JP2010193882A - Cultivation member for heavy metal hyperaccumulator plant and method of recovering heavy metal - Google Patents

Cultivation member for heavy metal hyperaccumulator plant and method of recovering heavy metal Download PDF

Info

Publication number
JP2010193882A
JP2010193882A JP2010018302A JP2010018302A JP2010193882A JP 2010193882 A JP2010193882 A JP 2010193882A JP 2010018302 A JP2010018302 A JP 2010018302A JP 2010018302 A JP2010018302 A JP 2010018302A JP 2010193882 A JP2010193882 A JP 2010193882A
Authority
JP
Japan
Prior art keywords
heavy metal
cultivation
plant
soil
accumulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010018302A
Other languages
Japanese (ja)
Inventor
Masayuki Sakakibara
正幸 榊原
Sakae Sano
栄 佐野
Toshishige Hori
利栄 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ehime University NUC
Original Assignee
Ehime University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ehime University NUC filed Critical Ehime University NUC
Priority to JP2010018302A priority Critical patent/JP2010193882A/en
Publication of JP2010193882A publication Critical patent/JP2010193882A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Fertilizers (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Cultivation Of Plants (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cultivation member for heavy metal hyperaccumulator plant and a method of recovering a heavy metal, little in load of planting and collecting a heavy metal hyperaccumulation plant, wherein the planted plants can grow well. <P>SOLUTION: The method of recovering a heavy metal includes putting a heavy metal hyperaccumulator plant 5 and a cultivation soil 3 in a cultivation vessel 2 having a water-permeable side surface, and planting the heavy metal hyperaccumulator plant by putting the cultivation vessel 2 in a medium containing heavy metals so as to absorb the heavy metals into the heavy metal hyperaccumulator plant. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、重金属を含有する媒体中で重金属超集積植物を栽培し、その植物に重金属を吸収させることによって、重金属を回収する技術に関するものである。 The present invention relates to a technique for recovering heavy metal by cultivating a heavy metal super-accumulated plant in a medium containing heavy metal and allowing the plant to absorb heavy metal.

重金属によって汚染された媒体を浄化する方法としては、従来から、例えば汚染土壌全体を掘削して管理型処分場で処理する方法や、セメントによる固化、化学薬品による不溶化処理、あるいは土壌洗浄といった手段が主流である。しかしこれらの処理方法は、高濃度の汚染地に対しては有効であるが、多量のエネルギー投入と、膨大なコストが必要であるため、低濃度の汚染地に対しては効率的ではない。 Conventional methods for purifying media contaminated with heavy metals include, for example, excavating the entire contaminated soil and treating it in a controlled disposal site, solidifying with cement, insolubilizing with chemicals, or soil washing. Mainstream. However, these treatment methods are effective for high-concentration contaminated areas, but they are not efficient for low-concentration contaminated areas because they require a large amount of energy input and enormous costs.

また、他の浄化方法としては、植物による重金属の吸収・蓄積能力を利用したファイトレメディエーション(Phytoremediation)技術が検討されている。ファイトレメディエーションは、環境要因の影響が大きく、すなわち植物の生育が気候に左右されやすく、浄化に長い時間を要するため即効性が低いなどの問題はあるが、低コストでしかも殆ど労力がかからず、環境調和型の技術であるといった点で、注目されている。 As another purification method, phytoremediation technology using the ability of plants to absorb and accumulate heavy metals has been studied. Phytoremediation is greatly affected by environmental factors, that is, plant growth is easily influenced by the climate, and it takes a long time for purification, so there are problems such as low immediate effect, but it is low cost and requires little labor However, it is attracting attention because it is an environmentally harmonious technology.

たとえば、特許文献1にはシダ植物Pteris属を用いた浄化方法が記載されている。また、特許文献2にはマツバイ(Eleocharis acicularis)などカヤツリグサ科ハリイ属(Cyperaceae Eleocharis)の植物を用いた浄化方法が記載されている。 For example, Patent Document 1 describes a purification method using a fern plant Pteris genus. Patent Document 2 describes a purification method using plants of the genus Cyperaceae Eleocharis such as pine bay (Eleocharis acicularis).

特開2002−540943号公報JP 2002-540943 A 国際公開第2007/091382号パンフレットInternational Publication No. 2007/091382 Pamphlet

特許文献1および特許文献2に記載された発明においては、栽培すべき植物の苗を、浄化すべき場所の地面または川底等に直接植えつけている。そして、育成したあとの植物は、刈り取りまたは地面等から引き抜くことによって行っている。しかし、これには多くの労力を有する。特に、特許文献2に記載された浄化方法は河川や沼地など、水の多い環境において有効なものであるが、これらの場所への植え付けは多大な作業となる。 In the inventions described in Patent Document 1 and Patent Document 2, plant seedlings to be cultivated are directly planted on the ground or riverbed of a place to be purified. And the plant after growing up is performed by cutting or pulling out from the ground or the like. However, this has a lot of effort. In particular, the purification method described in Patent Document 2 is effective in a watery environment such as a river or a swamp, but planting in these places is a great work.

また、植物を直接植え付けた後に、植物が十分育たず、枯死するものも現れることがわかった。特に、鉱山跡の環境には粘土が多く、マツバイなどの重金属超集積植物の育成が困難であることがわかってきた。 Moreover, after planting directly, it was found that some plants do not grow well and die. In particular, the environment of the mine site is rich in clay, and it has been found that it is difficult to grow heavy metal superaccumulating plants such as pine trees.

この発明は、重金属超集積植物の植え付けや採取のための負担が少なく、しかも、植えつけた植物が良好に生育できるような重金属超集積植物栽培部材および重金属回収方法を提供することを目的とする。 An object of the present invention is to provide a heavy metal super-accumulated plant cultivating member and a heavy metal recovery method that are less burdensome for planting and collecting heavy metal super-accumulated plants and that allow the planted plants to grow well. .

上記の課題を解決するために、本発明に係る重金属超集積植物栽培部材は、重金属を含有する媒体中で重金属超集積植物を栽培するための部材であって、透水性の側面を有する栽培容器と、栽培容器内に入れられた栽培用土を備えたものである。これに加えて、複数の容器を連結するための連結部材を設けてもよい。 In order to solve the above problems, a heavy metal super-accumulated plant cultivation member according to the present invention is a member for cultivating a heavy metal super-accumulated plant in a medium containing heavy metal, and has a water-permeable side surface. And the soil for cultivation put in the cultivation container. In addition to this, a connecting member for connecting a plurality of containers may be provided.

本発明に係る重金属回収方法は、透水性の側面を有する栽培容器に重金属超集積植物と栽培用土を入れ、この栽培容器を重金属を含有する媒体中に設置することによって重金属超集積植物を植え付け、重金属超集積植物中に重金属を吸収させることを特徴とする。さらに、連結部材によって複数の容器を連結してもよい。栽培する植物としては、たとえばカヤツリグサ科ハリイ属(Cyperaceae Eleocharis)の植物などが利用でき、特に、カヤツリグサ科ハリイ属の植物がマツバイ(Eleocharis acicularis)が好ましい。 In the heavy metal recovery method according to the present invention, a heavy metal super-accumulated plant and soil for cultivation are placed in a cultivation container having a water-permeable side surface, and the heavy metal super-accumulated plant is planted by installing the cultivation container in a medium containing heavy metal, It is characterized by absorbing heavy metals in heavy metal super-accumulated plants. Furthermore, you may connect a some container with a connection member. As a plant to be cultivated, for example, a plant of the genus Cyperaceae Eleocharis can be used, and in particular, a plant of the genus Cyperaceae is preferably pine (Eleocharis acicularis).

この発明に係る重金属超集積植物栽培部材および重金属回収方法は、栽培すべき重金属超集積植物の植え付けおよび栽培後の採取が容易に行えるという効果を有する。また、植え付け後も植物の枯死が発生しにくく、良好に生育するという効果を有する。特に、可溶性ケイ素化合物を含む栽培用土を使用することによって、より高濃度に重金属を集積することができる。 The heavy metal super-accumulated plant cultivation member and the heavy metal recovery method according to the present invention have an effect that the heavy metal hyper-accumulated plant to be cultivated can be easily planted and collected after cultivation. Moreover, even after planting, the plant is less likely to wither and has the effect of growing well. In particular, heavy metals can be accumulated at a higher concentration by using soil for cultivation containing a soluble silicon compound.

重金属超集積植物栽培部材を示す斜視図である。It is a perspective view which shows a heavy metal super accumulation plant cultivation member. 重金属超集積植物栽培部材を使用した重金属回収方法を示す概念図である。It is a conceptual diagram which shows the heavy metal collection | recovery method using a heavy metal super accumulation plant cultivation member. 直接栽培法におけるマツバイ中の重金属濃度を示すグラフである。It is a graph which shows the heavy metal density | concentration in the pineapple in a direct cultivation method. 重金属超集積植物栽培部材による栽培法におけるマツバイ中の重金属濃Heavy metal concentration in pine trees in the cultivation method using heavy metal super-accumulated plant cultivation parts 温室栽培におけるマツバイの緑の葉に含まれるヒ素濃度を示すグラフである。It is a graph which shows the arsenic density | concentration contained in the green leaf of the pineapple in greenhouse cultivation. 温室栽培におけるマツバイの枯れ葉に含まれるヒ素濃度を示すグラフである。度を示すグラフである。It is a graph which shows the arsenic density | concentration contained in the dead leaf of a pineapple in greenhouse cultivation. It is a graph which shows a degree. 温室栽培におけるマツバイの根に含まれるヒ素濃度を示すグラフである。It is a graph which shows the arsenic density | concentration contained in the root of a pineapple in greenhouse cultivation. 栽培用液中の鉛Pbの濃度の変化を示すグラフである。It is a graph which shows the change of the density | concentration of lead Pb in the liquid for cultivation.

この発明を実施するための形態について、図面に基づいて説明する。図1は重金属超集積植物栽培部材を示す斜視図、図2は重金属超集積植物栽培部材を使用した重金属回収方法を示す概念図である。 EMBODIMENT OF THE INVENTION The form for implementing this invention is demonstrated based on drawing. FIG. 1 is a perspective view showing a heavy metal super-integrated plant cultivation member, and FIG. 2 is a conceptual diagram showing a heavy metal recovery method using the heavy metal super-integrated plant cultivation member.

重金属超集積植物栽培部材1は、栽培容器2と栽培容器内に入れられた栽培用土3を備える。栽培容器2の側面は透水性になっている。ここで透湿性とは、栽培用土3を保持できて、しかも、水が十分に出入りできることをいう。たとえば、陶器の植木鉢やプラスティックのポット・プランタなどで、その側面に多数の孔を有するものや、ジフィーポット(登録商標)と呼ばれるピートモス等を素材として成型したポットなどが使用できる。 The heavy metal super-integrated plant cultivation member 1 includes a cultivation container 2 and a cultivation soil 3 placed in the cultivation container. The side surface of the cultivation container 2 is water permeable. Here, moisture permeability means that the cultivation soil 3 can be held and water can sufficiently enter and exit. For example, pottery plant pots, plastic pot planters, etc., which have a large number of holes on their sides, pots molded from peat moss called Jiffy Pot (registered trademark), etc. can be used.

この栽培容器2の中には対象となる重金属超集積植物の栽培に適した土3が入れられる。たとえば、マツバイ用には砂または砂を多く含んだ土を入れるとよい。 In this cultivation container 2, soil 3 suitable for cultivation of the target heavy metal super-integrated plant is placed. For example, it is good to put sand or soil containing a lot of sand for pine cones.

この栽培容器2は単体で使用してもよいが、さらに複数を連結部材4で連結して使用してもよい。例えば、栽培容器2を多数収容できる金網のかご4を連結部材とし、このかごの中に栽培用土3を盛られた栽培容器2を並べてもよい。これ以外にも、栽培容器2の側面外部へ相互に係合可能な凹凸を設けて連結部材を形成してもよく、結束バンドなどを使用して連結してもよい。 Although the cultivation container 2 may be used alone, a plurality of the cultivation containers 2 may be further connected by the connecting member 4. For example, a wire mesh cage 4 that can accommodate a large number of cultivation containers 2 may be used as a connecting member, and the cultivation containers 2 on which the cultivation soil 3 is placed may be arranged in this cage. In addition to this, irregularities that can be engaged with each other outside the side surface of the cultivation container 2 may be provided to form a connecting member, or may be connected using a binding band or the like.

栽培すべき重金属超集積植物の苗5をあらかじめ栽培容器2の中に植えておいてもよい。ここで、重金属超集積植物とは、環境中の重金属を各元素の基準以上に濃縮して蓄積できる植物をいう。河川や湖、池、沼地など水の多い環境においては、カヤツリグサ科ハリイ属(Cyperaceae Eleocharis)の植物が適している。たとえば、クワグロイ、シログロイ、ヌマハリイ、マツバイ、ハリイ、ミスミイなどあり、その中でも、マツバイ(Eleocharis acicularis)は、ほぼ日本全土に自生しており、広い範囲で栽培することができる。 You may plant the seedling 5 of the heavy metal super accumulation plant which should be cultivated in the cultivation container 2 previously. Here, the heavy metal super-accumulated plant refers to a plant that can accumulate and accumulate heavy metals in the environment above the standard of each element. Cyperaceae Eleocharis plants are suitable in watery environments such as rivers, lakes, ponds, and swamps. For example, there are mulberry grouse, white crocodile, pine mackerel, pine bay, harii, and misumi.

表1は、マツバイの有用金属最大蓄積濃度を示す。国内の3カ所の鉱山で測定した結果を示している。銅、ヒ素、鉛など有害な重金属を効果的に吸収しており、水環境浄化に有効であることがわかる。また、銀、ガリウム、ジルコニウムなどは、使用価値が高いレアメタルであり、これらを回収することによって、資源として再利用することができる。新たな鉱山開発には多大な費用と労力を必要とし、また鉱害の懸念等もあるが、重金属超集積植物の栽培によって金属を回収するファイトレマイニングは、低コストかつ無公害で実施できる。

Figure 2010193882
Table 1 shows the maximum accumulated concentration of useful metals in pine trees. The results of measurements at three mines in Japan are shown. It is understood that it effectively absorbs harmful heavy metals such as copper, arsenic and lead, and is effective for water environment purification. Silver, gallium, zirconium, and the like are rare metals having a high use value, and can be reused as resources by collecting them. New mine development requires a great deal of cost and labor, and there are concerns about mine damage, but phytoremining, which recovers metals by growing heavy metal super-accumulated plants, can be carried out at low cost and without pollution.
Figure 2010193882

次に、重金属回収方法について説明する。植物を栽培する場所、栽培目的(例えば、回収すべき重金属の種類など)に合わせて、植物を選択するとともに、栽培容器2,栽培用土3も選択する。栽培容器2と栽培用土3を別々に運搬して、現地で栽培用土3を栽培容器2に入れてもよいが、予め栽培容器2に入れた栽培用土3状態で、現地へ運んでもよい。さらに、植物の苗や種を入れておいてもよい。 Next, the heavy metal recovery method will be described. A plant is selected according to the place where the plant is cultivated and the purpose of cultivation (for example, the type of heavy metal to be collected, etc.), and the cultivation container 2 and the cultivation soil 3 are also selected. The cultivation container 2 and the cultivation soil 3 may be transported separately, and the cultivation soil 3 may be put in the cultivation container 2 locally. However, the cultivation container 3 and the cultivation soil 3 previously placed in the cultivation container 2 may be carried locally. Furthermore, plant seedlings and seeds may be added.

水の多い環境においては、この重金属超集積植物栽培部材を水底上に置くだけでよい。また、栽培容器2の下部を土で覆うようにしてもよい。栽培容器2をひとつずつ並べるほか、図2に示すように金網のかごなどの連結部材で複数の栽培容器2を連結して効率的に設置することもできる。特に、流れの強い場所においては、複数の栽培容器2を連結して設置することによって、栽培容器2が流されることを防止することができる。例えば、マツバイの場合、春頃に植え付けることが好ましい。 In an environment with a lot of water, it is only necessary to place the heavy metal super-accumulated plant cultivation member on the bottom of the water. Moreover, you may make it cover the lower part of the cultivation container 2 with soil. In addition to arranging the cultivation containers 2 one by one, as shown in FIG. 2, a plurality of cultivation containers 2 can be connected efficiently by a connecting member such as a wire mesh basket. In particular, in a place where the flow is strong, the cultivation container 2 can be prevented from flowing by connecting and installing the plurality of cultivation containers 2. For example, in the case of pine trees, it is preferable to plant around spring.

水の少ない環境においては、栽培容器2の全部または一部を地中に埋めるようにして設置してもよい。 In an environment with little water, the cultivation container 2 may be installed so that all or part of the cultivation container 2 is buried in the ground.

成長した植物を採取する場合も、栽培容器2ごと簡単に回収することができる。回収した植物は、例えば、乾燥させた後、有害金属を含むものであれば焼却して、灰を管理すればよい。また、この植物より有用金属を抽出して回収し、資源として活用してもよい。さらに、栽培容器で耐久性のあるものは、次回の栽培のために再使用してもよい。 Even when a grown plant is collected, the cultivation container 2 can be easily collected. For example, the recovered plant may be dried and then incinerated if it contains harmful metals to manage the ash. In addition, useful metals may be extracted and recovered from this plant and used as resources. Further, the durable cultivation container may be reused for the next cultivation.

この発明の第1の実施例について説明する。愛媛県内にある休止鉱山残土堆積場の池にこの発明の重金属超集積植物栽培部材および重金属回収方法を適用し、マツバイを移植して栽培を行った。使用した栽培容器は市販の直径8cmのジフィーポット(登録商標)であり、これに砂を充填し、そこにマツバイを植えた。この栽培容器を池の底質に置くことによって、マツバイを移植した。 A first embodiment of the present invention will be described. The heavy metal super-accumulated plant cultivation member and heavy metal recovery method of the present invention were applied to a pond at a resting mine remnant deposit site in Ehime Prefecture, and pine bai was transplanted for cultivation. The cultivation container used was a commercially available Jiffy Pot (registered trademark) having a diameter of 8 cm, which was filled with sand and planted with pine cones. By placing this cultivation container on the bottom of the pond, pine trees were transplanted.

2008年5月に植え付けを行い、8月に刈り取った。 Planted in May 2008 and cut in August.

一方、第1の比較例として、同じ場所において重金属超集積植物栽培部材を使うことなく、マツバイを直接底質に植え付けた。2006年7月28日に植え付けて、同年11月22日に刈り取った。 On the other hand, as a 1st comparative example, the pineapple was planted directly to sediments, without using a heavy metal super accumulation plant cultivation member in the same place. Planted on July 28, 2006 and cut on November 22 of the same year.

直接植え付けである第1の比較例においては、植え付けから4月程度でほとんどのマツバイが枯死してしまった。一方、第1の実施例においては、植え付けられたマツバイは重金属が豊富な環境でありながらも枯死を起こさず、順調に成長した。本実施例におけるマツバイのバイオマスは第1の比較例に比べて、顕著に増大している。 In the first comparative example, which is direct planting, most of the pine trees have died about four months after planting. On the other hand, in the first example, the planted pine trees grew steadily without causing death even though the environment was rich in heavy metals. In comparison with the first comparative example, the biomass of pine bye in this example is significantly increased.

図3は、第1の比較例におけるマツバイ中の重金属濃度を示すグラフであり、図4は第1の実施例におけるマツバイ中の重金属濃度を示すグラフである。マツバイに各重金属が高濃度に蓄積されていったことが確認できる。また、第1の実施例において亜鉛の吸収量が著しく向上していることが確認できる。 FIG. 3 is a graph showing the concentration of heavy metals in pine trees in the first comparative example, and FIG. 4 is a graph showing the concentration of heavy metals in pine trees in the first example. It can be confirmed that each heavy metal was accumulated at high concentration in Matsubai. In addition, it can be confirmed that the amount of absorbed zinc is remarkably improved in the first embodiment.

この発明の第2の実施例について説明する。岡山県内にある廃止鉱山残土堆積場の河川にこの発明の重金属超集積植物栽培部材および重金属回収方法を適用し、マツバイを移植して栽培を行った。使用した栽培容器および栽培用土は第1の実施例と同じである。また、第2の比較例として、同じ場所において、マツバイを直接底質植え付けた。2008年9月3日から4日に植え付けを行った。 A second embodiment of the present invention will be described. The heavy metal super-accumulated plant cultivation member and heavy metal recovery method of the present invention were applied to a river in an abandoned mine remnant deposit site in Okayama Prefecture, and pine bai was transplanted for cultivation. The cultivation container and cultivation soil used are the same as those in the first embodiment. In addition, as a second comparative example, pine cones were directly planted in the bottom in the same place. Planting was carried out from September 3rd to 4th, 2008.

第2の比較例においては、植え付けたマツバイの80%が枯死した。一方、第2の実施例においては、マツバイは枯死を起こすことなく健全に成長し、2ヶ月後には、マツバイのバイオマスは2倍以上に増大した。 In the second comparative example, 80% of the planted pine trees died. On the other hand, in the second example, the pine tree grew healthy without causing death, and after two months, the pine tree biomass increased more than twice.

この発明の第3の実施例について説明する。可溶性ケイ素化合物を含む栽培用土を有する重金属超集積植物栽培部材を使用して重金属を回収する例である。まず、北海道札幌市定山渓温泉街を流れる河川で重金属超集積植物栽培部材を使用した例について説明する。 A third embodiment of the present invention will be described. It is an example which collect | recovers heavy metals using the heavy metal super accumulation plant cultivation member which has the soil for cultivation containing a soluble silicon compound. First, an example in which heavy metal super-integrated plant cultivation members are used in a river flowing through Jozankei hot spring town in Sapporo, Hokkaido will be described.

札幌市の水道水源において、温泉湧出水に起因するヒ素汚染が問題となっていることが報告されている(辰巳ほか,2002)。この報告によれば、ヒ素は底質に吸着し、下流部にまで広く流出している。そこで、定山渓温泉街における複数の場所で水や底室のサンプルを採取して分析したところ、いずれのサンプルからも高濃度のヒ素が検出された。 It has been reported that arsenic contamination caused by hot spring spring water has become a problem in tap water sources in Sapporo (Sakai et al., 2002). According to this report, arsenic is adsorbed to the sediment and flows out to the downstream. Therefore, when samples of water and bottom chambers were collected and analyzed at multiple locations in Jozankei hot spring town, high concentrations of arsenic were detected in all samples.

重金属超集積植物栽培部材を使用した重金属回収は、海道札幌市定山渓温泉街を流れる河川で、やや下流側の場所にて実施した。栽培する植物としては、マツバイを使用する。直径9cm、高さ8cmの栽培ポットに栽培用土を入れ、約15gのマツバイを植え付ける。ここで、一つのグループでは栽培用土として砂のみを入れた。もう一つのグループでは砂とケイ素肥料(富士シリシア化学株式会社、80.0シリカゲル肥料(イネルギー)、保障成分量:可溶性けい酸 80.0%)をそれぞれ50wt.%ずつ混合したものを入れた。また、縦53.5cm、横37cm、高さ30で、側面に多数の穴を有するプラスチックコンテナを使用する。各プラスチックコンテナに15個ずつの培ポットを3×5にならべて固定した。 Heavy metal recovery using heavy metal super-accumulated plant cultivation materials was carried out at a slightly downstream location in a river flowing through Jozankei hot spring town on the Kaido Sapporo city. As a plant to be cultivated, Matsubai is used. Cultivation soil is put in a cultivation pot having a diameter of 9 cm and a height of 8 cm, and about 15 g of pine birch is planted. Here, in one group, only sand was added as soil for cultivation. In another group, sand and silicon fertilizer (Fuji Silysia Chemical Co., Ltd., 80.0 silica gel fertilizer (energy), guaranteed component amount: soluble silicic acid 80.0%) were each 50 wt. % Of each mixture was added. In addition, a plastic container having a length of 53.5 cm, a width of 37 cm and a height of 30 and having a large number of holes on the side surface is used. Each culture container was fixed with 15 culture pots arranged in 3 × 5.

マツバイの葉先以外がほぼ水に浸かるような状態でプラスチックコンテナを川底に設置し、7月から10月の約3月間栽培した。栽培用土として砂のみのグループとケイ素肥料を加えたグループでは、生育に差は見られなかった。 A plastic container was installed at the bottom of the river so that all but the tip of the pine tree was soaked in water and cultivated for about three months from July to October. There was no difference in growth between the sand-only group and the group added with silicon fertilizer as soil for cultivation.

栽培後、マツバイを採取し、ICP−MS・PIXEでマツバイ中の重金属の濃度を測定した。その結果を表2に示す。ここで、単位はmg/kg-DWである。

Figure 2010193882
After cultivation, pineapple was collected, and the concentration of heavy metals in pineapple was measured by ICP-MS PIXE. The results are shown in Table 2. Here, the unit is mg / kg-DW.
Figure 2010193882

以上、As,Mn,Feの場合、栽培土にケイ素肥料を加えてマツバイを栽培することによって、より多くの重金属を集積できることが確認できる。 As described above, in the case of As, Mn, and Fe, it can be confirmed that more heavy metals can be accumulated by adding silicon fertilizer to the cultivated soil and cultivating pine bai.

つぎに、上述の栽培を行った場所で採取した河川底質を使用して、マツバイを温室栽培した結果について説明する。栽培用プラスチックかごを使用し、それぞれに約100gずつマツバイを移植する。水は純水を使用する。栽培用土として使用する河川底質には274mg/kgのヒ素が含まれている。河川底質のみで栽培する例に加え、ケイ素肥料を重量比で0.1%、1%、10%加えた栽培用土でも同様の栽培を行った。9月から11月の約2月間栽培する。マツバイ中のヒ素の濃度をICP−MS・PIXEで測定した。 Next, the results of greenhouse cultivation of pine trees using the riverbed sediment collected at the place where the above cultivation was performed will be described. Using a plastic basket for cultivation, transplant about 100 g of pine by each. Use pure water as water. River sediment used as cultivation soil contains 274 mg / kg arsenic. In addition to the example of cultivating only the riverbed sediment, the same cultivation was performed on the soil for cultivation with silicon fertilizer added at 0.1%, 1%, and 10% by weight. It is cultivated for about 2 months from September to November. The concentration of arsenic in Matsubai was measured by ICP-MS PIXE.

図5は緑の葉に含まれるヒ素濃度を、図6は枯れ葉に含まれるヒ素濃度を、図7は根に含まれるヒ素濃度を、それぞれ示す。縦軸はヒ素濃度を示し、単位はmg/kgである。これより、ケイ素肥料を加えることによってマツバイ中のヒ素集積濃度が増加することが分かる。 FIG. 5 shows the arsenic concentration contained in green leaves, FIG. 6 shows the arsenic concentration contained in dead leaves, and FIG. 7 shows the arsenic concentration contained in roots. The vertical axis represents the arsenic concentration, and the unit is mg / kg. From this, it can be seen that the concentration of arsenic in pine trees increases by adding silicon fertilizer.

以上、栽培用土にケイ素肥料を加えることによって、マツバイなどの重金属超集積植物の重金属集積濃度が高まることが分かった。これは、ケイ素肥料に含まれる可溶性ケイ素化合物によるものである。このことを確認するために行ったマツバイの水栽培について説明する。 As mentioned above, it turned out that the heavy metal accumulation | concentration density | concentration of heavy metal superaccumulation plants, such as a pine cone, increases by adding silicon fertilizer to the soil for cultivation. This is due to the soluble silicon compound contained in the silicon fertilizer. The water culture of pine trees performed to confirm this will be described.

銅標準液(Copper standard solution)亜鉛標準液(Zinc standard solution)カドニウム標準液(Cadmium standard solution)水銀標準液(Mercury standard solution)鉛標準液(Lead standard solution)ガリウム標準原液(Gallium standard solution)タリウム標準液(Thallium standard solution)などを使用して、Cu, Zn, Cd, Hg, Pb, Ga, Ag, In, Tlの各重金属を500μg/Lの濃度で含む水溶液を作った。そして、この水溶液をそのまま栽培用液として使用するほかに、その水溶液にケイ素標準原液(Silicon standard solution)を加えて、Si濃度を0.5mg/l,1mg/l,4mg/lに調整した栽培用液も作った。この4種類の栽培用液でマツバイを21日間栽培する。この間に栽培用液中の重金属濃度をICP-MSで測定した。また、栽培後、マツバイ中の重金属濃度をICP−MSおよびPIXEで測定した。 Copper standard solution, Zinc standard solution, Cadmium standard solution, Mercury standard solution, Lead standard solution, Gallium standard solution, Thallium standard An aqueous solution containing each heavy metal of Cu, Zn, Cd, Hg, Pb, Ga, Ag, In, and Tl at a concentration of 500 μg / L was prepared using a liquid (Thallium standard solution). And besides using this aqueous solution as a cultivation solution as it is, cultivation by adjusting the Si concentration to 0.5 mg / l, 1 mg / l, 4 mg / l by adding a silicon standard solution to the aqueous solution. A working solution was also made. Matsubai is cultivated for 21 days with these four types of cultivation liquids. During this period, the heavy metal concentration in the cultivation liquid was measured by ICP-MS. Moreover, the heavy metal density | concentration in a pineapple was measured by ICP-MS and PIXE after cultivation.

図8は栽培用液中の鉛Pbの濃度の変化を示すグラフである。すべての栽培用液において時間とともにPbの濃度は低下しており、マツバイがPbを吸収・集積していることが確認される。そして、栽培用液中のケイ素含有量が多いほど、栽培用液中のPbの減少が速いことが確認できる。これは、Cu, Zn, Cd, Gaの濃度もケイ素を加えた栽培用液でより大きく低下することが確認できた。特に、4mg/lのケイ素含有栽培用液で効果が著しかった。 FIG. 8 is a graph showing changes in the concentration of lead Pb in the cultivation liquid. In all the cultivation liquids, the concentration of Pb decreases with time, and it is confirmed that pine trees absorb and accumulate Pb. And it can confirm that the reduction | decrease of Pb in cultivation liquid is quick, so that there are many silicon contents in cultivation liquid. It was confirmed that the concentrations of Cu, Zn, Cd, and Ga were greatly decreased in the cultivation liquid to which silicon was added. In particular, the effect was remarkable with a 4 mg / l silicon-containing cultivation solution.

また、マツバイ中の重金属濃度を測定したところ、ケイ素含有栽培用液で栽培されたマツバイがより高い濃度でPbを集積していることが確認された。他の多くの重金属もケイ素含有栽培用液で栽培されたマツバイにより高い濃度で集積される傾向がみられた。 Moreover, when the heavy metal density | concentration in a pineapple was measured, it was confirmed that the pineapple cultivated with the silicon-containing cultivation liquid has accumulated Pb at a higher concentration. Many other heavy metals also tended to be accumulated at higher concentrations in the pine trees grown in the silicon-containing cultivation solution.

この発明によれば、重金属超集積植物の植え付けや採取が簡単に行え、また、植物の枯死を起こすことなく健全に成長させることができ、媒体からの重金属の環境に広く適用することができる。本発明は、水媒体などからの定常的な重金属回収が可能となり、環境浄化(ファイトレメディエーション)や有用重金属を含む水媒体からのレアメタルや貴金属などの回収(ファイトマイニング)等に適用することができる。特に、ファイトマイニングは、従来の鉱山開発に比べ、低コストであり、かつ持続可能な有用重金属の資源開発として活用できる。 According to the present invention, it is possible to easily plant and collect a heavy metal super-accumulated plant, to grow it healthy without causing the plant to die, and it can be widely applied to the environment of heavy metal from a medium. The present invention makes it possible to recover heavy metals from an aqueous medium and the like, and can be applied to environmental purification (phytoremediation), recovery of rare metals and precious metals from aqueous media containing useful heavy metals (phytomining), and the like. it can. In particular, fight mining can be utilized as a resource development for useful heavy metals that is low in cost and sustainable compared to conventional mine development.

1.重金属超集積植物栽培部材
2.栽培容器
3.栽培用土
4.連結部材
1. 1. Heavy metal super-integrated plant cultivation member 2. Cultivation container Cultivation soil 4. Connecting member

Claims (10)

重金属を含有する媒体中で重金属超集積植物を栽培するための部材であって、透水性の側面を有する栽培容器と、栽培容器内に入れられた栽培用土を備えた重金属超集積植物栽培部材。 A member for cultivating a heavy metal super-accumulated plant in a medium containing a heavy metal, comprising a cultivation container having a water-permeable side surface and a cultivation soil placed in the cultivation container. 複数の容器を連結するための連結部材を備えた請求項1に記載の重金属超集積植物栽培部材。 The heavy metal super-integrated plant cultivation member according to claim 1, further comprising a connection member for connecting a plurality of containers. 可溶性ケイ素化合物を含む栽培用土を有する請求項1または請求項2に記載の重金属超集積植物栽培部材。 The heavy metal super-accumulated plant cultivation member according to claim 1 or 2 having a soil for cultivation containing a soluble silicon compound. ケイ素肥料を含む栽培用土を有する請求項3に記載の重金属超集積植物栽培部材。 The heavy metal super accumulation plant cultivation member according to claim 3 which has soil for cultivation containing silicon fertilizer. 透水性の側面を有する栽培容器に重金属超集積植物と栽培用土を入れ、この栽培容器を重金属を含有する媒体中に設置することによって重金属超集積植物を植え付け、重金属超集積植物中に重金属を吸収させることを特徴とする重金属回収方法。 A heavy metal super-accumulated plant and soil for cultivation are placed in a cultivation container having a water-permeable side, and the heavy metal super-accumulated plant is planted by installing the cultivation container in a medium containing heavy metal, and the heavy metal is absorbed into the heavy metal hyper-accumulated plant. And a heavy metal recovery method. 連結部材によって複数の容器を連結して重金属を含有する媒体中に設置する請求項5に記載の重金属回収方法。 The heavy metal recovery method according to claim 5, wherein a plurality of containers are connected by a connecting member and installed in a medium containing heavy metal. 栽培する植物がカヤツリグサ科ハリイ属(Cyperaceae Eleocharis)の植物である請求項5または請求項6に記載の重金属回収方法。 The heavy metal recovery method according to claim 5 or 6, wherein the plant to be cultivated is a plant of the genus Cyperaceae Eleocharis. 栽培するカヤツリグサ科ハリイ属の植物がマツバイ(Eleocharis acicularis)である請求項7に記載の重金属回収方法。 The heavy metal recovery method according to claim 7, wherein the plant of the genus Haryiaceae that is cultivated is pine bay (Eleocharis acicularis). 可溶性ケイ素化合物を含む栽培用土を使用する請求項7または請求項8に記載の重金属回収方法。 The heavy metal recovery method according to claim 7 or 8, wherein soil for cultivation containing a soluble silicon compound is used. ケイ素肥料を含む栽培用土を使用する請求項9に記載の重金属回収方法。 The heavy metal recovery method according to claim 9, wherein soil for cultivation containing silicon fertilizer is used.
JP2010018302A 2009-01-30 2010-01-29 Cultivation member for heavy metal hyperaccumulator plant and method of recovering heavy metal Pending JP2010193882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010018302A JP2010193882A (en) 2009-01-30 2010-01-29 Cultivation member for heavy metal hyperaccumulator plant and method of recovering heavy metal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009019026 2009-01-30
JP2010018302A JP2010193882A (en) 2009-01-30 2010-01-29 Cultivation member for heavy metal hyperaccumulator plant and method of recovering heavy metal

Publications (1)

Publication Number Publication Date
JP2010193882A true JP2010193882A (en) 2010-09-09

Family

ID=42819287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010018302A Pending JP2010193882A (en) 2009-01-30 2010-01-29 Cultivation member for heavy metal hyperaccumulator plant and method of recovering heavy metal

Country Status (1)

Country Link
JP (1) JP2010193882A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104696A (en) * 2011-11-11 2013-05-30 Ehime Univ Method for cleaning medium contaminated by raidoactive cesium
CN107567871A (en) * 2017-09-13 2018-01-12 李智凡 A kind of modularization cultural method of heavy metal hyperaccumulative plant
CN113387443A (en) * 2021-06-07 2021-09-14 安徽理工大学 Remediation method for purifying heavy metal polluted water body based on aquatic plants

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004237137A (en) * 2003-02-03 2004-08-26 Shimizu Corp Meshed bag for capturing heavy metal
JP2006043527A (en) * 2004-08-02 2006-02-16 Hokukon Co Ltd Apparatus for purifying waste water contaminated with various living sources in channel
JP2006075821A (en) * 2004-08-09 2006-03-23 Kochi Univ Method for removing and recovering heavy metal in soil
WO2007091382A1 (en) * 2006-02-09 2007-08-16 Ehime University Method of purifying medium contaminated with heavy metals
JP2009213446A (en) * 2008-03-12 2009-09-24 Hirohito Morifuji Culture soil improving agent containing artificial zeolite, and culture soil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004237137A (en) * 2003-02-03 2004-08-26 Shimizu Corp Meshed bag for capturing heavy metal
JP2006043527A (en) * 2004-08-02 2006-02-16 Hokukon Co Ltd Apparatus for purifying waste water contaminated with various living sources in channel
JP2006075821A (en) * 2004-08-09 2006-03-23 Kochi Univ Method for removing and recovering heavy metal in soil
WO2007091382A1 (en) * 2006-02-09 2007-08-16 Ehime University Method of purifying medium contaminated with heavy metals
JP2009213446A (en) * 2008-03-12 2009-09-24 Hirohito Morifuji Culture soil improving agent containing artificial zeolite, and culture soil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104696A (en) * 2011-11-11 2013-05-30 Ehime Univ Method for cleaning medium contaminated by raidoactive cesium
CN107567871A (en) * 2017-09-13 2018-01-12 李智凡 A kind of modularization cultural method of heavy metal hyperaccumulative plant
CN113387443A (en) * 2021-06-07 2021-09-14 安徽理工大学 Remediation method for purifying heavy metal polluted water body based on aquatic plants

Similar Documents

Publication Publication Date Title
Headley et al. Application of floating wetlands for enhanced for stormwater treatment: a review
Mertens et al. Metal uptake by young trees from dredged brackish sediment: limitations and possibilities for phytoextraction and phytostabilisation
WO2016126601A1 (en) Contaminant removal from water bodies with biochar
CN101234391B (en) Combined method for repairing lead pollution soil
CN101497078B (en) A kind of method utilizing chelating agent to promote pot marigold heavy metal cadmium accumulation
US6302942B1 (en) Methods for removing pollutants from contaminated soil materials with a fern plant
CN103191915A (en) Method for repairing cadmium-polychlorinated biphenyl co-contaminated soil
CN101332466B (en) Method for repairing heavy metal pollution in mine soil and sludge
JP4898085B2 (en) Method for removing contaminants from contaminated media
CN108580527A (en) A kind of land inland water ecotone pollution amelioration system and restorative procedure
CN107724330A (en) A kind of ecosystem and its construction method for lifting the ability of the river self-purification
CN106957128A (en) A kind of zero-emission treatment system for domestic sewage and processing method
CN102962246A (en) Method for repairing cadmium-polluted soil/bottom mud using beta vulgaris var.cicla l
Aronsson Nitrogen retention in vegetation filters of short-rotation willow coppice
JP2010193882A (en) Cultivation member for heavy metal hyperaccumulator plant and method of recovering heavy metal
JP2008296181A (en) Purification method of harmful heavy metal polluted medium
JP2009073687A (en) Method for collecting iron bacteria accumulation
JP2007203146A (en) Purification method of medium polluted by heavy metal
CN109821891B (en) Method for enhancing absorption and degradation of soil polycyclic aromatic hydrocarbon by sedum aizoon through nano-silica
KR20110138051A (en) Urban non-point pollutant treatment device using ecological trench
JP5216967B2 (en) Method for purifying media contaminated with heavy metals
KR101326581B1 (en) A growth box system using aquatic plant
Prihatini et al. Role of purun tikus in vertical subsurface flow constructed wetland in treating manganese (Mn) from coal mine drainage
KR101697522B1 (en) Structure and method for purificating groundwater contaminated by leachate from livestock burial area using phytobarrier
Gerrard The ability of vetiver grass to act as a primary purifier of wastewater; an answer to low cost sanitation and freshwater pollution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140217