JP2010197386A - インライン高圧粒子検知システム - Google Patents

インライン高圧粒子検知システム Download PDF

Info

Publication number
JP2010197386A
JP2010197386A JP2010025370A JP2010025370A JP2010197386A JP 2010197386 A JP2010197386 A JP 2010197386A JP 2010025370 A JP2010025370 A JP 2010025370A JP 2010025370 A JP2010025370 A JP 2010025370A JP 2010197386 A JP2010197386 A JP 2010197386A
Authority
JP
Japan
Prior art keywords
sensor
particle
illumination
interference area
sample interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010025370A
Other languages
English (en)
Inventor
Felix Schuda
フェリクス・シューダ
Delrae Gardner
デルラエ・ガードナー
Craig C Ramsey
クレイグ・シー・ラムジー
Dennis J Bonciolini
デニス・ジェイ・ボンシオリニ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cyberoptics Corp
Original Assignee
Cyberoptics Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cyberoptics Semiconductor Inc filed Critical Cyberoptics Semiconductor Inc
Publication of JP2010197386A publication Critical patent/JP2010197386A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/532Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke with measurement of scattering and transmission

Abstract

【課題】半導体プロセス中の粒子の突発的発生の検知、プロセスの稼働に対する損害の防止。
【解決手段】インライン粒子センサは、センサ本体と、照明源と、照度検出器と、通信電子機器とを含む。センサ本体は、電子機器筐体と、流体入口、流体出口、試料干渉区域及び試料干渉区域を通して流体入口から流体出口まで延びる流体通路を備える流通部とを有する。照明源は、試料干渉区域の少なくとも一部を通して光を提供するように配置される。照度検出器は、試料干渉区域内の流路の少なくとも1つの粒子に照明が当たる結果としての照度変動を検出するように配置される。通信電子機器は、照度検出器に動作可能に結合されて、照度検出器によって検知された少なくとも1つの粒子の示度を提供する。試料干渉区域は、高い動作圧力に耐えるように構成される。
【選択図】図4

