JP2010194504A - System for treating exhaust gas by electron beam irradiation - Google Patents

System for treating exhaust gas by electron beam irradiation Download PDF

Info

Publication number
JP2010194504A
JP2010194504A JP2009044954A JP2009044954A JP2010194504A JP 2010194504 A JP2010194504 A JP 2010194504A JP 2009044954 A JP2009044954 A JP 2009044954A JP 2009044954 A JP2009044954 A JP 2009044954A JP 2010194504 A JP2010194504 A JP 2010194504A
Authority
JP
Japan
Prior art keywords
nox
exhaust gas
electron beam
adsorbent
nitrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009044954A
Other languages
Japanese (ja)
Other versions
JP5499489B2 (en
Inventor
Makoto Doi
真 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2009044954A priority Critical patent/JP5499489B2/en
Publication of JP2010194504A publication Critical patent/JP2010194504A/en
Application granted granted Critical
Publication of JP5499489B2 publication Critical patent/JP5499489B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for efficiently decomposing NO<SB>x</SB>contained in exhaust gas at a low cost. <P>SOLUTION: The apparatus for treating exhaust gas comprising NO<SB>x</SB>is characterized in that a feed pipe for feeding exhaust comprising NO<SB>x</SB>is connected to the inlet of a container including an inlet and an outlet and storing an adsorbent of NO<SB>x</SB>, and an electron beam device and a nitrogen gas feeder are connected to each other via a switching valve in the middle of the feed pipe. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、NOxを含む排ガスに電子線を照射してNOxを分解するシステムに関するものである。   The present invention relates to a system for decomposing NOx by irradiating exhaust gas containing NOx with an electron beam.

従来、NOxを含む排ガスの処理方法としては、NOx含有ガスを吸着剤に流してNOx吸着させ、雰囲気ガスを窒素ガスに置換してから加熱してNOxを放出させてこのガスを放電処理することによりNOxを還元する方法(特許文献1)、NOxを吸着剤に吸着させた後、雰囲気ガスを酸素濃度10vol%以下で純度90vol%以上の窒素ガスに置換してから、この吸着剤に非熱プラズマを印加し、NOxの脱着と吸着剤の再生を行う方法(特許文献2)が知られている。   Conventionally, as a method for treating exhaust gas containing NOx, NOx-containing gas is caused to flow through an adsorbent to adsorb NOx, and after replacing the atmospheric gas with nitrogen gas, heating is performed to release NOx, and this gas is discharged. NOx is reduced by the above method (Patent Document 1), after NOx is adsorbed on the adsorbent, the atmosphere gas is replaced with nitrogen gas having an oxygen concentration of 10 vol% or less and a purity of 90 vol% or more, and then the adsorbent is not heated A method (Patent Document 2) in which plasma is applied to desorb NOx and regenerate the adsorbent is known.

また、排ガスにアンモニア添加と電子線照射を行うことにより、排ガス中の窒素酸化物及び/又は硫黄酸化物を除去する方法において、アンモニアの添加位置を、反応器内に照射される電子線の中心より排ガスの上流側に電子線の飛程の2.5倍以内とする方法(特許文献3)も知られている。   Further, in the method of removing nitrogen oxides and / or sulfur oxides in exhaust gas by adding ammonia to the exhaust gas and irradiating the electron beam, the position of ammonia addition is determined at the center of the electron beam irradiated into the reactor. A method (Patent Document 3) is also known in which the range of the electron beam is within 2.5 times the upstream side of the exhaust gas.

さらに、図3に示すように、エンジン排気を吸着塔Aに導入して、NOx等を吸着させ、次に、これを加熱するとともに、酸素10vol%以下で純度90vol%以上の窒素ガスを導入してNOx等を脱着させ、脱着したNOx等を含む窒素ガスをプラズマ処理してNOxをNに還元する方法(特許文献4)も知られている。 Further, as shown in FIG. 3, the engine exhaust is introduced into the adsorption tower A to adsorb NOx and the like, and then heated and introduced with nitrogen gas having oxygen of 10 vol% or less and purity of 90 vol% or more. A method is also known in which NOx is desorbed and nitrogen gas containing the desorbed NOx or the like is plasma treated to reduce NOx to N 2 (Patent Document 4).

特開2001−300249号公報JP 2001-300409 A 国際公開第2005/037412A1号パンフレットInternational Publication No. 2005 / 037412A1 Pamphlet 特開平8−108037号公報JP-A-8-108037 特開2007−321678号公報JP 2007-321678 A

特許文献1,2記載の低温プラズマ法では、処理効率が悪く、また、10vol%前後の酸素を含む通常の排ガス中では還元ではなく酸化反応が進み還元分解しない、という問題があった。   The low-temperature plasma methods described in Patent Documents 1 and 2 have a problem in that the processing efficiency is poor, and in an ordinary exhaust gas containing about 10 vol% oxygen, an oxidation reaction proceeds rather than reduction, and reductive decomposition does not occur.

特許文献3記載の電子線処理方法は、アンモニアを加えて硝酸アンモニウムを生成させて除去するものであるのでアンモニアの添加が必要であった。
特許文献4記載の方法は、図3に示したように特許文献2記載の方法を用いて連続的にNOxを処理するシステムであるが、システムが複雑で処理効率に問題があり、また、10vol%前後の酸素を含む通常の排ガス中では還元ではなく酸化反応が進み還元分解しない、という問題があった。
The electron beam processing method described in Patent Document 3 requires addition of ammonia because ammonia is added to produce and remove ammonium nitrate.
The method described in Patent Document 4 is a system for continuously processing NOx using the method described in Patent Document 2 as shown in FIG. 3, but the system is complicated and there is a problem in processing efficiency, and 10 vol. In ordinary exhaust gas containing about 1% of oxygen, there was a problem that the oxidation reaction progressed rather than reduction and the reductive decomposition did not occur.

一方、本発明者は、図4に示したように低エネルギー電子線照射法により排ガス中に直接電子線を照射する方法や窒素ガス中に電子線を照射し生成されたNラジカルを排ガス中に注入する方法を用い、10〜20vol%濃度の酸素環境下においてもNラジカルによるNOxの還元分解が可能なことを見出した。しかしながら、この方法における処理効率は低温プラズマ法に比較して非常に高いものの、排ガス中のNOxは100〜1000ppm(0.01〜0.1%)と非常に低濃度であり、生成されたNラジカルと接触し反応する確率が小さく、必要量(NOx/Nラジカル=1/1)以上のNラジカルが必要なため処理効率が悪いという問題があった。   On the other hand, as shown in FIG. 4, the present inventor has applied a method of directly irradiating an exhaust gas with an electron beam by a low energy electron beam irradiation method or an N radical generated by irradiating an electron beam into nitrogen gas. Using the injection method, it was found that NOx reductive decomposition by N radicals was possible even in an oxygen environment with a concentration of 10 to 20 vol%. However, although the treatment efficiency in this method is very high as compared with the low temperature plasma method, NOx in the exhaust gas has a very low concentration of 100 to 1000 ppm (0.01 to 0.1%), and produced N There is a low probability of reacting with the radicals, and there is a problem that the processing efficiency is poor because N radicals in a necessary amount (NOx / N radical = 1/1) or more are necessary.

本発明者は、NOxのより効率のよい分解システムを開発するべく鋭意検討の結果、NOxを含有する排ガスをNOx吸着剤に接触させて吸着させることによりNOxを濃縮し、これに上記のNラジカルを含む窒素ガスを接触させてNOxを還元分解すれば、NOxを効率よく分解できることを見出した。   As a result of intensive studies to develop a more efficient decomposition system for NOx, the present inventor concentrated NOx by bringing NOx-containing exhaust gas into contact with the NOx adsorbent and adsorbing it, and the above N radicals. It has been found that NOx can be efficiently decomposed by reducing and decomposing NOx by contacting nitrogen gas containing nitrogen.

そして、さらに、NOx吸着剤を収容する少なくとも2つの容器を用いて、その一方でNOxの吸着を行わせ、他方で吸着させたNOxを還元分解すれば、連続的なNOx処理を効率よくできることを見出した。   Furthermore, if at least two containers containing NOx adsorbent are used to adsorb NOx on the one hand and NOx adsorbed on the other side is reduced and decomposed, continuous NOx treatment can be efficiently performed. I found it.

本発明は、これらの知見に基づいてなされたものであり、
出口と入口を有するNOx吸着剤を収容している容器の入口側にNOxを含有する排ガスの送入管が接続され、該送入管の途中に切替弁を介して電子線装置と窒素ガス供給装置が接続されていることを特徴とする、NOx含有排ガス処理装置と、
NOx吸着剤を収容している容器が少なくとも2基あり、排ガス送入管および電子線装置と窒素ガス供給装置は、いずれも切替弁を介して各容器に接続されている上記の装置と、
NOxを含有する排ガスをNOx吸着剤に接触させてNOxを吸着させ、次いで該吸着剤に、窒素ガスを注入し電子線を直接照射もしくは電子線を照射してNラジカルを生成させた窒素ガスを送入してNOxを還元分解することを特徴とする、NOx含有排ガス処理方法と、
NOx吸着剤が少なくとも2つの容器に収容されていて、その一方には、NOxを含有する排ガスを送入してNOxを吸着させ、既にNOxを吸着している他方には、窒素ガスを注入し電子線を直接照射もしくは電子線を照射してNラジカルを生成させた窒素ガスを送入してNOxを還元分解する、上記の方法
に関するものである。
The present invention has been made based on these findings,
An inlet pipe for exhaust gas containing NOx is connected to the inlet side of a container containing a NOx adsorbent having an outlet and an inlet, and an electron beam device and nitrogen gas supply are provided in the middle of the inlet pipe via a switching valve. A NOx-containing exhaust gas treatment device, characterized in that the device is connected;
There are at least two containers containing NOx adsorbents, and the exhaust gas inlet pipe, the electron beam apparatus, and the nitrogen gas supply apparatus are all connected to each container via a switching valve,
NOx is adsorbed by bringing NOx-containing exhaust gas into contact with the NOx adsorbent, and then nitrogen gas is injected into the adsorbent and directly irradiated with an electron beam or irradiated with an electron beam to generate nitrogen radicals. A NOx-containing exhaust gas treatment method, wherein the NOx-containing exhaust gas treatment method,
NOx adsorbent is contained in at least two containers, one of which is fed with exhaust gas containing NOx to adsorb NOx, and the other that has already adsorbed NOx is injected with nitrogen gas. The present invention relates to the above method in which nitrogen gas generated by direct irradiation with an electron beam or irradiation with an electron beam to generate N radicals is fed to reduce and decompose NOx.

本発明では、低温プラズマよりエネルギーが高く、一様な電子を電子線装置で発生させ、この電子により窒素分子を解離させNラジカルを高効率で生成させる。このNラジカルによりNOxをNとOに直接分解している。 In the present invention, uniform electrons having higher energy than low-temperature plasma are generated by an electron beam device, and nitrogen molecules are dissociated by the electrons to generate N radicals with high efficiency. This N radical decomposes NOx directly into N 2 and O 2 .

