JP2010197163A - Thin-film temperature sensor and method for manufacturing the same - Google Patents

Thin-film temperature sensor and method for manufacturing the same Download PDF

Info

Publication number
JP2010197163A
JP2010197163A JP2009041194A JP2009041194A JP2010197163A JP 2010197163 A JP2010197163 A JP 2010197163A JP 2009041194 A JP2009041194 A JP 2009041194A JP 2009041194 A JP2009041194 A JP 2009041194A JP 2010197163 A JP2010197163 A JP 2010197163A
Authority
JP
Japan
Prior art keywords
thin film
lead wire
temperature sensor
plating layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009041194A
Other languages
Japanese (ja)
Other versions
JP5187229B2 (en
Inventor
Hitoshi Inaba
均 稲場
Kensho Nagatomo
憲昭 長友
Yoshinori Adachi
美紀 足立
Meiko Nakamura
明衣子 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009041194A priority Critical patent/JP5187229B2/en
Publication of JP2010197163A publication Critical patent/JP2010197163A/en
Application granted granted Critical
Publication of JP5187229B2 publication Critical patent/JP5187229B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce changes in the electrical characteristics, by suppressing increase in the heat capacity and by preventing advancement of oxygen. <P>SOLUTION: This thin-film temperature sensor includes an insulating substrate 3; a thermistor thin film 4 formed in a pattern on the top of the insulating substrate 3; a Pt junction layer 5, formed in a pattern of Pt on a part from the top of the insulating substrate 3 over to the top of the thermistor thin film 4; an Ni plating layer 6 formed of Ni on the Pt junction layer 5; an Ni oxide film 7 formed on the surface of the Ni plating layer 6; and a lead wire 8 connected to the Ni plating layer 6. The lead wire 8 is welded to the middle of the Ni plating layer 6, to a penetration depth which is larger than that in the Ni oxide film 7. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、小型で熱応答特性の優れた薄膜温度センサ及びその製造方法に関するものである。   The present invention relates to a thin film temperature sensor having a small size and excellent thermal response characteristics, and a method for manufacturing the same.

例えば、情報機器、通信機器、医療用機器、住宅設備機器、自動車用伝送機器等の温度センサ、流量センサとして、大きな負の温度係数を有する酸化物半導体の焼結体からなるサーミスタチップがある。このサーミスタチップを用いた温度センサは、端子電極が形成されており、この電極面にはんだ付け等によってリード線を取り付けた構造のものである。又、サーミスタチップの寸法やリード線径を小さくすることによって、熱応答特性の良い温度センサとして使用されている。 For example, there is a thermistor chip made of an oxide semiconductor sintered body having a large negative temperature coefficient as a temperature sensor and a flow rate sensor for information equipment, communication equipment, medical equipment, housing equipment, automobile transmission equipment, and the like. A temperature sensor using the thermistor chip has a structure in which a terminal electrode is formed and a lead wire is attached to the electrode surface by soldering or the like. In addition, it is used as a temperature sensor with good thermal response characteristics by reducing the thermistor chip size and lead wire diameter.

しかし、上記のように製作された金属酸化物の焼結体からなるサーミスタチップは、強度面から、寸法を小さくするのに限界がある為、薄膜形成技術を用いた薄膜温度センサが開発され実用化されるようになった。この薄膜温度センサは、上記の金属酸化物の焼結体を、機械的強度の強い薄い基板上に成膜して、薄膜電極を形成することで、小型化が可能となり、チップに比べて熱容量が小さいために、熱応答特性の良い温度センサが可能となる。   However, the thermistor chip made of a sintered metal oxide manufactured as described above has a limit in reducing the size in terms of strength, so a thin film temperature sensor using thin film formation technology has been developed and put into practical use. Came to be. In this thin film temperature sensor, the above metal oxide sintered body is formed on a thin substrate with high mechanical strength, and a thin film electrode is formed, so that the size can be reduced and the heat capacity compared to the chip. Therefore, a temperature sensor with good thermal response characteristics can be achieved.

従来、薄膜温度センサにおけるリード線と引き出し電極とを接合するために、電極膜上にNi/Snめっきを行い、リード線とのはんだ接合を行うか、金ワイヤー等を用いたワイヤーバンプ法を使用してバンプを形成した後、リード線を接合する方法が採用されている。例えば、特許文献1には、薄膜温度センサのPt等の電極とリード線とを接続するために、電極上にワイヤーバンプ法でバンプを形成し、このバンプ上にリード線をレーザ溶接により接続する技術が提案されている。   Conventionally, in order to join the lead wire and lead electrode in the thin film temperature sensor, Ni / Sn plating is performed on the electrode film and soldering with the lead wire is used, or a wire bump method using a gold wire or the like is used. Then, after the bumps are formed, a method of joining the lead wires is adopted. For example, in Patent Document 1, in order to connect an electrode such as Pt of a thin film temperature sensor and a lead wire, a bump is formed on the electrode by a wire bump method, and the lead wire is connected to the bump by laser welding. Technology has been proposed.

