JP2010192582A - Led light-emitting device - Google Patents

Led light-emitting device Download PDF

Info

Publication number
JP2010192582A
JP2010192582A JP2009033857A JP2009033857A JP2010192582A JP 2010192582 A JP2010192582 A JP 2010192582A JP 2009033857 A JP2009033857 A JP 2009033857A JP 2009033857 A JP2009033857 A JP 2009033857A JP 2010192582 A JP2010192582 A JP 2010192582A
Authority
JP
Japan
Prior art keywords
light
emitting element
light emitting
led
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009033857A
Other languages
Japanese (ja)
Inventor
Masaaki Teranishi
正明 寺西
Tatsuya Goto
辰也 後藤
Tatsuya Hioki
達也 日沖
Hideshi Takagi
英誌 高城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2009033857A priority Critical patent/JP2010192582A/en
Publication of JP2010192582A publication Critical patent/JP2010192582A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique capable of providing multiple types of functions without increasing the size of a device, and providing high emission quality, in a light-emitting device using an LED as a light-emitting source. <P>SOLUTION: In this light-emitting device, on the backside (lower side) of a circuit board with a first light-emitting element arranged thereon, a second light-emitting element that emits a color different from that of the first light-emitting element is arranged. An opening is formed on the circuit board, and a concave reflecting mirror for reflecting light emitted from the second light-emitting element and guiding the reflected light from the opening to the first light-emitting element side is arranged on the lowest layer of an LED package. The light-emitting device includes a control part capable of driving the first light-emitting element and the second light-emitting element independently of each other. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、発光源にLEDを用いた発光装置の小型化および高性能化に関する。特に、薄型のデジタルカメラや撮影機能付き携帯電話といった小型撮影機器への搭載用発光装置の小型化および高性能化技術に関する。   The present invention relates to miniaturization and high performance of a light emitting device using an LED as a light emitting source. In particular, the present invention relates to a technology for reducing the size and improving the performance of a light-emitting device mounted on a small photographing device such as a thin digital camera or a mobile phone with a photographing function.

デジタルカメラ等の撮影機器には、例えば、ストロボなどの発光装置が備えられている。このような発光装置の中で、LEDを用いて発光させるLEDストロボ1を図10に示す。図10(a)は、LEDストロボ1の正面図、図10(b)はA−A’矢視方向断面図である。本図に示すように、LEDストロボ1は、基板2上に配置された光源であるLED3と、LED3の外周に設置された反射鏡(以下、リフレクタと称す)4と、レンズ5と、リフレクタ4と一体に構成されてレンズ5を保持するレンズ保持部6と、を備える。LED3から発した光線は、直接レンズ5に届くものとリフレクタ4または基板2に反射し、レンズ5に届くものとがある。レンズ5では、これら2種の光線を制御し、目的の範囲にストロボ光を照射する(例えば、特許文献1参照)。   An imaging device such as a digital camera is provided with a light emitting device such as a strobe. FIG. 10 shows an LED strobe 1 that emits light using an LED in such a light emitting device. 10A is a front view of the LED strobe 1 and FIG. 10B is a cross-sectional view in the direction of the arrow A-A ′. As shown in the figure, an LED strobe 1 includes an LED 3 as a light source disposed on a substrate 2, a reflector (hereinafter referred to as a reflector) 4 installed on the outer periphery of the LED 3, a lens 5, and a reflector 4. And a lens holding part 6 that holds the lens 5. A light beam emitted from the LED 3 may directly reach the lens 5, or may be reflected by the reflector 4 or the substrate 2 and reach the lens 5. The lens 5 controls these two types of light and irradiates the target range with strobe light (see, for example, Patent Document 1).

一般に、撮影機器には、上記LEDストロボ1以外にも、例えば、インジケータなどの発光装置が備えられる。インジケータは、セルフタイマーの残り時間表示や焦点位置を明確にするために用いられる。LEDストロボ1にインジケータを組み込んだ、インジケータ付きLEDストロボ1’を図11に示す。図11において、(a)は正面図、(b)はB−B’矢視方向断面図である。本図に示すように、インジケータ付きLEDストロボ1’は、LEDストロボ1の基板2上にさらにインジケータ用LED7を備える(例えば、特許文献2参照)。   In general, in addition to the LED strobe 1, the photographing device is provided with a light emitting device such as an indicator. The indicator is used to clarify the remaining time display and focus position of the self-timer. FIG. 11 shows an LED strobe 1 ′ with an indicator in which an indicator is incorporated in the LED strobe 1. 11A is a front view, and FIG. 11B is a cross-sectional view in the direction of arrow B-B ′. As shown in the drawing, the indicator-equipped LED strobe 1 ′ further includes an indicator LED 7 on the substrate 2 of the LED strobe 1 (see, for example, Patent Document 2).

特表2004−507038号公報Japanese translation of PCT publication No. 2004-507038 特開2005−301121号公報JP-A-2005-301121

最近は、デジタルカメラや撮影機能付き携帯電話は薄型、小型化が進み、それらに搭載される発光装置にも薄型、小型化の要求が高まっている。一方で、要求される発光機能は、ストロボ機能だけでなく、インジケータ機能など多種に渡る。ところが、上述のインジケータ付きLEDストロボ1’の構成のように、機能ごとに別体の発光源が必要であり、その分、発光装置全体が大型化し、占有容積が増加している。従って、多機能化と薄型、小型化の要求を両立できていないだけでなく、駆動回路の配線の複雑化、部品点数の増加、製品コストの上昇、生産時の組み立て工数の増加などを招いている。   Recently, digital cameras and mobile phones with photographing functions are becoming thinner and smaller, and light-emitting devices mounted thereon are also demanded to be thinner and smaller. On the other hand, the required light emission functions include not only the strobe function but also various indicators functions. However, as in the configuration of the LED strobe 1 'with an indicator described above, a separate light source is required for each function, and the entire light emitting device is correspondingly enlarged and the occupied volume is increased. Therefore, not only the demands for multi-functionality, thinness, and miniaturization are not satisfied, but also the wiring of the drive circuit is complicated, the number of parts is increased, the product cost is increased, and the assembly man-hours during production are increased. Yes.

