JP2013114965A - Led lighting device - Google Patents

Led lighting device Download PDF

Info

Publication number
JP2013114965A
JP2013114965A JP2011261555A JP2011261555A JP2013114965A JP 2013114965 A JP2013114965 A JP 2013114965A JP 2011261555 A JP2011261555 A JP 2011261555A JP 2011261555 A JP2011261555 A JP 2011261555A JP 2013114965 A JP2013114965 A JP 2013114965A
Authority
JP
Japan
Prior art keywords
led
light
light guide
leds
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011261555A
Other languages
Japanese (ja)
Inventor
Norikatsu Myojin
紀勝 明神
Satoyuki Nagasawa
理之 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2011261555A priority Critical patent/JP2013114965A/en
Publication of JP2013114965A publication Critical patent/JP2013114965A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)

Abstract

PROBLEM TO BE SOLVED: To alleviate color unevenness at an edge part of a pattern area, particularly seen when an irradiation pattern area is observed, in a lighting device structured to use a light guide member for mixing LED light of different emission colors.SOLUTION: In a far field region where irradiation patterns superpose each other by transition of alignment of LEDs as light irradiation sources for each irradiation pattern using a plurality of light guide members, feeling of color unevenness is alleviated as each irradiation pattern compensate lacking light colors for the other in light color mixing shortage areas at an edge part of each irradiation pattern area.

Description

本発明は、複数の発光色の組み合わせにより作成されるLED照明装置に関する。   The present invention relates to an LED lighting device created by a combination of a plurality of emission colors.

近年、LEDが調光及び点滅制御が容易であることを生かして、色温度が可変可能な照明装置(以下、色温度可変照明装置と略する)が上市されている。色温度可変照明装置は青色LEDと蛍光体の組み合わせによる高い色温度光源と低い色温度光源の2種類の白色光源の光を合成し、双方の混光状態を調整することで黒体軌跡に沿って変化させることができる様にしたものが一般的である。
さらに、光の三原色である赤色・緑色・青色のLEDを用いて各々の発光色を混光して白色を得る方法もある。この方式は一部に欠落するスペクトル成分(黄色)が存在することとなるが、各LEDの光量を調節することで任意の色彩が得られるため演出照明などに利用されている。
In recent years, lighting devices that can change the color temperature (hereinafter, abbreviated as a color temperature variable lighting device) have been put on the market taking advantage of the fact that LEDs can be easily dimmed and controlled to blink. The variable color temperature illumination device combines the light of two types of white light sources, a high color temperature light source and a low color temperature light source, which are a combination of a blue LED and a phosphor, and adjusts the mixed light state of both to follow the black body locus. In general, it can be changed.
Further, there is a method of obtaining white by mixing light emission colors using red, green and blue LEDs which are the three primary colors of light. Although this method has a missing spectral component (yellow) in part, any color can be obtained by adjusting the amount of light of each LED, which is used for effect lighting.

前述の色温度可変照明装置においてはLED光源を複数使用するため光源サイズが大きくなり、そのため混光状態が不十分となりやすく、照射対象の位置や距離によっては所望の照明光色を得られない場合がある。
そこで色温度可変照明装置を構成する光学系に合わせて所望とする光源サイズを満たすために、前記の色温度あるいは光色の異なる複数のLEDチップを一つのパッケージに収めマルチパッケージとし1つの発光源としたものが色調可変光源として用いられている。
In the above-described color temperature variable illumination device, the light source size becomes large because a plurality of LED light sources are used, so that the light mixture state tends to be insufficient, and the desired illumination light color cannot be obtained depending on the position and distance of the irradiation target. There is.
Therefore, in order to satisfy a desired light source size according to the optical system constituting the color temperature variable illumination device, a plurality of LED chips having different color temperatures or light colors are contained in one package to form a multi-package, and one light emitting source Are used as a color tone variable light source.

しかるに前記マルチパッケージによる色調可変光源は混色性を高めるために、一般的にパッケージ内外に光拡散手段を設けて用いられるため、往々にして光損失が大きくなる。また、前記マルチパッケージの色調可変光源を複数個配置して色温度可変照明装置を仕立てる場合、LED素子のばらつきにより、前記マルチパッケージの色調可変光源の個々に対して個別にカラーコレクション(駆動条件を調整し、色味を統一させる)を実施せざるを得ないのが現状である。   However, since the color-tunable light source using the multi-package is generally used by providing a light diffusing means inside and outside the package in order to improve color mixing, the light loss often increases. Further, when a variable color temperature lighting device is prepared by arranging a plurality of multi-package color-tunable light sources, due to variations in LED elements, individual color correction (driving conditions are set for each of the multi-package color-tunable light sources). The current situation is that it is necessary to adjust the color and unify the colors.