特開2008−241566号公報JP 2008-241666 A

上記従来の技術には、以下の課題が残されている。
すなわち、上記はんだ接合の場合、温度センサの使用温度範囲がはんだの融点以下に限定されてしまうと共に、はんだ接合部の肉盛りにより熱容量が増加して薄膜温度センサが持っている本来の熱応答速度の遅延につながってしまう不都合があった。
また、溶接のためにワイヤーバンプ法を用いてバンプを形成した場合も、同様にバンプの容積により素子の熱容量が増加して熱応答速度の遅延につながってしまう。さらに、バンプを形成してしまうと、リード線の最大高さが高くなり、後の工程での耐熱、耐熱応力、耐引っ張り応力強化のために素子表面にモールドする場合、さらに素子の容量及び熱容量が増加して熱応答速度の遅延につながってしまう不都合があった。特に、チップサイズが小さくなればなるほど、これらの問題が顕著に現れてしまう。また、ワイヤーバンプ法等では、電極のPt膜の露出部分が多くあり、Pt膜が酸素透過性を有していることから、温度センサの感熱部分のセラミックス部分(サーミスタ薄膜)に保護膜を施しているのにかかわらず、酸素のやりとりが電極部分を介して行われてしまう不都合があった。特に、耐熱試験を行うと、抵抗値上昇等の電気特性が変化する現象が顕著に現れてしまう。
The following problems remain in the conventional technology.
That is, in the case of the above-mentioned solder joint, the temperature range of use of the temperature sensor is limited to the melting point of the solder or less, and the heat capacity increases due to the build-up of the solder joint, and the original thermal response speed of the thin film temperature sensor There was an inconvenience that led to a delay.
In addition, when a bump is formed using the wire bump method for welding, the heat capacity of the element is similarly increased due to the volume of the bump, leading to a delay in the thermal response speed. Furthermore, if bumps are formed, the maximum height of the lead wire becomes high, and when molding on the element surface to strengthen heat resistance, heat stress, and tensile stress resistance in later processes, the capacity and heat capacity of the element are further increased. There is a disadvantage that the increase in the thermal response speed is delayed. In particular, as the chip size decreases, these problems become more apparent. In the wire bump method, etc., there are many exposed parts of the Pt film of the electrode, and the Pt film has oxygen permeability, so a protective film is applied to the ceramic part (thermistor thin film) of the heat sensitive part of the temperature sensor. In spite of this, there is a disadvantage that the exchange of oxygen is performed through the electrode portion. In particular, when a heat resistance test is performed, a phenomenon in which electrical characteristics change, such as an increase in resistance value, appears prominently.

本発明は、前述の課題に鑑みてなされたもので、熱容量の増加を抑制すると共に酸素の進行を防止して電気特性の変化を低減することができる薄膜温度センサ及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and provides a thin film temperature sensor capable of suppressing an increase in heat capacity and preventing the progression of oxygen to reduce changes in electrical characteristics, and a method for manufacturing the same. With the goal.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明の薄膜温度センサは、表面に絶縁層が形成された基板又は絶縁基板と、前記絶縁層又は前記絶縁基板の上面にパターン形成されたサーミスタ薄膜と、前記絶縁層又は前記絶縁基板の上面から前記サーミスタ薄膜の上面に亘ってPtでパターン形成されたPt接合層と、該Pt接合層上にNiで形成されたNiめっき層と、該Niめっき層の表面に形成されたNi酸化膜と、前記Niめっき層に接続されたリード線と、を備え、前記リード線が、前記Ni酸化膜よりも深い溶け込み深さで前記Niめっき層の途中まで溶接されていることを特徴とする。   The present invention employs the following configuration in order to solve the above problems. That is, the thin film temperature sensor of the present invention includes a substrate or an insulating substrate having an insulating layer formed on a surface thereof, a thermistor thin film patterned on the upper surface of the insulating layer or the insulating substrate, and the insulating layer or the insulating substrate. A Pt bonding layer patterned with Pt from the upper surface to the upper surface of the thermistor thin film, a Ni plating layer formed of Ni on the Pt bonding layer, and a Ni oxide film formed on the surface of the Ni plating layer And a lead wire connected to the Ni plating layer, wherein the lead wire is welded to the middle of the Ni plating layer with a deeper penetration depth than the Ni oxide film.

本発明の薄膜温度センサの製造方法は、基板上の絶縁層又は絶縁基板の上面にサーミスタ薄膜をパターン形成する薄膜形成工程と、前記絶縁層又は前記絶縁基板の上面から前記サーミスタ薄膜の上面に亘って、PtによりPt接合層をパターン形成する接合層形成工程と、前記Pt接合層上にNiめっきによりNiめっき層を形成すると共に該Niめっき層の表面にNi酸化膜を形成する電極形成工程と、前記Niめっき層上にリード線をレーザ溶接するリード線溶接工程と、を備え、前記リード線を、前記Ni酸化膜よりも深い溶け込み深さで前記Niめっき層の途中まで溶接することを特徴とする。   The method of manufacturing a thin film temperature sensor according to the present invention includes a thin film forming step of patterning a thermistor thin film on an insulating layer on the substrate or the upper surface of the insulating substrate, and the upper surface of the thermistor thin film from the upper surface of the insulating layer or the insulating substrate. A bonding layer forming step of patterning a Pt bonding layer with Pt; and an electrode forming step of forming a Ni plating layer on the Pt bonding layer by Ni plating and forming a Ni oxide film on the surface of the Ni plating layer; And a lead wire welding step of laser welding a lead wire on the Ni plating layer, wherein the lead wire is welded to the middle of the Ni plating layer with a deeper penetration depth than the Ni oxide film. And

これらの薄膜温度センサ及びその製造方法では、リード線が、Ni酸化膜よりも深い溶け込み深さでNiめっき層の途中まで溶接されるので、Niめっき層上を覆うNi酸化膜によって酸素の進行が防止されると共に、Ni酸化膜よりも深く溶け込んでリード線が溶接されるため、高い引っ張り強度を得ることができる。すなわち、耐熱試験時のNiの酸化による電気特性の変化や、センサの感熱部分のサーミスタ薄膜に対する酸素のやりとりによる電気特性の変化が低減されると共に、溶接がPt接合層の途中までに制御されることで絶縁層又は絶縁基板との接合を受け持つPt接合層のダメージが少なく、高い接合強度が得られる。特に、厚く成膜することが容易なめっき法でNiめっき層を厚く形成することで、溶接の溶け込み深さ制御も容易になると共に、Pt接合層へのダメージをより低減することができる。また、リード線がはんだやバンプ等を使用せずに溶接されるため、熱容量の増加を抑制でき、高い熱応答速度を維持することができる。   In these thin film temperature sensors and manufacturing methods thereof, the lead wire is welded to the middle of the Ni plating layer at a deeper penetration depth than the Ni oxide film, so that oxygen progresses by the Ni oxide film covering the Ni plating layer. In addition to being prevented, the lead wire is welded by melting deeper than the Ni oxide film, so that a high tensile strength can be obtained. That is, a change in electrical characteristics due to Ni oxidation during a heat resistance test and a change in electrical characteristics due to the exchange of oxygen with the thermistor thin film in the heat sensitive part of the sensor are reduced, and welding is controlled halfway through the Pt bonding layer. As a result, there is little damage to the Pt bonding layer responsible for bonding with the insulating layer or the insulating substrate, and high bonding strength can be obtained. In particular, by forming a thick Ni plating layer by a plating method that is easy to form a thick film, it is possible to easily control the penetration depth of welding and to further reduce damage to the Pt bonding layer. Moreover, since the lead wire is welded without using solder, bumps, or the like, an increase in heat capacity can be suppressed and a high thermal response speed can be maintained.

