上記の基(a)、基(b)、基(c)、基(d)、基(e)、及び基(f)はそれぞれ独立してシアノ基、フッ素原子、塩素原子、メチル基、トリフルオロメチル基又はトリフルオロメトキシ基で置換されていても良く、
     ZJ1及びZJ2はそれぞれ独立して単結合、-CHCH-、-(CH-、-OCH-、-CHO-、-OCF-、-CFO-、-COO-、-OCO-又は-C≡C-を表し、
     nJ1が2、3又は4であってAJ2が複数存在する場合は、それらは同一であっても異なっていても良く、nJ1が2、3又は4であってZJ1が複数存在する場合は、それらは同一であっても異なっていても良く、
     XJ1は、水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基又は2,2,2-トリフルオロエチル基を表す。)
    で表される化合物であって、かつ、誘電率の異方性が正である1種以上の化合物を含むものである請求項1又は10記載の液晶表示素子。
    In addition to the compound represented by the general formula (i), the liquid crystal composition (B) has the following general formula (J)
    Figure JPOXMLDOC01-appb-C000005
    (Wherein R J1 represents an alkyl group having 1 to 8 carbon atoms, or one or two or more non-adjacent —CH 2 — in an alkyl chain having 2 to 8 carbon atoms, each independently — A structural moiety having a chemical structure substituted by CH═CH—, —C≡C—, —O—, —CO—, —COO— or —OCO—,
    n J1 represents 0, 1, 2, 3 or 4;
    A J1 , A J2 and A J3 are each independently
    (A) 1,4-cyclohexylene group (b) 1,4-cyclohexylene structure present in one -CH 2 - or nonadjacent two or more -CH 2 - is replaced by -O- A divalent organic group having the specified chemical structure,
    (C) 1,4-phenylene group (d) Chemical structure in which one —CH═ existing in the 1,4-phenylene structure or two or more non-adjacent —CH═ are replaced by —N═ A divalent organic group having
    (E) Naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group or decahydronaphthalene-2,6-diyl group (f) Naphthalene-2,6-diyl A structure in which one —CH═ present in a 1,2,3,4-tetrahydronaphthalene-2,6-diyl structure or two or more non-adjacent —CH═ are replaced by —N═ Represents a group selected from the group consisting of divalent organic groups having the above-mentioned groups (a), (b), (c), (d), (e), and (f): Each independently may be substituted with a cyano group, a fluorine atom, a chlorine atom, a methyl group, a trifluoromethyl group or a trifluoromethoxy group,
    Z J1 and Z J2 are each independently a single bond, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH 2 —, —CH 2 O—, —OCF 2 —, —CF 2 O—, Represents —COO—, —OCO— or —C≡C—,
    When n J1 is 2, 3 or 4 and a plurality of A J2 are present, they may be the same or different, and n J1 is 2, 3 or 4 and a plurality of Z J1 is present. If they are the same or different,
    X J1 represents a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, a fluoromethoxy group, a difluoromethoxy group, a trifluoromethoxy group, or a 2,2,2-trifluoroethyl group. )
    The liquid crystal display element according to claim 1, wherein the liquid crystal display element comprises at least one compound having a positive dielectric anisotropy.
  19.  前記液晶層における液晶組成物のΔnが0.05~0.15である、請求項1~18のいずれか1項に記載の液晶表示素子。 The liquid crystal display element according to claim 1, wherein Δn of the liquid crystal composition in the liquid crystal layer is 0.05 to 0.15.
PCT/JP2017/042547 2016-12-05 2017-11-28 Liquid crystal display element WO2018105439A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018554932A JPWO2018105439A1 (en) 2016-12-05 2017-11-28 Liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-235829 2016-12-05
JP2016235829 2016-12-05

Publications (1)

Publication Number Publication Date
WO2018105439A1 true WO2018105439A1 (en) 2018-06-14

Family

ID=62491204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042547 WO2018105439A1 (en) 2016-12-05 2017-11-28 Liquid crystal display element

Country Status (2)