また、発光装置のサイズは、薄型、小型化が要求される一方で、大光量が要求され、発光源が大型化しているため、色ムラが発生しやすい。例えば、LEDストロボ1などで使われる白色光を出射するLEDは、一般に、青色発光素子に、当該青色発光素子が発した青色光を受けて他の色(赤色成分、緑色成分)の蛍光を発光する蛍光体が塗布されて構成される。小型、薄型化の要求に伴い、LED3とレンズ5との距離が接近する方向にあり、レンズ5の大きさに対してLED3の蛍光体面が相対的に大型化する。このため、LEDストロボ1の光学系においてLED3は点光源ではなく面光源として扱う必要がある。   In addition, the size of the light emitting device is required to be thin and small, but a large amount of light is required and the light emitting source is large, and thus color unevenness is likely to occur. For example, an LED that emits white light used in an LED strobe 1 or the like generally emits fluorescence of other colors (red component and green component) by receiving blue light emitted from the blue light emitting device. The phosphor to be applied is configured. With the demand for miniaturization and thinning, the distance between the LED 3 and the lens 5 is closer, and the phosphor surface of the LED 3 is relatively larger than the size of the lens 5. For this reason, in the optical system of the LED strobe 1, the LED 3 needs to be handled as a surface light source instead of a point light source.

ところが、一般に青色発光素子を用いるLEDでは、照射面中央部では色温度が上がり青みを帯びているのに対し、照射面周辺部では色温度が下がり黄色みを帯びる。面光源として扱われるLED3から発生する光線は、図12に示すように、その発生位置が蛍光体の端面に近づくほど白色から黄色を帯びてくるため、その色の違いがレンズ5で強調された照射面に色ムラが発生する。なお、図12において、8は照射面、9は色ムラ発生領域、10は白色領域である。   However, in general, in an LED using a blue light emitting element, the color temperature increases and becomes bluish at the center of the irradiation surface, whereas the color temperature decreases and yellowish at the periphery of the irradiation surface. As shown in FIG. 12, the light beam generated from the LED 3 treated as a surface light source becomes yellowish from white as the generation position approaches the end face of the phosphor. Therefore, the difference in color is emphasized by the lens 5. Color unevenness occurs on the irradiated surface. In FIG. 12, 8 is an irradiated surface, 9 is a color unevenness generation region, and 10 is a white region.

本発明は、上記事情に鑑みてなされたもので、発光源としてLEDを用いる発光装置において、装置を大型化することなく多種の発光機能を高い照射品質で実現する技術を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technology for realizing various light emitting functions with high irradiation quality without increasing the size of a light emitting device using an LED as a light source. To do.

本発明は、独立して制御可能な2つの異なる発光色の発光素子を備え、一方の発光素子からの光を、他方の発光素子からの光の照射品質を高めるよう配光する。   The present invention includes light emitting elements of two different emission colors that can be controlled independently, and distributes light from one light emitting element so as to improve the irradiation quality of light from the other light emitting element.

具体的には、基板と、前記基板上に配置される第一の発光素子と、前記基板の、前記第一の発光素子と反対側の面に配置される第二の発光素子と、前記第一の発光素子が発した光の放射方向を制御する第一の光学系と、前記第二の発光素子が発した光の放射方向を制御する第二の光学系と、を備え、前記基板は、1以上の開口部を備え、前記第二の光学系は、前記第二の発光素子が発した光が、前記開口部を通過し、前記第一の光学系に導かれるよう制御するよう形成されていることを特徴とするLED発光装置を提供する。   Specifically, a substrate, a first light emitting element disposed on the substrate, a second light emitting element disposed on a surface of the substrate opposite to the first light emitting element, and the first light emitting element. A first optical system that controls a radiation direction of light emitted from one light-emitting element; and a second optical system that controls a radiation direction of light emitted from the second light-emitting element; The second optical system is configured to control so that light emitted from the second light-emitting element passes through the opening and is guided to the first optical system. An LED light-emitting device is provided.

本発明によれば、発光源としてLEDを用いる発光装置において、装置を大型化することなく、多種の発光機能を実現するとともに、照射の質を高めることができる。   According to the present invention, in a light emitting device using an LED as a light source, various light emitting functions can be realized and the quality of irradiation can be improved without increasing the size of the device.

(a)は、本発明の実施形態の発光装置の概略正面図であり、(b)は、同発光装置の概略断面図である。(A) is a schematic front view of the light-emitting device of embodiment of this invention, (b) is a schematic sectional drawing of the light-emitting device. (a)は、本発明の実施形態のLEDの概略正面図であり、(b)は、同LEDの概略断面図である。(A) is a schematic front view of LED of embodiment of this invention, (b) is a schematic sectional drawing of the LED. 本発明の実施形態のLEDの光線経路(光路)を説明するための図である。It is a figure for demonstrating the light beam path | route (optical path) of LED of embodiment of this invention. (a)は本発明の実施形態のストロボ発光時の、(b)は照明時の、それぞれ電流波形を説明するための図である。(A) is a figure for demonstrating an electric current waveform at the time of the strobe light emission of embodiment of this invention, and (b) at the time of illumination, respectively. (a)は、本発明の実施形態の点滅インジケータ発光時の、(b)は、点灯インジケータ発光時の、それぞれ電流波形を説明するための図である。(A) is a figure for demonstrating each current waveform at the time of the flashing indicator light emission of embodiment of this invention, (b) at the time of lighting indicator light emission, respectively. (a)、(b)は、本発明の実施形態のその他の電流波形例を説明するための図である。(A), (b) is a figure for demonstrating the other example of a current waveform of embodiment of this invention. (a)〜(c)は、本発明の実施形態のLEDの開口部の他の例を説明するための図である。(A)-(c) is a figure for demonstrating the other example of the opening part of LED of embodiment of this invention. (a)〜(c)は、本発明の実施形態のLEDの反射鏡の形状の他の例を説明するための図である。(A)-(c) is a figure for demonstrating the other example of the shape of the reflective mirror of LED of embodiment of this invention. 本発明の実施形態のLEDの光線経路(光路)を説明するための図である。It is a figure for demonstrating the light beam path | route (optical path) of LED of embodiment of this invention. (a)は、従来のLEDストロボの正面図であり、(b)は同断面図である。(A) is a front view of a conventional LED strobe, and (b) is a sectional view of the same. (a)は、従来のインジケータ付きLEDストロボの正面図であり、(b)は同断面図である。(A) is a front view of the LED strobe with a conventional indicator, (b) is the same sectional view. 従来のLEDストロボにおける色ムラの発生を説明するための図である。It is a figure for demonstrating generation | occurrence | production of the color nonuniformity in the conventional LED flash.