また、本発明の薄膜温度センサは、前記リード線の溶接部分が、略球状に形成されていることを特徴とする。
また、本発明の薄膜温度センサの製造方法は、前記レーザ溶接のレーザ光の照射位置を、前記リード線の先端から離した位置に設定し、前記リード線の溶接部分を略球状に形成することを特徴とする。
The thin film temperature sensor of the present invention is characterized in that the welded portion of the lead wire is formed in a substantially spherical shape.
In the method for manufacturing a thin film temperature sensor of the present invention, the laser welding irradiation position of the laser welding is set at a position away from the tip of the lead wire, and the welded portion of the lead wire is formed in a substantially spherical shape. It is characterized by.

これらの薄膜温度センサ及びその製造方法では、リード線の溶接部分が略球状に形成されるので、溶接面積が増えると共に引っ張り強度の異方性が減少し、接合強度がさらに向上する。   In these thin film temperature sensors and manufacturing methods thereof, the welded portion of the lead wire is formed in a substantially spherical shape, so that the weld area increases, the anisotropy of the tensile strength decreases, and the joint strength further improves.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係る薄膜温度センサ及びその製造方法によれば、リード線が、Ni酸化膜よりも深い溶け込み深さでNiめっき層の途中まで溶接されるので、熱容量の増加を抑制して高い熱応答速度を維持できると共に、酸素の進行が防止されて電気特性の変化を抑制できる。また、溶接部分がNi酸化膜よりも深く溶け込むと共にNiめっき層の途中までに制御されるため、高い引っ張り強度及び接合強度を得ることができる。
したがって、はんだやバンプを使用せず、高い熱応答速度で安定した電気特性を確保することができ、品質及び信頼性の向上を図ることができる。
The present invention has the following effects.
That is, according to the thin film temperature sensor and the manufacturing method thereof according to the present invention, since the lead wire is welded to the middle of the Ni plating layer with a deeper penetration depth than the Ni oxide film, the increase in heat capacity is suppressed and high. The thermal response speed can be maintained, and the progress of oxygen can be prevented to suppress changes in electrical characteristics. In addition, since the welded portion melts deeper than the Ni oxide film and is controlled by the middle of the Ni plating layer, high tensile strength and bonding strength can be obtained.
Therefore, stable electrical characteristics can be ensured at a high thermal response speed without using solder or bumps, and quality and reliability can be improved.

本発明に係る薄膜温度センサ及びその製造方法の一実施形態において、モールド前の薄膜温度センサを示す斜視図である。In one Embodiment of the thin film temperature sensor which concerns on this invention, and its manufacturing method, it is a perspective view which shows the thin film temperature sensor before a mold. 本実施形態において、リード線の溶接部分を示す要部の拡大断面図である。In this embodiment, it is an expanded sectional view of the principal part which shows the welding part of a lead wire. 本実施形態の薄膜温度センサの製造方法において、ウエハ状での作製工程、チップ状に切り出した状態及びレーザ溶接工程を示す斜視図である。In the manufacturing method of the thin film temperature sensor of this embodiment, it is a perspective view which shows the production process in a wafer form, the state cut out in the chip shape, and a laser welding process. 本実施形態の薄膜温度センサの製造方法において、レーザ溶接後の状態及びモールド後の状態を示す斜視図である。In the manufacturing method of the thin film temperature sensor of this embodiment, it is a perspective view which shows the state after laser welding, and the state after a mold. 本発明に係る薄膜温度センサ及びその製造方法の実施例において、Pt接合層まで形成したチップ品とリード線溶接品(実施例)との抵抗値変化率を示すグラフである。In the Example of the thin film temperature sensor which concerns on this invention, and its manufacturing method, it is a graph which shows the resistance value change rate of the chip | tip goods formed to the Pt joining layer, and the lead wire welded goods (Example). 本発明に係る薄膜温度センサ及びその製造方法の実施例において、リード線溶接部分の断面を示すSEM像及びCOMP像である。In the Example of the thin film temperature sensor which concerns on this invention, and its manufacturing method, it is a SEM image and a COMP image which show the cross section of a lead wire welding part. 本発明に係る薄膜温度センサ及びその製造方法の実施例において、リード線溶接部分の側面を示す拡大写真である。In the Example of the thin film temperature sensor which concerns on this invention, and its manufacturing method, it is an enlarged photograph which shows the side surface of a lead wire welding part.

以下、本発明に係る薄膜温度センサ及びその製造方法の一実施形態を、図1から図5を参照して説明する。なお、以下の説明に用いる各図面では、各部材又は構成を認識可能な大きさとするために、各部材の縮尺を適宜変更している。   Hereinafter, an embodiment of a thin film temperature sensor and a manufacturing method thereof according to the present invention will be described with reference to FIGS. In each drawing used for the following description, the scale of each member is appropriately changed in order to make each member or configuration recognizable.

本実施形態の薄膜温度センサ1は、図1に示すように、アルミナ基板の絶縁基板3と、絶縁基板3の上面にパターン形成されたサーミスタ薄膜4と、絶縁基板3の上面からサーミスタ薄膜4の上面に亘ってPtでパターン形成された一対のPt接合層5と、これらPt接合層5上にNiで形成された一対のNiめっき層6と、これらNiめっき層6の表面に形成された一対のNi酸化膜7と、これらNiめっき層6に接続された一対のリード線8と、を備えている。   As shown in FIG. 1, the thin film temperature sensor 1 of this embodiment includes an insulating substrate 3 made of an alumina substrate, a thermistor thin film 4 patterned on the upper surface of the insulating substrate 3, and a thermistor thin film 4 formed from the upper surface of the insulating substrate 3. A pair of Pt bonding layers 5 patterned with Pt over the upper surface, a pair of Ni plating layers 6 formed of Ni on the Pt bonding layers 5, and a pair formed on the surfaces of these Ni plating layers 6 The Ni oxide film 7 and a pair of lead wires 8 connected to the Ni plating layer 6 are provided.