Country Link
JP (1) JPWO2018105439A1 (en)
WO (1) WO2018105439A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020008894A1 (en) * 2018-07-03 2020-01-09 Dic株式会社 Liquid crystal display element and method for manufacturing liquid crystal display element
WO2020121822A1 (en) * 2018-12-11 2020-06-18 Dic株式会社 Liquid crystal display device
CN111948846A (en) * 2019-05-16 2020-11-17 Dic株式会社 Polymer dispersed liquid crystal element and liquid crystal composition for polymer dispersed liquid crystal element
JP2021001973A (en) * 2019-06-21 2021-01-07 Dic株式会社 Polymerizable liquid crystal composition, optical anisotropic substance, and manufacturing method therefor
CN112368636A (en) * 2018-07-30 2021-02-12 Dic株式会社 Liquid crystal display element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060443A (en) * 1996-05-30 1998-03-03 Merck Patent Gmbh Nematic liquid crystal composition
JPH10319877A (en) * 1997-05-16 1998-12-04 Toshiba Corp Picture display device and light emitting device
JP2005232215A (en) * 2004-02-17 2005-09-02 Dainippon Ink & Chem Inc Composition for polymer dispersion-type liquid crystal display device and polymer dispersion-type liquid crystal display device
JP2011246411A (en) * 2010-05-28 2011-12-08 Jnc Corp Trans-monofluoroethylene liquid crystalline compound having negative dielectric anisotropy, and liquid crystal composition and liquid crystal display using the same
WO2016158371A1 (en) * 2015-04-01 2016-10-06 シャープ株式会社 Illumination device, display device, and television reception device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060443A (en) * 1996-05-30 1998-03-03 Merck Patent Gmbh Nematic liquid crystal composition
JPH10319877A (en) * 1997-05-16 1998-12-04 Toshiba Corp Picture display device and light emitting device
JP2005232215A (en) * 2004-02-17 2005-09-02 Dainippon Ink & Chem Inc Composition for polymer dispersion-type liquid crystal display device and polymer dispersion-type liquid crystal display device
JP2011246411A (en) * 2010-05-28 2011-12-08 Jnc Corp Trans-monofluoroethylene liquid crystalline compound having negative dielectric anisotropy, and liquid crystal composition and liquid crystal display using the same
WO2016158371A1 (en) * 2015-04-01 2016-10-06 シャープ株式会社 Illumination device, display device, and television reception device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112219159A (en) * 2018-07-03 2021-01-12 Dic株式会社 Liquid crystal display element and method for manufacturing liquid crystal display element
CN112219159B (en) * 2018-07-03 2024-05-03 Dic株式会社 Liquid crystal display element and method for manufacturing liquid crystal display element
JPWO2020008894A1 (en) * 2018-07-03 2020-07-09 Dic株式会社 Liquid crystal display device and method of manufacturing liquid crystal display device
TWI794515B (en) * 2018-07-03 2023-03-01 日商Dic股份有限公司 Liquid crystal display element and method for manufacturing liquid crystal display element
WO2020008894A1 (en) * 2018-07-03 2020-01-09 Dic株式会社 Liquid crystal display element and method for manufacturing liquid crystal display element
CN112368636A (en) * 2018-07-30 2021-02-12 Dic株式会社 Liquid crystal display element
CN112368636B (en) * 2018-07-30 2024-04-16 Dic株式会社 Liquid crystal display element
JPWO2020121822A1 (en) * 2018-12-11 2021-02-15 Dic株式会社 Liquid crystal display device
CN112823309A (en) * 2018-12-11 2021-05-18 Dic株式会社 Liquid crystal display device having a plurality of pixel electrodes
WO2020121822A1 (en) * 2018-12-11 2020-06-18 Dic株式会社 Liquid crystal display device
CN111948846A (en) * 2019-05-16 2020-11-17 Dic株式会社 Polymer dispersed liquid crystal element and liquid crystal composition for polymer dispersed liquid crystal element
CN111948846B (en) * 2019-05-16 2023-11-28 Dic株式会社 Polymer dispersed liquid crystal element and liquid crystal composition for polymer dispersed liquid crystal element
JP2021001973A (en) * 2019-06-21 2021-01-07 Dic株式会社 Polymerizable liquid crystal composition, optical anisotropic substance, and manufacturing method therefor

Also Published As

Publication number Publication date
JPWO2018105439A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
JP6628012B2 (en) Light conversion film and image display device using the same
WO2018105545A1 (en) Liquid crystal display element
WO2018105439A1 (en) Liquid crystal display element
TW201726897A (en) Liquid crystal display element
WO2016098637A1 (en) Liquid crystal composition and liquid crystal display element using same
WO2014148197A1 (en) Polymerizable-compound-containing liquid crystal composition and liquid crystal display element using same
WO2019049673A1 (en) Alignment assistant, liquid crystal composition and liquid crystal display element
WO2017098954A1 (en) Liquid crystal display element
JPWO2018079528A1 (en) Liquid crystal display element
WO2017175704A1 (en) Liquid crystal display element and method for manufacturing same
KR20200022374A (en) Spontaneous orientation aid for liquid crystal composition
JP6501134B2 (en) Liquid crystal display device
JP6721876B2 (en) Liquid crystal display element
JPWO2018074311A1 (en) Polymerizable liquid crystal composition, liquid crystal display device, and method of manufacturing liquid crystal display device
WO2017026478A1 (en) Liquid crystal display element
JP7088251B2 (en) Liquid crystal composition
JP6814924B2 (en) Liquid crystal composition and liquid crystal display element using an orientation aid, and a method for manufacturing the same.
JP2020177071A (en) Liquid crystal display element
WO2018043144A1 (en) Liquid crystal display element
WO2017195585A1 (en) Liquid crystal display element
JP2019061017A (en) Liquid crystal display device
JP6409995B2 (en) Liquid crystal display element
WO2015098660A1 (en) Liquid crystal composition and liquid crystal display element using same
JP6797361B2 (en) Liquid crystal display element
JP2020204726A (en) Liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877840

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018554932

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877840

Country of ref document: EP

Kind code of ref document: A1