Description

半導体プロセス産業の最先端は、現在45ナノメートルスケールの生産まで進歩している。さらに、32ナノメートル及び22ナノメートルスケールで開発が進んでいる。したがって、半導体プロセスツール及びプロセス自体が、これまでは全く必要とされなかった耐性及び状態まで制御されることがますます肝要となる。ウエハスクラップ及びメンテナンスダウンタイムのコストは、プロセス及び機器の制御の要望をより厳しいレベルまで駆り立て続けており、100ナノメートルを上回るプロセスについてあまり重要でない他の問題が生じた場合、プロセス及び機器の技術者は、半導体プロセスをより良好に制御するための新しくかつ革新的な方法を探している。
半導体ウエハの製造中、複数のツール及びプロセスがあり、ウエハはそれらにさらされる。これらの各ステップ中に、それぞれ欠陥の可能性があり、これは不潔な機器及び/又はプロセス状態によって生じる場合があり、ウエハの表面上に堆積している微細粒子に起因して、最終的な集積回路デバイスの生産に劣化を生じさせる可能性がある。このように、全プロセスのステージ及びステップを、できる限り適度に清潔に保ち、ウエハをプロセスに託す前に、これらの各種ステージの状態を監視することができるようにすることが肝要である。このことが重要なのは、各ウエハが数十又は数百もの集積回路デバイスの回路構成を含む場合があり、一つのウエハの損失が数百又は数千ドル相当のスクラップにつながるかもしれないためである。
インライン粒子センサは、センサ本体と、照明源と、照度検出器と、通信電子機器とを含む。センサ本体は、電子機器筐体と、流体入口、流体出口、試料干渉区域及び試料干渉区域を通して流体入口から流体出口まで延びる流体通路と、を備える流通部とを有する。照明源は、試料干渉区域の少なくとも一部を通して光を提供するように配置される。照度検出器は、試料干渉区域内の流路の少なくとも1つの粒子に照明が当たることの結果としての照度の変動を検出するように配置される。通信電子機器は、照度検出器に動作可能に結合されて、照度検出器によって検知された少なくとも1つの粒子の示度を提供する。試料干渉区域は、高い動作圧力に耐えるように構成される。
本発明の実施形態の、半導体プロセスシステムのためのインライン粒子検知システムの図である。 本発明の実施形態の、半導体プロセスシステムのためのインライン粒子検知ツールの斜視図である。 本発明の実施形態の、粒子検出の図である。 本発明の粒子検出の別の実施形態の図である。 本発明の実施形態の、インライン粒子検知システムの構成部品の図である。 本発明の実施形態の、インライン粒子検知システムを使用している半導体プロセスツールの図である。
上述のように、全プロセスのステージ及びステップを清潔に保ち、ウエハをプロセスに託す前にステージの状態を監視することが肝要である。加えて、半導体プロセスツールに特殊ガス又は化学物質を提供し、中央監視ステーションに無線で又は別の方法でデータを送信することができるシステムによって汚染粒子の限度を設定する、1以上のプロセスケミカルデリバリーシステムを監視することができるリアルタイムシステムを備えることもまた有益である。
既存の粒子測定システムは、主として実験又は診断機器として意図されていると考えられる。多くのそのようなシステムは、自由大気を測定するように設計される。ガス又は流体の流線中の粒子を測定するいくつかのシステムが使用可能であると考えられる。しかし、これらのシステムは比較的大型で高価であり、使用のために訓練が必要である。加えて、これらのシステムは頑丈には構成されておらず、通常は測定されているガスの通気を必要とする。要するに、そのような現在使用可能なシステムは、継続的に工業的環境に設けられることができるものよりも、はるかに注意及びメンテナンスを必要とする。
図1は、本発明の実施形態の、インライン粒子検知システムを使用している半導体プロセスシステムの図である。システム100は、ボトル又は他の好適な構造物104内部に配置された特殊プロセスガス源又は化学物質源102を含む。弁は、参照番号106で模式的に図示され、ボトル104内のガス又はプロセス化学物質が、出口108を通ってライン110内に入ることを可能にする。いくつかの用途では、ライン110はさらに、圧力レギュレータ(図示せず)を適宜含んでもよい。ライン110は、中を通過するガス又はプロセス化学物質に混入された粒子を測定するか又は検知するインライン粒子センサ114の入口112に流入する。そのような測定されたガス及び/又は化学物質は、すべてセンサ114の出口116を出て、半導体ツール/ステーション118に提供される。
半導体装置の構成に用いられるプロセスの例は、物理蒸着(PVD)、化学気相蒸着(CVD)、電気化学的蒸着(ECD)、原子層蒸着(ALD)及び分子線エピタキシ(MBE)等を含む。そのようなプロセスはそれぞれ、そのプロセス用の異なるタイプ又は形状の特殊化学物質又はガスを必要とする場合がある。加えて、所与のタイプのプロセス用に異なるタイプのガスを使用することは、異なる結果をもたらす場合がある。したがって、半導体プロセスは、半導体プロセス用にボトル104内部に備えられた多様な特殊ガス及び/又は化学物質を使用する場合がある。しかし、すべてのそのような原料は、きわめて高い清浄度が備えられていなければならない。
半導体ウエハが、過剰な粒子によって生じた汚染のために廃棄された場合、ウエハが受けたプロセス全体を詳細に分析しなければならない。粒子は、多くの異なる汚染の潜在的な原因に加えて、半導体ツール内部の機械的な衝突から発される可能性があるため、そのような汚染の根本的原因を確かめることは、一般的には相当に困難である。確かに、プロセスガス及び特殊化学物質は、プロセスのために用いられるため、それらがそのような汚染源になる可能性がある。プロセスガス又は特殊化学物質の清浄度が、リアルタイム又は履歴ベースで検証することができるような効率的な方法を備えることにより、半導体ウエハの製造中の品質を保証し、及び/又は汚染が実際に生じた場合に必要とされる分析量を減少させる有意な利益を提供する。