上記サーミスタ薄膜4は、Mn−Co系複合金属酸化物(例えば、Mn34−Co34系複合金属酸化物)又は、Mn−Co系複合金属酸化物に、Ni、Fe、Cuのうち少なくとも一種類の元素を含む複合金属酸化物(例えば、Mn34−Co34−Fe23系複合金属酸化物)からなる複合金属酸化物膜である。 The thermistor thin film 4 is made of Mn—Co based composite metal oxide (for example, Mn 3 O 4 —Co 3 O 4 based composite metal oxide) or Mn—Co based composite metal oxide with Ni, Fe, or Cu. It is a composite metal oxide film made of a composite metal oxide containing at least one element (for example, Mn 3 O 4 —Co 3 O 4 —Fe 2 O 3 -based composite metal oxide).

本実施形態のサーミスタ薄膜4は、絶縁基板3の上面に、スパッタリング法により平面視略正方形状に成膜されたものである。
このサーミスタ薄膜4は、半導体の性状を呈し、温度が上昇すると抵抗が低くなる負特性、いわゆるNTCサーミスタ(Negative Temperature Coefficient Thermistor)の性質を有している。
The thermistor thin film 4 of this embodiment is formed on the upper surface of the insulating substrate 3 in a substantially square shape in plan view by a sputtering method.
The thermistor thin film 4 has the properties of a semiconductor and has a negative characteristic in which the resistance decreases as the temperature rises, that is, a so-called NTC thermistor (Negative Temperature Coefficient Thermistor).

一対のPt接合層5は、サーミスタ薄膜4の上面から絶縁基板3の上面に亘って形成されている。この一対のPt接合層5は、一対のNiめっき層6の下地層となるものであり、成膜される面の材料(本実施形態では絶縁基板3及びサーミスタ薄膜4)との接合強度がNiめっき層6よりも高い。また、本実施形態のPt接合層5は、サーミスタ薄膜4の上面に形成され互いに対向した一対の櫛歯部5aと、各櫛歯部5aに接続された一対の引き出し電極である電極パッド部5bと、を有している。このPt接合層5の厚さは、100〜1000nmに設定されている。   The pair of Pt bonding layers 5 is formed from the upper surface of the thermistor thin film 4 to the upper surface of the insulating substrate 3. The pair of Pt bonding layers 5 serves as an underlayer for the pair of Ni plating layers 6, and the bonding strength with the material of the surface to be formed (in this embodiment, the insulating substrate 3 and the thermistor thin film 4) is Ni. It is higher than the plating layer 6. Further, the Pt bonding layer 5 of the present embodiment includes a pair of comb teeth 5a formed on the upper surface of the thermistor thin film 4 and facing each other, and an electrode pad section 5b that is a pair of lead electrodes connected to the comb teeth 5a. And have. The thickness of the Pt bonding layer 5 is set to 100 to 1000 nm.

一対のNiめっき層6は、絶縁基板3上に形成されたPt接合層5の電極パッド部5b上に積層されて引き出し電極としての電極パッドを構成している。このNiめっき層6の厚さは、30μm程度である。
上記Ni酸化膜7は、Niめっき層6の表面に形成された自然酸化膜又はNiめっき層6の表面を熱酸化処理して形成したものであり、厚さは、0.1μm程度である。
The pair of Ni plating layers 6 are stacked on the electrode pad portion 5b of the Pt bonding layer 5 formed on the insulating substrate 3 to constitute an electrode pad as a lead electrode. The thickness of the Ni plating layer 6 is about 30 μm.
The Ni oxide film 7 is a natural oxide film formed on the surface of the Ni plating layer 6 or formed by thermally oxidizing the surface of the Ni plating layer 6 and has a thickness of about 0.1 μm.

上記リード線8は、ステンレス(SUS)線であって、図2に示すように、Ni酸化膜7よりも深い溶け込み深さでNiめっき層6の途中まで溶接されている。また、リード線8の溶接部分は、内部の溶け込み部分も含めて略球状に形成されている。なお、本実施形態のリード線8は、φ0.1mmのSUS304線である。   The lead wire 8 is a stainless steel (SUS) wire and is welded to the middle of the Ni plating layer 6 with a deeper penetration depth than the Ni oxide film 7 as shown in FIG. Further, the welded portion of the lead wire 8 is formed in a substantially spherical shape including the internal melted portion. Note that the lead wire 8 of the present embodiment is a SUS304 wire having a diameter of 0.1 mm.

なお、サーミスタ薄膜4及び櫛歯部5a上には、これらを内部に封止する保護膜(図示略)が形成されている。この保護膜は、櫛歯部5a及びサーミスタ薄膜4を覆うように平面視略正方形状に形成されている。この保護膜は、例えば、厚さ100〜1000nmのSiO2膜である。但し、これに限られず、絶縁性で外部雰囲気を遮断できれば、ガラスや耐熱樹脂等の膜でも構わない。 Note that a protective film (not shown) is formed on the thermistor thin film 4 and the comb teeth portion 5a to seal them inside. The protective film is formed in a substantially square shape in plan view so as to cover the comb tooth portion 5 a and the thermistor thin film 4. This protective film is, for example, a SiO 2 film having a thickness of 100 to 1000 nm. However, the present invention is not limited to this, and a film made of glass, heat-resistant resin, or the like may be used as long as it is insulating and can block the external atmosphere.

また、図4の(b)に示すように、この薄膜温度センサ1は、リード線8の先端部分及びサーミスタ薄膜4を含んで表面全体が封止材9によって覆われている。この封止材9は、表面に滴下したセラミックスモールド材又はガラスペーストを焼成してモールドしたものである。   Further, as shown in FIG. 4B, the thin film temperature sensor 1 includes the tip portion of the lead wire 8 and the thermistor thin film 4, and the entire surface is covered with a sealing material 9. The sealing material 9 is obtained by firing and molding a ceramic mold material or glass paste dropped on the surface.

