JP4272947B2 - Discharge-type ozone gas generation method - Google Patents

Discharge-type ozone gas generation method Download PDF

Info

Publication number
JP4272947B2
JP4272947B2 JP2003281731A JP2003281731A JP4272947B2 JP 4272947 B2 JP4272947 B2 JP 4272947B2 JP 2003281731 A JP2003281731 A JP 2003281731A JP 2003281731 A JP2003281731 A JP 2003281731A JP 4272947 B2 JP4272947 B2 JP 4272947B2
Authority
JP
Japan
Prior art keywords
ozone
gas
discharge
ppm
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003281731A
Other languages
Japanese (ja)
Other versions
JP2004083401A (en
Inventor
国彦 小池
浩一 泉
勝彦 岩崎
吾一 井上
敏広 相田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Corp
Original Assignee
Iwatani Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani Corp filed Critical Iwatani Corp
Priority to JP2003281731A priority Critical patent/JP4272947B2/en
Publication of JP2004083401A publication Critical patent/JP2004083401A/en
Application granted granted Critical
Publication of JP4272947B2 publication Critical patent/JP4272947B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、放電式オゾンガス生成方法に関するものであり、特に、安定したオゾン収量の得られるオゾンガス生成方法に関するものである。   The present invention relates to a discharge-type ozone gas generation method, and more particularly to an ozone gas generation method capable of obtaining a stable ozone yield.

オゾンは、その高い酸化能のため、上水の殺菌や排水の浄化,脱臭,脱色等の他、半導体のフォトレジスト除去等に利用されており、更に、近年では、水溶液として食品の品質保持のための前処理や植物の病虫害防除等の分野への応用が進められており、各方面において、鋭意その応用が図られている。   Ozone is used for sterilization of water, purification of drainage, deodorization, decolorization, etc., as well as removal of semiconductor photoresist, etc. due to its high oxidizing ability. Application to fields such as pretreatment for plant and plant disease control, etc. are being promoted, and in various directions, its application has been intensively pursued.

オゾンの製造方法としては、次の3つの方法が代表的な方法である。
(1)酸素に紫外線を照射してオゾンを生成する方法
(2)水の電気分解によってオゾンを生成する方法
(3)酸素中で放電によりオゾンを生成する方法
The following three methods are typical methods for producing ozone.
(1) Method of generating ozone by irradiating oxygen to ultraviolet rays
(2) Method of generating ozone by electrolysis of water
(3) Method of generating ozone by discharge in oxygen

先ず、第1の紫外線を照射する方法は、成層圏でオゾンが生成される現象そのものであり、大気中で紫外線ランプを点灯して酸素分子に紫外線を照射・吸収させる事によって、大気中の酸素分子の一部をオゾンに変化させるものであり、手軽な方法であるので殺菌灯として広く使用されているが、高濃度オゾンガスを量産するには、高エネルギーの紫外線照射装置が必要であり、取扱い面で問題がある。   First, the first method of irradiating ultraviolet rays is a phenomenon in which ozone is generated in the stratosphere. In the atmosphere, an ultraviolet lamp is turned on to irradiate and absorb ultraviolet rays into oxygen molecules, thereby causing oxygen molecules in the atmosphere to irradiate. It is a simple method and is widely used as a germicidal lamp. However, in order to mass-produce high-concentration ozone gas, a high-energy ultraviolet irradiation device is required, There is a problem.

次に、第2の水の電気分解による方法は、固体電界膜を挟んで配置された電極間に直流電流を通電して陽極側にオゾンと酸素を発生させるものであり、オゾン水を生成させるには有効であるが、生成オゾン濃度も低く、高濃度オゾンを必要とする分野への適用は不可能である。   Next, the second method based on electrolysis of water is to generate ozone water and oxygen on the anode side by supplying a direct current between electrodes arranged with a solid electric field film interposed therebetween, thereby generating ozone water. However, the generated ozone concentration is low, and it cannot be applied to a field requiring high concentration ozone.

次に、第3の放電による方法は、酸素気流中で酸素分子に放電させてオゾンを生成するものであり、次の反応によってオゾンが生成される。
+e→O +2e −−−−−−−−(a):電離反応
+e→2O+e −−−−−−−−−−(b):解離反応
+O→O −−−−−−−−−−−−−(c):オゾン生成反応
上記(a)の電離反応では、1つの電子が酸素分子に衝突する事により2つの電子が生成するいわゆる「電子なだれ」と呼ばれる現象であり、放電が継続するための条件である12.2電子ボルト(eV)以上のエネルギーを持った電子によって起こされる反応である。上記(b)の解離反応は、前記電離反応よりもエネルギーの小さな5〜8eV程度のエネルギーの電子で生じる反応であり、放電空間には12.2eV以上のエネルギーを有する電子がたくさん存在しているので、(b)の反応による解離酸素は十分に生成され、(c)の反応によって速やかにオゾンが生成される事になる。
Next, in the third discharge method, ozone is generated by discharging oxygen molecules in an oxygen stream, and ozone is generated by the following reaction.
O 2 + e → O 2 + + 2e -------- (a): ionization reaction
O 2 + e → 2O + e --------- (b): dissociation reaction
O 2 + O → O 3 ------------- (c): Ozone formation reaction In the ionization reaction of (a) above, two electrons are collided by one electron colliding with an oxygen molecule. It is a phenomenon called “electron avalanche” that is generated, and is a reaction caused by electrons having an energy of 12.2 electron volts (eV) or more, which is a condition for continuing discharge. The dissociation reaction (b) is a reaction that occurs with electrons having an energy of about 5 to 8 eV, which is lower in energy than the ionization reaction, and there are many electrons having an energy of 12.2 eV or more in the discharge space. Therefore, dissociated oxygen is sufficiently generated by the reaction (b), and ozone is quickly generated by the reaction (c).

ここで、高電圧を印加した金属電極間にガラス等の誘電体を配置し、電極間に酸素を流通させて放電を行わせると、電極間には大きな電流は流れないので、雷の様な強烈な閃光と轟音を生じる事はなく静かな放電(無声放電)が行われる。この無声放電は、放電空間を広く取れるので、オゾンの量産用に適しており、近年では、電極を平行積層構造となし且つ電極間隔を0.1〜0.2mmと狭くする事により大量のオゾンを生成させる装置として実用化されている。   Here, when a dielectric such as glass is placed between metal electrodes to which a high voltage is applied and oxygen is circulated between the electrodes to cause a discharge, a large current does not flow between the electrodes. There is no intense flashing and roaring, and a quiet discharge (silent discharge) is performed. Since this silent discharge takes a wide discharge space, it is suitable for mass production of ozone. In recent years, a large amount of ozone is produced by forming electrodes in a parallel laminated structure and narrowing the electrode interval to 0.1 to 0.2 mm. Has been put to practical use as a device for generating

ところで、無声放電方式によるオゾンの生成には、前記(a)〜(c)の反応式からも明らかな様に、全ての反応工程で酸素分子が関与しているので、反応速度論的には酸素濃度の高い原料ガスが好ましいといえるが、各種原料ガスを用いた場合の生成オゾン濃度と運転時間の関係を示す図1に示されている様に、シックス−ナインの高純度酸素ガス(99.9999%)を用いた場合でも(図中「a」の曲線)、運転時間の経過と共にオゾン生成量が低下し、オゾン生成装置(オゾナイザー)としての機能を継続して果たし得ないという問題がある。   By the way, in the generation of ozone by the silent discharge method, as is apparent from the reaction formulas (a) to (c), oxygen molecules are involved in all reaction steps. Although it can be said that a raw material gas having a high oxygen concentration is preferable, as shown in FIG. 1 showing the relationship between the generated ozone concentration and the operation time when various raw material gases are used, the high purity oxygen gas of Six-Nine (99 .9999%) (curve “a” in the figure), the ozone generation amount decreases with the passage of operating time, and the function as an ozone generator (ozonizer) cannot be continued. is there.