<<第一の実施形態>>
以下、本発明を適用する第一の実施形態について説明する。以下、本発明の実施形態を説明するための全図において、同一機能を有するものは同一符号を付し、その繰り返しの説明は省略する。
<< First Embodiment >>
Hereinafter, a first embodiment to which the present invention is applied will be described. Hereinafter, in all the drawings for explaining the embodiments of the present invention, those having the same function are denoted by the same reference numerals, and repeated explanation thereof is omitted.

本実施形態の発光装置100の概略構成を説明する。図1(a)は、本実施形態の発光装置100の概略正面図である。また、図1(b)は、発光装置100のA−A矢視方向概略断面図である。これらの図に示すように、本実施形態の発光装置100は、基本的に図10に示す従来の発光装置と同様の構成を有し、基板200と、基板200上に配置されたLED300と、LED300の外周に設置されたリフレクタ400と、レンズ500と、リフレクタ400と一体に構成されてレンズ500を保持するレンズ保持部600と、を備える。   A schematic configuration of the light emitting device 100 of the present embodiment will be described. Fig.1 (a) is a schematic front view of the light-emitting device 100 of this embodiment. 1B is a schematic cross-sectional view of the light emitting device 100 in the direction of arrows AA. As shown in these drawings, the light emitting device 100 of the present embodiment basically has the same configuration as the conventional light emitting device shown in FIG. 10, and includes a substrate 200, an LED 300 disposed on the substrate 200, The reflector 400 provided in the outer periphery of LED300, the lens 500, and the lens holding part 600 which is comprised integrally with the reflector 400 and hold | maintains the lens 500 are provided.

本実施形態のLED300は、独立して発光の制御が可能な2つの異なる発光色を有する発光素子を備える。以下、LED300の構成について説明する。図2(a)は、本実施形態のLED300の概略正面図であり、図2(b)は、本実施形態のLED300のB−B矢視概略断面図である。また、図3は、本実施形態のLED300の光線経路(光路)を説明するための図である。   The LED 300 of the present embodiment includes a light emitting element having two different emission colors that can be independently controlled for light emission. Hereinafter, the configuration of the LED 300 will be described. Fig.2 (a) is a schematic front view of LED300 of this embodiment, FIG.2 (b) is a BB arrow schematic sectional drawing of LED300 of this embodiment. Moreover, FIG. 3 is a figure for demonstrating the light beam path | route (optical path) of LED300 of this embodiment.

本実施形態のLED300は、図2に示すように、LED内基板310と、LED内基板310上に配置される光源である青色発光素子320と、LED内基板310の青色発光素子320と反対側の面に配置される赤色発光素子330と、LED内基板310の青色発光素子320側に形成される第一のLEDパッケージ340と、第一のLEDパッケージ340の青色発光素子320側に形成されるLED内リフレクタ350と、蛍光体を含有し、青色発光素子320を覆うように形成される蛍光体塗布領域360と、LED内基板310の赤色発光素子330側に形成される第二のLEDパッケージ370と、第二のLEDパッケージ370の赤色発光素子330側に形成される凹面状の光学面を有する反射鏡380と、を備える。LED内基板310の青色発光素子320側では、LED内リフレクタ350により第一の光学系が構成される。また、基板310の赤色発光素子330側では、反射鏡380により第二の光学系が構成される。   As shown in FIG. 2, the LED 300 according to the present embodiment includes an LED inner substrate 310, a blue light emitting element 320 that is a light source disposed on the LED inner substrate 310, and a side opposite to the blue light emitting element 320 of the LED inner substrate 310. A red light emitting element 330 disposed on the surface of the LED, a first LED package 340 formed on the blue light emitting element 320 side of the LED substrate 310, and a blue light emitting element 320 side of the first LED package 340. The in-LED reflector 350, a phosphor coating region 360 that contains a phosphor and is formed so as to cover the blue light emitting element 320, and the second LED package 370 that is formed on the red light emitting element 330 side of the in-LED substrate 310. And a reflecting mirror 380 having a concave optical surface formed on the red light emitting element 330 side of the second LED package 370. A first optical system is configured by the in-LED reflector 350 on the blue light emitting element 320 side of the in-LED substrate 310. Further, on the red light emitting element 330 side of the substrate 310, the reflecting mirror 380 forms a second optical system.

蛍光体塗布領域360は、青色光を吸収し、黄色の蛍光を発する、例えばYAG蛍光体を含有する樹脂により構成される。なお、本実施形態のLED300では、青色発光素子320および赤色発光素子330それぞれの数は問わない。ここでは、一例として、青色発光素子320を4個、赤色発光素子330を1個備える場合を図示する。   The phosphor coating region 360 is made of a resin that absorbs blue light and emits yellow fluorescence, for example, containing a YAG phosphor. In addition, in LED300 of this embodiment, the number of each of the blue light emitting element 320 and the red light emitting element 330 is not ask | required. Here, as an example, a case where four blue light emitting elements 320 and one red light emitting element 330 are provided is illustrated.

本実施形態のLED内基板310は、青色発光素子320および赤色発光素子330をそれぞれ発光させる駆動回路(不図示)を備える。本実施形態の駆動回路は、基板200を介して受け取る制御信号に従って電流を供給し、青色発光素子320および赤色発光素子330それぞれを独立して駆動する。なお、本実施形態では、LED内基板310と基板200とは、ワイヤボンディングを含むLED300のパッケージ内の配線パターンを介して、LED300のパッケージ底面に配置される電極(不図示)と基板200とがハンダ付けされることにより接続される。   The LED inner substrate 310 of the present embodiment includes drive circuits (not shown) that cause the blue light emitting element 320 and the red light emitting element 330 to emit light. The drive circuit of the present embodiment supplies current according to a control signal received via the substrate 200, and drives each of the blue light emitting element 320 and the red light emitting element 330 independently. In the present embodiment, the LED inner substrate 310 and the substrate 200 are configured such that an electrode (not shown) disposed on the bottom surface of the LED 300 package and the substrate 200 are arranged via a wiring pattern in the LED 300 package including wire bonding. It is connected by soldering.

また、本実施形態のLED内基板310は、赤色発光素子330から発した光を青色発光素子320側に導くため、1以上の開口部390をその周辺部に備える。図2に示すように、本実施形態では、開口部390は、4個の青色発光素子を取り囲む周辺部に形成される。   Moreover, in order to guide the light emitted from the red light emitting element 330 to the blue light emitting element 320 side, the LED inner substrate 310 of the present embodiment includes one or more openings 390 in the periphery thereof. As shown in FIG. 2, in the present embodiment, the opening 390 is formed in the peripheral portion surrounding the four blue light emitting elements.

青色発光素子320から発せられた光は、蛍光体塗布領域360によりその一部が吸収され、黄色蛍光が発せられる。黄色光と青色光とが混色されることにより白色光に変換され、図3に実線で示すように、青色発光素子320側の第一の光学系を従来どおり通過し、上方に放射される。一方、赤色発光素子330から発せられた光は、図3に破線で示すように、赤色発光素子330側の第二の光学系において、反射鏡380にて反射され、基板310に設けられた開口部390を通過し、青色発光素子320側に導かれる。   A part of the light emitted from the blue light emitting element 320 is absorbed by the phosphor coating region 360, and yellow fluorescence is emitted. Yellow light and blue light are mixed to be converted into white light, and as shown by a solid line in FIG. 3, the light passes through the first optical system on the blue light emitting element 320 side as usual and is emitted upward. On the other hand, the light emitted from the red light emitting element 330 is reflected by the reflecting mirror 380 in the second optical system on the red light emitting element 330 side and is provided in the substrate 310, as indicated by a broken line in FIG. The light passes through the portion 390 and is guided to the blue light emitting element 320 side.

青色発光素子320から発せられた光と蛍光体塗布領域360における蛍光体とにより得られる白色光は、照射面中央部に比べ、照射面周辺部では色温度が下がり黄色みを帯びる。従って照射面の色温度分布は一様ではなく、色ムラが発生する。本実施形態では、赤色発光素子330からの光を、照射面中央部青みを帯びた白色光を周辺同様の黄色みを帯びた色に補正可能なよう配光し、照射面全体の色温度や色ムラを改善する。   White light obtained by the light emitted from the blue light emitting element 320 and the phosphor in the phosphor coating region 360 has a yellow color due to a lower color temperature at the periphery of the irradiated surface than at the center of the irradiated surface. Therefore, the color temperature distribution on the irradiated surface is not uniform, and color unevenness occurs. In the present embodiment, the light from the red light emitting element 330 is distributed so that white light with a bluish color at the center of the irradiation surface can be corrected to a yellowish color similar to the surroundings, Improve color unevenness.

具体的には、本実施形態の開口部390の位置および第二光学系(反射鏡380)の形状を、赤色発光素子330からの光が、照射面中央部から周辺部にかけての色温度が高く青みを帯びている中央部の領域に段階的に配光されるようするよう調整する。これにより、赤色発光素子330からの光は、開口部390を通過し、照射面中央部の青みを帯びた光束に重畳される。結果として、照射面中央部の青みを帯びた白色光は、周辺部同様黄色みを帯びた色に補正され、照射面全体の色温度や色ムラを改善できる。   Specifically, the position of the opening 390 and the shape of the second optical system (reflecting mirror 380) of the present embodiment is such that the light from the red light emitting element 330 has a high color temperature from the central part of the irradiation surface to the peripheral part. Adjust so that light is distributed in a stepwise manner to the bluish central area. Thereby, the light from the red light emitting element 330 passes through the opening 390 and is superimposed on the bluish light flux at the center of the irradiation surface. As a result, the bluish white light at the center of the irradiated surface is corrected to a yellowish color like the peripheral portion, and the color temperature and color unevenness of the entire irradiated surface can be improved.

本実施形態のLED300は、上記構成を備え、基板200を介して得る駆動電流により、例えば、ストロボ発光、照明、点滅インジケータ、点灯インジケータそれぞれの発光を実現することができる。ストロボ発光、照明、点滅インジケータ、点灯インジケータ、それぞれを実現するために青色発光素子320および赤色発光素子330を駆動させる電流波形の一例を図4、図5、図6に示す。   The LED 300 according to the present embodiment has the above-described configuration, and can realize light emission of, for example, strobe light emission, illumination, blinking indicator, and lighting indicator by driving current obtained via the substrate 200. Examples of current waveforms for driving the blue light emitting element 320 and the red light emitting element 330 in order to realize strobe light emission, illumination, blinking indicator, and lighting indicator are shown in FIGS. 4, 5, and 6.