次に、このように構成された薄膜温度センサ1の製造方法について、図3及び図4を参照して説明する。   Next, a manufacturing method of the thin film temperature sensor 1 configured as described above will be described with reference to FIGS.

まず、図3の(a)に示すように、絶縁基板3のウエハW表面にサーミスタ薄膜4をパターン形成する薄膜形成工程を行う。即ち、絶縁基板3の全面に所定のスパッタ条件で上述した複合金属酸化物膜をスパッタリング法で成膜する。   First, as shown in FIG. 3A, a thin film forming step is performed for patterning the thermistor thin film 4 on the surface of the wafer W of the insulating substrate 3. That is, the above-described composite metal oxide film is formed by sputtering on the entire surface of the insulating substrate 3 under predetermined sputtering conditions.

続いて、フォトリソグラフィ技術により、複合金属酸化物膜の上面であってサーミスタ薄膜4を形成する領域にフォトレジスト膜をパターニングする。そして、フォトレジスト膜をマスクとして、所定の溶液を利用したウェットエッチング加工によりマスクされていない複合金属酸化物膜を選択的に除去する。そして、マスクとしていたフォトレジスト膜を除去する。これにより、絶縁基板3の上面に平面視略正方形状のサーミスタ薄膜4をパターン形成することができる。この後、耐熱性向上のため必要に応じて所定温度及び所定時間でアニール処理を行う。   Subsequently, a photoresist film is patterned on the upper surface of the composite metal oxide film on the region where the thermistor thin film 4 is formed by photolithography. Then, using the photoresist film as a mask, the unmasked composite metal oxide film is selectively removed by wet etching using a predetermined solution. Then, the photoresist film used as the mask is removed. Thereby, the thermistor thin film 4 having a substantially square shape in plan view can be patterned on the upper surface of the insulating substrate 3. Thereafter, annealing is performed at a predetermined temperature and for a predetermined time as necessary to improve heat resistance.

次いで、サーミスタ薄膜4の上面から絶縁基板3の上面に亘って、一対のPt接合層5をパターン形成する接合層形成工程を行う。すなわち、まず、サーミスタ薄膜4の上面から絶縁基板3の上面に亘って、一対のPt接合層5が形成される領域以外の部分にリフトオフ法により、フォトレジスト膜を塗布する。続いて、Ptをスパッタリング法により成膜する。これにより、一対のPt接合層5をパターン形成することができる。   Next, a bonding layer forming step of patterning a pair of Pt bonding layers 5 from the upper surface of the thermistor thin film 4 to the upper surface of the insulating substrate 3 is performed. That is, first, a photoresist film is applied to the portion other than the region where the pair of Pt bonding layers 5 are formed from the upper surface of the thermistor thin film 4 to the upper surface of the insulating substrate 3 by a lift-off method. Subsequently, Pt is formed by sputtering. As a result, the pair of Pt bonding layers 5 can be patterned.

続いて、Niめっき時の櫛歯部5a上への析出を防ぐために、めっき用レジスト10(図中のハッチング領域)を施し、Pt接合層5の電極パッド部5b上に、スルファミン酸Niめっき浴によりNiめっきを30μm程度成膜し、Niめっき層6を形成する。この際又はこの後の大気中においてNiめっき層6の表面には、自然酸化膜としてNi酸化膜7が形成される。なお、酸素含有の雰囲気中で熱処理を施してNiめっき層6の表面に熱酸化膜のNi酸化膜7を形成しても構わない。なお、Ni酸化膜7は、400℃120hで0.1μm以上に成膜されるが、初期の数時間で0.1μmまで達した後、微増に推移する成膜傾向がある。この後、図3の(b)に示すように、ダイシングを行ってチップ状に切り出す。   Subsequently, in order to prevent precipitation on the comb teeth portion 5a during Ni plating, a plating resist 10 (hatched region in the figure) is applied, and a sulfamic acid Ni plating bath is formed on the electrode pad portion 5b of the Pt bonding layer 5 Thus, Ni plating is formed to a thickness of about 30 μm, and the Ni plating layer 6 is formed. At this time or in the air thereafter, a Ni oxide film 7 is formed on the surface of the Ni plating layer 6 as a natural oxide film. Alternatively, a thermal oxide Ni oxide film 7 may be formed on the surface of the Ni plating layer 6 by performing a heat treatment in an oxygen-containing atmosphere. The Ni oxide film 7 is formed to a thickness of 0.1 μm or more at 400 ° C. for 120 hours. However, after reaching 0.1 μm in the initial few hours, the Ni oxide film 7 tends to increase slightly. Thereafter, as shown in FIG. 3B, dicing is performed to cut out into chips.

次に、図3の(c)に示すように、平坦なNiめっき層6及びNi酸化膜7上に配したリード線8の先端部分にレーザ溶接を行ってリード線8の先端部をNiめっき層6に溶接する。このとき、リード線8を、図2に示すように、Ni酸化膜7よりも深い溶け込み深さでNiめっき層6の途中まで溶接する。なお、本実施形態では、リード線8の溶接部分8aが、18μm程の溶け込み深さとなるように、レーザ溶接を制御している。   Next, as shown in FIG. 3C, laser welding is performed on the tip portion of the lead wire 8 disposed on the flat Ni plating layer 6 and the Ni oxide film 7, and the tip portion of the lead wire 8 is Ni-plated. Weld to layer 6. At this time, the lead wire 8 is welded to the middle of the Ni plating layer 6 at a penetration depth deeper than that of the Ni oxide film 7 as shown in FIG. In this embodiment, laser welding is controlled so that the welded portion 8a of the lead wire 8 has a penetration depth of about 18 μm.

また、図3の(c)に示すように、レーザ溶接のレーザ光Lの照射位置を、リード線8の先端から若干離した位置に設定し、リード線8の溶接部分8aを略球状に形成する。すなわち、レーザ光Lをリード線8の先端に照射すると、融液が線方向に逃げて肉盛りのない溶接部分となってしまうが、リード線8の先端から若干離した位置にレーザ光Lを照射することで、図4の(a)に示すように、レーザ光Lの照射位置からリード線8の先端までが液状化した融液が表面張力により線方向に移動して略球状になった状態で固化され、肉盛りのある溶接部分8aとなる。なお、先端の略球状部分の容積は、レーザ光Lの照射位置(リード線8の先端からの距離)でコントロール可能であり、無駄な容積が存在せず、接合に最適な形状を得ることができる。   Further, as shown in FIG. 3C, the irradiation position of the laser beam L of laser welding is set to a position slightly separated from the tip of the lead wire 8, and the welded portion 8a of the lead wire 8 is formed in a substantially spherical shape. To do. That is, if the tip of the lead wire 8 is irradiated with the laser beam L, the melt escapes in the line direction and becomes a welded portion with no build-up, but the laser beam L is applied to a position slightly away from the tip of the lead wire 8. By irradiating, as shown in FIG. 4 (a), the liquefied melt from the irradiation position of the laser beam L to the tip of the lead wire 8 moved in the linear direction due to surface tension and became substantially spherical. It is solidified in a state and becomes a welded portion 8a with a build-up. Note that the volume of the substantially spherical portion at the tip can be controlled by the irradiation position of the laser beam L (distance from the tip of the lead wire 8), and there is no useless volume, and an optimum shape for joining can be obtained. it can.

この後、図4の(a)に示すように、めっき用レジスト10を除去し、図4の(b)に示すように、セラミックスモールド材又はガラスペーストを、リード線8の先端部を含む表面全体を覆うようにディスペンサーで表面に滴下、焼成し、封止材9としてモールドすることで、薄膜温度センサ1が作製される。   Thereafter, as shown in FIG. 4A, the plating resist 10 is removed, and as shown in FIG. 4B, a ceramic mold material or glass paste is applied to the surface including the tip of the lead wire 8. The thin film temperature sensor 1 is manufactured by dripping and baking on the surface with a dispenser so as to cover the whole, and molding as the sealing material 9.

このように本実施形態の薄膜温度センサ1及びその製造方法では、リード線8が、Ni酸化膜7よりも深い溶け込み深さでNiめっき層6の途中まで溶接されるので、Niめっき層6上を覆うNi酸化膜7によって酸素の進行が防止されると共に、Ni酸化膜7よりも深く溶け込んでリード線8が溶接されるため、高い引っ張り強度を得ることができる。すなわち、耐熱試験時のNiの酸化による電気特性の変化や、センサの感熱部分のサーミスタ薄膜4に対する酸素のやりとりによる電気特性の変化が低減されると共に、溶接がPt接合層5の途中までに制御されることで絶縁基板3との接合を受け持つPt接合層5のダメージが少なく、高い接合強度が得られる。   As described above, in the thin film temperature sensor 1 and the manufacturing method thereof according to the present embodiment, the lead wire 8 is welded to the middle of the Ni plating layer 6 with a deeper penetration depth than the Ni oxide film 7. Since the progress of oxygen is prevented by the Ni oxide film 7 covering the lead wire 8 and the lead wire 8 is welded by being melted deeper than the Ni oxide film 7, high tensile strength can be obtained. That is, a change in electrical characteristics due to Ni oxidation during a heat resistance test and a change in electrical characteristics due to oxygen exchange with the thermistor thin film 4 in the heat sensitive part of the sensor are reduced, and welding is controlled halfway through the Pt bonding layer 5. As a result, damage to the Pt bonding layer 5 responsible for bonding to the insulating substrate 3 is small, and high bonding strength is obtained.

特に、厚く成膜することが容易なめっき法でNiめっき層6を厚く形成することで、溶接の溶け込み深さ制御も容易になると共に、Pt接合層5へのダメージをより低減することができる。
また、Pt接合層5は1μm以下と薄いため、引き出し電極としてPtと接合性の良いNiを生産性の高いめっき法で厚く成膜してNiめっき層6とすることで、より高い接合強度及び酸化防止効果を得ることができる。
In particular, by forming the Ni plating layer 6 thickly by a plating method that is easy to form a thick film, it is possible to easily control the penetration depth of welding and to further reduce damage to the Pt bonding layer 5. .
Further, since the Pt bonding layer 5 is as thin as 1 μm or less, Ni having a good bonding property with Pt as a lead electrode is formed thickly by a highly productive plating method to form the Ni plating layer 6, so that higher bonding strength and An antioxidant effect can be obtained.

また、リード線8がはんだやバンプ等を使用せずに溶接されるため、熱容量の増加を抑制でき、高い熱応答速度を維持することができる。
さらに、リード線8の溶接部分8aが略球状に形成されるので、溶接面積が増えると共に引っ張り強度の異方性が減少し、接合強度がさらに向上する。なお、SUS線であるリード線8とNiめっき層6とは、溶接性が良好であり、特に耐応力性が高くなる。
Moreover, since the lead wire 8 is welded without using solder, bumps, or the like, an increase in heat capacity can be suppressed, and a high thermal response speed can be maintained.
Furthermore, since the welded portion 8a of the lead wire 8 is formed in a substantially spherical shape, the weld area increases, the anisotropy of the tensile strength decreases, and the joint strength is further improved. Note that the lead wire 8 and the Ni plating layer 6 that are SUS wires have good weldability and particularly high stress resistance.

次に、本発明に係る薄膜温度センサを上記実施形態の製造方法で実際に製造した実施例を、図5から図7を参照して具体的に説明する。
上記実施形態の製造方法に基づいて作製し、リード線を溶接した薄膜温度センサの実施例について、200℃での耐熱試験を行って抵抗値変化率を調べた結果を図5に示す。また、比較例として、Pt接合層まで形成したチップ品を作製し、同様に耐熱試験を行った結果も併せて図5に示す。
Next, an example in which the thin film temperature sensor according to the present invention is actually manufactured by the manufacturing method of the above embodiment will be specifically described with reference to FIGS.
FIG. 5 shows a result of examining the resistance value change rate by conducting a heat resistance test at 200 ° C. for an example of a thin film temperature sensor manufactured based on the manufacturing method of the above embodiment and welded with a lead wire. Further, as a comparative example, a chip product formed up to the Pt bonding layer is produced, and the result of the heat resistance test similarly is also shown in FIG.