この原因としては、次の様に考えられている。即ち、オゾナイザーの放電電極間における反応は、次の反応式で表す事ができる。
+e →e+O −−−−−−−−−−−−−−−−−(1)
*+e →e+O+O* −−−−−−−−−−−−−−−−−(2)
O+O →O −−−−−−−−−−−−−−−−−−(3)
+O * →O+2O −−−−−−−−−−−−−−−−−(4)
+O* →2O −−−−−−−−−−−−−−−−−−(5)
上記反応式において、 及びO*は、反応性に富んだ活性酸素分子及び活性酸素原子である。又、反応式(1)〜(3)はオゾンの生成反応であり、反応式(4),(5)はオゾンの分解反応である。オゾナイザーを長時間連続して運転していると、反応性に富む活性酸素分子や活性酸素原子が電極面に吸着されて蓄積され、これが放電により生成したオゾンと上記(4)式及び(5)式の反応によってオゾンを酸素に分解するものと考えられている。
The cause is considered as follows. That is, the reaction between the discharge electrodes of the ozonizer can be expressed by the following reaction formula.
O 2 + e → e + O 2 * ----------------- (1)
O 2 * + e → e + O + O * ----------------- (2)
O + O 2 → O 3 ----------------- (3)
O 3 + O 2 * → O + 2O 2 ----------------- (4)
O 3 + O * → 2O 2 ------------------ (5)
In the above reaction formula, O 2 * and O * are reactive oxygen molecules and active oxygen atoms rich in reactivity. Reaction formulas (1) to (3) are ozone generation reactions, and reaction formulas (4) and (5) are ozone decomposition reactions. When the ozonizer is continuously operated for a long period of time, reactive oxygen molecules and active oxygen atoms rich in reactivity are adsorbed and accumulated on the electrode surface, and this is generated by the discharge and the above formulas (4) and (5). It is thought that ozone is decomposed into oxygen by the reaction of the formula.

そこで、オゾナイザーの長期安定運転を目指して幾つかの対策が提案されている。第1の方法は、純度99.995%以上の高純度酸素ガスに、純度99.99vol.%以上の高純度の窒素,アルゴン又はヘリウムを1〜10vol.%添加した混合ガスを原料ガスとして使用する方法である(特許文献1参照)。第2の方法は、液体酸素をガス化した高純度酸素ガスに空気又は窒素ガスを添加した混合ガスを原料ガスとして使用する方法である(特許文献2参照)。第3の方法は、酸素ガスに炭酸ガスを添加した混合ガスを原料ガスとして使用する方法である(特許文献3参照) Therefore, several measures have been proposed for long-term stable operation of the ozonizer. The first method uses, as a raw material gas, a mixed gas obtained by adding 1 to 10 vol.% Of high-purity nitrogen, argon or helium having a purity of 99.99 vol. This method is used (see Patent Document 1). The second method is a method in which a mixed gas obtained by adding air or nitrogen gas to high-purity oxygen gas obtained by gasifying liquid oxygen is used as a raw material gas (see Patent Document 2). The third method is a method of using a mixed gas obtained by adding carbon dioxide gas to oxygen gas as a raw material gas (see Patent Document 3).

尚、放電式オゾナイザーで生成したオゾンを、そのまま使用場所に送給して使用する法方法もあるが、生成オゾンガスをシリカゲルに飽和吸着させて濃縮し、オゾンガスとして貯蔵すると共に、この状態で使用場所に移送して、使用時にはオゾンガスをシリカゲルから脱着させて高濃度オゾンガスとして供給する実用的な方法も知られている(例えば特許文献4)。
特公平6−21010号公報(特許請求の範囲参照) 特開2001−172005号公報(特許請求の範囲参照) 特開2002−121011号公報(特許請求の範囲参照) 特開平10−196893号公報(特許請求の範囲及び実施例参照)
In addition, there is a method in which the ozone generated by the discharge type ozonizer is used as it is by sending it to the place of use. A practical method is also known in which ozone gas is desorbed from silica gel and supplied as high-concentration ozone gas when used (for example, Patent Document 4).
Japanese Examined Patent Publication No. 6-21010 (see claims) JP 2001-172005 A (refer to claims) JP 2002-121011 A (refer to the claims) Japanese Patent Laid-Open No. 10-196893 (refer to claims and examples)

先ず、上記特許文献1に記載の方法は、前述のオゾン生成反応の低下現象の原因は不明であるとしつつも、この低下現象は、高純度酸素を原料ガスとして使用した場合に顕著であるが液体酸素を原料として用いた場合には生じないとして、液体酸素に含有されている不純物である窒素,アルゴン及びヘリウムに着目し、これを積極的に添加した感がある。
一方、上記特許文献2に記載の方法においては、窒素ガスを添加する事により、次の反応が生じる事によってオゾン生成量低下現象が抑止されるとされている。
+e →2N*+e −−−−−−−−−−−−−−−−−(6)
N*+O →NO+O −−−−−−−−−−−−−−−−−(7)
NO+O * →NO +O −−−−−−−−−−−−−−−−−(8)
NO+O* →NO +O −−−−−−−−−−−−−−−−−(9)
即ち、上記(6)〜(9)式に示される様に、窒素を放電電極間に送給すると窒素原子が放電によって励起され(上記(6)式)、これが酸素分子と反応してNOを生じ(上記(7)式)、更に、このNOが、前記活性酸素分子や活性酸素原子と反応してNO を生じる(上記(8)〜(9)式)。この様に、オゾン分解反応に作用する活性酸素分子や活性酸素原子が窒素によって消費され、しかも、オゾンと活性酸素分子や活性酸素原子との反応よりも、NOと活性酸素分子や活性酸素原子との反応の方が反応速度が速いので、窒素ガスの添加は、電極表面に吸着された前記活性酸素分子や活性酸素原子を分解する作用をなし、これにより、オゾンの分解反応が抑制されるというものである。
First, the method described in Patent Document 1 is not clear about the cause of the above-described decrease phenomenon of the ozone generation reaction, but this decrease phenomenon is remarkable when high-purity oxygen is used as a source gas. There is a feeling that it does not occur when liquid oxygen is used as a raw material, and attention is paid to nitrogen, argon and helium, which are impurities contained in liquid oxygen, and this is positively added.
On the other hand, in the method described in Patent Document 2, by adding nitrogen gas, it is said that the phenomenon of lowering the ozone generation amount is suppressed by causing the following reaction.
N 2 + e → 2N * + e ----------------- (6)
N * + O 2 → NO + O ---------------- (7)
NO + O 2 * → NO 2 + O ----------------- (8)
NO + O * → NO 2 + O ----------------- (9)
That is, as shown in the above formulas (6) to (9), when nitrogen is fed between the discharge electrodes, the nitrogen atoms are excited by the discharge (the above formula (6)), and this reacts with the oxygen molecules to give NO. In addition, the NO reacts with the active oxygen molecules and active oxygen atoms to generate NO 2 (the above formulas (8) to (9)). In this way, the active oxygen molecules and active oxygen atoms that act on the ozone decomposition reaction are consumed by nitrogen, and more than the reaction of ozone with active oxygen molecules and active oxygen atoms, NO and active oxygen molecules and active oxygen atoms Since the reaction rate is faster, the addition of nitrogen gas has the effect of decomposing the active oxygen molecules and active oxygen atoms adsorbed on the electrode surface, thereby suppressing the decomposition reaction of ozone. Is.

しかしながら、生成オゾンガス中に窒素酸化物(NOx)が含まれており、生成オゾンを、シリカゲル等の吸着剤に吸着させて濃縮・保存して使用する場合には、NOxが吸着剤に吸着されて濃縮されると共に、吸着剤を早期に劣化させる原因ともなり、又、NO +O →NO +O の反応により、オゾン分解の原因にもなる。加えて、水が存在すると硝酸を生成するため、ステンレス配管すら腐食させる原因にもなるので、後工程におけるオゾンの濃縮や反応系の自由度を考えると、NOxの存在は極めて有害な存在であるといえる。 However, nitrogen oxide (NOx) is contained in the generated ozone gas. When the generated ozone is adsorbed on an adsorbent such as silica gel and concentrated and stored, NOx is adsorbed on the adsorbent. In addition to being concentrated, it causes the adsorbent to deteriorate at an early stage and also causes ozone decomposition due to the reaction of NO 2 + O 3 → NO 3 + O 2 . In addition, when water is present, nitric acid is produced, and even stainless steel pipes can be corroded. Therefore, considering the concentration of ozone and the degree of freedom of the reaction system in the subsequent process, the presence of NOx is extremely harmful. It can be said.

又、前記特許文献3に記載の方法は、上記NOx生成の問題点に鑑み、炭酸ガスを高純度酸素に添加して、これを原料ガスとするものであるが、生成オゾンを吸着剤を用いて濃縮する場合には、炭酸ガスも同時に吸着される事は避けられず、このため脱着時には、脱着したオゾンガス中に炭酸ガスが随伴するのは避け難く、半導体の表面処理等の電子技術分野に、この炭酸ガスを含んだオゾンを用いた場合には、炭酸ガスが電子部品の表面に吸着され、還元工程において炭素が析出する場合があり、ミクロのサイズの回路を形成する電子技術分野においては、導電性の炭素の析出は致命的な欠陥となるおそれがある。   In addition, in view of the above-mentioned problem of NOx generation, the method described in Patent Document 3 adds carbon dioxide to high-purity oxygen and uses it as a raw material gas. In the case of concentration, it is inevitable that carbon dioxide is also adsorbed at the same time. Therefore, it is inevitable that carbon dioxide will accompany the desorbed ozone gas during desorption. When ozone containing carbon dioxide is used, carbon dioxide may be adsorbed on the surface of electronic components, and carbon may be deposited in the reduction process. In the electronic technology field that forms micro-sized circuits, The deposition of conductive carbon may be a fatal defect.

本発明は、上記した各種問題点に鑑みてなされたものであって、高純度酸素ガスを用いた放電式オゾン生成方法における経時的なオゾン生成量の低下を防止する事を第1の目的とし、更に、悪影響を与える如何なる不純物をも生成させる事なく、安定して高いオゾン収量の得られる放電式オゾン生成法を提供する事を第2の目的とするものである。   The present invention has been made in view of the above-mentioned various problems, and has as its first object to prevent a decrease in ozone generation over time in a discharge-type ozone generation method using high-purity oxygen gas. Furthermore, it is a second object to provide a discharge type ozone generation method that can stably obtain a high ozone yield without generating any impurities that have an adverse effect.

本発明は、上記2つの目的を同時に達成するため、高純度酸素ガスにネオン(Ne),クリプトン(Kr),キセノン(Xe)の一種以上を合計で500ppm以上3.0vol.%以下(以下単に「%」と記載する)と、10ppm以上2.0vol.%以下の水素との少なくともいずれか一方を添加してなるガスを、原料ガスとして用いるものである。これにより、前述のオゾン生成量の経時的減少が抑制され、且つ、後工程で悪影響を及ぼす不純物の生成も防止される事になる。尚、Ne,Kr,Xeの3.0%を越える添加は、前記オゾン生成量の経時的減少の抑止効果が飽和となるのみならず、高価な添加ガスの使用に対して得られる効果が伴わない事になる。 In order to achieve the above two objects at the same time, the present invention provides a high-purity oxygen gas containing at least one of neon (Ne), krypton (Kr), and xenon (Xe) in a total of 500 ppm to 3.0 vol. A gas obtained by adding at least one of 10 ppm to 2.0 vol.% Hydrogen is used as a raw material gas . As a result, the decrease in the amount of ozone generated with time is suppressed, and the generation of impurities that adversely affect the subsequent process is also prevented. Note that the addition of Ne, Kr, and Xe exceeding 3.0% not only saturates the effect of suppressing the decrease in the amount of ozone generated with time, but also has an effect obtained when using expensive additive gas. It will not be.

尚、これらのガスの添加量は、Ne,Kr,Xeについては、特に好ましい範囲は、0.1〜0.5%である。一方、水素については、特に好ましい範囲は、50ppm〜1.0%である。又、上記混合ガスに、アルゴン(Ar)又はヘリウム(He)の1種以上を0.5%以下含有させたものも使用可能である。 The addition amount of these gases, Ne, Kr, for Xe is particularly preferred range is from 0.1 to 0.5%. On the other hand, the hydrogen, the preferred range especially is 50ppm~1.0%. Moreover, what mixed 0.5% or less of 1 or more types of argon (Ar) or helium (He) in the said mixed gas can also be used.

又、オゾンを含む反応生成ガスを、シリカゲルを充填したオゾン貯蔵容器に供給して、オゾンガスを該シリカゲルに吸着させて貯蔵する様になすのも好ましい方法である。この場合には、オゾンと共にシリカゲル充填層に供給される前記Ne,Kr,Xe,水素、或いはこれらと共に添加されるAr,Heは、オゾン吸着用シルカゲルには吸着され難いので、オゾンの脱着時には高濃度のオゾンガスを得る事が可能となる。   It is also a preferred method to supply a reaction product gas containing ozone to an ozone storage container filled with silica gel so that the ozone gas is adsorbed to the silica gel and stored. In this case, the Ne, Kr, Xe, hydrogen supplied to the silica gel packed bed together with ozone, or Ar, He added together with them are difficult to be adsorbed by the ozone-adsorbing silica gel. It becomes possible to obtain ozone gas having a concentration.

本発明の放電式オゾン生成方法によると、高純度酸素ガスに、Ne,Kr,Xe或いは水素の1種以上を所定量添加した混合ガスを原料ガスとして使用しているので、高純度酸素ガスのみを原料ガスとして使用する従来法に比して、高い収量で安定したオゾンの生成を長時間にわたって行う事が可能となる。   According to the discharge-type ozone generation method of the present invention, since a mixed gas obtained by adding a predetermined amount of one or more of Ne, Kr, Xe or hydrogen to high-purity oxygen gas is used as a raw material gas, only high-purity oxygen gas is used. Compared with the conventional method using NO as a raw material gas, it is possible to generate ozone with a high yield over a long period of time.

又、これらのガスの内、Ne,Kr,Xeの場合には、これらの添加総量を500ppm以上3.0%以下、好ましくは、0.1〜0.5%となす事により、高価な稀ガス等の使用量を最低限に抑えて最大の効果を発揮する事ができるので、オゾン生成コストを相対的に低下させて生成量の増大を図る事が可能となる。尚、これらに混合して或いは単独で水素を添加する場合には、水素添加量は10ppm以上2.0%以下、好ましくは50ppm〜1.0%となす事により、純酸素中に水素が混合されても爆発のおそれはなく、又、高圧ガス保安法上の問題もなく、安全にオゾン生成効率の向上を達成する事が可能となる。加えて、窒素酸化物や炭酸ガス等の後工程に悪影響を与えるガスの生成や添加も必要ないので、生成オゾンガスの汎用性を高める効果もある。 Among these gases, in the case of Ne, Kr, and Xe, an expensive rare gas can be obtained by setting the total amount of addition to 500 ppm to 3.0%, preferably 0.1 to 0.5%. Since the maximum effect can be exerted by minimizing the amount of use and the like, it is possible to relatively reduce the ozone generation cost and increase the generation amount. When hydrogen is added alone or in combination, hydrogen is added to pure oxygen by adjusting the hydrogen addition amount to 10 ppm to 2.0%, preferably 50 ppm to 1.0%. However, there is no risk of explosion, and there is no problem in the high-pressure gas safety law, and it is possible to safely improve the ozone generation efficiency. In addition, since there is no need to generate or add a gas that adversely affects subsequent processes such as nitrogen oxide and carbon dioxide, there is also an effect of increasing the versatility of the generated ozone gas.

又、前記Ne,Kr,Xe或いは水素と共に、液体酸素中に含有されているArやHeを併用する事も可能であるので、高純度酸素ガスとしてArやHeを除去した高度精製酸素ガスを用いる必要はなく、工業レベルで高純度酸素ガスとして用いられている酸素ガス中に1000〜2000ppm程度含有されているArやHeも有効成分として活用される利点もある。   Further, since it is possible to use Ar or He contained in liquid oxygen together with Ne, Kr, Xe or hydrogen, highly purified oxygen gas from which Ar or He has been removed is used as high purity oxygen gas. There is no need, and there is an advantage that Ar and He contained in about 1000 to 2000 ppm in oxygen gas used as high-purity oxygen gas at an industrial level can be used as an active ingredient.

又、オゾナイザーで生成したオゾンを含む反応生成ガスを、シリカゲルに吸着させて濃縮・貯蔵する場合にも、本発明で使用する添加ガスは、オゾン吸着用のシリカゲルには吸着され難いので、単位重量当たりのシルカゲルに対するオゾンの吸着量の増加をもたらすのみならず、他のガス成分の吸着によるシリカゲルの劣化もないので、シリカゲルを使用した吸着濃縮・貯蔵法に最適の原料ガス系と言える。   In addition, when the reaction product gas containing ozone generated by the ozonizer is adsorbed on silica gel and concentrated and stored, the additive gas used in the present invention is difficult to be adsorbed on the silica gel for ozone adsorption. Not only does this increase the amount of ozone adsorbed on the silica gel per hit, but there is no deterioration of the silica gel due to the adsorption of other gas components, so it can be said that it is an optimal raw material gas system for adsorption concentration and storage using silica gel.

更に、シリカゲルに吸着させて濃縮・貯蔵したものを脱着させて使用する際に、オゾンと共に吸着され、脱着時にはオゾンと共に脱着されてオゾンに随伴するガスが稀ガスとなるので、如何なる反応系にこのオゾンを供給しても問題を生じる事はない。特に、従来の窒素添加による窒素酸化物の生成や、炭酸ガス添加による生成ガスの酸性化や還元による炭素の析出の問題もなく、生成オゾンガスの用途に成約を受けないので、本発明方法で生成されたオゾンの用途に汎用性を与えるという副次的な効果も期待される。   In addition, when condensed and stored on silica gel is used after desorption, it is adsorbed with ozone, and at the time of desorption, it is desorbed with ozone and the gas accompanying ozone becomes a rare gas. Supplying ozone will not cause any problems. In particular, there is no problem of nitrogen oxide generation by the conventional addition of nitrogen, acidification of the generated gas by the addition of carbon dioxide gas, or precipitation of carbon by reduction, and it is not contracted for the use of the generated ozone gas. A secondary effect of providing versatility to the use of ozone is also expected.

以下に、実施例に基づいて本発明を詳細に説明する。
市販の無声放電式オゾナイザーを用いて、高純度酸素ガス(99.9999%)に、Xe,Kr,Ne,窒素,水素を夫々添加した各種混合ガスを原料ガスとし、該原料ガスを2.0リットル/分の流量で供給したときの生成オゾン濃度(g/m ,ppm)の経時変化を測定した。その結果を図1のグラフに示す。同図において、(a)は高純度酸素のみの場合であり、(b)は高純度酸素にXeを3000ppm(0.3%)添加したもの、(c)は高純度酸素にKrを3000ppm添加したもの、(d)は高純度酸素にNeを3000ppm添加したもの、(e)は高純度酸素に窒素を3000ppm添加したものであり、又、(f)は高純度酸素に水素を44ppm添加したものである。尚、オゾナイザー内の圧力は、0.05MPaに設定して運転を行った。
Hereinafter, the present invention will be described in detail based on examples.
Using a commercially available silent discharge type ozonizer, various mixed gases obtained by adding Xe, Kr, Ne, nitrogen, and hydrogen to high-purity oxygen gas (99.9999%) are used as a raw material gas, and the raw material gas is set to 2.0. The time-dependent change of the generated ozone concentration (g / m 3 , ppm) when supplied at a flow rate of liter / min was measured. The result is shown in the graph of FIG. In the same figure, (a) is the case of high-purity oxygen only, (b) is obtained by adding 3000 ppm (0.3%) of Xe to high-purity oxygen, and (c) is adding 3000 ppm of Kr to high-purity oxygen. (D) is obtained by adding 3000 ppm of Ne to high purity oxygen, (e) is obtained by adding 3000 ppm of nitrogen to high purity oxygen, and (f) is obtained by adding 44 ppm of hydrogen to high purity oxygen. Is. The operation was performed with the pressure inside the ozonizer set to 0.05 MPa.

図1から明らかな様に、Xe(図中b),Kr(同c),Ne(同d),窒素(同e)及び水素(同f)のいずれも、高純度酸素のみ(同a)に比して、オゾン濃度低下防止に効果がある事が窺える。特に、Kr(c)とNe(d)は、窒素(e)と同程度の性能を示しており、極めて有効な添加ガスであるといえる。又、水素(f)は、上位3成分(窒素,Kr,Ne)に次ぐ位置にあり、Xe(b)は、次位に位置しているが、いずれも高純度酸素よりも高いレベルで安定している。これらの成分の内、窒素は前述の通り窒素酸化物を生成する問題を有しているので、本発明では、窒素を除くXe,Kr,Ne及び水素の4種を、長時間の安定運転可能な有効添加ガス成分として選定している。   As is clear from FIG. 1, all of Xe (b in the figure), Kr (same c), Ne (same d), nitrogen (same e) and hydrogen (same f) are only high-purity oxygen (same a). Compared to the above, it can be seen that it is effective in preventing a decrease in ozone concentration. In particular, Kr (c) and Ne (d) show the same performance as nitrogen (e) and can be said to be extremely effective additive gases. Hydrogen (f) is next to the top three components (nitrogen, Kr, Ne), and Xe (b) is next, but both are stable at a higher level than high-purity oxygen. is doing. Of these components, nitrogen has the problem of generating nitrogen oxides as described above, so in the present invention, four types of Xe, Kr, Ne and hydrogen excluding nitrogen can be stably operated for a long time. Selected as an effective additive gas component.

次に、前記放電式オゾナイザーを用いて、純度99.9999%の高純度酸素ガスと、これに窒素,炭酸ガス,Ne,Ar,Kr,He,Xe,水素を、夫々500ppmから1%添加した原料ガスを用いてオゾン生成試験を行った。図2は、その試験結果を、高純度酸素のみを原料ガスとした場合に生成するオゾン濃度に対する相対濃度比較のグラフとして示したものである。同図から明らかな様に、窒素,炭酸ガス,Ne,Krが同等のレベルであり、次にXeが位置し、その次にAr,He,水素が位置しており、高純度酸素が最下位である事が分かる。この事実から、Ne,Ar,Kr,He,Xe及び水素の500ppm〜1%の添加は、高純度酸素のみに比して高いオゾン生成率を得る事ができる事が分かる。又、同じ稀ガス群の中でも、Ar,Heはオゾン生成量増加効果が相対的に低く、このため、本発明においては、Ne,Kr及びXeを効果の高い添加稀ガスとして位置付けしている。尚、上記Ar,Heは、他の窒素や炭酸ガスの如く有害なガスではないので、これらAr,Heが前記Ne,Kr,Xeと共に含有されていても問題はない。特に、空気液化分離装置から得られる高純度酸素中には、一般に不純物として、1000〜2000ppm程度のArやHeが含まれているので、これを敢えて除去する必要はない。又、水素は、高純度酸素には含まれていない成分であり、積極的に添加する必要がある成分であって、そのオゾン生成濃度における効果は、ArやHe並であるが、図1に示した通り長時間運転の安定性を有しているので、本発明では、Ne,Kr,Xeと同様に有効性の高い添加ガスとして位置付けをしている。尚、図2のグラフにおけるオゾナイザーへの原料ガス供給量は2.0リットル/分であり、内圧は0.05MPaである。   Next, using the discharge type ozonizer, high purity oxygen gas having a purity of 99.9999% and nitrogen, carbon dioxide, Ne, Ar, Kr, He, Xe, and hydrogen were added to 500 ppm to 1%, respectively. An ozone generation test was performed using the raw material gas. FIG. 2 shows the test results as a graph of relative concentration comparison with respect to the ozone concentration generated when only high-purity oxygen is used as the source gas. As is clear from the figure, nitrogen, carbon dioxide, Ne, and Kr are at the same level, Xe is next, Ar, He, and hydrogen are next, and high-purity oxygen is the lowest. I understand that. From this fact, it can be seen that the addition of Ne, Ar, Kr, He, Xe and hydrogen of 500 ppm to 1% can obtain a high ozone generation rate as compared with high-purity oxygen alone. In addition, Ar and He have a relatively low effect of increasing the amount of ozone generated in the same rare gas group. Therefore, in the present invention, Ne, Kr, and Xe are positioned as highly effective additive rare gases. Since Ar and He are not harmful gases such as other nitrogen and carbon dioxide, there is no problem even if these Ar and He are contained together with Ne, Kr and Xe. In particular, high-purity oxygen obtained from an air liquefaction / separation apparatus generally contains about 1000 to 2000 ppm of Ar or He as impurities, and therefore it is not necessary to remove it. Hydrogen is a component that is not contained in high-purity oxygen, and is a component that needs to be positively added. Its effect on the ozone generation concentration is similar to that of Ar and He. Since it has the stability of long-time operation as shown, in the present invention, it is positioned as a highly effective additive gas like Ne, Kr, and Xe. In the graph of FIG. 2, the supply amount of the raw material gas to the ozonizer is 2.0 liters / minute, and the internal pressure is 0.05 MPa.

次に、前記放電式オゾナイザーを用いて、純度99.9999%の高純度酸素に対するNeの添加量を変化させて生成オゾン濃度の変化を測定した。その結果を図3のグラフにプロットして示した。同図から明らかな様に、Neの微量添加でオゾン濃度の増加効果が現れ、Ne濃度が500ppm(0.05%)以上で顕著となり、約3000ppmでピークに達し、10000ppmの(1%)添加でも、殆ど変化のない事が分かる。この事実から、Neの添加量は、微量添加でも効果はあるが、500ppm以上が好ましいと言える。尚、上限としては3%以下に抑えておくのが好ましく、これ以上の添加は、添加量の増加に対するオゾン生成量の増加に効果がなく、高価なNeガスの無駄使いになる。従って、本発明では、Neの添加量の好ましい範囲は500ppm〜3%の範囲とした。この範囲は、図2の例からも分かる様に、Neに限らずKrやXeでも同様であるので、本発明では、これらのガスを合計で、500ppm(0.05%)〜3%と設定した。特に好ましい範囲としては、図3から窺える様に、1000〜5000ppm(0.1〜0.5%)の範囲である。   Next, using the discharge type ozonizer, the change in the generated ozone concentration was measured by changing the amount of Ne added to high-purity oxygen having a purity of 99.9999%. The results are plotted in the graph of FIG. As is clear from the figure, the effect of increasing the ozone concentration appears with the addition of a small amount of Ne, which becomes remarkable when the Ne concentration is 500 ppm (0.05%) or more, reaches a peak at about 3000 ppm, and is added with 10,000 ppm (1%). But you can see that there is almost no change. From this fact, it can be said that the amount of Ne added is preferably 500 ppm or more, although there is an effect even if a small amount is added. In addition, it is preferable to keep the upper limit to 3% or less, and addition beyond this is ineffective in increasing the amount of ozone generated with respect to an increase in the amount added, and wastes expensive Ne gas. Therefore, in this invention, the preferable range of the addition amount of Ne was made into the range of 500 ppm-3%. This range is the same not only for Ne but also for Kr and Xe, as can be seen from the example of FIG. 2, and in the present invention, these gases are set to a total of 500 ppm (0.05%) to 3%. did. A particularly preferable range is 1000 to 5000 ppm (0.1 to 0.5%) as shown in FIG.

次に、前記放電式オゾナイザーを用いて、純度99.9999%の高純度酸素への水素の添加量を変化させて、生成オゾン濃度の変化を測定した。その結果を図4のグラフにプロットして示した。同図から明らかな様に、水素の微量添加でオゾン濃度の増加効果が現れ、水素濃度が50ppm(0.005%)以上で顕著となり、約200ppm付近でピークに達し、1000ppmの(0.1%)添加でも殆ど変化のない事が分かる。この事から、水素の添加量は、数ppmの極微量添加でも効果はあるが、10ppm以上が好ましく、特に50ppm以上の添加が好ましいと言える。尚、上限としては、水素の爆発限界値の4%以下に抑える事は必須であり、又、高圧ガス保安法の観点からは2%以下に抑えておくのが好ましい。これ以上の添加は、添加量の増加に対するオゾン生成量の増加には効果がなく、無意味な水素添加となるおそれがある。従って、本発明では、水素の添加量は2.0%以下、好ましくは10ppm以上、更に好ましくは50ppm以上であり、効果面では、図2の1%添加でも高純度酸素よりも高いオゾン生成量が得られている事実から、上限は1%が好ましい。尚、他のNeやKrやXeと水素を併用する場合には、上記範囲の水素と前述の範囲のNe,Kr,Xeとを組み合わせて使用する事ができる。   Next, a change in the generated ozone concentration was measured by changing the amount of hydrogen added to high purity oxygen having a purity of 99.9999% using the discharge type ozonizer. The results are plotted in the graph of FIG. As is clear from the figure, the effect of increasing the ozone concentration appears with the addition of a small amount of hydrogen, which becomes noticeable when the hydrogen concentration is 50 ppm (0.005%) or more, reaches a peak at about 200 ppm, and reaches 1000 ppm (0.1 %) It can be seen that there is almost no change even when added. From this, it can be said that the addition amount of hydrogen is effective even when a very small amount of several ppm is added, but it is preferably 10 ppm or more, and particularly preferably 50 ppm or more. In addition, as an upper limit, it is indispensable to restrain to 4% or less of the explosion limit value of hydrogen, and it is preferable to restrain to 2% or less from the viewpoint of the high-pressure gas safety law. Addition beyond this is ineffective in increasing the amount of ozone produced with respect to the increase in the amount added, and there is a risk of meaningless hydrogenation. Therefore, in the present invention, the amount of hydrogen added is 2.0% or less, preferably 10 ppm or more, and more preferably 50 ppm or more. In terms of effectiveness, even when 1% addition in FIG. Therefore, the upper limit is preferably 1%. When other Ne, Kr, or Xe and hydrogen are used in combination, hydrogen in the above range and Ne, Kr, or Xe in the above range can be used in combination.

尚、前述の通り、本発明では、上記Ne,Kr,Xe,水素の他に、Ar及びHeの含有を許容しているが、これらの成分は、酸素中の不純物として、一般に1000〜2000ppm程度は含まれている事は前述の通りであり。又、積極的に添加する場合においても、両者の合計で0.5%以下となすのが好ましい。これ以上の添加は、Ne,Kr,Xe又は水素の存在下では、余り意味がない。   As described above, in the present invention, in addition to Ne, Kr, Xe, and hydrogen, Ar and He are allowed to be contained. However, these components are generally about 1000 to 2000 ppm as impurities in oxygen. Is included as described above. Further, even when positively added, it is preferable that the total amount of both is 0.5% or less. Addition beyond this is not meaningful in the presence of Ne, Kr, Xe or hydrogen.

次に、これらのガスを添加する事によるオゾン生成濃度の増加と安定化について考察する。前述の図1に示されている通り、本発明で使用するNe,Kr,Xe,水素や従来公知の窒素等を添加したものを原料ガスとしたものは、いずれも高純度酸素のみを原料ガスとする場合に比して、高いオゾン収量と収量の安定性が得られている。窒素の存在による収量低下防止効果については、前述の通りであるが、その理論がそのまま稀ガスであるNe,Kr,Xeには当てはまらない。これらのガスは、放電によっても活性酸素分子や活性酸素原子と反応生成物を生成する事はない。しかしながら、これらの原子は、比較的電気伝導性が高く、即ち、放電場においては、最外郭の電子が短時間に出入りし、その際に発生する光がオゾン生成に寄与しているものと推定される。特にNeは、ネオンサインとして利用されている如く、伝導性に富む原子であるので、図1からも分かる様に、単に純酸素に比してオゾン生成量の漸減を防止するのではなく、反応初期から純酸素を用いるよりも高い収量が得られており、Neの発生する光が、オゾン生成に積極的に寄与しているものと推定される。一方、水素については、前記窒素の場合と同様に、放電電極面に吸着された活性酸素分子や活性酸素原子と反応して水を生成し、放電電極面への活性酸素分子や活性酸素原子の吸着による堆積を防止するものと推定される。   Next, the increase and stabilization of the ozone generation concentration by adding these gases will be considered. As shown in FIG. 1 above, Ne, Kr, Xe, hydrogen used in the present invention, and those added with conventionally known nitrogen, etc., are used as raw material gases. As compared with the case of the above, high ozone yield and yield stability are obtained. The effect of preventing the decrease in yield due to the presence of nitrogen is as described above, but the theory does not apply to the rare gases Ne, Kr, and Xe as they are. These gases do not generate reaction products with active oxygen molecules or active oxygen atoms even by discharge. However, these atoms are relatively high in electrical conductivity, that is, the outermost electrons enter and exit in a short time in the discharge field, and the light generated at that time is assumed to contribute to ozone generation. Is done. In particular, Ne is an atom having a high conductivity as used as a neon sign. Therefore, as can be seen from FIG. 1, it does not simply prevent the decrease in the amount of ozone generated compared to pure oxygen. A higher yield than that obtained using pure oxygen was obtained from the beginning, and it is presumed that the light generated by Ne actively contributes to ozone generation. On the other hand, as in the case of nitrogen, hydrogen reacts with active oxygen molecules and active oxygen atoms adsorbed on the discharge electrode surface to generate water, and the active oxygen molecules and active oxygen atoms on the discharge electrode surface are generated. Presumed to prevent deposition due to adsorption.

又、放電式オゾナイザーで生成したオゾンは、そのまま使用する事も可能であるが、出願人が先に出願している特開平10−196893号公報(前記特許文献4)に開示している様に、生成オゾンガスを含む反応生成ガスをシリカゲルに飽和吸着させて濃縮し、ガスオゾンの状態で貯蔵すると共に、使用時にはシリカゲルから脱着させて数十%或いは90%以上の高濃度オゾンガスとして使用する方法がある。この方法は、オゾンの貯蔵と高濃度オゾンでの使用を可能にするため、極めて有望な方法であるが、この方法に、従来法で開示されている窒素を添加した混合ガスを用いた場合に、副生する窒素酸化物(NO2)の分子量は46であり、オゾンの分子量48に極めて近いので、係る窒素酸化物もオゾンと共にシリカゲルに吸着され、その結果、相対的にオゾンの吸着量を下げると共に吸着剤の劣化を招く虞れがある。この現象は、前記窒素に代えて炭酸ガスを添加した混合ガスを用いる場合においても、炭酸ガスの分子量は44であり、オゾンのそれに近似しているので同様な問題がある。これに対し、本発明においては、副生反応物は存在せず、しかもオゾンの分子量48に対し、Neは20.2、Krは83.8、Xeは131.3、水素は2であるので、オゾン吸着用に設計されたシリカゲルにはこれらのガスは吸着され難く、シリカゲルの吸着特性を劣化させる事もない。特に、水素は、ガス分析用のキャリアガスと使用されている様に、極めて吸着され難いガスであるので、シリカゲルに吸着されてオゾンガスの吸着を妨げる事は全くない。更に、吸着オゾンを脱着させて使用する際に、オゾン以外のガスの吸着は殆どないから、高濃度のオゾンガスとして脱着させる事も可能となる。この点からも、本発明で使用する添加ガスは、極めて有効な添加ガスであると言える。因みに、上記4つガスと共に併用が可能なAr及びHeの分子量は、夫々40と4であり、前記窒素酸化物や炭酸ガスに比して、シリカゲルへの吸着量は少なく、この点からも併用には全く問題はない。特に、Heは水素と同様にガス分析用のキャリアガスと使用されているものであり、極めて吸着され難いガスであるので、シリカゲルのオゾン吸着特性を低下させる事は全くない。   The ozone generated by the discharge type ozonizer can be used as it is, but as disclosed in Japanese Patent Application Laid-Open No. 10-196893 (patent document 4) previously filed by the applicant. There is a method in which the reaction product gas containing the generated ozone gas is saturated and adsorbed on silica gel, concentrated and stored in the state of gas ozone, and in use, it is desorbed from the silica gel and used as high-concentration ozone gas of several tens% or 90% . This method is extremely promising because it enables storage of ozone and use in high-concentration ozone. However, when a mixed gas added with nitrogen disclosed in the conventional method is used in this method, The by-product nitrogen oxide (NO2) has a molecular weight of 46 and is very close to the molecular weight of ozone 48. Therefore, such nitrogen oxide is also adsorbed to silica gel together with ozone, and as a result, the amount of ozone adsorbed relatively decreases. At the same time, the adsorbent may be deteriorated. This phenomenon has a similar problem even when a mixed gas in which carbon dioxide gas is added instead of nitrogen is used, since the molecular weight of carbon dioxide gas is 44 and approximates that of ozone. On the other hand, in the present invention, no by-product reactant is present, and Ne is 20.2, Kr is 83.8, Xe is 131.3, and hydrogen is 2 with respect to the molecular weight of ozone 48. These gases are hardly adsorbed on silica gel designed for ozone adsorption, and the adsorption characteristics of silica gel are not deteriorated. In particular, since hydrogen is a gas that is extremely difficult to be adsorbed, as is used as a carrier gas for gas analysis, it is not adsorbed by silica gel and does not hinder the adsorption of ozone gas. Further, when adsorbed ozone is desorbed and used, there is almost no adsorption of gases other than ozone, so that it can be desorbed as high-concentration ozone gas. Also from this point, it can be said that the additive gas used in the present invention is a very effective additive gas. Incidentally, the molecular weights of Ar and He that can be used together with the above four gases are 40 and 4, respectively, and the adsorption amount to silica gel is small compared to the nitrogen oxide and carbon dioxide gas. There is no problem at all. Particularly, since He is used as a carrier gas for gas analysis like hydrogen and is a gas that is extremely difficult to be adsorbed, it does not deteriorate the ozone adsorption characteristics of silica gel.

更に、シリカゲル吸着法によってオゾンの濃縮と貯蔵を行った場合にも、オゾンと共に前記添加ガスや副生ガスも吸着される事は、添加ガスや副生ガスの種類によって程度の差はあるものの不可避である。前述した従来の炭酸ガスや窒素を添加ガスとして用いた場合に随伴する炭酸ガスや窒素酸化物は、前述の通り本発明で使用するNe,Kr及びXeに比して多量に吸着され易いので、脱着時に、これらの吸着ガスもオゾンガス中に随伴して放出される事になるが、これらの炭酸ガスや窒素酸化物は、酸性ガスとしての活性を有しているので、これらを随伴するオゾンガスの用途には適・不適が存在する。一方、本発明で使用するNe,Kr,Xe,水素(加えてAr,He)の内、水素とHeは吸着されないと考えてよいが、他のNe,Kr,Xe,Arは、微量とは言え吸着される事は避けられない。このため、脱着時には、これらのガス成分もオゾンに随伴する事になるが、これらは稀ガスであり、通常は他の成分と反応を生じる事はないので、これらのガスがオゾンに混入して使用系に送給されても、何ら問題は生じない。この事は、本発明方法で生成したオゾンの用途に汎用性を与える効果がある。   Furthermore, even when ozone is concentrated and stored by the silica gel adsorption method, it is inevitable that the additive gas and by-product gas are also adsorbed together with ozone, although there are differences depending on the type of additive gas and by-product gas. It is. Since carbon dioxide gas and nitrogen oxide accompanying the above-described conventional carbon dioxide gas and nitrogen as an additive gas are easily adsorbed in a large amount as compared with Ne, Kr and Xe used in the present invention as described above, At the time of desorption, these adsorbed gases are also released along with the ozone gas. However, since these carbon dioxide and nitrogen oxides have activity as acid gases, There are appropriate and unsuitable uses. On the other hand, among Ne, Kr, Xe, and hydrogen (plus Ar, He) used in the present invention, it may be considered that hydrogen and He are not adsorbed, but other Ne, Kr, Xe, and Ar are trace amounts. It is inevitable that it will be adsorbed. For this reason, at the time of desorption, these gas components also accompany ozone, but these are rare gases and usually do not react with other components, so these gases are mixed into ozone. Even if it is sent to the use system, there will be no problem. This has the effect of giving versatility to the use of ozone produced by the method of the present invention.

尚、上記実施例では、シックス−ナイン(99.9999%)の超高純度酸素ガスを用いているが、工業的には、空気液化分離装置等から高純度酸素として得られる純度99.9%程度の酸素ガスも、本発明で使用可能である事はいうまでもない。特に、一般に高純度酸素ガスと呼ばれるガス中には、不純物としてArやHeが含まれており、これらの不純物ガスは、前述の通り、本発明では許容されているガスであるので、これらを積極的に除去した高重度酸素ガスを用いる必要はない。   In the above embodiment, six-nine (99.9999%) ultra-high purity oxygen gas is used, but industrially, the purity is 99.9% obtained as high-purity oxygen from an air liquefaction separator or the like. Needless to say, oxygen gas of a certain degree can be used in the present invention. In particular, a gas generally called high-purity oxygen gas contains Ar and He as impurities, and these impurity gases are gases allowed in the present invention as described above. It is not necessary to use the high-strength oxygen gas removed.

以上に詳述した如く、本発明の放電式オゾン生成方法によると、高純度酸素ガスに、Ne,Kr,Xe,水素或いは更にAr,Heを添加したガスを原料ガスとして使用しているので、生成オゾンガスに随伴するガスは全て無害なガスとなり、あらゆる産業分野に、本発明で生成したオゾンガスを使用する事ができる。   As described above in detail, according to the discharge type ozone generation method of the present invention, a gas obtained by adding Ne, Kr, Xe, hydrogen or further Ar, He to a high purity oxygen gas is used as a raw material gas. All the gas accompanying the generated ozone gas becomes harmless gas, and the ozone gas generated by the present invention can be used in all industrial fields.

各種原料ガスを用いた場合の生成オゾン濃度と運転時間の関係を示すチャートである。It is a chart which shows the relationship between the production | generation ozone concentration at the time of using various raw material gas, and driving | running time. 各種原料ガスを用いた場合の生成オゾン濃度の高純度酸素原料に対する相対濃度比率を示すグラフである。It is a graph which shows the relative concentration ratio with respect to the high purity oxygen raw material of the production | generation ozone concentration at the time of using various raw material gas. 高純度酸素に対するNeの添加量と生成オゾン濃度との関係を示すグラフである。It is a graph which shows the relationship between the addition amount of Ne with respect to high purity oxygen, and production | generation ozone concentration. 高純度酸素に対する水素の添加量と生成オゾン濃度との関係を示すグラフである。It is a graph which shows the relationship between the addition amount of hydrogen with respect to high purity oxygen, and production | generation ozone concentration.

Claims (5)

酸素含有原料ガスを放電式オゾナイザーに供給してオゾンガスを生成させる放電式オゾンガス生成方法において、
原料ガスとして、高純度酸素ガス中に、ネオン,クリプトン,キセノンの一種以上を合計で500ppm以上3.0vol.%以下と、10ppm以上2.0vol.%以下の水素との少なくともいずれか一方を添加したガスを用いる事を特徴とする放電式オゾンガス生成方法。
In the discharge-type ozone gas generation method of supplying ozone-containing source gas to a discharge-type ozonizer to generate ozone gas,
Add at least one of neon, krypton, and xenon as a raw material gas in a total of 500 ppm to 3.0 vol.% And 10 ppm to 2.0 vol.% Hydrogen in high purity oxygen gas A discharge-type ozone gas generation method characterized by using a gas that has been discharged.
前記混合ガス中のネオン,クリプトン,キセノンの一種以上の添加量が、合計で0.1〜0.5vol.%である請求項1に記載の放電式オゾンガス生成方法。   2. The discharge type ozone gas generation method according to claim 1, wherein the addition amount of one or more of neon, krypton, and xenon in the mixed gas is 0.1 to 0.5 vol.% In total. 前記混合ガス中の水素の添加量が、50ppm〜1.0vol.%である請求項1又は2に記載の放電式オゾンガス生成方法。   The discharge-type ozone gas generation method according to claim 1 or 2, wherein an addition amount of hydrogen in the mixed gas is 50 ppm to 1.0 vol.%. 前記混合ガス中に、アルゴン又はヘリウムの1種以上を0.5vol.%以下含有させてなる請求項1乃至のいずれか1項に記載の放電式オゾンガス生成方法。 The discharge type ozone gas generation method according to any one of claims 1 to 3 , wherein the mixed gas contains one or more of argon or helium at 0.5 vol.% Or less. 前記混合ガスを用いて生成したオゾンを含有する反応生成ガスを、シリカゲルを充填したオゾン貯蔵容器に供給して、オゾンを前記シリカゲルに吸着させて貯蔵する様にしてなる請求項1乃至4のいずれか1項に記載の放電式オゾンガス生成方法。   The reaction product gas containing ozone produced | generated using the said mixed gas is supplied to the ozone storage container filled with the silica gel, Ozone is made to adsorb | suck to the said silica gel, and it stores it. The discharge type ozone gas production method according to claim 1.
JP2003281731A 2002-08-05 2003-07-29 Discharge-type ozone gas generation method Expired - Lifetime JP4272947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003281731A JP4272947B2 (en) 2002-08-05 2003-07-29 Discharge-type ozone gas generation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002227405 2002-08-05
JP2003281731A JP4272947B2 (en) 2002-08-05 2003-07-29 Discharge-type ozone gas generation method

Publications (2)

Publication Number Publication Date
JP2004083401A JP2004083401A (en) 2004-03-18
JP4272947B2 true JP4272947B2 (en) 2009-06-03

Family

ID=32072269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003281731A Expired - Lifetime JP4272947B2 (en) 2002-08-05 2003-07-29 Discharge-type ozone gas generation method

Country Status (1)

Country Link
JP (1) JP4272947B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803026B2 (en) * 2006-12-28 2011-10-26 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP5183099B2 (en) * 2007-05-29 2013-04-17 岩谷産業株式会社 Ozone gas concentration method
JP2011121805A (en) * 2009-12-09 2011-06-23 Iwatani Internatl Corp Method for removing nitrogen oxide and moisture contained in ozone gas
KR102099433B1 (en) * 2018-08-29 2020-04-10 세메스 주식회사 Apparatus and method of processing stripping a substrate

Also Published As

Publication number Publication date
JP2004083401A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP4953814B2 (en) Ozone generator and ozone generation method
US8444831B2 (en) Method of generating ozone
Huang et al. Energy efficiency in hydrogen sulfide removal by non-thermal plasma photolysis technique at atmospheric pressure
JPH06500433A (en) How to extend the gas service life of excimer lasers
JP5153748B2 (en) Nitrous oxide reduction method and reduction apparatus
JP4272947B2 (en) Discharge-type ozone gas generation method
US6395144B1 (en) Method for treating toxic compounds-containing gas by non-thermal plasma
JP5183099B2 (en) Ozone gas concentration method
JP2587860B2 (en) Ozone generation method
JP5499489B2 (en) NOx-containing exhaust gas treatment apparatus and NOx-containing exhaust gas treatment method
KR20220148565A (en) Apparatus for Preparing NOx-Containing Water Using Underwater Plasma Generation and Preparing Method thereof
JPH04265113A (en) Treatment of fluorine-containing gas
JPS6154722B2 (en)
JP2005145762A (en) Method for generating ozone gas by electric discharge
JP3950856B2 (en) Catalytic electrode type ozone generation method and generator
CN109908749B (en) Multiphase discharge system for catalyzing and cooperatively removing VOCs with different solubilities
JP2007289854A (en) Method and apparatus for concentrating oxygen isotope
JP2006110461A (en) Treatment method of fluorine compound-containing exhaust gas
JP2002085939A (en) Decomposition treatment process of fluorine-based waste gas
Li et al. Experimental study on the Effect of H 2 on the Degradation of SF 6 by Pulsed Dielectric Barrier Discharge
KR101070359B1 (en) Apparatus and method for destructing ozone using nonthermal plasma reactor filled with adsorptive and nonadsorptive dielectric packing materials
JPH08323147A (en) Decomposition of noxious gas by corona formation reactor
JP2004081946A (en) Ozone gas supply method
CN115888342A (en) Fluorine-containing gas degradation device and method based on thermal plasma spout electric arc
JP2009072724A (en) Plasma reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060512

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4272947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term