図4(a)は、ストロボ発光を実現する電流波形例を示す図である。ここでは、青色発光素子320のみを短時間、大きな電流量で駆動させるよう電流が供給される。これにより、青色光と黄色蛍光とが混色された白色光が大きな光量で出射され、ストロボ発光を実現できる。   FIG. 4A is a diagram showing an example of a current waveform that realizes strobe light emission. Here, a current is supplied so that only the blue light emitting element 320 is driven with a large amount of current for a short time. Thereby, white light in which blue light and yellow fluorescence are mixed is emitted with a large amount of light, and strobe light emission can be realized.

図4(b)は、照明としての発光を実現する電流波形例を示す図である。ここでは、青色発光素子320および赤色発光素子330を同時に、ユーザからのオン指示に従って点灯し、オフ指示に従って消灯するようよう電流が供給される。これにより、白色光と赤色光とが混合され、かつ、照射面中央部の色ムラが改善された光が出射され、高品質な照明を実現できる。なお、照明として発光させる場合は、ストロボ発光時に比べ、小さな電流量で駆動させる。   FIG. 4B is a diagram illustrating an example of a current waveform that realizes light emission as illumination. Here, a current is supplied so that the blue light emitting element 320 and the red light emitting element 330 are simultaneously turned on according to an on instruction from the user and turned off according to an off instruction. Thereby, white light and red light are mixed and light with improved color unevenness at the center of the irradiated surface is emitted, and high-quality illumination can be realized. Note that when light is emitted as illumination, the light is driven with a smaller amount of current compared to the case of strobe light emission.

図5(a)は、点滅インジケータとしての発光を実現する電流波形例を示す図である。ここでは、赤色発光素子330のみ、間欠的に発光させるよう電流が供給される。また、図5(b)は、点灯インジケータとしての発光を実現する電流波形例を示す図である。ここでは、予め定められた点灯期間、赤色発光素子330のみを連続的に発光させるよう電流が供給される。これらにより、赤色光がそれぞれ点滅および点灯する所望のインジケータ機能を実現できる。なお、インジケータとして発光させる場合も、ストロボ発光時に比べ、小さな電流量で駆動させる。   FIG. 5A is a diagram illustrating an example of a current waveform that realizes light emission as a blinking indicator. Here, only the red light emitting element 330 is supplied with current so as to emit light intermittently. FIG. 5B is a diagram illustrating an example of a current waveform that realizes light emission as a lighting indicator. Here, a current is supplied so that only the red light emitting element 330 emits light continuously during a predetermined lighting period. As a result, it is possible to realize a desired indicator function in which red light blinks and lights up. Note that when the light is emitted as the indicator, the light is driven with a smaller amount of current than when the strobe light is emitted.

なお、インジケータとして点滅または点灯を実現させる場合、駆動して発光させる発光素子は、上述のように赤色発光素子330のみに限られない。例えば、図6(a)に示すように、青色発光素子320および赤色発光素子330を、同時に発光させるよう電流を供給してもよい。ここでは、一例として、発光毎に、青色発光素子320および赤色発光素子330それぞれに供給する電流量を変化させる場合を示す。供給する電流量は、これに限られない。これにより、白色光と赤色光との混色の点滅または点灯を得ることができる。   In addition, when realizing blinking or lighting as an indicator, the light emitting element that is driven to emit light is not limited to the red light emitting element 330 as described above. For example, as shown in FIG. 6A, a current may be supplied so that the blue light emitting element 320 and the red light emitting element 330 emit light simultaneously. Here, as an example, a case where the amount of current supplied to each of the blue light emitting element 320 and the red light emitting element 330 is changed for each light emission is shown. The amount of current to be supplied is not limited to this. Thereby, blinking or lighting of a mixed color of white light and red light can be obtained.

さらに、図6(b)に示すように、各発光間に青色発光素子320を駆動させる電流量と、赤色発光素子330を駆動させる電流量とを、供給期間中に変化させてもよい。ここでは、一例として、青色発光素子320と赤色発光素子330とに供給する電流量を逆に変化される場合を示す。変化の仕方はこれに限られない。このように制御することにより、点滅する光の色を変化させることができる。   Further, as shown in FIG. 6B, the amount of current for driving the blue light emitting element 320 and the amount of current for driving the red light emitting element 330 during each light emission may be changed during the supply period. Here, as an example, a case where the amount of current supplied to the blue light emitting element 320 and the red light emitting element 330 is changed in reverse is shown. The way of change is not limited to this. By controlling in this way, the color of the flashing light can be changed.

以上説明したように、本実施形態のLED300は、独立して制御可能な2種の異なる色の発光素子を備え、両者を同時に発光させる際、照射面での色ムラを低減できるよう構成されている。このため、このLED300を搭載した本実施形態の発光装置100は、1の発光源で、ストロボ、インジケータ、照明といった多種の機能をそれぞれ高い品質で実現することができる。また、制御は、LEDに供給する電流量を変化させるだけで容易に実現できる。従って、本実施形態によれば、多数の発光機能を実現するために複数の発光源を備える必要がないため、装置を大型化することなく、多機能で色ムラの少ない高性能なLED発光装置を実現することができる。   As described above, the LED 300 according to the present embodiment includes two types of light-emitting elements that can be controlled independently, and is configured to reduce color unevenness on the irradiation surface when the light is emitted simultaneously. Yes. For this reason, the light emitting device 100 according to this embodiment equipped with the LED 300 can realize various functions such as a strobe, an indicator, and illumination with high quality with one light source. Further, the control can be easily realized only by changing the amount of current supplied to the LED. Therefore, according to this embodiment, since it is not necessary to provide a plurality of light emitting sources in order to realize a large number of light emitting functions, a high performance LED light emitting device that is multifunctional and has little color unevenness without increasing the size of the device. Can be realized.