この結果からわかるように、Pt接合層が露出している比較例に対して、本実施例は、抵抗値変化率が少ない。   As can be seen from this result, the resistance value change rate is smaller in this example than in the comparative example in which the Pt bonding layer is exposed.

また、上記実施例について、溶接部分の断面のSEM像(二次電子像)及びCOMP像(反射電子組成像)による観察結果を、図6に示す。この結果から、リード線の溶接部分が、Niめっき層の表面から17μm深く溶接されていることがわかる。
なお、図7に示すように、リード線の先端部は、溶接部分が球形状となった肉盛りのある構造であることがわかる。なお、溶接部分の下部は、図6に示すように、半球状にNiめっき層内に埋まっている。
Moreover, about the said Example, the observation result by the SEM image (secondary electron image) and COMP image (reflection electron composition image) of the cross section of a welding part is shown in FIG. From this result, it can be seen that the welded portion of the lead wire is welded 17 μm deep from the surface of the Ni plating layer.
In addition, as shown in FIG. 7, it turns out that the front-end | tip part of a lead wire is the structure with the buildup in which the welding part became spherical shape. The lower part of the welded portion is hemispherically embedded in the Ni plating layer as shown in FIG.

なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、上記実施形態では、アルミナ基板の絶縁基板を用いた場合を例にしたが、これに限られず、石英基板等の絶縁基板や、表面に熱酸化によるSiO2層の絶縁層が形成されたシリコン基板又はその他の半導体基板でも構わない。 For example, in the above embodiment, the case where an insulating substrate of an alumina substrate is used is taken as an example. However, the present invention is not limited to this, and an insulating substrate such as a quartz substrate or a SiO 2 insulating layer formed by thermal oxidation is formed on the surface. A silicon substrate or another semiconductor substrate may be used.

1…薄膜温度センサ、3…絶縁基板、4…サーミスタ薄膜、5…Pt接合層、6…Niめっき層、7…Ni酸化膜、8…リード線、8a…リード線の溶接部分、L…レーザ光   DESCRIPTION OF SYMBOLS 1 ... Thin film temperature sensor, 3 ... Insulating substrate, 4 ... Thermistor thin film, 5 ... Pt joining layer, 6 ... Ni plating layer, 7 ... Ni oxide film, 8 ... Lead wire, 8a ... Welded part of lead wire, L ... Laser light

Claims (4)

表面に絶縁層が形成された基板又は絶縁基板と、
前記絶縁層又は前記絶縁基板の上面にパターン形成されたサーミスタ薄膜と、
前記絶縁層又は前記絶縁基板の上面から前記サーミスタ薄膜の上面に亘ってPtでパターン形成されたPt接合層と、
該Pt接合層上にNiで形成されたNiめっき層と、
該Niめっき層の表面に形成されたNi酸化膜と、
前記Niめっき層に接続されたリード線と、を備え、
前記リード線が、前記Ni酸化膜よりも深い溶け込み深さで前記Niめっき層の途中まで溶接されていることを特徴とする薄膜温度センサ。
A substrate with an insulating layer formed on the surface or an insulating substrate;
A thermistor thin film patterned on the top surface of the insulating layer or the insulating substrate;
A Pt bonding layer patterned with Pt from the upper surface of the insulating layer or the insulating substrate to the upper surface of the thermistor thin film;
A Ni plating layer formed of Ni on the Pt bonding layer;
A Ni oxide film formed on the surface of the Ni plating layer;
A lead wire connected to the Ni plating layer,
The thin film temperature sensor, wherein the lead wire is welded to the middle of the Ni plating layer with a deeper penetration depth than the Ni oxide film.
請求項1に記載の薄膜温度センサにおいて、
前記リード線の溶接部分が、略球状に形成されていることを特徴とする薄膜温度センサ。
The thin film temperature sensor according to claim 1,
A thin film temperature sensor, wherein a welded portion of the lead wire is formed in a substantially spherical shape.
基板上の絶縁層又は絶縁基板の上面にサーミスタ薄膜をパターン形成する薄膜形成工程と、
前記絶縁層又は前記絶縁基板の上面から前記サーミスタ薄膜の上面に亘って、PtによりPt接合層をパターン形成する接合層形成工程と、
前記Pt接合層上にNiめっきによりNiめっき層を形成すると共に該Niめっき層の表面にNi酸化膜を形成する電極形成工程と、
前記Niめっき層上にリード線をレーザ溶接するリード線溶接工程と、を備え、
前記リード線を、前記Ni酸化膜よりも深い溶け込み深さで前記Niめっき層の途中まで溶接することを特徴とする薄膜温度センサの製造方法。
A thin film forming step of patterning a thermistor thin film on the insulating layer on the substrate or the upper surface of the insulating substrate;
A bonding layer forming step of patterning a Pt bonding layer with Pt from the upper surface of the insulating layer or the insulating substrate to the upper surface of the thermistor thin film;
Forming an Ni plating layer on the Pt bonding layer by Ni plating and forming an Ni oxide film on the surface of the Ni plating layer; and
A lead wire welding step of laser welding a lead wire on the Ni plating layer,
A method of manufacturing a thin film temperature sensor, wherein the lead wire is welded to the middle of the Ni plating layer with a deeper penetration depth than the Ni oxide film.
請求項3に記載の薄膜温度センサの製造方法において、
前記レーザ溶接のレーザ光の照射位置を、前記リード線の先端から離した位置に設定し、前記リード線の溶接部分を略球状に形成することを特徴とする薄膜温度センサの製造方法。
In the manufacturing method of the thin film temperature sensor according to claim 3,
A method of manufacturing a thin film temperature sensor, wherein an irradiation position of the laser beam of the laser welding is set at a position separated from a tip of the lead wire, and a weld portion of the lead wire is formed in a substantially spherical shape.
JP2009041194A 2009-02-24 2009-02-24 Thin film temperature sensor and manufacturing method thereof Expired - Fee Related JP5187229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009041194A JP5187229B2 (en) 2009-02-24 2009-02-24 Thin film temperature sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041194A JP5187229B2 (en) 2009-02-24 2009-02-24 Thin film temperature sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010197163A true JP2010197163A (en) 2010-09-09
JP5187229B2 JP5187229B2 (en) 2013-04-24

Family

ID=42822042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041194A Expired - Fee Related JP5187229B2 (en) 2009-02-24 2009-02-24 Thin film temperature sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5187229B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104143766A (en) * 2013-05-09 2014-11-12 日本特殊陶业株式会社 A spark plug
JP6392487B2 (en) * 2016-10-07 2018-09-19 Semitec株式会社 Welding electronic components, mounting board and temperature sensor
WO2018203475A1 (en) * 2017-05-01 2018-11-08 Semitec株式会社 Temperature sensor and device equipped with temperature sensor
EP3324416A4 (en) * 2015-07-15 2019-02-20 Murata Manufacturing Co., Ltd. Electronic component
WO2022145083A1 (en) * 2020-02-19 2022-07-07 三菱マテリアル株式会社 Temperature sensor and method for manufacturing same
CN115036086A (en) * 2018-10-31 2022-09-09 株式会社芝浦电子 Thermistor sintered compact and temperature sensor element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61105804A (en) * 1984-10-30 1986-05-23 ティーディーケイ株式会社 Thermistor element and manufacuture thereof
JP2003247897A (en) * 2002-02-26 2003-09-05 Ishizuka Electronics Corp Temperature sensor
JP2008241566A (en) * 2007-03-28 2008-10-09 Ishizuka Electronics Corp Thin-film temperature sensor, and outgoing line connection method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61105804A (en) * 1984-10-30 1986-05-23 ティーディーケイ株式会社 Thermistor element and manufacuture thereof
JP2003247897A (en) * 2002-02-26 2003-09-05 Ishizuka Electronics Corp Temperature sensor
JP2008241566A (en) * 2007-03-28 2008-10-09 Ishizuka Electronics Corp Thin-film temperature sensor, and outgoing line connection method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014239026A (en) * 2013-05-09 2014-12-18 日本特殊陶業株式会社 Ignition plug
CN104143766A (en) * 2013-05-09 2014-11-12 日本特殊陶业株式会社 A spark plug
EP3324416A4 (en) * 2015-07-15 2019-02-20 Murata Manufacturing Co., Ltd. Electronic component
DE112017005109T5 (en) 2016-10-07 2019-08-14 Semitec Corporation ELECTRONIC COMPONENT FOR WELDING, MOUNTED BOARD AND TEMPERATURE SENSOR
JPWO2018066473A1 (en) * 2016-10-07 2018-10-04 Semitec株式会社 Welding electronic components, mounting board and temperature sensor
KR20190059910A (en) 2016-10-07 2019-05-31 세미텍 가부시키가이샤 Welding electronic components, mounting board and temperature sensor
JP6392487B2 (en) * 2016-10-07 2018-09-19 Semitec株式会社 Welding electronic components, mounting board and temperature sensor
US11215514B2 (en) 2016-10-07 2022-01-04 Semitec Corporation Electronic component for welding, mounted board and temperature sensor
WO2018203475A1 (en) * 2017-05-01 2018-11-08 Semitec株式会社 Temperature sensor and device equipped with temperature sensor
JP6502588B2 (en) * 2017-05-01 2019-04-17 Semitec株式会社 Device equipped with temperature sensor and temperature sensor
JPWO2018203475A1 (en) * 2017-05-01 2019-06-27 Semitec株式会社 Device equipped with temperature sensor and temperature sensor
US11460353B2 (en) 2017-05-01 2022-10-04 Semitec Corporation Temperature sensor and device equipped with temperature sensor
CN115036086A (en) * 2018-10-31 2022-09-09 株式会社芝浦电子 Thermistor sintered compact and temperature sensor element
WO2022145083A1 (en) * 2020-02-19 2022-07-07 三菱マテリアル株式会社 Temperature sensor and method for manufacturing same

Also Published As

Publication number Publication date
JP5187229B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5187229B2 (en) Thin film temperature sensor and manufacturing method thereof
JP6406975B2 (en) Semiconductor element and semiconductor device
JP5316959B2 (en) Thin film thermistor sensor
JP4777749B2 (en) Method for producing low AC loss oxide superconducting conductor
WO2006098454A1 (en) Submount and method for manufacturing same
JP4722671B2 (en) Bonding wires for semiconductor devices
TWI433279B (en) Semiconductor package and method for forming the same
JP2006059933A (en) Ohmic electrode for n-type nitride semiconductors and its manufacturing method
TWI624026B (en) Semiconductor device manufacturing method
JP2011044621A (en) Temperature sensor
JP2009176926A (en) Through wiring substrate and manufacturing method thereof
JP5187230B2 (en) Thin film temperature sensor and manufacturing method thereof
JP2006024829A (en) Semiconductor device and its manufacturing method
TW200939588A (en) Semiconductor light emitting device and manufacturing method therefor
JP6588028B2 (en) Semiconductor device manufacturing method and resist glass
JP5560468B2 (en) Thin film thermistor sensor and manufacturing method thereof
JP3767585B2 (en) Semiconductor device
JP2006278463A (en) Sub-mount
JP2014236043A (en) Semiconductor device and manufacturing method of the same
JP2010206034A (en) Lead frame for optical semiconductor device, package for the optical semiconductor device, the optical semiconductor device, production method of lead frame for optical semiconductor device, production method of package for the optical semiconductor device, and production method of the optical semiconductor device
WO2003069743A1 (en) Sub-mount and semiconductor device
JP4816049B2 (en) Sensor package and manufacturing method thereof
JP4795112B2 (en) Manufacturing method of bonding substrate
CN100546059C (en) Method for manufacturing gallium nitride-based semiconductor photoelectric device
JP5029882B2 (en) Thin film thermistor and thin film thermistor manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5187229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees