JP2010196593A - Scroll fluid machine - Google Patents

Scroll fluid machine Download PDF

Info

Publication number
JP2010196593A
JP2010196593A JP2009042449A JP2009042449A JP2010196593A JP 2010196593 A JP2010196593 A JP 2010196593A JP 2009042449 A JP2009042449 A JP 2009042449A JP 2009042449 A JP2009042449 A JP 2009042449A JP 2010196593 A JP2010196593 A JP 2010196593A
Authority
JP
Japan
Prior art keywords
back pressure
fluid machine
scroll
capacity
scroll fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009042449A
Other languages
Japanese (ja)
Other versions
JP4903826B2 (en
Inventor
Kazuyuki Fujimura
和幸 藤村
Isamu Tsubono
勇 坪野
Hirokatsu Kosokabe
弘勝 香曽我部
Atsushi Shimada
敦 島田
Tetsuya Tadokoro
哲也 田所
Atsushi Onuma
敦 大沼
Akihiro Murakami
晃啓 村上
Shuhei Niimura
修平 新村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2009042449A priority Critical patent/JP4903826B2/en
Priority to CN2010101136301A priority patent/CN101813087B/en
Priority to KR1020100014393A priority patent/KR101185659B1/en
Publication of JP2010196593A publication Critical patent/JP2010196593A/en
Application granted granted Critical
Publication of JP4903826B2 publication Critical patent/JP4903826B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/18Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/902Hermetically sealed motor pump unit

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scroll fluid machine capable of automatically controlling the capacity according to operational conditions, eliminating the need for complicate branched pipes, reducing the production costs to a significant degree and simultaneously carrying out highly responsive capacity control and back pressure control. <P>SOLUTION: In the scroll fluid machine applying back pressure from the anti-working chamber side to the working chamber side to at least one of the turning scroll or non-turning scroll, a capacity control means capable of controlling a back pressure according to operational conditions is provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、スクロール流体機械に係り、例えば、作動流体に冷媒などの圧縮性気体または液体を取扱うスクロール圧縮機やスクロール真空ポンプ、スクロール送風機などに好適なスクロール流体機械に関するものである。   The present invention relates to a scroll fluid machine, for example, a scroll fluid machine suitable for a scroll compressor, a scroll vacuum pump, a scroll blower, and the like that handle a compressive gas or liquid such as a refrigerant as a working fluid.

従来のスクロール流体機械として、特開2000−314382号公報(特許文献1)に示されたものがある。   A conventional scroll fluid machine is disclosed in Japanese Patent Application Laid-Open No. 2000-314382 (Patent Document 1).

このスクロール流体機械は、それぞれの台板(端板)に渦巻状ラップを立設した旋回スクロール及び非旋回スクロールを噛み合せて形成される作動室と、ステータ(固定子)及びロータ(回転子)からなる電動機と、ロータを貫通してロータの回転力を伝達するシャフトを有する。旋回スクロールは、自転防止機構により自転防止されながら、非旋回スクロールに対し旋回運動をする。非旋回スクロールに設置した吸込口から作動室へ流入した作動流体は、前記シャフトの回転運動に伴い、作動室の容積が徐々に小さくなり、作動流体を圧縮して、非旋回スクロールに設置した吐出口から吐き出され、密閉ケーシングに設置された吐出パイプからスクロール流体機械と配管接続された冷凍サイクルへと送られる。   The scroll fluid machine includes a working chamber formed by meshing a rotating scroll and a non-rotating scroll each having a spiral wrap on each base plate (end plate), a stator (stator), and a rotor (rotor). And a shaft that transmits the rotational force of the rotor through the rotor. The orbiting scroll performs an orbiting motion with respect to the non-orbiting scroll while being prevented from rotating by the rotation preventing mechanism. The working fluid that has flowed into the working chamber from the suction port installed in the non-orbiting scroll gradually decreases in volume as the shaft rotates, compresses the working fluid, and discharges installed in the non-orbiting scroll. It is discharged from the outlet and sent from a discharge pipe installed in a sealed casing to a refrigeration cycle connected to a scroll fluid machine.

なお、上記圧縮動作中に、作動室内の増加した圧力により旋回スクロール及び非旋回スクロールには、互いを退ける方向の力が作用するため、作動室の密閉性を阻害し、作動流体の漏洩損失が増大する。そこで、作動室の密閉性を良好に保持し、作動流体の漏洩を抑制するために、旋回スクロール及び非旋回スクロールの少なくとも一方に対して、互いを近づける方向の支持力である背面圧力を作用させる。この背面圧力には、各運転条件に応じた適正値が存在し、背面圧力が過小であると漏洩損失が増大し、背面圧力が過大であると旋回スクロールと非旋回スクロールとの圧接による摺動面に発生する摩擦損失が増大して、スクロール流体機械の効率及び信頼性を悪化させる要因となる。   Note that during the compression operation, the orbiting scroll and the non-orbiting scroll are affected by the increased pressure in the working chamber, and the force in the direction away from each other acts. Increase. Therefore, in order to maintain a good seal of the working chamber and suppress leakage of the working fluid, a back pressure that is a supporting force in a direction in which the orbiting scroll and the non-orbiting scroll are brought close to each other is applied. . The back pressure has an appropriate value according to each operating condition. If the back pressure is too small, leakage loss increases. Friction loss generated on the surface increases, which causes the efficiency and reliability of the scroll fluid machine to deteriorate.

一方、冷凍サイクルの運転モードが多様化し、スクロール流体機械には、運転範囲の更なる拡大が望まれている。しかし、スクロール流体機械は、冷凍サイクルの吐出圧力や吸込圧力等、負荷の変動に係わりなくスクロールラップの諸元により決定される、一定の設定圧縮比と押除量を有するものである。そこで、例えば、非旋回スクロールの端板に作動室と吐出空間が連通するリリース弁機構等を設けて、運転条件が設定圧縮比以下でも、余分な圧縮動作をさせないようにしている。また、スクロール流体機械を駆動する電動機をインバータ制御し、電動機の回転数を可変にすることで、一定の押除量のままでも、冷凍サイクルへ供給する好適な作動流体の循環量を確保する。さらに、圧縮途中または圧縮完了後の作動流体を吸込空間へバイパスさせることで、見かけ上の押除量を減少させ,容量を制御する手段もある。   On the other hand, the operation mode of the refrigeration cycle is diversified, and further expansion of the operation range is desired for the scroll fluid machine. However, the scroll fluid machine has a fixed compression ratio and pushing amount that are determined by the specifications of the scroll wrap regardless of variations in load such as discharge pressure and suction pressure of the refrigeration cycle. Therefore, for example, a release valve mechanism or the like in which the working chamber communicates with the discharge space is provided on the end plate of the non-orbiting scroll so as not to perform an excessive compression operation even when the operation condition is equal to or less than the set compression ratio. In addition, by controlling the electric motor that drives the scroll fluid machine with an inverter and making the rotational speed of the electric motor variable, it is possible to secure a suitable circulating amount of the working fluid to be supplied to the refrigeration cycle even with a constant amount of pushing. Furthermore, there is also a means for controlling the capacity by reducing the apparent pushing amount by bypassing the working fluid during or after the compression to the suction space.

なお、スクロール流体機械の高効率化及び高信頼性化を図るためには、作動室と吸込パイプをバイパスさせて、見かけ上の押除量を減少させる容量制御時に、通常運転時に比べて過大となる背面圧力を小さくさせて摩擦損失の増大を防ぐ必要がある。特許文献1では、その方法として、吸込パイプ71と吐出パイプ72から分岐した容量制御パイプ81を非旋回スクロールの端板に設置した作動室と連通するバイパス弁15に接続させた構造としている。また、同時に容量制御パイプを背圧制御弁13の弁体背面に接続させている。ここで、容量制御パイプには、通常運転時と容量制御時との切り替えるための三方弁80などを設置し、冷凍サイクルの運転条件等に応じて、圧縮機の外部にて作られた制御信号により電気的に制御している。   In order to increase the efficiency and reliability of the scroll fluid machine, it is necessary to bypass the working chamber and the suction pipe to reduce the apparent pushing amount, which is excessive compared to the normal operation. Therefore, it is necessary to reduce the back pressure to prevent an increase in friction loss. In Patent Document 1, as the method, a capacity control pipe 81 branched from a suction pipe 71 and a discharge pipe 72 is connected to a bypass valve 15 communicating with a working chamber installed on an end plate of a non-orbiting scroll. At the same time, the capacity control pipe is connected to the back surface of the back pressure control valve 13. Here, the capacity control pipe is provided with a three-way valve 80 for switching between normal operation and capacity control, and a control signal generated outside the compressor according to the operating conditions of the refrigeration cycle. It is electrically controlled by.

通常運転時には、バイパス弁15や背圧制御弁13に接続した容量制御パイプ81内が、三方弁80により吐出パイプと連通して高圧な吐出圧力となり、バイパス弁が開口せず、容量を制御しない。また、背圧制御弁13のバネ力が高めになり、背面圧力は比較的に高めに調整される。一方、容量制御時には、バイパス弁15や背圧制御弁13に接続した容量制御パイプ81内が、三方弁80により吸込パイプ71と連通して低圧な吸込圧力となり、バイパス弁15が開口し、圧縮途中の作動流体を吸込パイプ71内へ戻すことで容量を制御する。また、背圧制御弁13のバネ力が低めになり、背面圧力は比較的に低めに調整される。   During normal operation, the capacity control pipe 81 connected to the bypass valve 15 and the back pressure control valve 13 communicates with the discharge pipe by the three-way valve 80 to generate a high discharge pressure, the bypass valve does not open, and the capacity is not controlled. . Further, the spring force of the back pressure control valve 13 is increased, and the back pressure is adjusted to be relatively high. On the other hand, during the capacity control, the inside of the capacity control pipe 81 connected to the bypass valve 15 and the back pressure control valve 13 communicates with the suction pipe 71 by the three-way valve 80 to become a low suction pressure, and the bypass valve 15 is opened and compressed. The capacity is controlled by returning the working fluid on the way into the suction pipe 71. Further, the spring force of the back pressure control valve 13 is lowered, and the back pressure is adjusted to be relatively low.

別のスクロール流体機械として、特許4044793号公報(特許文献2)に示されたものがある。このスクロール流体機械は、容量制御用バイパス孔の死容積を低減し、高効率化に寄与するものである。また、容量制御弁の背面に狭い通路を通過する吐出圧力を導入することで弁体の振動を抑制させている。   Another scroll fluid machine is disclosed in Japanese Patent No. 4044793 (Patent Document 2). This scroll fluid machine contributes to higher efficiency by reducing the dead volume of the capacity control bypass hole. Moreover, the vibration of the valve body is suppressed by introducing a discharge pressure passing through a narrow passage to the back surface of the capacity control valve.

特開2000−314382号公報JP 2000-314382 A 特許第4044793号公報Japanese Patent No. 4044793

しかしながら、特許文献1に示された従来のスクロール流体機械では、吸込パイプや吐出パイプと容量制御用パイプや背圧制御用パイプを配管接続する必要があるため、構造が複雑となり、部品点数が増加し、製造コストが増大するという課題がある。また、作動流体が分岐していく配管内やスクロール流体機械の外部からの電気的な制御信号により制御された三方弁などを通るため、制御の応答遅れが生じるという課題がある。さらに、配管内で圧損や加熱が生じ、スクロール流体機械の高効率化を妨げるという課題がある。   However, in the conventional scroll fluid machine shown in Patent Document 1, since it is necessary to connect the suction pipe, the discharge pipe, the capacity control pipe, and the back pressure control pipe, the structure becomes complicated and the number of parts increases. However, there is a problem that the manufacturing cost increases. Moreover, since a three-way valve controlled by an electrical control signal from the inside of the piping where the working fluid branches or from the outside of the scroll fluid machine passes, there is a problem that a control response delay occurs. Furthermore, there is a problem that pressure loss and heating occur in the piping, which hinders high efficiency of the scroll fluid machine.

特許文献2に示された従来のスクロール流体機械では、背圧制御に関する記述がなく、容量制御と同時に背圧制御をする手段が示されていないという課題がある。   In the conventional scroll fluid machine shown in Patent Document 2, there is no description about back pressure control, and there is a problem that means for performing back pressure control simultaneously with capacity control is not shown.

本発明の目的は、容量を運転条件に応じて自動制御し、かつ、複雑な分岐配管などを不要とし、製造コストを大幅に低減させることができ、かつ、応答性に優れた容量制御と背圧制御を同時に行えるスクロール流体機械を提供することにある。   The object of the present invention is to automatically control the capacity according to the operating conditions, eliminate the need for complicated branch pipes, etc., greatly reduce the manufacturing cost, and provide the capacity control and the back with excellent responsiveness. It is an object to provide a scroll fluid machine capable of simultaneously controlling pressure.

前述の目的を達成するための本発明は、それぞれの端板に渦巻状ラップを立設した旋回スクロール及び非旋回スクロールを噛み合せて形成した作動室と、前記非旋回スクロールの端板に形成した吸込空間と、前記旋回スクロールあるいは非旋回スクロールの少なくとも一方の反作動室側に形成した背面圧力領域と、前記背面圧力領域の圧力を制御する背圧制御機構を備えたスクロール流体機械において、
前記背圧制御機構により、前記作動室と前記吸込空間を運転条件に応じてバイパスさせて容量を制御することを特徴とする。
In order to achieve the above-mentioned object, the present invention comprises a working chamber formed by meshing a revolving scroll and a non-revolving scroll each having a spiral wrap on each end plate, and a suction formed on the end plate of the non-revolving scroll. In a scroll fluid machine comprising a space, a back pressure region formed on at least one reaction chamber side of the orbiting scroll or the non-orbiting scroll, and a back pressure control mechanism for controlling the pressure in the back pressure region,
The back pressure control mechanism controls the capacity by bypassing the working chamber and the suction space according to operating conditions.

また、本発明は、上記のスクロール流体機械において、前記背圧制御機構は、運転条件に応じて前記背面圧力領域と前記吸込空間をバイパスさせて背面圧力を制御すると共に、流体機械の容量制御運転時に前記作動室と前記吸込空間をバイパスさせて容量を制御する可動弁部を備えたことを特徴とする。   In the scroll fluid machine according to the present invention, the back pressure control mechanism controls the back pressure by bypassing the back pressure region and the suction space according to operating conditions, and also controls the capacity control of the fluid machine. In some cases, there is provided a movable valve portion that controls the capacity by bypassing the working chamber and the suction space.

また、本発明は、上記のスクロール流体機械において、前記可動弁部を磁性体とし、前記可動弁部の可動範囲を制限する部材を永久磁石としたことを特徴とする。   In the scroll fluid machine according to the present invention, the movable valve portion is a magnetic body, and the member that limits the movable range of the movable valve portion is a permanent magnet.

また、本発明は、上記のスクロール流体機械において、前記背圧制御機構を電気的な信号により制御することを特徴とする。   In the scroll fluid machine according to the present invention, the back pressure control mechanism is controlled by an electrical signal.

また、本発明は、それぞれの端板に渦巻状ラップを立設した旋回スクロール及び非旋回スクロールを噛み合せて形成した作動室と、前記非旋回スクロールの端板に形成した吸込み空間と、前記旋回スクロールあるいは非旋回スクロールの少なくとも一方の反作動室側に形成した背面圧力領域と、前記背面圧力領域の圧力を制御する背圧制御機構を備えたスクロール流体機械において、
さらに前記作動室と吸込空間を運転条件に応じてバイパスさせて容量を制御する容量制御機構を備え、流体機械の容量制御運転時に前記容量制御機構により、前記背面圧力を制御することを特徴とする。
The present invention also provides a working chamber formed by meshing a revolving scroll and a non-revolving scroll each having a spiral wrap on each end plate, a suction space formed in the end plate of the non-revolving scroll, and the revolving scroll Alternatively, in a scroll fluid machine comprising a back pressure region formed on at least one reaction chamber side of the non-orbiting scroll and a back pressure control mechanism for controlling the pressure in the back pressure region,
Furthermore, a capacity control mechanism that controls the capacity by bypassing the working chamber and the suction space according to operating conditions is provided, and the back pressure is controlled by the capacity control mechanism during the capacity control operation of the fluid machine. .

また、本発明は、上記のスクロール流体機械において、前記容量制御機構は、運転条件に応じて前記背面圧力領域と前記吸込空間をバイパスさせて背面圧力を制御すると共に、流体機械の容量制御運転時に前記作動室と前記吸込空間をバイパスさせて容量を制御する可動弁部を備えたことを特徴とする。   In the scroll fluid machine according to the present invention, the capacity control mechanism may control the back pressure by bypassing the back pressure region and the suction space according to operating conditions, and at the time of capacity control operation of the fluid machine. The movable valve part which controls the capacity | capacitance by bypassing the said working chamber and the said suction space was provided.

また、本発明は、上記のスクロール流体機械において、前記可動弁部を磁性体とし、この可動弁部の可動範囲を制限する部材を永久磁石としたことを特徴とする。   In the scroll fluid machine according to the present invention, the movable valve portion is a magnetic body, and a member that limits a movable range of the movable valve portion is a permanent magnet.

また、本発明は、上記のスクロール流体機械において、前記容量制御機構を電気的な信号により制御することを特徴とする。   In the scroll fluid machine according to the present invention, the capacity control mechanism is controlled by an electrical signal.

また、本発明は、上記のスクロール流体機械において、旋回スクロールあるいは非旋回スクロールのどちらか一方の渦巻状ラップ終端角が、他方の渦巻状ラップ終端角と異ならせた非対称な渦巻状ラップを用いたことを特徴とする。   Further, the present invention uses an asymmetric spiral wrap in which the spiral wrap end angle of either the orbiting scroll or the non-orbiting scroll is different from the other spiral wrap end angle in the scroll fluid machine described above. It is characterized by that.

また、本発明は、それぞれの端板に渦巻状ラップを立設した旋回スクロール及び非旋回スクロールを噛み合せて作動室を形成し、前記旋回スクロールあるいは非旋回スクロールの少なくとも一方の反作動室側に背面圧力領域を有したスクロール圧縮機において、容量制御時に圧縮室と吸込空間がバイパスし、圧縮室に吸い込んだガスをすぐには圧縮せず、圧縮開始を遅らせことで見かけ上の押除量を減少させる容量制御機構を設け、その容量制御機構で同時に背面圧力を制御するものである。   Further, the present invention forms a working chamber by meshing a revolving scroll and a non-revolving scroll, each of which has a spiral wrap standing on each end plate, and has a back surface on at least one reaction chamber side of the revolving scroll or the non-revolving scroll. In a scroll compressor with a pressure region, the compression chamber and suction space are bypassed during capacity control, the gas sucked into the compression chamber is not compressed immediately, and the apparent pushing amount is reduced by delaying the start of compression. A capacity control mechanism is provided, and the back surface pressure is simultaneously controlled by the capacity control mechanism.

本発明のスクロール流体機械によれば、単純な構造で運転条件に応じて容量を制御し、圧縮室の密閉性を良好に確保しながら、摺動摩擦損失を抑制する背面圧力を与えることができる。   According to the scroll fluid machine of the present invention, it is possible to give a back pressure that suppresses sliding friction loss while controlling the capacity according to operating conditions with a simple structure and ensuring a good sealing performance of the compression chamber.

本発明の第1実施形態におけるスクロール圧縮機圧縮機構の断面図。Sectional drawing of the scroll compressor compression mechanism in 1st Embodiment of this invention. 本発明の第1実施形態におけるスクロール圧縮機全体の断面図。1 is a cross-sectional view of an entire scroll compressor according to a first embodiment of the present invention. 本発明の第1実施形態における通常運転時での背圧制御機構の拡大図。The enlarged view of the back pressure control mechanism at the time of the normal driving | operation in 1st Embodiment of this invention. 本発明の第1実施形態における容量制御時での背圧制御機構の拡大図。The enlarged view of the back pressure control mechanism at the time of capacity | capacitance control in 1st Embodiment of this invention. 本発明の第2実施形態における通常運転時での容量制御機構の拡大図。The enlarged view of the capacity | capacitance control mechanism in the time of normal operation in 2nd Embodiment of this invention. 本発明の第2実施形態における容量制御時での容量制御機構の拡大図。The enlarged view of the capacity | capacitance control mechanism at the time of capacity | capacitance control in 2nd Embodiment of this invention.

以下、本発明の複数の実施形態について図を用いて説明する。各実施形態の図における同一符号は同一物または相当物を示す。ただし、本発明は、以下の実施形態に限定されない。また、特に限定的な記載がない限りは、本発明の範囲をそれらの実施の形態のみに限定する趣旨のものではなく、単なる説明例にすぎない。   Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. The same reference numerals in the drawings of the respective embodiments indicate the same or equivalent. However, the present invention is not limited to the following embodiments. In addition, unless otherwise specified, the scope of the present invention is not intended to limit the scope of the present invention only to those embodiments, but is merely an illustrative example.

(第1実施形態)
本発明の第1実施形態のスクロール圧縮機100を、図1から図4を参照しながら説明する。まず、スクロール圧縮機100に関して図1と図2を参照しながら説明する。図1は、本発明の第1実施形態におけるスクロール圧縮機の圧縮機構の断面図である。図2は、スクロール圧縮機全体の断面図である。
(First embodiment)
A scroll compressor 100 according to a first embodiment of the present invention will be described with reference to FIGS. First, the scroll compressor 100 will be described with reference to FIGS. 1 and 2. FIG. 1 is a sectional view of a compression mechanism of a scroll compressor according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view of the entire scroll compressor.

スクロール圧縮機100は、圧縮動作を行う圧縮機構と、電動機を含めた駆動機構を密閉ケージング1内に収納して配設した構造となっている。   The scroll compressor 100 has a structure in which a compression mechanism that performs a compression operation and a drive mechanism including an electric motor are housed in the sealed casing 1.

圧縮機構は、非旋回スクロール2と旋回スクロール3、フレーム4を基本要素としている。非旋回スクロール2と旋回スクロール3とは、噛み合わされて圧縮室20を形成する。   The compression mechanism uses the non-orbiting scroll 2, the orbiting scroll 3, and the frame 4 as basic elements. The non-orbiting scroll 2 and the orbiting scroll 3 are meshed to form a compression chamber 20.

非旋回スクロール2は、端板2aと、この端板2aに立設された渦巻状のラップ2bとを基本構成部分としている。この端板2aの外周部には、吸込口2cが形成されている。吸込口2cには、吸込パイプ16が接続されている。端板2aの中央部には吐出口2dが形成されている。また、端板2aにリリース弁機構14を設けて、スクロールラップの諸元により決定される一定の設定圧縮比以下の運転時には、圧縮室20と吐出空間17が連通するようにしている。   The non-orbiting scroll 2 has an end plate 2a and a spiral wrap 2b erected on the end plate 2a as basic components. A suction port 2c is formed in the outer peripheral portion of the end plate 2a. A suction pipe 16 is connected to the suction port 2c. A discharge port 2d is formed at the center of the end plate 2a. In addition, a release valve mechanism 14 is provided on the end plate 2a so that the compression chamber 20 and the discharge space 17 communicate with each other during an operation of a predetermined set compression ratio or less determined by the scroll lap specifications.

一方、旋回スクロール3は、端板3aと、この端板3aに立設された渦巻状のラップ3bと、端板3aの背面側に立設されたボス筒3cとを基本構成部分としている。ボス筒3c内には、旋回軸受3dが設けられている。   On the other hand, the orbiting scroll 3 has an end plate 3a, a spiral wrap 3b erected on the end plate 3a, and a boss cylinder 3c erected on the back side of the end plate 3a as basic components. A slewing bearing 3d is provided in the boss cylinder 3c.

フレーム4は、密閉ケーシング1に溶接等で固定されている。非旋回スクロール2は、フレーム4にボルト等で固定されている。旋回スクロール3は、非旋回スクロール2とフレーム4との間に旋回可能に配置される。フレーム4は、旋回スクロール端板3aの背面側に背面圧力領域23である背圧室13を形成する。また、非旋回スクロール端板2aに背圧制御機構19を設置し、背圧室13の背面圧力を、運転時に吐出圧力と吸込圧力との間で調整する。   The frame 4 is fixed to the hermetic casing 1 by welding or the like. The non-orbiting scroll 2 is fixed to the frame 4 with bolts or the like. The orbiting scroll 3 is disposed between the non-orbiting scroll 2 and the frame 4 so as to be orbitable. The frame 4 forms a back pressure chamber 13 as a back pressure region 23 on the back side of the orbiting scroll end plate 3a. Moreover, the back pressure control mechanism 19 is installed in the non-orbiting scroll end plate 2a, and the back pressure of the back pressure chamber 13 is adjusted between the discharge pressure and the suction pressure during operation.

旋回スクロール3は、運転時に背圧室13の背面圧力により非旋回スクロール2側に押し付けられ、圧縮室20の密閉性が高められる。ここで、非旋回スクロール端板2aに背圧制御機構19と圧縮室20が連通するバイパス孔22を設け、運転条件に応じて容量を制御できるようにしている。   The orbiting scroll 3 is pressed against the non-orbiting scroll 2 by the back pressure of the back pressure chamber 13 during operation, and the sealing performance of the compression chamber 20 is improved. Here, a bypass hole 22 through which the back pressure control mechanism 19 and the compression chamber 20 communicate is provided in the non-orbiting scroll end plate 2a so that the capacity can be controlled according to the operating conditions.

旋回スクロール3を旋回駆動させる駆動機構は、回転駆動手段の一例としての電動機21と、シャフト7と、旋回スクロール3の自転防止機構の主要部品であるオルダムリング8と、シャフト7の上部を回転自在に係合する主軸受9と、シャフト7の偏心部とを回転軸方向に移動可能に、かつ、回転自在に係合する旋回軸受3dと、シャフト7の下部を回転自在に係合する副軸受11とを基本要素としている。シャフト7の摺動部は、上記シャフト7の主軸受9、旋回軸受3d及び副軸受11などに対する部分が相当する。   The driving mechanism for driving the orbiting scroll 3 to rotate is an electric motor 21 as an example of a rotation driving means, a shaft 7, an Oldham ring 8 which is a main part of the rotation preventing mechanism of the orbiting scroll 3, and an upper portion of the shaft 7. A swivel bearing 3d that engages with a main bearing 9 that engages with the shaft 7 and an eccentric portion of the shaft 7 in a rotational axis direction, and a sub-bearing that engages with a lower portion of the shaft 7 so as to rotate freely. 11 is a basic element. The sliding portion of the shaft 7 corresponds to a portion of the shaft 7 with respect to the main bearing 9, the slewing bearing 3d, the auxiliary bearing 11, and the like.

電動機21は誘導電動機などで構成され、環状のステータ5と、環状のロータ6とからなる。ステータ5は、焼嵌め等により密閉ケーシング1に固着されている。ロータ6は、ステータ5内に回転可能に配置されている。ロータ6の上下端面には、旋回スクロール3の運動に伴って生じる不釣り合い力を相殺し、圧縮機の振動を低く保つための平衡部品であるバランスウェイト12が設置されている。   The electric motor 21 is configured by an induction motor or the like, and includes an annular stator 5 and an annular rotor 6. The stator 5 is fixed to the hermetic casing 1 by shrink fitting or the like. The rotor 6 is rotatably disposed in the stator 5. On the upper and lower end surfaces of the rotor 6, balance weights 12, which are balanced parts for canceling out the unbalanced force caused by the movement of the orbiting scroll 3 and keeping the compressor vibration low, are installed.

電動機21と圧縮機構とは、密閉ケーシング1の長手方向に並んで配置され、シャフト7によって連携されている。フレーム4は、電動機21と圧縮機構との間に配置されている。シャフト7は、電動機21のロータ6を貫通して設置され、そのロータ6の回転力を圧縮機構に伝達する円筒部材である。シャフト7の上部は、主軸受9により回転自在に軸支され、シャフト7の中間部はロータ6の中心部を貫通し、シャフト7の下部は副軸受11に回転自在に軸支される。副軸受11は、シャフト7の安定な回転を確保するために設けられている。   The electric motor 21 and the compression mechanism are arranged side by side in the longitudinal direction of the sealed casing 1, and are linked by the shaft 7. The frame 4 is disposed between the electric motor 21 and the compression mechanism. The shaft 7 is a cylindrical member that is installed through the rotor 6 of the electric motor 21 and transmits the rotational force of the rotor 6 to the compression mechanism. The upper portion of the shaft 7 is rotatably supported by the main bearing 9, the intermediate portion of the shaft 7 passes through the center portion of the rotor 6, and the lower portion of the shaft 7 is rotatably supported by the auxiliary bearing 11. The auxiliary bearing 11 is provided to ensure stable rotation of the shaft 7.

オルダムリング8は、フレーム4内に設置されている。オルダムリング8に形成した直交する2組のキー部分の1組が、フレーム4に構成したキー溝を滑動し、残りの1組が旋回スクロール端板3aの背面側に構成したキー溝を滑動する。   The Oldham ring 8 is installed in the frame 4. One set of two orthogonal key portions formed on the Oldham ring 8 slides on the key groove formed on the frame 4, and the other set slides on the key groove formed on the back side of the orbiting scroll end plate 3a. .

主軸受9は、フレーム4の中心部に内蔵されている。副軸受11は、副軸受部材10の中心部に内蔵されている。副軸受部材10は、電動機21の反圧縮機構側の潤滑油15の油面近傍に配置され、密閉ケーシング1に溶接等により固着されている。なお、密閉ケーシング1内の下部空間には、潤滑油15が溜められている。シャフト7の下端が潤滑油15に浸されている。   The main bearing 9 is built in the center of the frame 4. The auxiliary bearing 11 is built in the central portion of the auxiliary bearing member 10. The auxiliary bearing member 10 is disposed in the vicinity of the oil surface of the lubricating oil 15 on the anti-compression mechanism side of the electric motor 21 and is fixed to the sealed casing 1 by welding or the like. Note that a lubricating oil 15 is stored in a lower space in the sealed casing 1. The lower end of the shaft 7 is immersed in the lubricating oil 15.

次に、スクロール圧縮機100の基本動作について説明する。ステータ5が発生する回転磁界によりロータ6に回転力が与えられ、このロータ6の回転に伴い、ロータ6に固定されたシャフト7が回転動作を行う。旋回スクロール3は、回転軸方向で移動可能に、かつ、回転自在にシャフト7の偏心部と係合しており、シャフト7の回転運動はオルダムリング8などの自転防止機構により旋回スクロール3の旋回運動へと変換される。非旋回スクロール2と旋回スクロール3を噛み合せて形成した圧縮室20の容積は、旋回スクロール3が旋回運動することにより減少する(圧縮行程)。   Next, the basic operation of the scroll compressor 100 will be described. A rotational force is applied to the rotor 6 by the rotating magnetic field generated by the stator 5, and the shaft 7 fixed to the rotor 6 rotates as the rotor 6 rotates. The orbiting scroll 3 is movably engaged with the eccentric portion of the shaft 7 so as to be movable in the direction of the rotation axis, and the rotational movement of the shaft 7 is caused to rotate by the rotation preventing mechanism such as the Oldham ring 8. Converted into motion. The volume of the compression chamber 20 formed by meshing the non-orbiting scroll 2 and the orbiting scroll 3 decreases as the orbiting scroll 3 orbits (compression stroke).

圧縮動作では、旋回スクロール3の旋回運動に伴って、冷媒などの作動流体が吸込パイプ16、吸込口2cを経由して圧縮室20へと吸込まれる。吸込まれた作動流体は、圧縮室20での圧縮行程を経て非旋回スクロールの吐出口2dへと流れ、密閉ケーシング1内の吐出空間17を経由し、最終的に吐出パイプ18から圧縮機外部へ吐き出される。   In the compression operation, the working fluid such as the refrigerant is sucked into the compression chamber 20 through the suction pipe 16 and the suction port 2c as the turning scroll 3 turns. The sucked working fluid flows through the compression stroke in the compression chamber 20 to the discharge port 2d of the non-orbiting scroll, passes through the discharge space 17 in the hermetic casing 1, and finally from the discharge pipe 18 to the outside of the compressor. Exhaled.

また、密閉ケーシング1内の下部空間に溜められた潤滑油15は、吐出空間17での吐出圧力と、背圧室13での吐出圧力と吸込圧力との間に調整された背面圧力との差圧や、シャフト7の回転動作に伴う遠心力により、旋回軸受3dと主軸受9を潤滑したあと、背圧室13へ供給される。その後、背圧室13内の潤滑油15は、圧縮室20へ供給され、作動流体とともに非旋回スクロールの吐出口2dから吐出され、密閉ケーシング1内の吐出空間17で油分離される。分離された潤滑油15は、密閉ケーシング1内の下部空間に貯油される。   Further, the lubricating oil 15 accumulated in the lower space in the hermetic casing 1 is the difference between the discharge pressure in the discharge space 17 and the back pressure adjusted between the discharge pressure in the back pressure chamber 13 and the suction pressure. The slewing bearing 3d and the main bearing 9 are lubricated by the pressure and the centrifugal force accompanying the rotation of the shaft 7, and then supplied to the back pressure chamber 13. Thereafter, the lubricating oil 15 in the back pressure chamber 13 is supplied to the compression chamber 20, is discharged from the discharge port 2 d of the non-orbiting scroll together with the working fluid, and is separated in the discharge space 17 in the sealed casing 1. The separated lubricating oil 15 is stored in a lower space in the sealed casing 1.

続いて、図3と図4を用いて、通常運転時と容量制御時における背圧制御機構の動作について詳細に説明する。図3は、通常運転時における背圧制御機構の拡大図である。図4は、容量制御時における背圧制御機構の拡大図である。   Next, the operation of the back pressure control mechanism during normal operation and capacity control will be described in detail with reference to FIGS. 3 and 4. FIG. 3 is an enlarged view of the back pressure control mechanism during normal operation. FIG. 4 is an enlarged view of the back pressure control mechanism during capacity control.

背圧制御機構19は、非旋回スクロール2に設置され、背圧制御用弁体19a(可動弁部)と背圧制御用スプリング19b、ニードル19c(可動弁部)、弾性体19dにより構成される。背圧制御用弁体19aの下面は背面圧力領域23と連通しており、背圧制御用弁体19aの上面は非旋回スクロール端板2aに設けた吸込空間24に連通している。吸込空間24は、前記吸込口2cに連通している。ニードル19cと背圧制御用弁体19aとの間に背圧制御用スプリング19bを設置し、背圧制御用スプリング19bの弾性力により、ある一定のバネ力で背圧制御用弁体19aを下方へ押し付けている。   The back pressure control mechanism 19 is installed in the non-orbiting scroll 2 and is composed of a back pressure control valve body 19a (movable valve portion), a back pressure control spring 19b, a needle 19c (movable valve portion), and an elastic body 19d. . The lower surface of the back pressure control valve element 19a communicates with the back pressure region 23, and the upper surface of the back pressure control valve element 19a communicates with the suction space 24 provided in the non-orbiting scroll end plate 2a. The suction space 24 communicates with the suction port 2c. A back pressure control spring 19b is installed between the needle 19c and the back pressure control valve body 19a, and the back pressure control valve body 19a is moved downward by a certain spring force by the elastic force of the back pressure control spring 19b. Is pushing.

また、ニードル19cの上面には、吐出空間17の圧力を導入し、弾性体19dと背圧制御用スプリング19bを圧縮して、ニードル19cを下方へ押し付けている。ニードル19cの側面の非旋回スクロール2には、圧縮室20に連通するバイパス孔22を設けている。なお、ニードル19cが非旋回スクロール2の外部へ飛び出さないように、ストッパ19e(可動範囲を制限する部材)を設置したり、ニードル19cの側面から吐出空間17の圧力が、バイパス孔22や吸込空間24へ漏れないように、ニードル19cの側面にシール材を付属させても良い。   Further, the pressure of the discharge space 17 is introduced to the upper surface of the needle 19c, the elastic body 19d and the back pressure control spring 19b are compressed, and the needle 19c is pressed downward. The non-orbiting scroll 2 on the side surface of the needle 19 c is provided with a bypass hole 22 communicating with the compression chamber 20. A stopper 19e (a member that limits the movable range) is installed so that the needle 19c does not jump out of the non-orbiting scroll 2, and the pressure in the discharge space 17 from the side surface of the needle 19c A sealing material may be attached to the side surface of the needle 19 c so as not to leak into the space 24.

ここで、背圧制御方法について説明する。背圧制御機構19により、
(背面圧力による力)>(吸込圧力による力)+(スプリング19bの弾性力)のとき、背圧制御用弁体19aが上方に移動し、背面圧力領域23の背面圧力を吸込空間24へ逃がすことで背面圧力を調整する。つまり、通常運転時には、ニードル19cの位置が固定され、背圧制御用スプリング19bのバネ長さが一定となり、
(背面圧力)=(吸込圧力)+(一定値α)に自動制御できる。なお、通常運転時にバイパス孔22は、ニードル19cの側面で閉口されて、圧縮室20と吸込空間24がバイパスしない。
Here, the back pressure control method will be described. By the back pressure control mechanism 19,
When (the force due to the back pressure)> (the force due to the suction pressure) + (the elastic force of the spring 19b), the back pressure control valve body 19a moves upward and releases the back pressure in the back pressure region 23 to the suction space 24. Adjust the back pressure. That is, during normal operation, the position of the needle 19c is fixed, and the spring length of the back pressure control spring 19b is constant,
(Back pressure) = (Suction pressure) + (Constant value α) can be automatically controlled. During normal operation, the bypass hole 22 is closed at the side surface of the needle 19c, and the compression chamber 20 and the suction space 24 are not bypassed.

一方、容量制御が求められる運転条件は、一般的に通常運転時と比較して吐出圧力と吸込圧力との圧力差が小さい。そこで、図4に示すように、容量制御時には、弾性体19dと背圧制御用スプリング19bの弾性力を利用し、ニードル19cを上方へ押し上げている。ニードル19cが上方へ押し上げられると、ニードル19cの側面で閉口されていたバイパス孔22が開口し、圧縮室20と吸込空間24はバイパスする。そのため、バイパス孔22が開口している圧縮室20は、吸込空間24となり、圧縮動作をしないで、見かけ上の押除量を減少させることができる。つまり、圧縮機の回転数を一定に保ったままでも、作動流体の循環量が減少し、容量を制御することができる。   On the other hand, the operating conditions that require capacity control generally have a smaller pressure difference between the discharge pressure and the suction pressure than during normal operation. Therefore, as shown in FIG. 4, during the capacity control, the needle 19c is pushed upward by using the elastic force of the elastic body 19d and the back pressure control spring 19b. When the needle 19c is pushed upward, the bypass hole 22 closed on the side surface of the needle 19c opens, and the compression chamber 20 and the suction space 24 bypass. Therefore, the compression chamber 20 in which the bypass hole 22 is opened becomes the suction space 24, and the apparent pushing amount can be reduced without performing the compression operation. That is, even if the rotation speed of the compressor is kept constant, the circulating amount of the working fluid is reduced and the capacity can be controlled.

容量制御時には、圧縮室20の一部が圧縮動作をしないため、通常運転時に必要な背面圧力が大幅に低くなる。ここで、背面圧力が過大であると旋回スクロール3と非旋回スクロール2との摺動面に発生する摩擦損失が増大して、スクロール圧縮機の効率及び信頼性を悪化させる。しかし、容量制御時には、ニードル19cが上方へ押し上げられ、背圧制御用スプリング19bのバネ長さが通常運転時に比べて、長くなるために弾性力が小さくなり、(背面圧力)=(吸込圧力)+(一定値β)に制御できる。つまり、背圧制御用スプリング19bのバネ長さで決定される弾性力は、
(通常運転時における弾性力(一定値α))>(容量制御時における弾性力(一定値β))であり、容量制御時の背面圧力は、通常運転時に比べて、大幅に低く制御することができる。
At the time of capacity control, a part of the compression chamber 20 does not perform the compression operation, so that the back pressure required during normal operation is greatly reduced. Here, if the back pressure is excessive, friction loss generated on the sliding surfaces of the orbiting scroll 3 and the non-orbiting scroll 2 increases, and the efficiency and reliability of the scroll compressor are deteriorated. However, at the time of capacity control, the needle 19c is pushed upward, and the spring length of the back pressure control spring 19b becomes longer than that at the time of normal operation, so the elastic force becomes smaller, and (back pressure) = (suction pressure) It can be controlled to + (constant value β). That is, the elastic force determined by the spring length of the back pressure control spring 19b is
(Elastic force during normal operation (constant value α))> (Elastic force during capacity control (constant value β)), and the back pressure during capacity control should be controlled much lower than during normal operation. Can do.

なお、背圧制御機構19におけるニードル19cを磁性体とし、ストッパ19eを一定の磁力を持つ永久磁石にすることで、運転条件が定常な時に、ニードル19cを磁力により、ストッパ19eに吸引させ、吐出圧力等の脈動に伴い、ニードル19cが上下振動することを抑制し、騒音を発生させないようにしても良い。   By using the needle 19c in the back pressure control mechanism 19 as a magnetic material and the stopper 19e as a permanent magnet having a constant magnetic force, the needle 19c is attracted to the stopper 19e by a magnetic force when the operating conditions are steady, and discharged. The needle 19c may be prevented from vibrating up and down with pulsation such as pressure so that noise is not generated.

以上のように、本実施形態によれば、背圧制御機構に容量制御用のバイパス孔を開閉する機能を付加させ、通常運転時には、バイパス孔を閉口しながら、背面圧力を高めに自動制御して圧縮室の漏洩損失を抑制し(圧縮室の密閉性を良好に確保しながら)、容量制御時には、バイパス孔を開口し、見かけ上の押除量を減少させて容量を自動制御すると同時に、背面圧力を低めに自動制御して旋回スクロールと非旋回スクロールとの摺動面に発生する摩擦損失を抑制し、スクロール圧縮機の効率及び信頼性を向上させることができる。   As described above, according to the present embodiment, the back pressure control mechanism is added with the function of opening and closing the bypass hole for capacity control, and during normal operation, the back pressure is automatically controlled to be high while the bypass hole is closed. In order to control the leakage loss of the compression chamber (while ensuring good sealability of the compression chamber), and at the time of capacity control, the bypass hole is opened, the apparent amount of pushing is reduced, and the capacity is automatically controlled, It is possible to automatically control the back pressure at a low level to suppress friction loss generated on the sliding surfaces of the orbiting scroll and the non-orbiting scroll, and to improve the efficiency and reliability of the scroll compressor.

また、本実施形態によれば、複雑な配管などを不要とした単純な構造であるため、製造コストの上昇を抑え、制御の応答性に優れ、かつ、容量制御時の圧損や加熱を抑制し、高効率なスクロール圧縮機を得ることができる。   In addition, according to the present embodiment, since it has a simple structure that does not require complicated piping and the like, it suppresses an increase in manufacturing cost, has excellent control responsiveness, and suppresses pressure loss and heating during capacity control. A highly efficient scroll compressor can be obtained.

なお、本実施形態では、背圧制御及び容量制御を運転条件に応じて機械的に自動制御する手段について述べたが、特殊な運転条件に対応するため、背圧制御機構に電気的な制御弁(図示せず)を付属させても良い。この電気的な制御の場合、運転条件の変更に際し、敏速かつ容易に対応できる。   In this embodiment, the means for mechanically automatically controlling the back pressure control and the capacity control according to the operating conditions has been described. However, in order to cope with the special operating conditions, an electrical control valve is provided in the back pressure control mechanism. (Not shown) may be attached. In the case of this electrical control, it is possible to respond quickly and easily to changes in operating conditions.

(第2実施形態)
本発明の第2実施形態について、図5及び図6を用いて説明する。図5及び図6は、容量制御機構を背圧制御機構と別体とした構造である。図5及び図6には、背圧制御機構を図示しないが、第1実施形態で述べたような背面圧力の調整機能を有する背圧制御機構を設置している。あるいは、背圧制御機構19のニードル19cが圧入等により固定され、背圧制御用スプリング19bのバネ長さを一定とし、容量制御をしない全運転条件で圧縮室20の密閉性を十分に確保するような、(背面圧力)=(吸込圧力)+(一定値)に設定した背圧制御機構を設置している。あるいは、第1実施形態で述べたような弁を用いず、旋回スクロール3の端板3aに背圧室13と圧縮室20が連通する孔を設け、(背面圧力)=(吸込圧力)×(一定値)に調整する背圧制御機構を用いても良い。
(Second Embodiment)
A second embodiment of the present invention will be described with reference to FIGS. 5 and 6 show a structure in which the capacity control mechanism is separated from the back pressure control mechanism. In FIGS. 5 and 6, the back pressure control mechanism is not shown, but the back pressure control mechanism having the function of adjusting the back pressure as described in the first embodiment is installed. Alternatively, the needle 19c of the back pressure control mechanism 19 is fixed by press-fitting or the like, the spring length of the back pressure control spring 19b is constant, and the hermeticity of the compression chamber 20 is sufficiently ensured under all operating conditions without capacity control. The back pressure control mechanism set to (back pressure) = (suction pressure) + (constant value) is installed. Alternatively, without using a valve as described in the first embodiment, a hole through which the back pressure chamber 13 and the compression chamber 20 communicate is provided in the end plate 3a of the orbiting scroll 3, and (back pressure) = (suction pressure) × ( A back pressure control mechanism that adjusts to a constant value may be used.

図5は、本発明の第2実施形態における通常運転時での容量制御機構である。容量制御機構25は、非旋回スクロール2に背圧制御機構と別体に設置し、容量制御用弁体25a(可動弁部)と容量制御用スプリング25b、ニードル25c(可動弁部)、弾性体25dにより構成される。容量制御用弁体25aは、非旋回スクロール2に設けた圧縮室20と連通するバイパス孔22をほぼ埋めるような突起形状を持つ。また、容量制御用弁体25aは、圧縮室20に突き出さないような先端形状を持つ。容量制御用弁体25aの片面は、バイパス孔22内にあり、圧縮室20と連通しており、もう一方の面は、非旋回スクロール端板2aに設けた吸込空間24に連通している。ニードル25cと容量制御用弁体25aとの間に容量制御用スプリング25bを設置し、容量制御用スプリング25bの弾性力により、ある一定のバネ力で容量制御用弁体25aを圧縮室側へ押し付けている。   FIG. 5 shows a capacity control mechanism during normal operation in the second embodiment of the present invention. The capacity control mechanism 25 is installed separately from the back pressure control mechanism in the non-orbiting scroll 2, and includes a capacity control valve body 25a (movable valve portion), a capacity control spring 25b, a needle 25c (movable valve portion), and an elastic body. 25d. The capacity control valve body 25 a has a protruding shape that substantially fills the bypass hole 22 communicating with the compression chamber 20 provided in the non-orbiting scroll 2. Further, the capacity control valve body 25 a has a tip shape that does not protrude into the compression chamber 20. One side of the capacity control valve body 25a is in the bypass hole 22 and communicates with the compression chamber 20, and the other side communicates with a suction space 24 provided in the non-orbiting scroll end plate 2a. A capacity control spring 25b is installed between the needle 25c and the capacity control valve body 25a, and the capacity control valve body 25a is pressed against the compression chamber side with a certain spring force by the elastic force of the capacity control spring 25b. ing.

また、ニードル25cの片面には、吐出空間17の圧力を導入し、弾性体25dと容量制御用スプリング25bを圧縮して、ニードル25cを圧縮室側へ押し付けている。ニードル25cの側面の非旋回スクロール端板2aには、背面圧力領域23と連通している。なお、ニードル25cが非旋回スクロール2の外部へ飛び出さないように、ストッパ25eを設置したり、ニードル25cの側面から吐出空間17の圧力が背面圧力領域23や吸込空間24へ漏れないように、ニードル25cの側面にシール材を付属させても良い。   Further, the pressure of the discharge space 17 is introduced to one surface of the needle 25c, the elastic body 25d and the capacity control spring 25b are compressed, and the needle 25c is pressed against the compression chamber side. The back pressure region 23 communicates with the non-orbiting scroll end plate 2a on the side surface of the needle 25c. A stopper 25e is installed so that the needle 25c does not jump out of the non-orbiting scroll 2, and the pressure of the discharge space 17 from the side surface of the needle 25c does not leak into the back pressure region 23 or the suction space 24. A sealing material may be attached to the side surface of the needle 25c.

通常運転時には、ニードル25cの位置が圧縮室側へ押し付けられて固定されているため、容量制御用スプリング25bを強く圧縮し、バイパス孔22を封止し、容量制御を行わない。また、バイパス孔22と吸込空間24、背面領域23、吐出空間17は、容量制御用弁体25aやニードル25cの側面で、各々がシールされ、連通しない。   During normal operation, since the position of the needle 25c is pressed against the compression chamber side and fixed, the capacity control spring 25b is strongly compressed, the bypass hole 22 is sealed, and capacity control is not performed. Further, the bypass hole 22, the suction space 24, the back surface region 23, and the discharge space 17 are sealed at the side surfaces of the capacity control valve body 25a and the needle 25c, and do not communicate with each other.

一方、容量制御が求められる運転条件は、一般的に通常運転時と比較して吐出圧力と吸込圧力との圧力差が小さい。そこで、図6に示すように、容量制御時には、弾性体25dの弾性力を利用し、ニードル25cを反圧縮室側へ移動させている。ニードル25cが反圧縮室側へ移動すると、容量制御用スプリング25bが自然長となり、容量制御用弁体25aをバイパス孔22から引き離し、圧縮室20と吸込空間24はバイパスする。そのため、バイパス孔22が開口している圧縮室20の内部空間は、吸込空間24となり、圧縮動作をしないで、見かけ上の押除量を減少させることができる。つまり、圧縮機の回転数を一定に保ったままでも、作動流体の循環量が減少し、容量を制御することができる。   On the other hand, the operating conditions that require capacity control generally have a smaller pressure difference between the discharge pressure and the suction pressure than during normal operation. Therefore, as shown in FIG. 6, at the time of capacity control, the elastic force of the elastic body 25d is used to move the needle 25c to the anti-compression chamber side. When the needle 25c moves to the side opposite to the compression chamber, the capacity control spring 25b becomes a natural length, pulls the capacity control valve body 25a away from the bypass hole 22, and bypasses the compression chamber 20 and the suction space 24. Therefore, the internal space of the compression chamber 20 in which the bypass hole 22 is open becomes a suction space 24, and the apparent amount of pushing can be reduced without performing a compression operation. That is, even if the rotation speed of the compressor is kept constant, the circulating amount of the working fluid is reduced and the capacity can be controlled.

容量制御時には、圧縮室20の一部が圧縮動作をしないため、通常運転時に必要な背面圧力が大幅に低くなる。ここで、背面圧力が過大であると旋回スクロール3と非旋回スクロール2との摺動面に発生する摩擦損失が増大して、スクロール圧縮機の効率及び信頼性を悪化させる。しかし、容量制御時には、ニードル25cが反圧縮室側へ移動し、背面圧力領域23と吸込空間24が連通して、背面圧力を吸込圧力まで低下させる。あるいは、ニードル25cの一部に背圧調整溝25fを設けておき、ニードル25cの移動に伴い(移動途中において)、背圧調整溝25fが間欠的に背面圧力領域23へ連通させることで、背面圧力をある目標値に調整することができる。   At the time of capacity control, a part of the compression chamber 20 does not perform the compression operation, so that the back pressure required during normal operation is greatly reduced. Here, if the back pressure is excessive, friction loss generated on the sliding surfaces of the orbiting scroll 3 and the non-orbiting scroll 2 increases, and the efficiency and reliability of the scroll compressor are deteriorated. However, at the time of capacity control, the needle 25c moves to the anti-compression chamber side, the back pressure region 23 and the suction space 24 communicate with each other, and the back pressure is reduced to the suction pressure. Alternatively, a back pressure adjusting groove 25f is provided in a part of the needle 25c, and the back pressure adjusting groove 25f is intermittently communicated with the back pressure region 23 as the needle 25c moves (while moving), thereby The pressure can be adjusted to a certain target value.

なお、容量制御機構25におけるニードル25cを磁性体とし、ストッパ25e(可動範囲を制限する部材)を一定の磁力を持つ永久磁石にすることで、運転条件が定常な時に、ニードル25cを磁力により、ストッパ25eに吸引させ、吐出圧力等の脈動に伴い、ニードル25cが振動を抑制し、騒音を発生させないようにしても良い。   In addition, the needle 25c in the capacity control mechanism 25 is made of a magnetic material, and the stopper 25e (a member that limits the movable range) is made of a permanent magnet having a constant magnetic force. The stopper 25e may be sucked so that the needle 25c suppresses vibration and does not generate noise with pulsation such as discharge pressure.

以上のように、本実施形態によれば、背圧制御機構と別体に設置する容量制御機構により、通常運転時には、バイパス孔をほぼ完全に封止して死容積を無くしたまま、背面圧力を背圧制御機構により自動制御し、容量制御時には、圧縮室と吸込室をバイパスさせ、見かけ上の押除量を減少させて容量を自動制御すると同時に、背面圧力を低めに自動制御して旋回スクロールと非旋回スクロールとの摺動面に発生する摩擦損失を抑制し、スクロール圧縮機の効率及び信頼性を向上させることができる。   As described above, according to this embodiment, the back pressure control mechanism is installed separately from the back pressure control mechanism. Is automatically controlled by the back pressure control mechanism, and at the time of capacity control, the compression chamber and suction chamber are bypassed, the apparent pressing amount is reduced to automatically control the capacity, and at the same time, the back pressure is automatically controlled to lower and turn Friction loss that occurs on the sliding surfaces of the scroll and the non-orbiting scroll can be suppressed, and the efficiency and reliability of the scroll compressor can be improved.

また、本実施形態によれば、容量制御機構の追加のみで機能を付加することができ、既存の背圧制御機構に容量制御機構を埋め込む作業等が不要となり、仕様変更が容易である。さらに、本実施形態によれば、複雑な配管などを不要とした単純な構造であるため、製造コストの上昇を抑え、制御の応答性に優れ、かつ、容量制御時の圧損や加熱を抑制し、高効率なスクロール圧縮機を得ることができる。   Further, according to the present embodiment, a function can be added only by adding a capacity control mechanism, and an operation of embedding the capacity control mechanism in an existing back pressure control mechanism becomes unnecessary, and the specification can be easily changed. Furthermore, according to this embodiment, since it has a simple structure that does not require complicated piping, etc., it suppresses an increase in manufacturing cost, has excellent control responsiveness, and suppresses pressure loss and heating during capacity control. A highly efficient scroll compressor can be obtained.

なお、本実施形態では、容量制御を運転条件に応じて機械的に自動制御する手段について述べたが、特殊な運転条件に対応するため、容量制御機構に電気的な制御弁(図示せず)を付属させても良い。この電気的な制御の場合、運転条件の変更に際し、敏速かつ容易に対応できる。   In the present embodiment, the means for automatically controlling the capacity control mechanically according to the operating conditions has been described. However, an electric control valve (not shown) is provided to the capacity control mechanism in order to cope with special operating conditions. May be attached. In the case of this electrical control, it is possible to respond quickly and easily to changes in operating conditions.

また、先の実施形態および本実施形態では、旋回スクロール及び非旋回スクロールの渦巻状ラップ形状については、旋回スクロールあるいは非旋回スクロールのどちらか一方の渦巻状ラップ終端角を他方の渦巻状ラップ終端角と異ならせた非対称な渦巻状ラップを有するスクロール流体機械に本実施形態を用いても良い。これにより、種々の仕様のスクロール流体機械に対応できる。   In the previous embodiment and the present embodiment, the spiral wrap shape of the orbiting scroll and the non-orbiting scroll is the same as the spiral wrap end angle of either the orbiting scroll or the non-orbiting scroll. The present embodiment may be used in a scroll fluid machine having an asymmetric spiral wrap different from the above. Thereby, it can respond to the scroll fluid machine of various specifications.

1…密閉ケーシング、2…非旋回スクロール、2a…端板、2b…ラップ、2c…吸込口、2d…吐出口、3…旋回スクロール、3a…端板、3b…ラップ、3c…ボス筒、3d…旋回軸受、4…フレーム、5…ステータ、6…ロータ、7…シャフト、8…オルダムリング、9…主軸受、10…副軸受部材、11…副軸受、12…バランスウェイト、13…背圧室、14…リリース弁機構、15…潤滑油、16…吸込パイプ、17…吐出空間、18…吐出パイプ、19…背圧制御機構、19a…背圧制御用弁体(可動弁部)、19b…背圧制御用スプリング、19c…ニードル(可動弁部)、19d…弾性体、19e…ストッパ(可動範囲を制限する部材)、20…圧縮室、21…電動機、22…バイパス孔、23…背面圧力領域、24…吸込空間、25…容量制御機構、25a…容量制御用弁体(可動弁部)、25b…容量制御用スプリング、25c…ニードル(可動弁部)、25d…弾性体、25e…ストッパ(可動範囲を制限する部材)、25f…背圧調整溝、100…スクロール圧縮機。   DESCRIPTION OF SYMBOLS 1 ... Sealed casing, 2 ... Non-orbiting scroll, 2a ... End plate, 2b ... Wrap, 2c ... Suction port, 2d ... Discharge port, 3 ... Revolving scroll, 3a ... End plate, 3b ... Wrap, 3c ... Boss cylinder, 3d Slewing bearing, 4 frame, 5 stator, 6 rotor, 7 shaft, 8 Oldham ring, 9 main bearing, 10 sub bearing member, 11 sub bearing, 12 balance weight, 13 back pressure Chamber, 14 ... Release valve mechanism, 15 ... Lubricating oil, 16 ... Suction pipe, 17 ... Discharge space, 18 ... Discharge pipe, 19 ... Back pressure control mechanism, 19a ... Back pressure control valve element (movable valve part), 19b ... back pressure control spring, 19c ... needle (movable valve part), 19d ... elastic body, 19e ... stopper (member that limits the movable range), 20 ... compression chamber, 21 ... electric motor, 22 ... bypass hole, 23 ... back surface Pressure region, 24 ... suction Space, 25 ... Capacity control mechanism, 25a ... Volume control valve element (movable valve part), 25b ... Capacity control spring, 25c ... Needle (movable valve part), 25d ... Elastic body, 25e ... Stopper (limit the movable range) 25f ... back pressure adjusting groove, 100 ... scroll compressor.

Claims (9)

それぞれの端板に渦巻状ラップを立設した旋回スクロール及び非旋回スクロールを噛み合せて形成した作動室と、前記非旋回スクロールの端板に形成した吸込空間と、前記旋回スクロールあるいは非旋回スクロールの少なくとも一方の反作動室側に形成した背面圧力領域と、前記背面圧力領域の圧力を制御する背圧制御機構を備えたスクロール流体機械において、
前記背圧制御機構により、前記作動室と前記吸込空間を運転条件に応じてバイパスさせて容量を制御することを特徴とするスクロール流体機械。
Working chambers formed by meshing orbiting scrolls and non-orbiting scrolls each having a spiral wrap on each end plate, a suction space formed in the end plates of the non-orbiting scrolls, and at least the orbiting scrolls or the non-orbiting scrolls In a scroll fluid machine having a back pressure region formed on one reaction chamber side and a back pressure control mechanism for controlling the pressure in the back pressure region,
A scroll fluid machine characterized in that the capacity is controlled by bypassing the working chamber and the suction space according to operating conditions by the back pressure control mechanism.
請求項1に記載のスクロール流体機械において、前記背圧制御機構は、運転条件に応じて前記背面圧力領域と前記吸込空間をバイパスさせて背面圧力を制御すると共に、流体機械の容量制御運転時に前記作動室と前記吸込空間をバイパスさせて容量を制御する可動弁部を備えたことを特徴とするスクロール流体機械。   2. The scroll fluid machine according to claim 1, wherein the back pressure control mechanism controls the back pressure by bypassing the back pressure region and the suction space according to operating conditions, and at the time of capacity control operation of the fluid machine. A scroll fluid machine comprising a movable valve unit that controls a capacity by bypassing an operation chamber and the suction space. 請求項2に記載のスクロール流体機械において、前記可動弁部を磁性体とし、前記可動弁部の可動範囲を制限する部材を永久磁石としたことを特徴とするスクロール流体機械。   3. The scroll fluid machine according to claim 2, wherein the movable valve portion is a magnetic body, and the member that limits the movable range of the movable valve portion is a permanent magnet. 請求項1〜3の何れかに記載のスクロール流体機械において、前記背圧制御機構を電気的な信号により制御することを特徴とするスクロール流体機械。   The scroll fluid machine according to any one of claims 1 to 3, wherein the back pressure control mechanism is controlled by an electrical signal. それぞれの端板に渦巻状ラップを立設した旋回スクロール及び非旋回スクロールを噛み合せて形成した作動室と、前記非旋回スクロールの端板に形成した吸込空間と、前記旋回スクロールあるいは非旋回スクロールの少なくとも一方の反作動室側に形成した背面圧力領域と、前記背面圧力領域の圧力を制御する背圧制御機構を備えたスクロール流体機械において、
さらに、前記作動室と吸込空間を運転条件に応じてバイパスさせて容量を制御する容量制御機構を備え、この容量制御機構により流体機械の容量制御運転時に、前記背面圧力を制御することを特徴とするスクロール流体機械。
Working chambers formed by meshing orbiting scrolls and non-orbiting scrolls each having a spiral wrap on each end plate, a suction space formed in the end plates of the non-orbiting scrolls, and at least the orbiting scrolls or the non-orbiting scrolls In a scroll fluid machine having a back pressure region formed on one reaction chamber side and a back pressure control mechanism for controlling the pressure in the back pressure region,
And a capacity control mechanism that controls the capacity by bypassing the working chamber and the suction space according to operating conditions, and the back pressure is controlled by the capacity control mechanism during the capacity control operation of the fluid machine. Scroll fluid machine.
請求項5に記載のスクロール流体機械において、前記容量制御機構は、運転条件に応じて前記背面圧力領域と前記吸込空間をバイパスさせて背面圧力を制御すると共に、流体機械の容量制御運転時に前記作動室と前記吸込空間をバイパスさせて容量を制御する可動弁部を備えたことを特徴とするスクロール流体機械。   6. The scroll fluid machine according to claim 5, wherein the capacity control mechanism controls the back pressure by bypassing the back pressure area and the suction space according to operating conditions, and the operation is performed during the capacity control operation of the fluid machine. A scroll fluid machine comprising a movable valve portion that controls a capacity by bypassing a chamber and the suction space. 請求項6に記載のスクロール流体機械において、前記可動弁部を磁性体とし、この可動弁部の可動範囲を制限する部材を永久磁石としたことを特徴とするスクロール流体機械。   The scroll fluid machine according to claim 6, wherein the movable valve portion is a magnetic body, and a member that limits a movable range of the movable valve portion is a permanent magnet. 請求項5〜7のいずれかに記載のスクロール流体機械において、前記容量制御機構を電気的な信号により制御することを特徴とするスクロール流体機械。   8. The scroll fluid machine according to claim 5, wherein the capacity control mechanism is controlled by an electrical signal. 請求項1〜8のいずれかに記載のスクロール流体機械において、旋回スクロールあるいは非旋回スクロールのどちらか一方の渦巻状ラップ終端角が、他方の渦巻状ラップ終端角と異ならせた非対称な渦巻状ラップを用いたことを特徴とするスクロール流体機械。   9. The scroll fluid machine according to claim 1, wherein the spiral wrap end angle of either the orbiting scroll or the non-orbiting scroll is different from the other spiral wrap end angle. A scroll fluid machine characterized by using the above.
JP2009042449A 2009-02-25 2009-02-25 Scroll fluid machinery Active JP4903826B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009042449A JP4903826B2 (en) 2009-02-25 2009-02-25 Scroll fluid machinery
CN2010101136301A CN101813087B (en) 2009-02-25 2010-02-08 Vortex fluid machinery
KR1020100014393A KR101185659B1 (en) 2009-02-25 2010-02-18 Scroll fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009042449A JP4903826B2 (en) 2009-02-25 2009-02-25 Scroll fluid machinery

Publications (2)

Publication Number Publication Date
JP2010196593A true JP2010196593A (en) 2010-09-09
JP4903826B2 JP4903826B2 (en) 2012-03-28

Family

ID=42620425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009042449A Active JP4903826B2 (en) 2009-02-25 2009-02-25 Scroll fluid machinery

Country Status (3)

Country Link
JP (1) JP4903826B2 (en)
KR (1) KR101185659B1 (en)
CN (1) CN101813087B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019293A (en) * 2011-07-11 2013-01-31 Hitachi Appliances Inc Scroll compressor
CN103573620A (en) * 2012-08-07 2014-02-12 日立空调·家用电器株式会社 Enclosed motor compressor
WO2019116435A1 (en) * 2017-12-12 2019-06-20 日立ジョンソンコントロールズ空調株式会社 Scroll compressor
CN114183351A (en) * 2021-12-17 2022-03-15 珠海格力电器股份有限公司 Scroll compressor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5548586B2 (en) * 2010-10-28 2014-07-16 日立アプライアンス株式会社 Scroll compressor
KR101810461B1 (en) * 2011-03-24 2017-12-19 엘지전자 주식회사 Scroll compressor
JP5969227B2 (en) * 2012-03-14 2016-08-17 サンデンホールディングス株式会社 Fluid machinery
JP6302813B2 (en) * 2014-09-30 2018-03-28 日立ジョンソンコントロールズ空調株式会社 Scroll compressor and refrigeration cycle apparatus using the same
JP6441053B2 (en) * 2014-12-08 2018-12-19 日立ジョンソンコントロールズ空調株式会社 Sealed electric compressor and air conditioner
KR102310647B1 (en) 2014-12-12 2021-10-12 삼성전자주식회사 Compressor
KR101892803B1 (en) * 2016-04-26 2018-08-29 학교법인 두원학원 An apparatus for back pressure control in scroll compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000314382A (en) * 1999-05-06 2000-11-14 Hitachi Ltd Scroll compressor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000314382A (en) * 1999-05-06 2000-11-14 Hitachi Ltd Scroll compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019293A (en) * 2011-07-11 2013-01-31 Hitachi Appliances Inc Scroll compressor
CN103573620A (en) * 2012-08-07 2014-02-12 日立空调·家用电器株式会社 Enclosed motor compressor
WO2019116435A1 (en) * 2017-12-12 2019-06-20 日立ジョンソンコントロールズ空調株式会社 Scroll compressor
CN114183351A (en) * 2021-12-17 2022-03-15 珠海格力电器股份有限公司 Scroll compressor

Also Published As

Publication number Publication date
CN101813087B (en) 2013-10-30
JP4903826B2 (en) 2012-03-28
KR101185659B1 (en) 2012-09-24
KR20100097022A (en) 2010-09-02
CN101813087A (en) 2010-08-25

Similar Documents

Publication Publication Date Title
JP4903826B2 (en) Scroll fluid machinery
WO2007066463A1 (en) Scroll compressor
KR102408562B1 (en) Scroll compressor
KR100608664B1 (en) Capacity changeable apparatus for scroll compressor
WO2012060062A1 (en) Scroll compressor
US8353693B2 (en) Fluid machine
JP6300829B2 (en) Rotary compressor
WO2006014081A1 (en) Capacity variable device for rotary compressor and driving method of air conditioner having the same
JP2007270697A (en) Scroll fluid machine
JP2008240667A (en) Rotary compressor
JP2010525240A (en) Compressor and oil supply structure thereof
JP6555543B2 (en) Scroll compressor
US10578106B2 (en) Compressor
JP2005256809A (en) Scroll compressor
JP2010285930A (en) Scroll compressor
KR101597556B1 (en) Scroll compressor
WO2012042894A1 (en) Positive displacement compressor
EP1657443A1 (en) Scroll compressor
WO1999039104A1 (en) Variable displacement compressor
KR20200068938A (en) High-pressure type scroll compressor
JP2012172571A (en) Rotary compressor
KR20090095381A (en) Scroll compressor
JP5807175B2 (en) Rotary compressor
US10533555B2 (en) Scroll compressor
KR100585810B1 (en) Modulation type rotary compressor with double shell and operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120105

R150 Certificate of patent or registration of utility model

Ref document number: 4903826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250