なお、上記実施形態では、開口部390が、基板310の周辺部に設けられる場合を例にあげて説明した。しかし、開口部390の配置位置はこれに限られない。赤色発光素子330からの光を、所望の位置に所望の強度で、第一の光学系に配光できればよい。例えば、図7(a)、(b)に示すように、基板310に複数の細長い開口部390’が十字型に設けてもよい。ここでは、各青色発光素子320それぞれを独立して蛍光体で覆うよう構成し、開口部390’を、4個の青色発光素子320の間にそれぞれ設ける場合を例にあげて説明する。図7(c)に、本変形例のLED300’の光路を示す。   In the above embodiment, the case where the opening 390 is provided in the peripheral portion of the substrate 310 has been described as an example. However, the arrangement position of the opening 390 is not limited to this. It is sufficient that the light from the red light emitting element 330 can be distributed to the first optical system at a desired position and with a desired intensity. For example, as shown in FIGS. 7A and 7B, the substrate 310 may be provided with a plurality of elongated openings 390 'in a cross shape. Here, a case will be described as an example where each blue light emitting element 320 is configured to be covered with a phosphor independently and an opening 390 ′ is provided between each of the four blue light emitting elements 320. FIG. 7C shows an optical path of the LED 300 ′ according to this modification.

図7に示す変形例のLED300’の場合、赤色発光素子330からの光を、照射面中央部から照射面周辺部へ向けて段階的に配光するよう、開口部390の配置と第二光学系(反射鏡380の形状)とを調整する。図7(c)に示すように、赤色発光素子330からの光は、開口部390’を通過し、照射面中央部の青みを帯びた光束に重畳される。このため、照射面の青みを適宜抑えることができ、照射面全域として色ムラを補正できる。従って、上述のように照明として用いる場合、色ムラの少ない照明を実現できる。すなわち、本変形例によれば、装置を大型化することなく、多機能で色ムラの少ない高性能なLED照明装置を実現できる。   In the case of the LED 300 ′ of the modification shown in FIG. 7, the arrangement of the opening 390 and the second optical element so as to distribute the light from the red light emitting element 330 stepwise from the center of the irradiation surface toward the periphery of the irradiation surface. The system (the shape of the reflecting mirror 380) is adjusted. As shown in FIG. 7C, the light from the red light emitting element 330 passes through the opening 390 'and is superimposed on the bluish light flux at the center of the irradiation surface. For this reason, the blueness of the irradiated surface can be appropriately suppressed, and color unevenness can be corrected over the entire irradiated surface. Accordingly, when used as illumination as described above, illumination with little color unevenness can be realized. That is, according to this modification, it is possible to realize a high-performance LED lighting device that is multifunctional and has little color unevenness without increasing the size of the device.

また、反射鏡380の形状も上述の凹面形状に限られない。赤色発光素子330からの光を、所望の強度および角度で、第一の光学系に配光できればよく、例えば、図8(a)、(b)、(c)に示すような形状であってもよい。特に、図8(a)に示すように、反射鏡380の凹面に凸状部700を有する構成の場合、有しない構成のものに比べ、赤色発光素子330からの光を照射面中央部により多く配光でき、より色ムラが改善される。   Further, the shape of the reflecting mirror 380 is not limited to the concave shape described above. The light from the red light emitting element 330 may be distributed to the first optical system at a desired intensity and angle. For example, the light has a shape as shown in FIGS. 8 (a), 8 (b), and 8 (c). Also good. In particular, as shown in FIG. 8A, in the configuration having the convex portion 700 on the concave surface of the reflecting mirror 380, more light from the red light emitting element 330 is emitted to the central portion of the irradiation surface than in the configuration having no convex portion. Light distribution is possible and color unevenness is further improved.

反射鏡380の形状が図3に示す本実施形態の反射鏡380のように凹面状の場合、図9に示すように、赤色発光素子330から発する光のうち出射面となす角が直角に近い光(直下近傍に向かう光)は、LED内基板310に当たり、開口部390を通過しない。また、比較的青みの少ない照射面周辺部付近方向にも配向される。一方、図8(a)に示すように、反射鏡380の凹面の、赤色発光素子330の出射面に対向する領域(直下部)に凸状に盛り上がった領域である凸状部700を設けると、赤色発光素子330の直下付近で反射した光は、反射鏡380の端部付近に集まり、ここで反射し、開口部390を通過して照射面中央部に出射される。このように、反射鏡380に凸状部700を設けると、凸状領域700を設けない場合に比べ、開口部390から出射する光線が多くなり、赤色発光素子330の利用効率が高まる。さらに、照射面周辺部に出射する光が減るため、照射面全体の色ムラはさらに改善される。なお、凸状部700は尖端状になっている必要はなく、丸状や平面状になっていてもよい。   When the shape of the reflecting mirror 380 is concave like the reflecting mirror 380 of the present embodiment shown in FIG. 3, the angle formed with the exit surface of the light emitted from the red light emitting element 330 is close to a right angle as shown in FIG. 9. The light (light traveling directly below) hits the LED inner substrate 310 and does not pass through the opening 390. Moreover, it is also oriented in the vicinity of the periphery of the irradiated surface with relatively little bluishness. On the other hand, as shown in FIG. 8A, when a convex portion 700, which is a convex raised region, is provided in a region (immediately lower) of the concave surface of the reflecting mirror 380 facing the emission surface of the red light emitting element 330. The light reflected in the vicinity immediately below the red light emitting element 330 gathers in the vicinity of the end of the reflecting mirror 380, is reflected here, passes through the opening 390, and is emitted to the center of the irradiation surface. As described above, when the convex portion 700 is provided in the reflecting mirror 380, more light rays are emitted from the opening 390 than in the case where the convex region 700 is not provided, and the utilization efficiency of the red light emitting element 330 is increased. Furthermore, since the light emitted to the periphery of the irradiated surface is reduced, the color unevenness of the entire irradiated surface is further improved. In addition, the convex part 700 does not need to be a pointed shape, and may be round or flat.

さらに、赤色発光素子330の設置位置や設置数も適宜選択可能である。また、基板310の青色発光素子320配置側と反対側に配置する発光素子は、赤色に限られない。例えば、オレンジ色や黄色の発光素子(LED)であってもよく、上述のように、多種の機能を実現でき、かつ、上記青色発光素子と蛍光体により得られる白色光と混色により、色ムラを低減可能な色の光を発する発光素子であればよい。   Furthermore, the installation position and the number of installations of the red light emitting elements 330 can be selected as appropriate. Moreover, the light emitting element arrange | positioned on the opposite side to the blue light emitting element 320 arrangement | positioning side of the board | substrate 310 is not restricted to red. For example, an orange or yellow light emitting element (LED) may be used. As described above, various functions can be realized, and white light obtained by the blue light emitting element and the phosphor is mixed with color, thereby causing uneven color. Any light-emitting element that emits light of a color capable of reducing the above may be used.

また、本実施形態の発光装置100は、駆動回路に供給する電流量を制御する制御部(不図示)を備えるよう構成してもよい。制御部は、例えば、上述の、ストロボ発光、点滅インジケータ、点灯インジケータ、照明等の駆動電流波形をプログラムとして予め保持し、発光装置100が搭載される撮影機器からの指示(制御信号)またはユーザからの指示に応じて、プログラムに従って駆動回路を駆動させ、青色発光素子320および赤色発光素子330それぞれの発光タイミング、電流量を制御する。特に、制御部が両発光素子に供給する電流量を制御することにより、上記照明時の色ムラをより高い精度で補正することができる。   In addition, the light emitting device 100 of the present embodiment may be configured to include a control unit (not shown) that controls the amount of current supplied to the drive circuit. The control unit, for example, previously stores driving current waveforms such as strobe light emission, blinking indicator, lighting indicator, and illumination as a program, and receives an instruction (control signal) from an imaging device on which the light emitting device 100 is mounted or from a user. In response to the instruction, the drive circuit is driven according to the program, and the light emission timing and the current amount of each of the blue light emitting element 320 and the red light emitting element 330 are controlled. In particular, the color unevenness at the time of illumination can be corrected with higher accuracy by controlling the amount of current supplied to the light emitting elements by the control unit.

1:LEDストロボ、1’:インジケータ付きLEDストロボ、2:基板、3:LED、4:リフレクタ、5:レンズ、6:レンズ保持部、7:インジケータ用LED、8:投影面、9:色ムラ発生領域、10:白色領域、100:発光装置、200:基板、300:LED、300’:LED、310:LED内基板、320:青色発光素子、330:赤色発光素子、340:第一のLEDパッケージ、350:LED内リフレクタ、360:蛍光体塗布領域、370:第二のLEDパッケージ、380:反射鏡、390’:開口部、390:開口部、400:リフレクタ、500:レンズ、600:レンズ保持部、700:凸状部 1: LED strobe, 1 ′: LED strobe with indicator, 2: substrate, 3: LED, 4: reflector, 5: lens, 6: lens holding section, 7: indicator LED, 8: projection surface, 9: color unevenness Generation region, 10: white region, 100: light emitting device, 200: substrate, 300: LED, 300 ′: LED, 310: substrate in LED, 320: blue light emitting device, 330: red light emitting device, 340: first LED Package, 350: Reflector in LED, 360: Phosphor coating area, 370: Second LED package, 380: Reflector, 390 ′: Opening, 390: Opening, 400: Reflector, 500: Lens, 600: Lens Holding part, 700: convex part

Claims (8)

基板と、
前記基板上に配置される第一の発光素子と、
前記基板の、前記第一の発光素子と反対側の面に配置される第二の発光素子と、
前記第一の発光素子が発した光の放射方向を制御する第一の光学系と、
前記第二の発光素子が発した光の放射方向を制御する第二の光学系と、を備え、
前記基板は、1以上の開口部を備え、
前記第二の光学系は、前記第二の発光素子が発した光が、前記開口部を通過し、前記第一の光学系に導かれるよう形成されていること
を特徴とするLED発光装置。
A substrate,
A first light emitting element disposed on the substrate;
A second light emitting element disposed on a surface of the substrate opposite to the first light emitting element;
A first optical system that controls a radiation direction of light emitted by the first light emitting element;
A second optical system that controls the radiation direction of the light emitted by the second light emitting element,
The substrate comprises one or more openings,
The LED light-emitting device, wherein the second optical system is formed so that light emitted from the second light-emitting element passes through the opening and is guided to the first optical system.
請求項1記載のLED発光装置であって、
前記1以上の開口部は、前記第一の発光素子を取り囲む周辺部に形成されていること
を特徴とするLED発光装置。
The LED light-emitting device according to claim 1,
The one or more openings are formed in a peripheral portion surrounding the first light emitting element.
請求項1記載のLED発光装置であって、
前記1以上の開口部は、前記第一の発光素子の間に形成されていること
を特徴とするLED発光装置。
The LED light-emitting device according to claim 1,
The one or more openings are formed between the first light emitting elements. The LED light emitting device.
請求項1から3いずれか1項記載のLED発光装置であって、
前記第一の発光素子は青色発光素子であって、
当該青色発光素子を覆うように形成される蛍光体塗布領域をさらに備えること
を特徴とするLED発光装置。
The LED light-emitting device according to any one of claims 1 to 3,
The first light emitting element is a blue light emitting element,
An LED light-emitting device, further comprising a phosphor coating region formed so as to cover the blue light-emitting element.
請求項1から4いずれか1項記載のLED発光装置であって、
前記第二の発光素子は、赤色発光素子であること
を特徴とするLED発光装置。
The LED light-emitting device according to claim 1,
The LED light emitting device, wherein the second light emitting element is a red light emitting element.
請求項1から5いずれか1項記載のLED発光装置であって、
前記第二の光学系は、凹面状の反射鏡を備えること
を特徴とするLED発光装置。
The LED light-emitting device according to claim 1,
The second optical system includes a concave reflecting mirror.
請求項1から5いずれか1項記載のLED発光装置であって、
前記第二の光学系は、前記第二の発光素子の直下近傍に凸状部を有する凹面状の反射鏡を備えること
を特徴とするLED発光装置。
The LED light-emitting device according to claim 1,
The LED light emitting device, wherein the second optical system includes a concave reflecting mirror having a convex portion in the vicinity immediately below the second light emitting element.
請求項1から7いずれか1項記載のLED発行装置であって、
前記第一の発光素子および前記第二の発光素子の駆動をそれぞれ制御する制御手段、をさらに備え、
前記制御手段は、
前記第一の発光素子のみ予め定められた時間、予め定められた強度で発光するよう制御するストロボ発光制御手段と、
前記第一の発光素子および前記第二の発光素子を略同時に予め定められた時間間隔で予め定められた強度で発光するよう制御するインジケータ点滅制御手段と、
前記第二の発光素子のみ予め定められた時間、予め定められた強度で発光するよう制御するインジケータ点灯制御手段と、
前記第一の発光素子および前記第二の発光素子を略同時に予め定められた時間、予め定められた強度で発光するよう制御する照明制御手段と、を備え、
前記制御手段は、当該LED発光装置の外部からの制御信号に従って、前記ストロボ発光制御手段と、前記インジケータ点滅制御手段と、前記インジケータ点灯制御手段と、前記照明制御手段とのいずれかの制御手段に、前記第一の発光素子および前記第二の発光素子の駆動を制御させること
を特徴とするLED発光装置。
The LED issuing device according to any one of claims 1 to 7,
Control means for controlling the driving of the first light emitting element and the second light emitting element, respectively,
The control means includes
Strobe light emission control means for controlling the first light emitting element to emit light at a predetermined intensity for a predetermined time;
Indicator blinking control means for controlling the first light emitting element and the second light emitting element to emit light at a predetermined intensity at a predetermined time interval substantially simultaneously;
Indicator lighting control means for controlling the second light emitting element to emit light at a predetermined intensity for a predetermined time; and
Illumination control means for controlling the first light emitting element and the second light emitting element to emit light at a predetermined intensity for a predetermined time substantially simultaneously, and
In accordance with a control signal from the outside of the LED light emitting device, the control means is one of the control means of the strobe light emission control means, the indicator blinking control means, the indicator lighting control means, and the illumination control means. An LED light-emitting device that controls driving of the first light-emitting element and the second light-emitting element.
JP2009033857A 2009-02-17 2009-02-17 Led light-emitting device Pending JP2010192582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009033857A JP2010192582A (en) 2009-02-17 2009-02-17 Led light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009033857A JP2010192582A (en) 2009-02-17 2009-02-17 Led light-emitting device

Publications (1)

Publication Number Publication Date
JP2010192582A true JP2010192582A (en) 2010-09-02

Family

ID=42818319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009033857A Pending JP2010192582A (en) 2009-02-17 2009-02-17 Led light-emitting device

Country Status (1)

Country Link
JP (1) JP2010192582A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2423742A1 (en) 2010-08-30 2012-02-29 Samsung Electronics Co., Ltd. Imaging device, method of selecting imaging mode, and recording medium configured to store computer program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11266035A (en) * 1998-03-17 1999-09-28 Sanyo Electric Co Ltd Light source device
JP2004111909A (en) * 2002-07-25 2004-04-08 Toyoda Gosei Co Ltd Light emitting device
JP2005301121A (en) * 2004-04-15 2005-10-27 Konica Minolta Opto Inc Flash unit
JP2006128562A (en) * 2004-11-01 2006-05-18 Nikon Corp Light emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11266035A (en) * 1998-03-17 1999-09-28 Sanyo Electric Co Ltd Light source device
JP2004111909A (en) * 2002-07-25 2004-04-08 Toyoda Gosei Co Ltd Light emitting device
JP2005301121A (en) * 2004-04-15 2005-10-27 Konica Minolta Opto Inc Flash unit
JP2006128562A (en) * 2004-11-01 2006-05-18 Nikon Corp Light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2423742A1 (en) 2010-08-30 2012-02-29 Samsung Electronics Co., Ltd. Imaging device, method of selecting imaging mode, and recording medium configured to store computer program

Similar Documents

Publication Publication Date Title
JP4526256B2 (en) Light source module and lamp having the light source module
US7520647B2 (en) Light source and vehicle lamp
US7918567B2 (en) Light emitting device, manufacturing method for light emitting device, illumination device using light emitting device, and projector
US8967829B2 (en) Illumination device employing LEDS that has equivalent light distribution characteristics of incandescent lamps
US7407303B2 (en) Lighting device comprising a plurality of semiconductor light sources
WO2017010527A1 (en) Vehicular lamp
JP2007079528A (en) Illuminator and imaging device with illuminator
JP7186244B2 (en) Luminaire with dynamically controllable light distribution
US8941335B2 (en) Semiconductor light-emitting element and flash-light device
JP2006339060A (en) Lighting system
JP2011171277A (en) Light source unit for semiconductor type light source of vehicle lighting device, and vehicle lighting device
JP2015103323A (en) Luminaire
JP2013021248A (en) Light emitting module
JP2013080638A (en) Collected linear lighting device and its driving method as well as lamp fitting
JP2018041723A (en) Light emitting module and vehicular headlight
KR20130112577A (en) Led lighting apparatus
JP2013114965A (en) Led lighting device
JP2012181394A (en) Light source device and projector
JP2018026250A (en) Vehicular lighting fixture
KR20130003835A (en) Camera flash module
JP2006278889A (en) Semiconductor lamp and electronic apparatus
JP5407025B2 (en) Light source unit of semiconductor light source for vehicle lamp, vehicle lamp
CN109743883B (en) Light emitting module and lamp unit
JP2007150255A (en) Light emitting diode illumination module and illumination device
JP2010192582A (en) Led light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130611