本発明は、従来の低濃度NOxと反応させる方法とは異なり、NOxを吸着して濃縮したNOx吸着剤収容容器に、窒素ガスを注入し吸着剤に電子線を直接照射したり、電子線を照射してNラジカルを生成させた窒素ガスを送入したりすることにより、排ガス中のNOxを効率よく分解できる。   Unlike the conventional method of reacting with low-concentration NOx, the present invention injects nitrogen gas into a NOx adsorbent container that has been concentrated by adsorbing NOx and directly irradiates the adsorbent with an electron beam, By sending in nitrogen gas that has been irradiated to generate N radicals, NOx in the exhaust gas can be efficiently decomposed.

本発明の一実施例である装置の概略構成を示す図である。It is a figure which shows schematic structure of the apparatus which is one Example of this invention. 本発明の他の実施例である装置の概略構成を示す図であるIt is a figure which shows schematic structure of the apparatus which is another Example of this invention. 従来の排ガス処理装置の一例を示す図である。It is a figure which shows an example of the conventional waste gas processing apparatus. 従来の排ガス処理装置の別の例を示す図である。It is a figure which shows another example of the conventional waste gas processing apparatus.

本発明の装置は、NOx吸着剤を収容している容器と、電子線装置と、窒素ガス供給装置よりなる。
NOx吸着剤は、公知の吸着剤であればいずれも利用できるが、例として、ゼオライト、活性炭、アルミナなどを挙げることができる。形状は、ガスを流通させることができればよく、粒状、繊維状等でよい。なお、ゼオライトを用いた場合、ゼオライトはNOxを分解する触媒性能も有するため、吸着と分解の相乗効果が期待でき、処理効率がさらに向上する可能性がある。
The apparatus of the present invention comprises a container containing a NOx adsorbent, an electron beam apparatus, and a nitrogen gas supply apparatus.
Any known adsorbent can be used as the NOx adsorbent, and examples thereof include zeolite, activated carbon, and alumina. The shape is not limited as long as gas can be circulated, and may be granular, fibrous or the like. In addition, when zeolite is used, since zeolite also has a catalytic performance for decomposing NOx, a synergistic effect of adsorption and decomposition can be expected, and the processing efficiency may be further improved.

NOx吸着剤を収容する容器の形状も問わないが、通常は塔状、カラム状である。そして、その一端近傍には入口が、他端近傍には出口が設けられ、入口には排ガス送入管が接続される。   The shape of the container containing the NOx adsorbent is not limited, but is usually a tower shape or a column shape. An inlet is provided near one end, an outlet is provided near the other end, and an exhaust gas inlet pipe is connected to the inlet.

排ガス送入管の途中あるいは吸着剤収納容器部には、電子線装置と窒素ガス供給装置が接続される。
電子線の装置は、陰極と、陽極と、チャンバーと、それに取着された電子線取出窓よりなる。
An electron beam device and a nitrogen gas supply device are connected in the middle of the exhaust gas supply pipe or in the adsorbent storage container.
The electron beam apparatus includes a cathode, an anode, a chamber, and an electron beam extraction window attached thereto.

陰極は、導電性の基台上に電子放出部が形成されているものである。電子放出部としては、高電圧、高電流出力条件での長寿命特性が必要であり、従来よりも低電圧で照射量を稼げる点で、従来の熱陰極型ではなく、加熱電源が不要なカーボンナノチューブ(CNT)、スピントなどの電界放出型冷陰極が効果的である。カーボンナノチューブによる電子放出部は金属基板の上にCNTを成膜し、起毛処理を施したものが特に好ましい。CNTとしては、最も許容電流密度が高く耐久性の優れたアーク放電法により製造された多層CNTが最適である。CNTを金属基板へ成膜する方法は、スプレー堆積法、スクリーン印刷法、電気泳動法などの公知の方法を用いることができるが、CNT分散剤、増粘剤等の化学物質や樹脂等の不純物がなくCNTと基板との高い接合性を有することが電子放出能の耐久性には好ましい。CNTと金属微粒子を混合したものを成膜し、熱処理により接合性を持たせる方法や、真空中の電子ビーム照射により接合性を高める方法等がある。   The cathode has an electron emission portion formed on a conductive base. The electron emission part must have long life characteristics under high voltage and high current output conditions, and it can produce a higher dose at a lower voltage than conventional ones. Field emission cold cathodes such as nanotubes (CNT) and spint are effective. The electron emission portion made of carbon nanotubes is particularly preferably one obtained by forming a CNT film on a metal substrate and performing a raising treatment. As the CNT, a multilayer CNT manufactured by an arc discharge method having the highest allowable current density and excellent durability is most suitable. Known methods such as spray deposition, screen printing, and electrophoresis can be used as a method for forming a film on a metal substrate. However, chemical substances such as CNT dispersants and thickeners, and impurities such as resins. It is preferable for durability of the electron emission ability to have a high bonding property between the CNT and the substrate. There are a method of forming a film of a mixture of CNT and metal fine particles and imparting the bonding property by heat treatment, a method of increasing the bonding property by electron beam irradiation in vacuum, and the like.

CNT膜に電子放出性を発揮させるための起毛処理方法としては、極短パルスの高エネルギー密度のレーザ照射法や粘着テープ等による引剥し起毛法などを用いることができる。また、テープ状のCNTを用いた場合には、軟らかい金属を蒸着させた基板にCNTテープを圧着後引剥し、固定と起毛処理を同時に行う方法を用いてもよい。   As a raising treatment method for causing the CNT film to exhibit electron emission, an ultrashort pulse high energy density laser irradiation method, a peeling raising method using an adhesive tape, or the like can be used. When tape-like CNTs are used, a method may be used in which the CNT tape is pressure-bonded to a substrate on which a soft metal is vapor-deposited and then peeled off, and fixing and raising are performed simultaneously.

電子放出部の平面形状は、特に限定されないが、例えば円形や正方形、長方形などであり、大きさは、直径(円でない場合は、面積を円に換算したもの)が1〜100mm程度である。   The planar shape of the electron emission portion is not particularly limited, but is, for example, a circle, a square, or a rectangle, and the size is about 1 to 100 mm in diameter (in the case of not being a circle, the area is converted to a circle).

陽極である電子線取出窓は、電子線を透過させ易く高強度である必要があり数ミクロン〜数10ミクロンのチタン、アルミ、シリコン、ベリリウム、カーボンなどの低密度かつ高強度材の薄膜が用いられる。その外側のフレームや真空チャンバーにはニッケル合金やステンレス鋼などが用いられ、電子銃部と陽極間の電気絶縁のための材料はセラミックやガラス系材料が用いられる。   The electron beam extraction window, which is an anode, needs to be easy to transmit the electron beam and have high strength, and a thin film of low density and high strength material such as titanium, aluminum, silicon, beryllium, carbon, etc. of several to several tens of microns is used It is done. A nickel alloy, stainless steel, or the like is used for the outer frame or vacuum chamber, and a ceramic or glass-based material is used for electrical insulation between the electron gun portion and the anode.

真空チャンバーは、電子線を発生させ加速するところで、高真空にする程好ましい。好ましくは10−3Pa以下、さらに好ましくは10−5Paレベルの真空度が良い。これは、酸素および酸素を含むガスが存在した場合、酸素とCNTとが反応し消耗、劣化するため、電子放出性能の寿命が短くなるためである。内部を真空状態に保持するための方法として、真空ポンプなどの付設や真空管技術を用いた真空封止管とする方法がある。 The vacuum chamber is preferably as high as possible in order to generate and accelerate an electron beam. The degree of vacuum is preferably 10 −3 Pa or less, and more preferably 10 −5 Pa level. This is because, when oxygen and a gas containing oxygen are present, oxygen and CNT react with each other to be consumed and deteriorated, so that the lifetime of the electron emission performance is shortened. As a method for keeping the inside in a vacuum state, there are a method of providing a vacuum pump or the like and a vacuum sealing tube using a vacuum tube technique.

窒素ガス供給装置は、所定量の窒素ガスを供給できるものであればよく、最も簡単なものは大気をそのままポンプで供給する装置である。しかし窒素純度が高いほどNラジカルの生成効率が高くなるため好ましく、吸湿剤やNを分離するフィルターや精製装置などを付加することが好ましい。少量の処理装置であれば窒素ガスボンベを供給源として用いることもできる。 The nitrogen gas supply device is not particularly limited as long as it can supply a predetermined amount of nitrogen gas, and the simplest device is a device that supplies air as it is with a pump. However, the higher the nitrogen purity, the higher the efficiency of N radical generation, which is preferable. It is preferable to add a hygroscopic agent, a filter for separating N 2 , a purification device, or the like. A nitrogen gas cylinder can be used as a supply source for a small amount of processing equipment.

電子線装置と窒素ガス供給装置は、窒素ガス供給装置から供給された窒素ガスに電子線が照射されるように、すなわち、窒素ガス供給装置は、電子線装置と同じ位置かそれより上流側に設ける。   The electron beam device and the nitrogen gas supply device are configured so that the electron beam is irradiated to the nitrogen gas supplied from the nitrogen gas supply device, that is, the nitrogen gas supply device is located at the same position as the electron beam device or upstream thereof. Provide.

そして、NOx吸着剤を収容している容器には、まず、NOxを含有する排ガスを送入して吸着を行い、次いでこの排ガスの送入を停止して、窒素ガス供給装置から供給され、電子線を照射された窒素ガスをこの容器に送入できるよう、送入管の途中に切替弁を設ける。   Then, in the container containing the NOx adsorbent, first, exhaust gas containing NOx is introduced for adsorption, and then the exhaust gas supply is stopped and supplied from the nitrogen gas supply device. A switching valve is provided in the middle of the feeding pipe so that the nitrogen gas irradiated with the line can be fed into the container.

NOx吸着剤を収容している容器は少なくとも2基設けることが好ましく、その一方には、NOxを含有する排ガスを送入してNOxを吸着させる。そして、吸着が終了したら、電子線を照射してNラジカルを生成させた窒素ガスを送入してNOxを還元分解し、その間、排ガスの送入管を他方の容器へ切替えて、排ガスを送入し、NOxの吸着を行い、これを順次繰返すのである。   It is preferable to provide at least two containers containing NOx adsorbent, and NOx is adsorbed by feeding exhaust gas containing NOx to one of them. When adsorption is completed, nitrogen gas generated by irradiating an electron beam to generate N radicals is sent to reduce and decompose NOx. Meanwhile, the exhaust gas feed pipe is switched to the other container to send the exhaust gas. The NOx is adsorbed, and this is sequentially repeated.

次に、吸着の終了した容器を加熱しNOxを脱着させ、電子線を照射してラジカルを生成させた窒素ガスを送入してNOxを還元分解する。あるいは、吸着剤収納容器に窒素ガスを送入し、直接電子線を照射することにより吸着剤の加熱や電子線による脱着反応によりNOxを離脱させると同時にNラジカルを生成し、NOxを還元分解する。
窒素ガスは、純窒素ガスを使用するが、10vol%程度まで酸素、二酸化炭素、水等を含んでいてもよい。
Next, the adsorption-completed container is heated to desorb NOx, and nitrogen gas generated by generating an radical by irradiation with an electron beam is fed to reduce and decompose NOx. Alternatively, nitrogen gas is fed into the adsorbent storage container and directly irradiated with an electron beam to release NOx by heating the adsorbent or by desorption reaction with the electron beam, and at the same time generate N radicals to reduce and decompose NOx. .
Nitrogen gas uses pure nitrogen gas, but may contain oxygen, carbon dioxide, water, etc. up to about 10 vol%.

電子線装置の電子を加速する電圧は、30kV以上、好ましくは50kV以上、300kV以下、好ましくは150kV以下とすることが好ましい。これは、電子を薄膜の取り出し窓を通して大気中へ取り出せる実用上の最低電圧と、X線遮蔽、電源等の設備コストからの上限電圧として定められたものである。加速電圧は低いほど電子線の排ガス中を透過する距離(電子の飛程あるいは行程)が短くなり、照射密度が高くなり好ましい。しかし、実用では排ガス流量や管径に制約があるため、必要な飛程、取り出し窓の損失、強度などより最適な加速条件を求めなければならない。   The voltage for accelerating electrons in the electron beam apparatus is 30 kV or more, preferably 50 kV or more and 300 kV or less, preferably 150 kV or less. This is defined as a practical minimum voltage at which electrons can be extracted into the atmosphere through a thin film extraction window, and an upper limit voltage from equipment costs such as X-ray shielding and power supply. The lower the acceleration voltage, the shorter the distance (electron range or stroke) of the electron beam that passes through the exhaust gas, and the higher the irradiation density, the better. However, since there are restrictions on the exhaust gas flow rate and pipe diameter in practical use, it is necessary to obtain optimum acceleration conditions from the necessary range, loss of extraction window, strength, and the like.

電子放出部の電流密度は、0.1mA/cm以上、好ましくは0.3mA/cm以上、66mA/cm以下、好ましくは33mA/cm以下とすることが好ましい。これは、上記の電圧範囲における取り出し窓での熱損失から電流密度が制限され、電子放出源の電流密度上限値を設定したものである。また、電界放出素子一個当り(CNTでは電子放出している1本)の放出電流が1nA〜100nA(直径10nmの多層CNTとすると1.27kA/cm〜1.27MA/cm)で、その有効放出本数が1cm当り1×10〜1×10の範囲にあることが好ましい。 The current density of the electron emission portion, 0.1 mA / cm 2 or more, preferably 0.3 mA / cm 2 or more, 66 mA / cm 2 or less, preferably to 33 mA / cm 2 or less. This is because the current density is limited by the heat loss at the extraction window in the above voltage range, and the upper limit value of the current density of the electron emission source is set. In addition, the emission current per field emission device (one electron emission in the CNT) is 1 nA to 100 nA (if the multi-wall CNT having a diameter of 10 nm is 1.27 kA / cm 2 to 1.27 MA / cm 2 ), It is preferable that the number of effective releases is in the range of 1 × 10 3 to 1 × 10 8 per 1 cm 2 .

本発明の装置で処理される排ガスは、窒素ガスを主成分とし、NOxを含む大気圧の排ガスである。この排ガスの窒素含有濃度は40vol%以上、通常60vol%以上であり、NOxの含有量は10〜3000ppm程度、通常100〜1500ppm程度である。排ガスのその他の成分は、排ガスの種類によって異なるが、例えば酸素、炭酸ガス、一酸化炭素、水、SOx等がある。酸素を含有しているとNOxの分解効率はやや低下するが、酸素含有濃度が15vol%程度でもNOxの分解は可能である。酸素含有濃度の好ましい上限は30vol%である。排ガスの例としては自動車、船舶、発電用などのディーゼル機関から排出される排ガス、石油、石炭、天然ガス等による火力発電所から発生する燃焼排ガス、ボイラーから発生する排ガス等を挙げることができる。   The exhaust gas treated by the apparatus of the present invention is an atmospheric exhaust gas containing nitrogen gas as a main component and containing NOx. The nitrogen content concentration of the exhaust gas is 40 vol% or more, usually 60 vol% or more, and the NOx content is about 10 to 3000 ppm, usually about 100 to 1500 ppm. The other components of the exhaust gas vary depending on the type of exhaust gas, and include, for example, oxygen, carbon dioxide, carbon monoxide, water, and SOx. When oxygen is contained, the decomposition efficiency of NOx is slightly reduced, but NOx can be decomposed even when the oxygen-containing concentration is about 15 vol%. A preferable upper limit of the oxygen-containing concentration is 30 vol%. Examples of the exhaust gas include exhaust gas discharged from automobiles, ships, diesel engines for power generation, combustion exhaust gas generated from a thermal power plant using petroleum, coal, natural gas, etc., exhaust gas generated from a boiler, and the like.

排ガスの圧力は大気圧程度、通常、一気圧±10%程度である。本発明の方法は、これより低気圧であっても適用できるが、あえて、排ガスを低圧化しなくても適用できるところに特徴がある。   The pressure of the exhaust gas is about atmospheric pressure, usually about 1 atmosphere ± 10%. The method of the present invention can be applied even at a lower atmospheric pressure than this, but is characterized in that it can be applied without reducing the pressure of exhaust gas.

図1に本発明における装置概略構成を示す。
本実施例では、ディーゼルエンジンの排気ガス経路に、NOx吸着剤を収容している容器が挿入された2つの排気管に接続されている。吸着剤としては、NOxを選択的に吸着するゼオライトを用いており、排気ガスが吸着剤を通過する過程でNOxのみが選択的に吸着される。接続部に切換え弁を設け、一方にNOxを含有する排ガスを送入してNOxを吸着させる。そして、NOx濃度、流量等の条件によるが数分〜数時間の経過後、許容吸着量まで達したら電子線を照射してNラジカルを生成させた窒素ガスを送入してNOxを還元分解し、その間、排ガスの送入管を他方の容器へ切替えて、排ガスを送入し、NOxの吸着を行い、これを順次繰返す。
FIG. 1 shows a schematic configuration of the apparatus according to the present invention.
In this embodiment, the exhaust gas path of the diesel engine is connected to two exhaust pipes into which a container containing NOx adsorbent is inserted. As the adsorbent, zeolite that selectively adsorbs NOx is used, and only NOx is selectively adsorbed while exhaust gas passes through the adsorbent. A switching valve is provided at the connection portion, and exhaust gas containing NOx is fed into one side to adsorb NOx. Then, depending on conditions such as NOx concentration and flow rate, after a few minutes to several hours have passed, if the allowable adsorption amount is reached, the nitrogen gas generated by irradiating an electron beam to generate N radicals is sent in to reduce and decompose NOx. In the meantime, the exhaust gas feed pipe is switched to the other container, the exhaust gas is fed, NOx is adsorbed, and this is repeated sequentially.

図1のCNT電子源には図4に示したカーボンナノチューブを用いた電子線照射装置を用いた。陰極は電界放出型の電子銃であり、50〜100kV程度に印加された直流高電圧により電界集中したCNT先端からトンネル効果によって電子放出部から1〜5mA/cmの電流密度で電子が放出される。この電子は、真空容器内で印加電圧によりさらに加速され、高エネルギー電子線となって陽極である電子取り出し窓へ到達する。電子線は取り出し窓の2〜15ミクロン厚の薄い金属膜を透過し、窒素ガス供給装置により送入された高濃度の窒素ガス雰囲気内へ照射される。この雰囲気の窒素分子に電子線が衝突すると原子に解離し、Nラジカルと呼ばれる不対電子を持った窒素原子を多量に生成する。照射量に応じた濃度のNラジカルを含む窒素ガスが吸着剤収納容器に導入される。導入量は、吸着されたNOx量を次の吸着工程までの時間に処理すればよく、非常に少量で済む。この高活性なNラジカルはNOxと高い確率で還元反応を起こし、高効率にNOxをNとOに分解する。なお、還元反応を効率的に進行させるためには、吸着剤を加熱しNOxを脱着させるほうが良いが、加熱なしでも直接吸着剤表面で還元反応を進めることも可能である。 The electron beam irradiation apparatus using the carbon nanotubes shown in FIG. 4 was used for the CNT electron source of FIG. The cathode is a field emission type electron gun, and electrons are emitted from the electron emission portion at a current density of 1 to 5 mA / cm 2 by the tunnel effect from the tip of the CNT concentrated in the electric field by a DC high voltage applied to about 50 to 100 kV. The The electrons are further accelerated by the applied voltage in the vacuum vessel, and become high-energy electron beams and reach the electron extraction window that is the anode. The electron beam passes through a thin metal film having a thickness of 2 to 15 microns in the extraction window and is irradiated into a high-concentration nitrogen gas atmosphere fed by a nitrogen gas supply device. When an electron beam collides with nitrogen molecules in this atmosphere, they are dissociated into atoms, and a large amount of nitrogen atoms having unpaired electrons called N radicals are generated. Nitrogen gas containing N radicals at a concentration corresponding to the irradiation amount is introduced into the adsorbent storage container. The amount of NOx adsorbed may be very small, as long as the amount of adsorbed NOx is processed during the time until the next adsorption step. This highly active N radical causes a reduction reaction with NOx with high probability, and decomposes NOx into N 2 and O 2 with high efficiency. In order to make the reduction reaction proceed efficiently, it is better to heat the adsorbent and desorb NOx, but it is also possible to proceed the reduction reaction directly on the surface of the adsorbent without heating.

窒素ガス供給装置に供給される窒素ガスは極端には大気でも良いが酸素、水等の他のガス濃度が高いと電子線がOラジカル、OHラジカル生成に消費され、またNラジカル分解反応も阻害されるため、窒素純度は80vol%以上、好ましくは95vol%以上が良い。本装置では、電子線はNラジカルのみを生成するために消費され、高濃縮のNOxと直接接触し反応するため非常に効率の良い分解処理が可能であった。   Nitrogen gas supplied to the nitrogen gas supply device may be air, but if other gas concentrations such as oxygen and water are high, the electron beam is consumed to generate O radicals and OH radicals, and the N radical decomposition reaction is also inhibited. Therefore, the nitrogen purity is 80 vol% or higher, preferably 95 vol% or higher. In this apparatus, the electron beam is consumed to generate only N radicals, and since it directly contacts and reacts with highly concentrated NOx, a very efficient decomposition process was possible.

図2に本発明における他の装置概略構成を示す。
本実施例では、ボイラーの排気ガス経路に、NOx吸着剤を収容している容器が挿入された2つの排気管に接続されている。吸着剤としては、NOxを選択的に吸着する活性炭を用いており、排気ガスが吸着剤を通過する過程でNOxのみが選択的に吸着される。接続部に切換え弁を設け、一方にNOxを含有する排ガスを送入してNOxを吸着させる。そして、NOx濃度、流量等の条件によるが数分〜数時間の経過後、許容吸着量まで達したら吸着剤収納容器に窒素ガスを送入した状態で電子線を吸着剤収納容器内に直接照射してNラジカルを生成させたNOxを還元分解し、その間、排ガスの送入管を他方の容器へ切替えて、排ガスを送入し、NOxの吸着を行い、これを順次繰返す。
FIG. 2 shows a schematic configuration of another apparatus according to the present invention.
In this embodiment, the exhaust gas path of the boiler is connected to two exhaust pipes into which a container containing NOx adsorbent is inserted. As the adsorbent, activated carbon that selectively adsorbs NOx is used, and only NOx is selectively adsorbed while exhaust gas passes through the adsorbent. A switching valve is provided at the connection portion, and exhaust gas containing NOx is fed into one side to adsorb NOx. Depending on conditions such as NOx concentration, flow rate, etc., after an elapse of several minutes to several hours, when the allowable adsorption amount is reached, an electron beam is directly irradiated into the adsorbent storage container with nitrogen gas being fed into the adsorbent storage container. Then, NOx that generates N radicals is reduced and decomposed, and during that time, the exhaust gas feed pipe is switched to the other container, the exhaust gas is fed, NOx is adsorbed, and this is sequentially repeated.

図2のCNT電子源には図4に示すカーボンナノチューブを用いた電子線照射装置を用いた。陰極は電界放出型の電子銃であり、50〜100kV程度に印加された直流高電圧により電界集中したCNT先端からトンネル効果によって電子放出部から1〜5mA/cmの電流密度で電子が放出される。この電子は、真空容器内で印加電圧によりさらに加速され、高エネルギー電子線となって陽極である電子取り出し窓へ到達する。電子線は取り出し窓の2〜15ミクロン厚の薄い金属膜を透過し、窒素供給装置により窒素ガスが送入された吸着剤収納容器内へ直接照射される。この電子線照射により吸着されたNOxが非常に効率的にNとOに分解される。 The electron beam irradiation apparatus using the carbon nanotube shown in FIG. 4 was used for the CNT electron source of FIG. The cathode is a field emission type electron gun, and electrons are emitted from the electron emission portion at a current density of 1 to 5 mA / cm 2 by the tunnel effect from the tip of the CNT concentrated in the electric field by a DC high voltage applied to about 50 to 100 kV. The The electrons are further accelerated by the applied voltage in the vacuum vessel, and become high-energy electron beams and reach the electron extraction window that is the anode. The electron beam passes through a thin metal film having a thickness of 2 to 15 microns in the take-out window, and is directly irradiated into the adsorbent storage container into which nitrogen gas is introduced by a nitrogen supply device. The NOx adsorbed by this electron beam irradiation is decomposed into N 2 and O 2 very efficiently.

本発明により、排ガスに含まれるNOxを安価に効率よくNとOに分解できるので、NOxを含む排ガスの処理に広く適用できる。 According to the present invention, NOx contained in the exhaust gas can be efficiently and inexpensively decomposed into N 2 and O 2 , so that it can be widely applied to the treatment of exhaust gas containing NOx.

Claims (4)

出口と入口を有するNOx吸着剤を収容している容器の入口側にNOxを含有する排ガスの送入管が接続され、該送入管の途中に切替弁を介して電子線装置と窒素ガス供給装置が接続されていることを特徴とする、NOx含有排ガス処理装置   An inlet pipe for exhaust gas containing NOx is connected to the inlet side of a container containing a NOx adsorbent having an outlet and an inlet, and an electron beam device and nitrogen gas supply are provided in the middle of the inlet pipe via a switching valve. NOx-containing exhaust gas treatment device, characterized in that the device is connected NOx吸着剤を収容している容器が少なくとも2基あり、排ガス送入管および電子線装置と窒素ガス供給装置は、いずれも切替弁を介して各容器に接続されている請求項1記載の装置   The apparatus according to claim 1, wherein there are at least two containers containing NOx adsorbent, and the exhaust gas inlet pipe, the electron beam apparatus, and the nitrogen gas supply apparatus are all connected to each container via a switching valve. NOxを含有する排ガスをNOx吸着剤に接触させてNOxを吸着させ、次いで該吸着剤に、窒素ガスを注入し電子線を直接照射もしくは電子線を照射してNラジカルを生成させた窒素ガスを送入してNOxを還元分解することを特徴とする、NOx含有排ガス処理方法   NOx is adsorbed by bringing NOx-containing exhaust gas into contact with the NOx adsorbent, and then nitrogen gas is injected into the adsorbent and directly irradiated with an electron beam or irradiated with an electron beam to generate nitrogen radicals. NOx-containing exhaust gas treatment method, wherein NOx is reduced and decomposed by feeding NOx吸着剤が少なくとも2つの容器に収容されていて、その一方には、NOxを含有する排ガスを送入してNOxを吸着させ、既にNOxを吸着している他方には、窒素ガスを注入し電子線を直接照射もしくは電子線を照射してNラジカルを生成させた窒素ガスを送入してNOxを還元分解する、請求項3記載の方法   NOx adsorbent is contained in at least two containers, one of which is fed with exhaust gas containing NOx to adsorb NOx, and the other already adsorbing NOx is injected with nitrogen gas. The method according to claim 3, wherein the NOx is reduced and decomposed by direct irradiation with an electron beam or nitrogen gas generated by irradiation with an electron beam to generate N radicals.
JP2009044954A 2009-02-27 2009-02-27 NOx-containing exhaust gas treatment apparatus and NOx-containing exhaust gas treatment method Expired - Fee Related JP5499489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009044954A JP5499489B2 (en) 2009-02-27 2009-02-27 NOx-containing exhaust gas treatment apparatus and NOx-containing exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009044954A JP5499489B2 (en) 2009-02-27 2009-02-27 NOx-containing exhaust gas treatment apparatus and NOx-containing exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JP2010194504A true JP2010194504A (en) 2010-09-09
JP5499489B2 JP5499489B2 (en) 2014-05-21

Family

ID=42819800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009044954A Expired - Fee Related JP5499489B2 (en) 2009-02-27 2009-02-27 NOx-containing exhaust gas treatment apparatus and NOx-containing exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP5499489B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010194448A (en) * 2009-02-25 2010-09-09 Jfe Engineering Corp Method of treating exhaust gas by electron beam irradiation
JP2019501022A (en) * 2015-10-02 2019-01-17 ダフネ テクノロジー ソシエテ アノニム Apparatus and method for purification by electron irradiation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221120A (en) * 1989-11-10 1991-09-30 Sumitomo Heavy Ind Ltd Device for desulfurization and denitrification of exhaust gas
JPH054025A (en) * 1991-02-18 1993-01-14 Ebara Corp Method for capturing nitrogen suboxide and treatment thereof
JPH0952015A (en) * 1995-08-18 1997-02-25 Shinko Pantec Co Ltd Solvent treatment apparatus and method therefor
US6345497B1 (en) * 2000-03-02 2002-02-12 The Regents Of The University Of California NOx reduction by electron beam-produced nitrogen atom injection
JP2002273162A (en) * 2001-03-22 2002-09-24 Mitsubishi Heavy Ind Ltd Equipment for decomposing deleterious gas
WO2005037412A1 (en) * 2003-10-21 2005-04-28 Osaka Industrial Promotion Organization Method of treating exhaust gas and treating apparatus
JP2007321678A (en) * 2006-06-01 2007-12-13 Osaka Prefecture Univ Method and device for treating exhaust gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221120A (en) * 1989-11-10 1991-09-30 Sumitomo Heavy Ind Ltd Device for desulfurization and denitrification of exhaust gas
JPH054025A (en) * 1991-02-18 1993-01-14 Ebara Corp Method for capturing nitrogen suboxide and treatment thereof
JPH0952015A (en) * 1995-08-18 1997-02-25 Shinko Pantec Co Ltd Solvent treatment apparatus and method therefor
US6345497B1 (en) * 2000-03-02 2002-02-12 The Regents Of The University Of California NOx reduction by electron beam-produced nitrogen atom injection
JP2002273162A (en) * 2001-03-22 2002-09-24 Mitsubishi Heavy Ind Ltd Equipment for decomposing deleterious gas
WO2005037412A1 (en) * 2003-10-21 2005-04-28 Osaka Industrial Promotion Organization Method of treating exhaust gas and treating apparatus
JP2007321678A (en) * 2006-06-01 2007-12-13 Osaka Prefecture Univ Method and device for treating exhaust gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010194448A (en) * 2009-02-25 2010-09-09 Jfe Engineering Corp Method of treating exhaust gas by electron beam irradiation
JP2019501022A (en) * 2015-10-02 2019-01-17 ダフネ テクノロジー ソシエテ アノニム Apparatus and method for purification by electron irradiation

Also Published As

Publication number Publication date
JP5499489B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5299647B2 (en) Exhaust gas treatment equipment
US6345497B1 (en) NOx reduction by electron beam-produced nitrogen atom injection
CN1386563A (en) Apparatus and process for cleaning gas
CN104179552A (en) Automobile tail gas treatment device and method based on low-temperature plasma
JP2007321680A (en) Plasma assist type urea reforming device
JP5153748B2 (en) Nitrous oxide reduction method and reduction apparatus
JP2005230627A (en) Method for purifying exhaust gas using low-temperature plasma and its purifying apparatus
JP5540337B2 (en) Exhaust gas treatment method and treatment apparatus
JP5499489B2 (en) NOx-containing exhaust gas treatment apparatus and NOx-containing exhaust gas treatment method
Kuroki et al. Oxidation system of adsorbed VOCs on adsorbent using nonthermal plasma flow
JP2010194503A (en) Apparatus for treating exhaust gas by electron beam irradiation
JP5099375B2 (en) Exhaust gas treatment method by electron beam irradiation
CN113019083A (en) VOCs low-temperature plasma synergistic adsorption and catalysis integrated device and VOCs treatment method thereof
Lakshmipathiraj et al. Electron beam treatment of gas stream containing high concentration of NOx: An in situ FTIR study
JP2008200057A (en) Environmentally harmful substance treatment method using carbon nanotube (cnt) electron source
JP3950856B2 (en) Catalytic electrode type ozone generation method and generator
CN112007486A (en) VOCs (volatile organic compounds) line tube reaction unit adopting double-dielectric barrier low-temperature plasma for cooperative catalytic treatment
CN209968113U (en) Heterogeneous discharge system for removing VOCs with different solubilities through catalysis and synergy
KR100830790B1 (en) Processing apparatus
JP4272947B2 (en) Discharge-type ozone gas generation method
CN112535944A (en) Tail gas treatment system and method
JP2007216100A (en) Method for dryly fixing/removing carbon dioxide in gas
CN113813781B (en) Purification device and purification method for simultaneously treating organic and inorganic mixed waste gas
CN109908749B (en) Multiphase discharge system for catalyzing and cooperatively removing VOCs with different solubilities
CN212548943U (en) VOCs (volatile organic compounds) line tube reaction unit adopting double-dielectric barrier low-temperature plasma for cooperative catalytic treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5499489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees