JP2010192987A - Coaxial connector and connection structure between coaxial connector and coplanar waveguide - Google Patents

Coaxial connector and connection structure between coaxial connector and coplanar waveguide Download PDF

Info

Publication number
JP2010192987A
JP2010192987A JP2009032845A JP2009032845A JP2010192987A JP 2010192987 A JP2010192987 A JP 2010192987A JP 2009032845 A JP2009032845 A JP 2009032845A JP 2009032845 A JP2009032845 A JP 2009032845A JP 2010192987 A JP2010192987 A JP 2010192987A
Authority
JP
Japan
Prior art keywords
inner conductor
tip
conductor
line
coaxial connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009032845A
Other languages
Japanese (ja)
Inventor
Kenta Tsukamoto
健太 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2009032845A priority Critical patent/JP2010192987A/en
Publication of JP2010192987A publication Critical patent/JP2010192987A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coupling Device And Connection With Printed Circuit (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce discontinuous gaps of a propagation mode on a connection surface between a coaxial connector and a planar waveguide, especially a coplanar waveguide with a rear ground. <P>SOLUTION: An inner conductor distal end portion 121A whose cross-sectional shape is different from that of an inner conductor 111 is formed on a distal end portion of the inner conductor 111 in a coaxial line part 110 to gradually change mode conversion between the coaxial line part 110 and the coplanar waveguide 200 with the rear ground at the inner conductor distal end portion 121A. Further, inner dielectric layers 113, 122 are formed so that characteristic impedances are made identical in an outer conductor 122 and the inner conductor distal end portion 121A of a propagation mode conversion part 120, a center conductor 203 and a surface ground 202 of the coplanar waveguide 200 with the rear ground, and an outer conductor 112 and the inner conductor 111 of the coaxial line part 110 to achieve impedance matching between the coaxial connector 100 and the coplanar waveguide 200 with the rear ground. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は同軸線路に関し、特に同軸線路と平面線路との平行接続に用いる同軸コネクタおよび同軸コネクタ・平面線路接続構造に関する。   The present invention relates to a coaxial line, and more particularly to a coaxial connector and a coaxial connector / planar line connection structure used for parallel connection between a coaxial line and a planar line.

マイクロ波帯およびミリ波帯における高周波信号の伝送線路として、同軸線路や平面線路が広く使用されている。同軸線路と平面線路とは導電性材料により相互に接続される。   Coaxial lines and planar lines are widely used as transmission lines for high-frequency signals in the microwave band and the millimeter wave band. The coaxial line and the planar line are connected to each other by a conductive material.

その際、同軸線路とマイクロストリップ線路等の平面線路との接続箇所では伝播モードが一致せず、不所望な反射が生じるという問題があった。同軸線路内の電界は、中心導体から外部導体の全周へ向かう全方位分布を有している。これに対し、マイクロストリップ線路内の電界はストリップ導体から接地導体へ向かって下方へ分布している。そのため、両者の接合部にて電界分布が不連続となり、これに起因して不所望な反射が生じ、変換損失が生じてしまうのである。   At that time, there is a problem in that the propagation mode does not match at the connection point between the coaxial line and the planar line such as the microstrip line, and undesired reflection occurs. The electric field in the coaxial line has an omnidirectional distribution from the center conductor toward the entire circumference of the outer conductor. On the other hand, the electric field in the microstrip line is distributed downward from the strip conductor to the ground conductor. As a result, the electric field distribution becomes discontinuous at the junction between the two, resulting in undesired reflection and conversion loss.

特許文献1及び2は、伝播モード変換に係る発明を開示している。
特許文献1記載の同軸マイクロストリップ変換コネクタ構造は、平面線路との接続面に近づくにつれて、同軸線路の誘電体層をV字の形状から、下部を半円とした形状に変化させている。これによって、電界分布を下部に集中させ、マイクロストリップ線路と近似させる。その結果、同軸コネクタとマイクロストリップ線路の伝播モードを一致させて不連続を解消する構造である。
また、特許文献2記載の同軸マイクロストリップ変換器は、同軸コネクタの内導体の中心軸に対して、挿入孔を上部にずらした偏心孔を有している。これによって同軸コネクタの電界分布を下部に集中させ、マイクロストリップ線路と近似させている。
Patent Documents 1 and 2 disclose inventions related to propagation mode conversion.
The coaxial microstrip conversion connector structure described in Patent Document 1 changes the dielectric layer of the coaxial line from a V shape to a semicircular shape as it approaches the connection surface with the planar line. As a result, the electric field distribution is concentrated in the lower part and approximated to a microstrip line. As a result, the coaxial connector and the microstrip line have the same propagation mode to eliminate the discontinuity.
Moreover, the coaxial microstrip converter described in Patent Document 2 has an eccentric hole in which the insertion hole is shifted upward with respect to the central axis of the inner conductor of the coaxial connector. As a result, the electric field distribution of the coaxial connector is concentrated in the lower part and approximated to a microstrip line.

特開平5−235613号公報JP-A-5-235613 特開2005−236648号公報JP 2005-236648 A

現在、高周波の平面線路としては低分散特性や低放射損失である裏面グランド付コプレーナ線路が一般的に用いられている。上記の特許文献1及び2に記載の発明は、同軸コネクタ―マイクロストリップ線路変換に特化したものであり、電界分布が同軸コネクタ下部に集中している。そのためコプレーナ線路のように、断面で見た電界分布が表面グラウンド間に集中的に分布している構造では変換損失が発生する。
そこでなされた本発明の目的は、同軸コネクタと平面線路、特に裏面グランド付コプレーナ線路の接続面での伝播モード不連続のギャップを軽減させることのできる同軸コネクタ、同軸コネクタ・平面線路接続構造を提供することである。
At present, a coplanar line with a back ground having low dispersion characteristics and low radiation loss is generally used as a high-frequency planar line. The inventions described in Patent Documents 1 and 2 above are specialized for coaxial connector-microstrip line conversion, and the electric field distribution is concentrated in the lower part of the coaxial connector. Therefore, a conversion loss occurs in a structure in which the electric field distribution viewed in a cross section is concentrated between the surface grounds, such as a coplanar line.
An object of the present invention made there is to provide a coaxial connector and a coaxial connector / planar line connection structure capable of reducing the gap of discontinuity in propagation mode at the connection surface of the coaxial connector and the planar line, particularly the coplanar line with the back ground. It is to be.

かかる目的のもと、本発明の同軸コネクタは、内導体と、内導体の先端部に接続され、内導体とは異なる断面形状を有する内導体先端部と、内導体先端部および内導体の外周側に設けられた外導体と、内導体先端部の長さ方向の一部および内導体と外導体との間に設けられた誘電体と、を備えることを特徴とする。   For this purpose, the coaxial connector of the present invention includes an inner conductor, an inner conductor tip connected to the tip of the inner conductor and having a cross-sectional shape different from that of the inner conductor, and the outer conductor tip and the outer periphery of the inner conductor. And a dielectric provided between the inner conductor and the outer conductor, and an outer conductor provided on the side, a part in the length direction of the tip of the inner conductor, and the inner conductor and the outer conductor.

また、本発明は、同軸線路と平面線路とが線路変換部を介して接続され、線路変換部は、同軸線路の先端部に接続され、内導体とは異なる断面形状を有する内導体先端部と、内導体先端部の外周側に設けられた外導体と、外導体と内導体先端部との間に設けられた誘電体と、を備え、誘電体は、外導体と内導体先端部とのインピーダンスが、同軸線路のインピーダンスと一致するよう設けられていることを特徴とする同軸コネクタ・平面線路接続構造とすることもできる。   Further, according to the present invention, the coaxial line and the planar line are connected via a line conversion part, the line conversion part is connected to the tip part of the coaxial line, and has an inner conductor tip part having a cross-sectional shape different from the inner conductor. An outer conductor provided on the outer peripheral side of the inner conductor tip, and a dielectric provided between the outer conductor and the inner conductor tip, wherein the dielectric is formed between the outer conductor and the inner conductor tip. A coaxial connector / planar line connection structure may be provided in which the impedance is provided so as to match the impedance of the coaxial line.

本発明によれば、外導体内部に、同軸線路の内導体とは断面形状が異なる内導体先端部を配置することにより、内導体先端部の所定の平面方向において電界密度が高い電界分布を有する同軸コネクタを構成することができる。
このような同軸コネクタと平面線路、特に裏面グランド付コプレーナ線路と接続すると、同軸線路における電界分布と、裏面グランド付コプレーナ線路の電界分布との間のモード変換が段階的に変化し、変換損失が減少する。
これにより、伝播モード不連続のギャップを軽減させ、周波数特性を良好にしてより高周波での適用が可能となる。
According to the present invention, by disposing the inner conductor tip portion having a different cross-sectional shape from the inner conductor of the coaxial line inside the outer conductor, the electric field distribution has a high electric field density in a predetermined plane direction of the inner conductor tip portion. A coaxial connector can be configured.
When such a coaxial connector is connected to a planar line, particularly a coplanar line with a back ground, the mode conversion between the electric field distribution in the coaxial line and the electric field distribution of the coplanar line with the back ground changes stepwise, resulting in conversion loss. Decrease.
Thereby, the gap of discontinuity in propagation mode is reduced, the frequency characteristic is improved, and application at a higher frequency becomes possible.

本発明の第1の実施形態における同軸コネクタおよび裏面グランド付コプレーナ線路の斜視図である。It is a perspective view of a coaxial connector and a coplanar track with a back ground in the first embodiment of the present invention. 本発明の第1の実施形態における同軸コネクタおよび裏面グランド付コプレーナ線路の平面図および側面図である。It is the top view and side view of a coaxial connector and a coplanar track with a back surface ground in the first embodiment of the present invention. 内導体および内導体先端部を示す斜視図である。It is a perspective view which shows an inner conductor and an inner conductor front-end | tip part. 同軸線路および裏面グランド付コプレーナ線路の断面電界分布を示す図である。It is a figure which shows the cross-section electric field distribution of a coaxial line and a coplanar line with a back surface ground. 従来の同軸コネクタおよび裏面グランド付コプレーナ線路を示す側面図および斜視図である。It is the side view and perspective view which show the conventional coaxial connector and the coplanar track | line with a back surface ground. 本発明の第1の実施形態に示した構成と、従来の構成における、入力反射特性の電磁界解析結果を示す図である。It is a figure which shows the electromagnetic field analysis result of the input reflection characteristic in the structure shown in the 1st Embodiment of this invention, and the conventional structure. 本発明の第2〜第4の実施形態における内導体および内導体先端部を示す斜視図である。It is a perspective view which shows the inner conductor and inner conductor front-end | tip part in the 2nd-4th embodiment of this invention.

以下、添付図面を参照して、本発明による同軸線路を実施するための最良の形態を説明する。しかし、本発明はこれらの実施例のみに限定されるものではない。   The best mode for carrying out a coaxial line according to the present invention will be described below with reference to the accompanying drawings. However, the present invention is not limited only to these examples.

(第1の実施形態)
図1および図2は本発明の第一の実施形態である同軸線路―裏面グランド付コプレーナ線路変換部を示す模式図であり、図1は同軸コネクタと裏面グランド付コプレーナ線路接続前の斜面図、図2は接続後の側面図と平面図である。
図1および図2に示すように、本発明の第一の実施形態である同軸線路―裏面グランド付コプレーナ基板線路変換構造は、同軸コネクタ100と、裏面グランド付コプレーナ線路200とが接続されることで構成されている。
(First embodiment)
FIG. 1 and FIG. 2 are schematic views showing a coaxial line-coplanar line conversion unit with a back surface ground according to a first embodiment of the present invention, and FIG. FIG. 2 is a side view and a plan view after connection.
As shown in FIG. 1 and FIG. 2, the coaxial line-coplanar substrate / line conversion structure with a coaxial line-back ground that is the first embodiment of the present invention is such that the coaxial connector 100 and the coplanar line 200 with the back ground are connected. It consists of

裏面グランド付コプレーナ線路200は、平面状の誘電体層201の一面側に中心導体203および表面グランド202が設けられ、他面側に裏面グランド204が設けられている。これら中心導体203、表面グランド202、裏面グランド204は、いずれも導体から形成されている。   In the coplanar line 200 with the back surface ground, the center conductor 203 and the surface ground 202 are provided on one surface side of the planar dielectric layer 201, and the back surface ground 204 is provided on the other surface side. The central conductor 203, the front surface ground 202, and the back surface ground 204 are all formed of a conductor.

誘電体層201の一面側において、中心導体203、表面グランド202は、それぞれ、裏面グランド付コプレーナ線路200における信号の伝搬方向に連続して形成されている。中心導体203は、裏面グランド付コプレーナ線路200の幅方向の中心部に配置されている。表面グランド202は、中心導体203の幅方向両側に一定の間隙を隔てて配置されている。ここで、中心導体203と表面グランド202との間隙は特性インピーダンスが所定値Z、例えば50Ωとなるように調整されている。
裏面グランド204は、誘電体層201の他面側において、その全面を覆うように形成されている。
On one surface side of the dielectric layer 201, the center conductor 203 and the front surface ground 202 are respectively formed continuously in the signal propagation direction in the back-grounded coplanar line 200. The center conductor 203 is arranged at the center in the width direction of the coplanar line 200 with the back ground. The surface ground 202 is disposed on both sides in the width direction of the central conductor 203 with a certain gap therebetween. Here, the gap between the center conductor 203 and the surface ground 202 is adjusted so that the characteristic impedance becomes a predetermined value Z, for example, 50Ω.
The back surface ground 204 is formed on the other surface side of the dielectric layer 201 so as to cover the entire surface.

そして、これら表面グランド202と、裏面グランド204とは、伝搬方向に間隔を隔てて多数が配列された、誘電体層201を貫通する貫通ビア205により互いに導通している。   The front surface ground 202 and the back surface ground 204 are electrically connected to each other by through vias 205 penetrating through the dielectric layer 201 arranged in a large number at intervals in the propagation direction.

同軸コネクタ100は、同軸線路部110と、伝搬モード変換部120と、を備える。
同軸線路部110は、断面円形の内導体111と、内導体111の外周側に間隔を隔てて配置された外導体112と、外導体112と内導体111とのインピーダンスを整合するため外導体112と内導体111との間に設けられた内部誘電体層113と、を備える。内導体111および外導体112は、導電性材料により形成されている。
The coaxial connector 100 includes a coaxial line unit 110 and a propagation mode conversion unit 120.
The coaxial line portion 110 includes an inner conductor 111 having a circular cross section, an outer conductor 112 disposed on the outer peripheral side of the inner conductor 111 at an interval, and an outer conductor 112 to match impedances of the outer conductor 112 and the inner conductor 111. And an inner dielectric layer 113 provided between the inner conductor 111 and the inner conductor 111. The inner conductor 111 and the outer conductor 112 are made of a conductive material.

伝搬モード変換部120は、同軸線路部110の先端部に、内導体111に連続して内導体111と同材料で設けられた内導体先端部121Aと、内導体先端部121Aの外周側に設けられた外導体122および基板実装用突出部124と、を備える。   Propagation mode conversion unit 120 is provided at the distal end portion of coaxial line portion 110 at the outer peripheral side of inner conductor distal end portion 121A, which is formed of the same material as inner conductor 111, continuously from inner conductor 111, and inner conductor distal end portion 121A. Outer conductor 122 and board mounting protrusion 124.

内導体先端部121Aは、同軸線路部110の内導体111に連続して形成され、内導体111とは異なる断面形状とされている。
内導体先端部121Aは、少なくともその長さ方向の一部を、ブロック状とされたコネクタ本体101の端面Xから突出させ、同軸コネクタ100を裏面グランド付コプレーナ線路200に接続したときに、裏面グランド付コプレーナ線路200の中心導体203上に平行に実装される。
図3に示すように、内導体先端部121Aは、本実施形態では、前記の伝搬方向に直交する方向の断面形状が略半円形状とされている。ここで、略半円形状の断面の内導体先端部121Aは、裏面グランド付コプレーナ線路200の中心導体203に対向する側が円弧面121aとされ、中心導体203から離間する側が、中心導体203の表面にほぼ平行な平面121bとされている。
内導体先端部121Aのコネクタ内部の長さ、つまりコネクタ本体101の端面Xから内導体先端部121Aと内導体111との切り換え位置Wまでの寸法は、同軸コネクタ100および裏面グランド付コプレーナ線路200で伝搬する信号の実行波長λに対し、λ/10以上の長さを有するものとするのが好ましい。これは、内導体先端部121Aにおいてモード変換を行うには、λ/10以上の線路長を要するためである。
The inner conductor tip portion 121 </ b> A is formed continuously with the inner conductor 111 of the coaxial line portion 110 and has a cross-sectional shape different from that of the inner conductor 111.
The inner conductor tip 121A protrudes from the end surface X of the connector main body 101 in a block shape at least at a part of its length direction, and when the coaxial connector 100 is connected to the coplanar line 200 with the back surface ground, It is mounted in parallel on the central conductor 203 of the attached coplanar line 200.
As shown in FIG. 3, the inner conductor front end 121 </ b> A has a substantially semicircular cross-sectional shape in a direction orthogonal to the propagation direction in the present embodiment. Here, the inner conductor front end portion 121A having a substantially semicircular cross section has a circular arc surface 121a on the side facing the center conductor 203 of the back-grounded coplanar line 200, and the side away from the center conductor 203 is the surface of the center conductor 203. The plane 121b is substantially parallel to the plane.
The length of the inner conductor tip 121A inside the connector, that is, the dimension from the end surface X of the connector main body 101 to the switching position W between the inner conductor tip 121A and the inner conductor 111 is determined by the coaxial connector 100 and the coplanar line 200 with the back ground. It is preferable to have a length of λ / 10 or more with respect to the effective wavelength λ of the propagating signal. This is because a line length of λ / 10 or more is required to perform mode conversion at the inner conductor tip 121A.

また、内導体先端部121Aにおいて、内導体先端部121Aと内導体111との切り換え位置Wからコネクタ本体101の端面Xまでの部分、つまり内導体先端部121Aがコネクタ本体101内に位置する部分においては、内導体先端部121Aの外周部に、外導体122が同軸線路部110の外導体112に連続して形成され、外導体122と内導体先端部121Aとの間には、同軸線路部110の内部誘電体層113に連続して内部誘電体層123が設けられている。   Further, in the inner conductor tip 121A, in the portion from the switching position W between the inner conductor tip 121A and the inner conductor 111 to the end surface X of the connector body 101, that is, the portion where the inner conductor tip 121A is located in the connector body 101. The outer conductor 122 is formed continuously with the outer conductor 112 of the coaxial line portion 110 on the outer peripheral portion of the inner conductor tip portion 121A, and the coaxial line portion 110 is interposed between the outer conductor 122 and the inner conductor tip portion 121A. The internal dielectric layer 123 is provided continuously to the internal dielectric layer 113.

内導体先端部121Aがコネクタ本体101内に位置する部分においては、外導体122と内導体先端部121Aによる特性インピーダンスが、裏面グランド付コプレーナ線路200の中心導体203と表面グランド202における特性インピーダンスと同じ値Z、例えば50Ωとなるよう、外導体122と内導体先端部121Aの外径/内径比、言い換えれば内部誘電体層123の厚さが調整されている。
また、同軸線路部110において、外導体112と内導体111による特性インピーダンスも、裏面グランド付コプレーナ線路200の中心導体203と表面グランド202における特性インピーダンスと同じ値Z、例えば50Ωとなるよう、外導体112と内導体111の外径/内径比、言い換えれば内部誘電体層113の厚さが調整されている。
このとき、内部誘電体層113、122を形成する誘電体の比誘電率を1としたとき、同軸線路部110においては、特性インピーダンスが前記に例示した50Ωとなる外導体112と内導体111の外径/内径比は約2.3である。一方、内導体先端部121Aにおける特性インピーダンスが同じ50Ωとなるときの外導体122と内導体先端部121Aの外径/内径比は約1.8となる。このような外導体112と内導体111、外導体122と内導体先端部121Aの外径/内径比に調整することで、インピーダンス整合をとることができる。なおここで、任意の誘電率での外導体112と内導体111、外導体122と内導体先端部121Aの外径/内径比は、この値に誘電率の平方根を掛けることで容易に求まる。
In the part where the inner conductor tip 121A is located in the connector body 101, the characteristic impedance of the outer conductor 122 and the inner conductor tip 121A is the same as the characteristic impedance of the center conductor 203 and the surface ground 202 of the coplanar line 200 with the back ground. The outer diameter / inner diameter ratio of the outer conductor 122 and the inner conductor tip 121A, in other words, the thickness of the inner dielectric layer 123 is adjusted so that the value Z is, for example, 50Ω.
Further, in the coaxial line portion 110, the outer conductor 112 and the inner conductor 111 have a characteristic impedance such that the outer conductor 112 and the inner conductor 111 have the same value Z as the characteristic impedance of the center conductor 203 and the front ground 202 of the backplane ground coplanar line 200, for example, 50Ω. The outer diameter / inner diameter ratio of 112 and the inner conductor 111, in other words, the thickness of the inner dielectric layer 113 is adjusted.
At this time, when the relative dielectric constant of the dielectric forming the internal dielectric layers 113 and 122 is 1, in the coaxial line portion 110, the outer conductor 112 and the inner conductor 111 whose characteristic impedance is 50Ω as exemplified above are used. The outer diameter / inner diameter ratio is about 2.3. On the other hand, the outer diameter / inner diameter ratio of the outer conductor 122 and the inner conductor tip 121A is about 1.8 when the characteristic impedance at the inner conductor tip 121A is the same 50Ω. Impedance matching can be achieved by adjusting the outer diameter / inner diameter ratio of the outer conductor 112 and the inner conductor 111, and the outer conductor 122 and the inner conductor tip 121A. Here, the outer diameter / inner diameter ratio of the outer conductor 112 and the inner conductor 111 and the outer conductor 122 and the inner conductor tip 121A at an arbitrary dielectric constant can be easily obtained by multiplying this value by the square root of the dielectric constant.

ところで、同軸線路部110の外導体112と、内導体先端部121Aの外導体122との切り換え位置は、内導体先端部121Aと内導体111との切り換え位置Wと同じ位置か、それよりも裏面グランド付コプレーナ線路200側にずらした位置とするのが好ましい。これは外導体112と外導体122の形状の不連続による高周波での局所的な浮遊容量成分の影響を抑えるためであり、間隙を調整することによって、浮遊容量成分を相殺できるからである。間隙の幅を増やすことによって、より高い周波数での反射特性の改善が期待できる。ただしその反面、低周波での整合が悪くなるため、設計の際は注意が必要である。   By the way, the switching position between the outer conductor 112 of the coaxial line portion 110 and the outer conductor 122 of the inner conductor tip portion 121A is the same position as the switching position W between the inner conductor tip portion 121A and the inner conductor 111, or the back surface thereof. The position is preferably shifted to the grounded coplanar line 200 side. This is to suppress the influence of local stray capacitance components at high frequencies due to the discontinuity of the shapes of the outer conductor 112 and the outer conductor 122, and the stray capacitance components can be offset by adjusting the gap. Increasing the width of the gap can be expected to improve the reflection characteristics at higher frequencies. However, on the other hand, low frequency matching becomes worse, so care must be taken when designing.

基板実装用突出部124は外導体122に連続して外導体122と同材料で形成されている。基板実装用突出部124は、内導体先端部121Aのコネクタ本体101の端面Xから、内導体先端部121Aと平行な方向に突出して設けられている。この基板実装用突出部124は、内導体先端部121Aとの間に、所定の間隙を隔てている。基板実装用突出部124は、内導体先端部121Aの厚さ(裏面グランド付コプレーナ線路200の表面に直交する方向の寸法)と等しい高さと、内導体先端部121Aのコネクタ本体101の端面Xからの突出長と等しい長さを有している。
この基板実装用突出部124と、裏面グランド付コプレーナ線路200側において基板実装用突出部124に対向する部分の表面グランド202は、実装時の特性インピーダンスが、前記と同じ値Z、例えば50Ωとなるように、幅や中心導体203との間隔が調整されている。
The board mounting protrusion 124 is formed of the same material as the outer conductor 122 continuously to the outer conductor 122. The board mounting protrusion 124 is provided so as to protrude from the end surface X of the connector main body 101 of the inner conductor tip 121A in a direction parallel to the inner conductor tip 121A. The board mounting protrusion 124 is separated from the inner conductor tip 121A by a predetermined gap. The board mounting protrusion 124 has a height equal to the thickness of the inner conductor tip 121A (the dimension in the direction perpendicular to the surface of the back-grounded coplanar line 200) and the end surface X of the connector main body 101 of the inner conductor tip 121A. Has a length equal to the projecting length.
The characteristic impedance upon mounting of the substrate mounting protrusion 124 and the surface ground 202 of the portion facing the substrate mounting protrusion 124 on the side of the coplanar line 200 with the back surface ground is the same value Z as described above, for example, 50Ω. As described above, the width and the distance from the center conductor 203 are adjusted.

図4は本発明の同軸線路部110と、内導体先端部121Aにおける、裏面グランド付コプレーナ線路200の伝播方向に直交する断面での電界分布を示している。図4(a)に示すように、同軸線路部110では、電界分布が全周に均一であるのに対し、図4(b)に示すように、断面略半円形の内導体先端部121Aにおける電界分布は、外導体122との距離が遠くなる上部の平面121b側での密度が低くなり、平面121bと円弧面121aの接合部分となる端点における横方向での結合がもっとも強くなる。   FIG. 4 shows an electric field distribution in a cross section orthogonal to the propagation direction of the back-grounded coplanar line 200 in the coaxial line portion 110 and the inner conductor tip portion 121A of the present invention. As shown in FIG. 4A, in the coaxial line portion 110, the electric field distribution is uniform over the entire circumference, whereas, as shown in FIG. 4B, in the inner conductor tip portion 121A having a substantially semicircular cross section. The electric field distribution has a lower density on the upper plane 121b side where the distance to the outer conductor 122 is farther, and the lateral coupling is strongest at the end points where the plane 121b and the arc surface 121a are joined.

従って、同軸線路部110における電界分布(図4(a))と、裏面グランド付コプレーナ線路の電界分布(図4(c))との間のモード変換が、内導体先端部121Aにおいて段階的に変化し、変換損失が減少する。   Therefore, mode conversion between the electric field distribution in the coaxial line portion 110 (FIG. 4A) and the electric field distribution in the coplanar line with the back ground (FIG. 4C) is stepwise at the inner conductor tip 121A. Change and reduce conversion loss.

本実施例の構造を製造する方法としては、同軸線路部110の内導体111を外導体112に嵌合させる組み立て前の段階で、円柱形の内導体111の先端部を研磨して半円形にすることで内導体先端部121Aを形成するのが望ましい。これにより、内導体先端部121Aの加工形成は、円柱形の内導体111に切削または研磨等の機械加工を行うことにより容易に成形可能である。   As a method of manufacturing the structure of the present embodiment, the tip of the cylindrical inner conductor 111 is polished into a semicircular shape before assembly in which the inner conductor 111 of the coaxial line portion 110 is fitted to the outer conductor 112. Thus, it is desirable to form the inner conductor tip portion 121A. Accordingly, the inner conductor tip 121A can be easily formed by machining the cylindrical inner conductor 111 such as cutting or polishing.

その後、加工により先端部に内導体先端部121Aを形成した内導体111を、その外周部に設けられた外導体112の両端部に開口した挿入部に、内部誘電体層113、122を形成する絶縁性の誘電体を介して収納固定し、さらに樹脂モールド成形を行うことでコネクタ本体101を成形する。内部誘電体層113、122を形成する絶縁性の誘電体は、樹脂製の絶縁性部材により成形され、その外径は外導体112、121の内径と同等か僅かに小さく成形される。   Thereafter, the inner dielectric layers 113 and 122 are formed in the insertion portions opened at both ends of the outer conductor 112 provided on the outer peripheral portion of the inner conductor 111 having the inner conductor tip portion 121A formed at the distal end portion by processing. The connector main body 101 is molded by being housed and fixed via an insulating dielectric, and further by resin molding. The insulating dielectric forming the inner dielectric layers 113 and 122 is formed by a resin insulating member, and the outer diameter thereof is formed to be equal to or slightly smaller than the inner diameter of the outer conductors 112 and 121.

上述したように、同軸線路部110の内導体111の先端部に、内導体111とは断面形状が異なる内導体先端部121Aを形成することで、同軸線路部110と裏面グランド付コプレーナ線路200との間のモード変換が、内導体先端部121Aにおいて段階的に変化し、変換損失を減少させることができる。このような内導体先端部121Aは、製造が容易で、かつ十分な特性改善の効果が得られるものである。   As described above, the coaxial line portion 110 and the coplanar line 200 with the back surface ground are formed by forming the inner conductor tip portion 121A having a different cross-sectional shape from the inner conductor 111 at the tip portion of the inner conductor 111 of the coaxial line portion 110. The mode conversion between the two changes stepwise at the inner conductor tip 121A, and the conversion loss can be reduced. Such an inner conductor tip 121A is easy to manufacture and provides a sufficient characteristic improvement effect.

また、伝搬モード変換部120における外導体122と内導体先端部121Aによる特性インピーダンスと、裏面グランド付コプレーナ線路200の中心導体203と表面グランド202における特性インピーダンスと、同軸線路部110において、外導体112と内導体111による特性インピーダンスと、が同一となるように、内部誘電体層113、122を形成することで、同軸コネクタ100および裏面グランド付コプレーナ線路200のインピーダンス整合をとることができる。   In addition, the characteristic impedance of the outer conductor 122 and the inner conductor tip 121A in the propagation mode conversion unit 120, the characteristic impedance of the center conductor 203 and the front surface ground 202 of the coplanar line 200 with back surface ground, and the outer conductor 112 in the coaxial line unit 110. By forming the inner dielectric layers 113 and 122 so that the characteristic impedance of the inner conductor 111 is equal to that of the inner conductor 111, impedance matching between the coaxial connector 100 and the backplane grounded coplanar line 200 can be achieved.

ここで、上記第一の実施形態に示した構成の効果を検証したのでその結果を示す。比較のため、図5に示すように、円柱形状の内導体111および外導体112の径を一定とした同軸コネクタを用いた。ここで、基板実装用突出部124は内導体111の直径と等しくし、基板実装用突出部124と裏面グランド付コプレーナ線路200の幅は、実装時のインピーダンスが50Ωとなるように調整し、本実施形態よりも広いものとした。   Here, since the effect of the structure shown in said 1st embodiment was verified, the result is shown. For comparison, a coaxial connector in which the diameters of the cylindrical inner conductor 111 and the outer conductor 112 are constant as shown in FIG. 5 was used. Here, the board mounting protrusion 124 is made equal to the diameter of the inner conductor 111, and the widths of the board mounting protrusion 124 and the back-grounded coplanar line 200 are adjusted so that the impedance during mounting is 50Ω. It was wider than the embodiment.

すると、図1、図2に示した第一の実施形態における構成と、図5に示した構成とで、同軸線路―裏面グランド付コプレーナ線路変換構造の入力反射特性の電磁解析結果を比較したので、その結果を図6に示す。
この図6に示すように、55GHzから80GHzの高周波帯において挿入損失が改善していることがわかる。
Then, the electromagnetic analysis results of the input reflection characteristics of the coaxial line-back ground ground coplanar line conversion structure were compared between the configuration in the first embodiment shown in FIGS. 1 and 2 and the configuration shown in FIG. The results are shown in FIG.
As shown in FIG. 6, it can be seen that the insertion loss is improved in the high frequency band from 55 GHz to 80 GHz.

(第2の実施形態)
上記第1の実施形態では、内導体先端部121Aを断面半円形としたが、以下、第2〜第4の実施形態では、その変形例を示す。なお、以下の各実施形態において、上記第1の実施形態と共通する構成においては、同符号を付してその説明を省略する。
本第2の実施形態では、図7(a)に示すように、内導体先端部121Bの厚さ(裏面グランド付コプレーナ線路200の表面に直交する方向の寸法)が、同軸コネクタ100の内導体111の半径よりも小さく形成されている。
伝搬モード変換部120の外導体122の径は、インピーダンス整合を、内導体先端部121Bの径との比によりとるため、第1の実施形態よりも小さくなる。
(Second Embodiment)
In the first embodiment, the inner conductor tip 121A has a semicircular cross section, but hereinafter, the second to fourth embodiments show modifications thereof. In the following embodiments, the same reference numerals are given to the same components as those in the first embodiment, and the description thereof is omitted.
In the second embodiment, as shown in FIG. 7A, the thickness of the inner conductor tip 121B (the dimension in the direction orthogonal to the surface of the back-grounded coplanar line 200) is equal to the inner conductor of the coaxial connector 100. It is formed smaller than the radius of 111.
The diameter of the outer conductor 122 of the propagation mode conversion unit 120 is smaller than that of the first embodiment because impedance matching is achieved by the ratio with the diameter of the inner conductor tip 121B.

伝搬モード変換部120の間隙の幅は浮遊容量の増加分だけ第1の実施形態よりも広がっている。その他の構成については第1の実施形態と同様である。   The width of the gap of the propagation mode converter 120 is wider than that of the first embodiment by the increase of the stray capacitance. Other configurations are the same as those in the first embodiment.

上記のような加工をすることによって、第1の実施形態と同等の効果が得られるうえ、同軸線路部110と基板線路との高さの違いによる、接続端での不連続をより減少することができる。また、内導体先端部121Bの弦の部分の幅は、内導体111の直径よりも短くなるため、実装する中心導体203の幅も小さくすることができ、構造の小型化が実現できる。   By processing as described above, the same effect as that of the first embodiment can be obtained, and discontinuity at the connection end due to the difference in height between the coaxial line portion 110 and the substrate line can be further reduced. Can do. Further, since the width of the chord portion of the inner conductor tip 121B is shorter than the diameter of the inner conductor 111, the width of the central conductor 203 to be mounted can be reduced, and the structure can be downsized.

また、内導体先端部121Bの弦の部分の幅をさらに小さくし、断面で見た電界分布が同軸線路部110の横方向よりも、下部に集中的に分布するようにさせることで、マイクロストリップ線路など裏面グランド204との結合が支配的な平面線路との接続においても適用が可能となる。   In addition, the width of the chord portion of the inner conductor tip 121B is further reduced so that the electric field distribution seen in the cross section is more concentrated in the lower part than in the lateral direction of the coaxial line part 110, thereby reducing the microstrip. The present invention can also be applied to connection with a planar line that is dominantly coupled to the back surface ground 204 such as a line.

(第3の実施形態)
第3の実施形態では、図7(b)に示すように、内導体先端部121Cの上部だけでなく下部も平面部120dとした構成となっている。
内導体先端部121Cの外導体122の径は、インピーダンス整合を、内導体先端部121Cの径との比によりとるため、第1の実施形態よりも小さくなる。
(Third embodiment)
In the third embodiment, as shown in FIG. 7B, not only the upper part of the inner conductor tip part 121C but also the lower part has a planar part 120d.
The diameter of the outer conductor 122 of the inner conductor tip 121C is smaller than that of the first embodiment because impedance matching is performed by the ratio with the diameter of the inner conductor tip 121C.

伝搬モード変換部120の間隙の幅は浮遊容量の増加分だけ第1の実施形態よりも広がっている。その他の構成については第1の実施形態と同様である。   The width of the gap of the propagation mode converter 120 is wider than that of the first embodiment by the increase of the stray capacitance. Other configurations are the same as those in the first embodiment.

第1および第2の実施形態で示した構造では、裏面グランド付コプレーナ線路200との伝播モードを一致させるため、内導体先端部121A、120Bの下部での電界分布を残留させていた。
これに対し、本実施形態では、主に半導体基板などにおいて用いられている、裏面グランドの無いコプレーナ線路と同軸コネクタの接続を改善するため、内導体先端部121Cの横方向での電界の結合をより強化した構造となっている。
In the structures shown in the first and second embodiments, the electric field distribution remains in the lower portions of the inner conductor tip portions 121A and 120B in order to match the propagation mode with the coplanar line 200 with back ground.
On the other hand, in this embodiment, in order to improve the connection between the coplanar line having no back surface ground and the coaxial connector, which is mainly used in a semiconductor substrate or the like, electric field coupling in the lateral direction of the inner conductor tip 121C is performed. It has a stronger structure.

上記のような構成とすることで、第1の実施形態以上に同軸線路部110内での電界分布をコプレーナ線路と一致させることが可能である。また、平面線路と内導体先端部121Cの接触面を略一致させることによって、接続端Yでの不連続性、および実装の作業性が改善される。   With the configuration as described above, it is possible to make the electric field distribution in the coaxial line portion 110 coincide with that of the coplanar line as compared with the first embodiment. Further, the discontinuity at the connection end Y and the mounting workability are improved by making the contact surface of the planar line and the inner conductor tip 121C substantially coincide.

(第4の実施形態)
上記第1〜第3の実施形態では内導体111と内導体先端部121A、121B、121Cとの形状変化が不連続であった。
そこで、図7(c)に示すように、本第4の実施形態の内導体先端部121Dでは、上記のような内導体111との形状変化を、その断面積が漸次小さくなるよう、テーパ面125により連続的なものとしたことを特徴とする。
これに対応して、内導体先端部121Dの外導体122の径は特性インピーダンスが50Ωに保たれるように連続的に縮小する。
(Fourth embodiment)
In the first to third embodiments, the shape change between the inner conductor 111 and the inner conductor tip portions 121A, 121B, 121C is discontinuous.
Therefore, as shown in FIG. 7C, in the inner conductor tip portion 121D of the fourth embodiment, the tapered surface is formed so that the cross-sectional area of the shape change with the inner conductor 111 is gradually reduced. 125, which is continuous.
Correspondingly, the diameter of the outer conductor 122 of the inner conductor tip 121D is continuously reduced so that the characteristic impedance is maintained at 50Ω.

上記のような構成とすることで、形状変化による不連続をなくし、浮遊容量の発生を抑えられるため、帯域全体のさらなる特性の改善が可能である。   By adopting the above-described configuration, discontinuity due to shape change can be eliminated and the generation of stray capacitance can be suppressed, so that the characteristics of the entire band can be further improved.

(その他の実施形態)
なお、本発明の同軸線路―平面線路変換構造は、図面を参照して説明した上述の各実施形態に限定されるものではなく、その技術的範囲において様々な変形例が考えられる。
例えば、外導体112、122内部に充填された内部誘電体層113、123において、それぞれの比誘電率を適切に選択することにより、外導体112、122の径を等しくしたまま、内導体111と内導体先端部121A、121B、121C、121Dとの特性インピーダンスを一定に保つことも可能である。この場合、内導体先端部121A、121B、121C、121Dの外導体122内の内部誘電体層123は、外導体112の内部に充填された内部誘電体層113に対して約2倍高い比誘電率を有している必要がある。
また、裏面グランド付コプレーナ線路をはじめとする平面線路は単一基板に限らず、多層基板でも適用可能である。
これ以外にも、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更することが可能である。
(Other embodiments)
The coaxial line-planar line conversion structure of the present invention is not limited to the above-described embodiments described with reference to the drawings, and various modifications can be considered within the technical scope thereof.
For example, in the inner dielectric layers 113 and 123 filled in the outer conductors 112 and 122, by appropriately selecting the relative dielectric constants of the inner conductor layers 113 and 123, the inner conductors 111 and It is also possible to keep constant the characteristic impedance with the inner conductor tip portions 121A, 121B, 121C, 121D. In this case, the inner dielectric layer 123 in the outer conductor 122 of the inner conductor tips 121A, 121B, 121C, and 121D has a relative dielectric constant that is about twice as high as that of the inner dielectric layer 113 filled in the outer conductor 112. It is necessary to have a rate.
Further, the planar line including the coplanar line with the back surface ground is not limited to a single substrate, but can be applied to a multilayer substrate.
In addition to this, as long as it does not depart from the gist of the present invention, the configuration described in the above embodiment can be selected or changed to another configuration as appropriate.

100 同軸コネクタ
101 コネクタ本体
110 同軸線路部
111 内導体
112 外導体
113 内部誘電体層
120 伝搬モード変換部
121A、121B、121C、121D 内導体先端部
122 外導体
123 内部誘電体層
124 基板実装用突出部
125 テーパ面
200 裏面グランド付コプレーナ線路
201 誘電体層
202 表面グランド
203 中心導体
204 裏面グランド
205 貫通ビア
DESCRIPTION OF SYMBOLS 100 Coaxial connector 101 Connector main body 110 Coaxial line part 111 Inner conductor 112 Outer conductor 113 Inner dielectric layer 120 Propagation mode conversion part 121A, 121B, 121C, 121D Inner conductor front-end | tip 122 Outer conductor 123 Inner dielectric layer 124 Protrusion for board | substrate mounting Portion 125 Tapered surface 200 Coplanar line 201 with back surface ground Dielectric layer 202 Surface ground 203 Center conductor 204 Back surface ground 205 Through-via

Claims (14)

内導体と
前記内導体の先端部に接続され、前記内導体とは異なる断面形状を有する内導体先端部と
前記内導体先端部および前記内導体の外周側に設けられた外導体と、
前記内導体先端部の長さ方向の一部および前記内導体と前記外導体との間に設けられた誘電体と、
を備えることを特徴とする同軸コネクタ。
An inner conductor, an inner conductor connected to the tip of the inner conductor and having a cross-sectional shape different from that of the inner conductor; and an outer conductor provided on the outer periphery of the inner conductor tip and the inner conductor;
A part of the inner conductor tip in the length direction and a dielectric provided between the inner conductor and the outer conductor;
A coaxial connector comprising:
前記内導体先端部と前記外導体とのインピーダンスが、前記内導体と前記外導体とのインピーダンスに一致するよう、前記誘電体が設けられていることを特徴とする請求項1に記載の同軸コネクタ。   2. The coaxial connector according to claim 1, wherein the dielectric is provided so that an impedance between the inner conductor tip and the outer conductor matches an impedance between the inner conductor and the outer conductor. . 前記内導体先端部と前記外導体との間に設けられた前記誘電体は、前記内導体と前記外導体との間に設けられた前記誘電体よりも誘電率が高いことを特徴とする請求項2に記載の同軸コネクタ。   The dielectric provided between the inner conductor tip and the outer conductor has a higher dielectric constant than the dielectric provided between the inner conductor and the outer conductor. Item 3. The coaxial connector according to Item 2. 前記内導体先端部と前記外導体との間における前記誘電体の厚さが、前記内導体と前記外導体との間における前記誘電体の厚さよりも小さいことを特徴とする請求項2に記載の同軸コネクタ。   The thickness of the dielectric between the inner conductor tip and the outer conductor is smaller than the thickness of the dielectric between the inner conductor and the outer conductor. Coaxial connector. 前記内導体先端部は、電界分布が、接続対象となる平面線路に対向する側で密度が低く、前記平面線路の表面に平行な方向に結合を強くさせるように形成されていることを特徴とする請求項1から4のいずれかに記載の同軸コネクタ。   The inner conductor tip is characterized in that the electric field distribution has a low density on the side facing the plane line to be connected and is strongly coupled in a direction parallel to the surface of the plane line. The coaxial connector according to any one of claims 1 to 4. 前記内導体先端部は、前記内導体の軸方向と直交する方向に電界を集中させるべく、その断面形状が設定されていることを特徴とする請求項1から5のいずれかに記載の同軸コネクタ。   6. The coaxial connector according to claim 1, wherein a cross-sectional shape of the tip end portion of the inner conductor is set so as to concentrate an electric field in a direction orthogonal to the axial direction of the inner conductor. . 前記内導体先端部は、接続対象となる平面線路に対向する側が凸となり、前記平面線路から離間した側が平面となる断面視半円状であることを特徴とする請求項1から6のいずれかに記載の同軸コネクタ。   7. The inner conductor front end portion has a semicircular shape in a sectional view in which a side facing a plane line to be connected is convex and a side away from the plane line is a plane. The coaxial connector described in 1. 前記内導体先端部は、接続対象となる平面線路の表面に直交する方向の厚さが、前記内導体の半径未満とされていることを特徴とする請求項1から6のいずれかに記載の同軸コネクタ。   The thickness of the said inner conductor front-end | tip part in the direction orthogonal to the surface of the planar line used as connection object is made less than the radius of the said inner conductor, The one in any one of Claim 1 to 6 characterized by the above-mentioned. Coaxial connector. 前記内導体先端部は、接続対象となる平面線路に対向する側と、前記平面線路から離間した側とがそれぞれ平面により形成されていることを特徴とする請求項1から6のいずれかに記載の同軸コネクタ。   The said inner conductor front-end | tip part is formed in the side facing the plane track | line used as a connection object, and the side spaced apart from the said plane track | line, respectively, and is formed by the plane. Coaxial connector. 前記内導体から前記内導体先端部に向けて、その断面積が漸次縮小するテーパ形状とされていることを特徴とする請求項1から9のいずれかに記載の同軸コネクタ。   10. The coaxial connector according to claim 1, wherein the coaxial connector has a tapered shape in which a cross-sectional area gradually decreases from the inner conductor toward the tip of the inner conductor. 前記内導体先端部は、前記外導体内部における軸線方向の長さが、当該同軸コネクタで伝搬される信号の実行波長λに対し、λ/10以上であることを特徴とする請求項1から10のいずれかに記載の同軸コネクタ。   The length of the inner conductor tip in the axial direction inside the outer conductor is λ / 10 or more with respect to an effective wavelength λ of a signal propagated through the coaxial connector. The coaxial connector according to any one of the above. 同軸線路と平面線路とが線路変換部を介して接続され、
前記線路変換部は、
前記同軸線路の先端部に接続され、前記内導体とは異なる断面形状を有する内導体先端部と
前記内導体先端部の外周側に設けられた外導体と、
前記外導体と前記内導体先端部との間に設けられた誘電体と、を備え、
前記誘電体は、前記外導体と前記内導体先端部とのインピーダンスが、前記同軸線路のインピーダンスと一致するよう設けられていることを特徴とする同軸コネクタ・平面線路接続構造。
A coaxial line and a planar line are connected via a line conversion unit,
The line converter is
An inner conductor tip connected to the tip of the coaxial line and having a cross-sectional shape different from that of the inner conductor; and an outer conductor provided on the outer peripheral side of the inner conductor tip;
A dielectric provided between the outer conductor and the inner conductor tip,
The coaxial connector / planar line connection structure is characterized in that the dielectric is provided so that an impedance between the outer conductor and the tip of the inner conductor matches an impedance of the coaxial line.
前記内導体先端部が、前記同軸線路の端部に設けられた同軸コネクタから突出し、前記平面線路の導体上に添接されていることを特徴とする請求項12に記載の同軸コネクタ・平面線路接続構造。   13. The coaxial connector / planar line according to claim 12, wherein the inner conductor distal end protrudes from a coaxial connector provided at an end of the coaxial line and is attached to the conductor of the planar line. Connection structure. 前記内導体先端部は、前記同軸線路の前記内導体の軸方向と直交する方向に電界を集中させるべく、その断面形状が設定されていることを特徴とする請求項12または13に記載の同軸コネクタ・平面線路接続構造。   14. The coaxial according to claim 12, wherein the inner conductor tip has a cross-sectional shape set so as to concentrate an electric field in a direction orthogonal to the axial direction of the inner conductor of the coaxial line. Connector / plane line connection structure.
JP2009032845A 2009-02-16 2009-02-16 Coaxial connector and connection structure between coaxial connector and coplanar waveguide Pending JP2010192987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009032845A JP2010192987A (en) 2009-02-16 2009-02-16 Coaxial connector and connection structure between coaxial connector and coplanar waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009032845A JP2010192987A (en) 2009-02-16 2009-02-16 Coaxial connector and connection structure between coaxial connector and coplanar waveguide

Publications (1)

Publication Number Publication Date
JP2010192987A true JP2010192987A (en) 2010-09-02

Family

ID=42818594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009032845A Pending JP2010192987A (en) 2009-02-16 2009-02-16 Coaxial connector and connection structure between coaxial connector and coplanar waveguide

Country Status (1)

Country Link
JP (1) JP2010192987A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204885A (en) * 2010-03-25 2011-10-13 Kyocera Corp Input/output terminal, element containing package, and mounting structure
JP2013149791A (en) * 2012-01-19 2013-08-01 Mitsubishi Electric Corp Printed circuit board and printed circuit board device
JP2014107824A (en) * 2012-11-29 2014-06-09 Nippon Telegr & Teleph Corp <Ntt> Dc block mounting substrate
ES2540172A1 (en) * 2015-03-27 2015-07-08 Universidad De Castilla La Mancha Transition structure of two signal transmission lines in pcb (Machine-translation by Google Translate, not legally binding)
JP2017152482A (en) * 2016-02-23 2017-08-31 三菱電機株式会社 Optical semiconductor device
CN107204504A (en) * 2016-02-16 2017-09-26 通用汽车环球科技运作有限责任公司 Embedded Broadband Glass Coplanar Waveguide Coupler
EP2463961B1 (en) * 2010-12-13 2019-01-23 Raytheon Company System for forming electrical connections to conductive areas on a printed wiring board and method for forming such connections
JP2019106681A (en) * 2017-12-14 2019-06-27 日本電信電話株式会社 Connector and connector coplanar waveguide
JP2019220909A (en) * 2018-06-22 2019-12-26 日本電信電話株式会社 High frequency line connection structure
WO2021002077A1 (en) 2019-07-03 2021-01-07 株式会社 東芝 Coaxial microstrip line conversion circuit

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204885A (en) * 2010-03-25 2011-10-13 Kyocera Corp Input/output terminal, element containing package, and mounting structure
EP2463961B1 (en) * 2010-12-13 2019-01-23 Raytheon Company System for forming electrical connections to conductive areas on a printed wiring board and method for forming such connections
JP2013149791A (en) * 2012-01-19 2013-08-01 Mitsubishi Electric Corp Printed circuit board and printed circuit board device
JP2014107824A (en) * 2012-11-29 2014-06-09 Nippon Telegr & Teleph Corp <Ntt> Dc block mounting substrate
ES2540172A1 (en) * 2015-03-27 2015-07-08 Universidad De Castilla La Mancha Transition structure of two signal transmission lines in pcb (Machine-translation by Google Translate, not legally binding)
WO2016156642A1 (en) * 2015-03-27 2016-10-06 Universidad De Castilla La Mancha Structure for the transition of two signal transmission lines in a pcb
CN107204504A (en) * 2016-02-16 2017-09-26 通用汽车环球科技运作有限责任公司 Embedded Broadband Glass Coplanar Waveguide Coupler
US10381704B2 (en) 2016-02-16 2019-08-13 GM Global Technology Operations LLC Embedded broadband glass coplanar waveguide coupler
CN107204504B (en) * 2016-02-16 2021-02-09 通用汽车环球科技运作有限责任公司 Embedded broadband glass coplanar waveguide coupler
JP2017152482A (en) * 2016-02-23 2017-08-31 三菱電機株式会社 Optical semiconductor device
JP2019106681A (en) * 2017-12-14 2019-06-27 日本電信電話株式会社 Connector and connector coplanar waveguide
JP2019220909A (en) * 2018-06-22 2019-12-26 日本電信電話株式会社 High frequency line connection structure
WO2019244567A1 (en) * 2018-06-22 2019-12-26 日本電信電話株式会社 High-frequency line connection structure
WO2021002077A1 (en) 2019-07-03 2021-01-07 株式会社 東芝 Coaxial microstrip line conversion circuit
US12068520B2 (en) 2019-07-03 2024-08-20 Kabushiki Kaisha Toshiba Coaxial microstrip line conversion circuit

Similar Documents

Publication Publication Date Title
JP2010192987A (en) Coaxial connector and connection structure between coaxial connector and coplanar waveguide
JP5566169B2 (en) Antenna device
JP6907918B2 (en) Connector and connector flat line connection structure
AU2013279083A1 (en) Balun
JP2018157500A (en) Circuit board
US20120182093A1 (en) Microwave filter
JP5922604B2 (en) Multilayer wiring board
JP6211835B2 (en) High frequency transmission line
JP4629013B2 (en) High frequency circuit board
US8981867B2 (en) Coupling between a waveguide and a feed line on a carrier plate through a cross-shaped coupling element
JP4103927B2 (en) Microstrip line type directional coupler
JP2010028345A (en) Waveguide/strip line converter and high frequency circuit
WO2015049816A1 (en) Antenna device
JP2011109431A (en) Waveguide-microstrip line converter and method of manufacturing the same
JP2010206320A (en) Communication body for signal transmission, and coupler
JP2018117173A (en) 90 degree hybrid circuit
TW202005510A (en) 3D electromagnetic bandgap circuit
JP5484452B2 (en) Angled conversion from microstrip line to rectangular waveguide.
JP2018182422A (en) Substrate integrated waveguide
US20110241803A1 (en) Signal transmission line
CN110536537B (en) Three-dimensional electromagnetic energy gap circuit
JP7077137B2 (en) Transmission lines and connectors
JP2005236648A (en) Coaxial microstrip line converter
JP4231457B2 (en) Dielectric antenna
JP4712622B2 (en) Tip short circuit (λ / 4) coaxial arrester

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20100716

Free format text: JAPANESE INTERMEDIATE CODE: A7424