上述のように、いくつかの粒子センサを使用して、高圧流からのプロセスガス又は特殊化学物質の一部を分離して、分離部分の粒子を監視する。分離部分に粒子が検出された場合、粒子は、プロセスのために用いられる非分離部分にも存在すると想定される。しかし、清浄度レベルがきわめて高くなった場合、その想定が常に正しいわけではない場合がある。たとえば、少数の粒子は分離部分について行くため、プロセスガス又は特殊化学物質の非分離部分が実際には粒子を含有していない場合にも、検出されてしまうことがある。反対に、粒子は、分離部分についていかないため検出されないが、依然として半導体ツール又はプロセスに汚染をもたらす可能性もある。粒子検出のためにプロセスガスの一部を分離する利点は、現在市販されている粒子センサを、破壊することなく適合させることができるレベルまで、ガスの圧力を低減させることができることである。しかし、ガスはいったん粒子センサを通過すると、空気又は他のガスと混合されるため、プロセス内に再注入されるにはもはや好適ではない場合がある。ガスがプロセスに再注入されない別の理由は、いったん圧力が、使用可能な粒子検出センサを適合させる程度に低下すると、ガスは、再注入可能になる前に再加圧される必要があることである。さらに、加圧プロセス自体が汚染源又は粒子源となる可能性があるため、望ましくない。したがって、測定されたガスは、破棄されるか又は安全に逃がされる。
本発明の実施形態がインラインであると考えられるのは、所与のボトル104又は好適な容器からのすべてのプロセスガス又は特殊化学物質が、センサを通過して、適切なツール又は半導体プロセスステーション118上に運ばれるためである。したがって、図1に示されるように、センサ114は、入口112及び流出口116を含み、これらを通してすべての特定の特殊化学物質又はプロセスガスが流れる。とりわけ、センサ114は、通気孔、又は入口112における流入が流出116よりも大きくなることを可能にする他の好適な構造を含まない。
図2は、本発明の実施形態のインライン粒子センサの斜視図である。センサ114は、電子機器筐体120に加えて、流通部122を含む。流通部122は、入口112及び出口116を含み、好ましくは金属で構成される。より好ましくは、流通部122は、単一部品のステンレス鋼で構成される。図2に図示されるように、入口112及び出口116は、好ましくは規格化された入口であり、質量流制御部及び他の好適な装置が、半導体プロセスシステムの特殊化学物質及びプロセスガスのラインに結合されるのとほぼ同じ方法で流れのラインに結合されることができる。好ましくは、流通部122は、相対的に矩形であり、一般的なガス弁及び質量流制御部のようなフロー部品と同じような方法でガスパネルに取り付けるような形状及びサイズにされる。
質量流制御部は、多くの半導体及び工業用ガス流システムの基礎的な構成要素である。質量流制御部は、ガスシステムへの取り付け及び接続を容易にするような準標準形状を有する。また、質量流制御部は、中央制御室によって制御され、そこに報告する。本発明の実施形態では、インライン粒子検知システム及び質量流制御部は、併用されることが意図されている。これにより、粒子検出情報を流量に関連させることが可能になり、粒子情報
を、流れの量又は質量ごとの粒子に関して提供することができる。
いくつかの実施形態では、インライン粒子測定システムは、質量流制御部に物理的に類似している。たとえば、入口112及び出口116は、好ましくは基部から1/2インチ中央寄りである。流通部122の幅は、好ましくは38mm未満であり、流通部122の長さは、好ましくは200mm未満である。装置全体(流通部122及び電子機器筐体120)の高さは、好ましくは180mm未満であり、より好ましくは160mm未満である。質量流制御部は、ガス又は流体の流れを測定して制御し、一方でインライン粒子検知システムは、粒子の存在及び/又は濃度を報告することにより、デリケートな機器及び製品への損傷を防止する。
本発明の実施形態では、インライン粒子検知システムは、継続的又は断続的に用いられてもよい。さらに、インライン粒子検知システムは、ガス使用点で用いられてもよく、又はガスラインに沿った任意の位置に配置されてもよい。またさらには、センサは、継続的に超高圧下(およそ3000ポンド/平方インチ)に置かれる環境で、最初の弁より先にガスボトルに直接接続されてもよい。材料選択及び/又は他の設計考慮事項を通して、本発明の実施形態はまた、高温に耐える能力を提供する場合もある。他の装置とは対照的に、本発明の実施形態は、リアルタイムの粒子情報を提供するシステム及び方法を提供する。この情報は、半導体工場内の多くの臨界流体の状態について、プロセス/施設技術者にフィードバックを伝えるのに用いることができる。本発明の実施形態は、工場全体で用いることができ、さらにはシーリングされて、湿潤した用途で用いられてもよい。現在、市販されているいくつかの粒子カウンタは、工場環境内の粒子をカウントするために比較的高速の気流を必要とする。しかし、化学送出ラインでの直接の無線測定用の方法は存在しないと考えられる。さらに、現在使用可能なガス又は流体粒子監視システムは、高ガス圧に耐え得るとは考えられず、有害なガスが監視されている場合に危険であるおそれがある環境内での永続的な設置が意図されていない。対照的に、本発明の実施形態は、高圧ラインに永続的に設置することができ、長期間にわたって超高圧に耐え得る装置を提供する。
図3は、本発明の実施形態の、インライン粒子検知システム114の図である。ガス流は、入口112から一直線に出口116に向かっているとして模式的に図示されているが、実際には、流通路は一直線である必要はない。照明源130は、好ましくはレーザであり、より好ましくはダイオードレーザである。しかし、本発明の実施形態は、照明源130がLED又は他の好適な光源である場合に実施することができる。光の波長及び対象となる粒子のサイズは、一般的には照明源130の選択において考慮される。一般に、短波長が好ましいが、これはプロセス技術がますます小さな粒子径へと進歩しているためである。好ましくは、照明の波長は全体として短い、たとえば青又は紫外領域であるが、これは、より短い波長の照明は粒子によってより拡散されるためである。図3に図示されるように、照明源130は、好ましくは、流れ干渉区域132内の流体流に実質的に直交する方向で、直接照明に配置される。照明源130からの照明が、好ましくは透明材料、たとえばガラス、水晶、サファイア、炭化ケイ素(SiC)又は液体/ガス送出システムの一部であり、干渉区域132を通した流体の流れからのリアルタイムデータが見られる他の好適な材料から形成される透明の管又は窓を通して光ることが好ましい。粒子(たとえば、参照番号134で模式的に図示されている)は、干渉区域132に進入すると、拡散するか、あるいは検出器136、138に当たる相当量の光を妨げる。検出器136、138によって測定された、照明の強さにおけるこの瞬間的な変動は、好適な検出回路(図3に図示せず)によって検出されて、粒子134の存在をカウントするかまたは検出する。ビーム中に粒子がない場合、拡散光は検出されない。図3に図示されるように、複数の検出器136、138を設けることができる。さらに、照明源130からの照明の方向に対して異なる角度の方向に、異なる検出器を設けることができる。以上のように、検出器136は一般的に、粒子が存在しない場合の照度の定常状態量を検出する。粒子が光ビームを妨げると、検出器136は、測定された照度の低下を記録する。一方、検出器138は、検出器136に対してある角度をもって(相対的に90度として図示される)配置される。粒子が存在しない場合、検出器138は照明を検出しない。しかし、粒子134が照明を拡散させる場合、検出器138は拡散された照明を検出する。好ましい実施形態では、単一の検出器136を用いて粒子を検出する。当業者においては、本発明のさまざまな実施形態に従って、検出器の他の構成を実施できることが理解されよう。いくつかの実施形態では、センサは、複数の検出器を介して同時の、又は実質的に同時の検出を用いる。さらに、検出器は、試料管の周囲沿い又は交差又は走査ビーム下の管の表面上を含む、ビームによって直接照明されない場所に位置付けられることができる。本明細書で用いられる交差ビームとは、少なくとも一度曲げられるか又は反射されて、試料干渉区域を複数回通過するビームである。これにより、試料干渉区域において、増大された有効範囲を提供することができる。走査ビームは、試料干渉区域全体をカバーするように動く、強く集束されたビームである。強い集束により、小さな粒子の検出に必要な高いビーム強度が可能になる。実際、ビーム強度は、ビームが走査されない場合、ビームからの熱がセンサを破損する程高い場合がある。
図4は、本発明の実施形態の、インライン粒子検知システムの図である。システム214には、システム114との多くの類似点が記載され、同様の部品には同じように番号が振られている。システム214は、照明源230及び検出器238に結合されたプロセス電子機器250を含む電子機器筐体220を含む。さらに、システム214は、入口212及び出口216を含み、これらを通してプロセスガス又は特殊化学物質が流れる。入口212から出口216への全流路は図4には図示されないが、これはいくつかの流路は断面図では示されず、いくつかの流路はページの平面に対して垂直であるためである。
照明源230は、好ましくはレーザ照明源であり、平行光学系234に進入して平行ビーム236を生成するレーザ照明232を生成する。平行ビーム236は、高圧透明部材240を通過して試料干渉区域242内に進み、最終的に高圧透明/反射部材244に突き当たる。部材244は、平行ビーム236の一部を、参照番号246として示されるように反射する。さらに、ビーム236の一部は、部材244を通過して、鏡又は他の好適な光学面248によって、ビーム251で示されるように反射される。高圧透明部材240、244はそれぞれ、平行ビーム246を適宜通し及び/又は反射するように光学的に構成される。加えて、部材240及び244は、システム214が曝される全体の動作圧力に耐えるために十分に厚く、かつ十分に強い材料から選択される。たとえば、干渉区域242内部の圧力は、およそ3000ポンド/平方インチ又はそれ以上になる場合がある。したがって、部材240及び244は、そのような圧力に耐えるように構成された光学部材である。加えて、管又は透明部材を装着させるために好適なシーリング又は他の継手を設けて、高圧シーリングを容易にしてもよい。ガス流チャンバ又は試料干渉区域242全体が、超高圧に耐えるように堅固に設計される必要がある。このことは、半導体工場内の多くのガスが非常に有毒であるか又は可燃性があり、ガスの漏れが危険であるために特に重要である。干渉区域242は、好ましくはガスを汚染しないか、又はガスと反応しない材料で構成される。ステンレス鋼は好ましい材料である。水晶又はサファイアは、透明部材240及び244の窓の好ましい材料である。シーリング部材252は、チャンバ内のガス又は流体に依存して、さまざまな材料から作られるOリングであってもよい。加えて、又はこれに代えて、シーリング部材252は、金属のOリングにすることができる。平行ビーム236は、試料干渉区域242内の粒子と干渉した後、透明部材244を通って試料干渉区域242から出て行く。好ましくは、レーザ迷光は、光検出光学系及び光検出器238から遠ざけて、粒子からの信号を遮蔽するのを防止する。
試料干渉区域242内部のガス流は、好ましくはページの平面から出て行っているノズル254からである。したがって、ノズル254を通過するガスは、基本的には平行ビーム236の角度に対して実質的に直交する角度に伝えられている。ノズル254のサイズ決めによって、試料干渉区域242を通るガス流速を制御することができる。干渉区域242内部では、ノズル254から流出するガスに混入した粒子は、ビーム236内部の照明に拡散を生じさせる。この拡散は、検出光学系262及び264を通過するビーム260で検出される。光学系262及び264は協働して、ガス干渉区域及び位置266の光検出器238上の拡散照明の像に焦点を合わせる。図4に図示されるように、拡散照明は、それを通して質の高い照明伝達を提供するようにも光学的に構成されるが、試料干渉区域242の内圧に耐えるようにも物理的に構成された第3の高圧光学部材270を通して伝えられる。さらに、部材270は、図示されるように、好適なシーリング部材252でシーリングされることができる。
図5は、本発明の実施形態の、インライン粒子検知システムの図である。システム214は、プロセッサ又はプロセス電子機器250、電源モジュール272及び通信モジュール280を含む。プロセッサ250は、照明源230及び1以上の検出器238に動作可能に結合される。電源モジュール272は、好ましくはセンサ214に電力を提供するエネルギ源、たとえば充電式あるいはそれ以外のバッテリを含む。加えて、又はこれに代えて、電源モジュール272は、市販の壁コンセントからの電力を調整して、センサに電力供給し、及び/又は(停電の場合にバックアップ動作を提供することができる)バッテリを充電する回路を含んでもよい。プロセッサ250は、好ましくはマイクロプロセッサであるが、検出器238を用いて粒子を検知するかあるいは検出して、通信モジュール280に粒子検出に関する情報を伝えるために使用可能な情報を提供することができる任意の好適なプロセス電子機器であってもよい。通信モジュール280は、プロセッサ250に結合され、粒子検出に関する情報を通信するように構成される。モジュール280は、無線通信モジュール、有線通信モジュール又はそれらの任意の組み合わせであってもよい。有線通信の好適な例は、ユニバーサルシリアルバス(USB)通信規格の他に、既知のイーサネット(Ethernet)通信を含む。好適な無線通信の例は、既知のBluetooth通信プロトコルの他に、既知のZigBee通信プロトコルを含む。
照明源230は、照明干渉を検出することができるような方法で粒子と干渉することができる、可視あるいはそれ以外の電磁エネルギを生成することが可能な任意の好適な装置にすることができる。好ましくは、照明源230は、比較的短波長を有するレーザ照明源、たとえば青色レーザである。検出器238は、照明源230からの照明を検出することができる任意の好適な装置にすることができる。好ましくは、検出器238は単に、照明源230によって提供された照明の波長に対する感度を有する光検出器である。しかし、それに影響を及ぼす電磁エネルギを基にして電気信号を生成することが可能な任意の装置を用いてもよい。
図6は、特殊ガス源302、304、306に動作可能に結合された半導体プロセスツール300の図である。ガス源302、304、306は、それぞれのインライン粒子検知システム308を介して、ツール300に動作可能に結合される。システム308は、無線あるいは他の方法で、リアルタイム又はそれ以外に生じた粒子検出イベントを報告することができる。システム308によって提供された粒子検出情報は、半導体ツール制御部312に動作可能に結合された受信機310に伝えられる。制御部312はまた、314で模式的に図示されるように、技術者又は操作者にインターフェイスを提供する。したがって、システム308のいずれかが、選択された閾値よりも多い総計または量で流れる粒子を検出すると、ツール制御部312は、プロセスを自動的に停止させるか、又はインターフェイス314を介して操作者に対して警告又は他の好適な表示を生成することができる。加えて、ツール300に関する問題が発見された場合、インターフェイス314を使用している操作者は、リアルタイムデータの他に、システム308によって提供された記憶された履歴情報を調査して、ツール300を汚染した可能性がある粒子が、ガス源302、304、306のいずれから導入されたかを判断してもよい。
本発明の実施形態は、数多くの半導体プロセス用途での数多くの利点を提供する。たとえば、一般的にプロセスガス製造業者又は供給元は、供給されたガスの清浄度に気を使い、又はガスの清浄度に関して顧客と言い争う場合がある。ガス供給元は、ガスボトルにインライン粒子検知システムを設置し、ボトルから出ているガスを監視してもよい。顧客が明らかな粒子の突発的な発生を認めた場合、ガス供給元は、検知システムによって記録された粒子レベルを調べて、ボトルから出ていたガスが汚染されていたかを検証することができる。これは、汚染後のトラブルシューティングの一例である。
半導体プロセスシステムのための本発明の実施形態によって提供される利点の別の例は、半導体工場又は他の施設で粒子が検出された場合である。インライン粒子検知システムは、特殊ガスラインのさまざまなポイントに接続されて、粒子源を判定することを試みることができる。これは、本発明の実施形態を使用した分散型の粒子検知の一例である。
本発明の実施形態によって提供される利点のまた別の例は、インライン粒子検知システムを用いて、粒子の突発的な発生を検知し、プロセスの停止、弁閉鎖又は警告を生じさせて、プロセスの稼働に対する損害を防止することである。これはイベント検出の一例であり、リアルタイム情報又は実質的なリアルタイム情報を用いてさらなる問題を防止することができる。さらに、粒子レベルを経時監視してもよく、さまざまな品質制御方法を適用して、粒子レベルを改善させることができる。
本発明の実施形態の別の利点が生じるのは、数多くのガスのユーザが、圧力が一定のレベルまで降下するとガスを用いることを中断するが、これはボトル内の最後のガスを取り出すと、汚染の機会が増大することを経験から習得しているからである。しかし、ユーザが本発明の実施形態のインライン粒子センサを設置すれば、ユーザは汚染が強まり始めた時を検出することができるため、ユーザはボトルからガスをさらに用いることが可能である場合がある。
好ましい実施形態を参照して本発明を説明してきたが、当業者においては、本発明の本質及び範囲から逸脱することなく、形状及び詳細に変更を加えてもよいことが認識されよう。

Claims (18)

  1. 電子機器筐体と、流体入口、流体出口、試料干渉区域及び試料干渉区域を通して流体入口から流体出口まで延びる流体通路を備える流通部と、を有するセンサ本体と、
    試料干渉区域の少なくとも一部を通して光を提供するように配置された照明源と、
    試料干渉区域内の流路の少なくとも1つの粒子に照明が当たる結果としての照度の変動を検出するように配置された照度検出器と、
    照度検出器に動作可能に結合されて、照度検出器によって検知された少なくとも1つの粒子の示度を提供する通信電子機器とを含み、
    試料干渉区域が、高い動作圧力に耐えるように構成されるインライン粒子センサ。
  2. 通信電子機器が、無線通信電子機器である、請求項1記載のセンサ。
  3. 通信電子機器が、有線通信電子機器である、請求項1記載のセンサ。
  4. 有線通信電子機器が、イーサネット通信電子機器である、請求項3記載のセンサ。
  5. 有線通信電子機器が、USB接続通信電子機器である、請求項3記載のセンサ。
  6. 試料干渉区域はシーリングされるが複数の透明窓を含み、複数の透明窓は、照明源からの照明を伝えるが、協働して試料干渉区域をシーリングする、請求項1記載のセンサ。
  7. さらに協働して、試料干渉区域をシーリングし、少なくとも1つの粒子によって生じる照度変動を照度検出器に通す検出窓をさらに含む、請求項6記載のセンサ。
  8. 照明検出器に、試料干渉区域の焦点画像を提供するように配置された検出光学系をさらに含む、請求項7記載のセンサ。
  9. センサが、質量流制御部に類似して外見的に存在するように構成される、請求項1記載のセンサ。
  10. 流通部が、単一部品の金属から構成される、請求項1記載のセンサ。
  11. 金属がステンレス鋼である、請求項1記載のセンサ。
  12. 照明源がレーザである、請求項1記載のセンサ。
  13. 照明源からのレーザ照明を平行にするように配置された平行光学系をさらに含む、請求項12記載のセンサ。
  14. 照明及び流体流が、試料干渉区域で、互いに対して実質的に直交する、請求項1記載のセンサ。
  15. 流体通路内に介在し、選択された流体流量を提供するように構成されたノズルをさらに含む、請求項1記載のセンサ。
  16. 弁及び出口を有する加圧流体源と、
    出口に動作可能に結合された粒子センサと、を有し、
    粒子センサが、
    電子機器筐体と、流体入口、流体出口、試料干渉区域及び試料干渉区域を通して流体入口から流体出口まで延びる流体通路を備える流通部と、を有するセンサ本体と、
    試料干渉区域の少なくとも一部を通して光を提供するように配置された照明源と、
    試料干渉区域内の流路の少なくとも1つの粒子に照明が当たる結果としての照度の変動を検出するように配置された照度検出器と、
    照度検出器に動作可能に結合されて、照度検出器によって検知された少なくとも1つの粒子の示度を提供する通信電子機器とを含み、
    試料干渉区域が、加圧流体源の圧力に耐えるように構成される、
    半導体プロセスツールに流体を提供するためのシステム。
  17. 第1の粒子センサと半導体プロセスツールとの間に動作可能に介在された、追加の粒子センサをさらに含む、請求項16記載のシステム。
  18. 粒子センサがそれぞれ、半導体プロセスツールの制御部に粒子の示度を伝える、請求項17記載のシステム。
JP2010025370A 2009-02-11 2010-02-08 インライン高圧粒子検知システム Withdrawn JP2010197386A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15162909P 2009-02-11 2009-02-11
US26276409P 2009-11-19 2009-11-19
US12/692,715 US20100201984A1 (en) 2009-02-11 2010-01-25 In-line high pressure particle sensing system

Publications (1)

Publication Number Publication Date
JP2010197386A true JP2010197386A (ja) 2010-09-09

Family

ID=42540189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010025370A Withdrawn JP2010197386A (ja) 2009-02-11 2010-02-08 インライン高圧粒子検知システム

Country Status (4)

Country Link
US (1) US20100201984A1 (ja)
JP (1) JP2010197386A (ja)
KR (1) KR20100091916A (ja)
TW (1) TW201043944A (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10444051B2 (en) 2017-01-09 2019-10-15 Georg Fischer Signet, LLC Ultrasonic sensor assembly and method of manufacture
US10254143B2 (en) 2017-01-13 2019-04-09 Georg Fischer Signet Llc Fluid-flow sensor assembly having reinforced body
US10620060B2 (en) 2017-07-19 2020-04-14 Georg Fischer Signet, LLC Combined ultrasonic temperature and conductivity sensor assembly
US10302474B2 (en) 2017-08-09 2019-05-28 Georg Fischer Signet Llc Insertion ultrasonic sensor assembly
KR102499008B1 (ko) * 2018-04-11 2023-02-10 사이버옵틱스 코포레이션 인라인 입자 센서
EP3715830B1 (en) * 2019-03-26 2024-01-03 Eaton Intelligent Power Limited System for detection of particles in fluids

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3713743A (en) * 1970-11-25 1973-01-30 Agricultural Control Syst Forward scatter optical turbidimeter apparatus
RU2205382C2 (ru) * 1995-04-06 2003-05-27 Альфа Лаваль Агри Аб Способ и устройство для количественного определения частиц в жидких средах
US7530877B1 (en) * 1999-06-03 2009-05-12 Micron Technology, Inc. Semiconductor processor systems, a system configured to provide a semiconductor workpiece process fluid
US6710878B1 (en) * 1999-06-14 2004-03-23 General Electric Company In-line particulate detector
US7414720B2 (en) * 2001-07-27 2008-08-19 Herbert Wachtel Measuring particle size distribution in pharmaceutical aerosols
US7576857B2 (en) * 2002-08-27 2009-08-18 Particle Measuring Systems, Inc. Particle counter with laser diode
NO317913B1 (no) * 2002-12-20 2004-12-27 Solve J Fjerdingstad Pa stedet provetagning og overvakning av en vaeske
CA2439242C (en) * 2003-09-03 2008-01-29 Photon Control Inc. Optical flow meter for measuring gases and liquids in pipelines
US7667839B2 (en) * 2006-03-30 2010-02-23 Particle Measuring Systems, Inc. Aerosol particle sensor with axial fan
US7948621B2 (en) * 2007-06-28 2011-05-24 Perry Equipment Corporation Systems and methods for remote monitoring of contaminants in fluids
US7956998B2 (en) * 2007-09-04 2011-06-07 James Plant Method and system for the polarmetric analysis of scattering media utilising polarization difference sensing (PDS)
US7738101B2 (en) * 2008-07-08 2010-06-15 Rashid Mavliev Systems and methods for in-line monitoring of particles in opaque flows

Also Published As

Publication number Publication date
KR20100091916A (ko) 2010-08-19
TW201043944A (en) 2010-12-16
US20100201984A1 (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP7255049B2 (ja) 流れ及び気泡検出システムを有する自動出力制御液体粒子計数器
JP2010197386A (ja) インライン高圧粒子検知システム
US6947138B2 (en) Optical sensor system and method for detection of hydrides and acid gases
KR102245520B1 (ko) Foup에서 실시간 환경 센서를 사용하기 위한 시스템들, 디바이스들, 및 방법들
JP5574959B2 (ja) 流体内の汚染物質を遠隔モニタするためのシステム及び方法
US7481095B2 (en) Liquid particle mass measurement in gas streams
CN210775144U (zh) 半导体检测机台
KR100849399B1 (ko) 단일 가스감지기를 이용한 복수 구역 가스 누출 감지시스템
CN106198484B (zh) 一种用于石化载氢管道氢气和杂质含量在线监测的光纤传感系统与方法
JP2007029537A (ja) 隔絶可撓性部材の除染方法、及び該除染方法に用いられる隔絶可撓性部材の凝縮検知装置
US9551652B2 (en) Chlorine dioxide gas concentration measuring apparatus
KR101869811B1 (ko) 암모니아 가스 검출장치 및 그를 구비하는 반도체 생산라인의 관리 시스템
US10801945B2 (en) Inline particle sensor
KR102142248B1 (ko) 압축 공기의 입자 측정 장치
US20150325097A1 (en) Smart canister
KR101774145B1 (ko) 가스 누설 감지 장치
CN110794445A (zh) 一种在线测量工艺料液放射性的系统
JP2012008059A (ja) ガス中粒子計測システム
TWI274825B (en) A remote monitoring system and method for chemical delivery
KR20140125167A (ko) 클린룸에 발생되는 유해물질 모니터링 장치
KR20160094116A (ko) 가스배관의 오염도 모니터링 장치
US20200124503A1 (en) Methods, systems, and apparatuses for measuring concentration of gases
KR20120063238A (ko) 입자 측정 장치
JP5596492B2 (ja) 紫外線殺菌装置
KR101970220B1 (ko) 여과재를 이용한 유체 중의 실시간 이물 계수 장치

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130507