従って、LEDサプライヤで実施するビンニング(パッケージ固体間の色ばらつき、及びLED素子の光度ばらつきに関する選別など)を適用した色温度あるいは光色別のシングルパッケージ(一つのLEDチップのみを収めたパッケージ)のLED光源を用いて混色性が十分に確保された色温度可変照明装置が達成可能であれば、前述の光損失が軽減でき、また搭載する各色のLED光源を個々に選択し、組み合わせることができ、前述の色温度可変照明装置のカラーコレクション作業も平易なものとなる筈である。   Therefore, a single package (a package containing only one LED chip) for each color temperature or light color applying binning (selection for color variation between package solids and light intensity variation of LED elements) performed by an LED supplier. If an LED light source can be used to achieve a variable color temperature lighting device that sufficiently ensures color mixing, the aforementioned light loss can be reduced, and the LED light sources for each color can be individually selected and combined. The color correction work of the above-described color temperature variable illumination device should be easy.

特許文献1では、異なる色の光を発光させるようにLED素子と蛍光体との組み合わせによる複数のLED光源を有する発光部を複雑な駆動方法を用いずに、それら複数の光源による合成光の色温度を制御可能な発光装置が開示されている。該発光装置は電気配線がパターニングされた基板上に、シングルパッケージのLEDを複数個配置させたもので、前述の如く、発光色や光度のばらつきに関してビンニングに基づく選択搭載が可能であり、駆動部の調整も平易になるものと思われる。   In Patent Document 1, a light emitting unit having a plurality of LED light sources by a combination of an LED element and a phosphor so as to emit light of different colors is used without using a complicated driving method, and the color of the combined light from the plurality of light sources. A light emitting device capable of controlling temperature is disclosed. The light-emitting device has a plurality of single-package LEDs arranged on a substrate on which electrical wiring is patterned. As described above, the light-emitting device can be selectively mounted based on binning with respect to variations in emission color and luminous intensity. It seems to be easy to adjust.

特開2008−283155号公報JP 2008-283155 A

しかしながら、特許文献1による発光装置を照明用として使用した場合、基板上の複数のLED光源による合成光を照射する構成であるために照明用光源としての等価的な光源サイズが大きくなり、それにより照射面で色ムラが発生する場合がある。特に発光部の配光角を狭くして、スポットライト等に適用した場合、光学部材を駆使して配光を制御しても照射される範囲で色ムラ発生の抑制は非常に困難な作業となってしまう。   However, when the light-emitting device according to Patent Document 1 is used for illumination, an equivalent light source size as an illumination light source is increased because of the configuration in which the combined light from the plurality of LED light sources on the substrate is irradiated. Color unevenness may occur on the irradiated surface. In particular, when the light distribution angle of the light emitting part is narrowed and applied to a spotlight or the like, it is very difficult to suppress color unevenness within the irradiated range even if the light distribution is controlled using an optical member. turn into.

本発明は上記問題に鑑みてなされたもので、その目的とする処は、異なる発光色のシングルパッケージのLED光源を複数個用いて、それらの光を混色して色調整するように構成された色温度可変照明装置において、特に照射パターンエリヤを観察した場合に観られるパターンエリヤ内の色ムラを低減することにある。   The present invention has been made in view of the above problems, and the object of the present invention is to use a plurality of single-package LED light sources of different emission colors and mix the light to adjust the color. In the color temperature variable illumination device, it is intended to reduce color unevenness in the pattern area, which is observed particularly when the irradiation pattern area is observed.

上記目的を達成するため、本発明の請求項1に記載の発明によれば、
nを3以上の整数として、
n個の互いに異なる発光波長分布特性を有するLED夫々の発光部中心を正n角形の頂点に位置するように基板上に隣接配置されて1組のLED群を形成し、
前記基板上には前記編成のLED群がn組存在し、n組のLED群はLED配置中心点Sが正n角形の頂点に位置するように分散配置されており、
n個の導光部材が前記LED群夫々にLEDの照射方向前方に配設されており、前記導光部材は、1本の棒状の導光幹部と、導光幹部の一方の端部に接続する導光分岐部と、導光分岐部に接続するn本の導光枝部を備え、
n本の導光枝部は該導光幹部の中心軸に対して導光分岐部まで均等に傾斜されて、前記LED群を構成するn個のLED夫々の発光部中心に入射面の中心が一致するように対抗し、
前記導光幹部の他方の端部は光出射面として、配光制御手段の入射部に対抗するようにして構成されることで各LEDの発光色を混色して照射する方式のLED照明装置であり、
各LED群におけるn個のLEDは夫々互いの位置関係が以下の条件(a)あるいは(b)を満たすように設定されたことを特徴とするLED照明装置とすることにより上記した目的が達成される。
(a)各LED群におけるn個のLEDは夫々互いの位置関係も含めてLED群の分散中心点Pに対し[2π/n]°回転対象に配置される。
(b)各LED群におけるn個のLEDの位置関係は、条件(a)で定められた各LED群におけるn個のLEDの位置関係を保持して分散配置されたn組のLED群において、少なくとも任意の二か所以上のLED群の配置が、各々LEDの位置関係を保持したまま平行移動によって置き換えられたものに等しい。
In order to achieve the above object, according to the first aspect of the present invention,
n is an integer of 3 or more,
A set of LEDs is formed by being adjacently arranged on the substrate so that the center of the light emitting portion of each of the n LEDs having different emission wavelength distribution characteristics is located at the apex of the regular n-gon,
On the substrate, there are n sets of LED groups of the organization, and the n sets of LED groups are distributed and arranged so that the LED arrangement center point S is located at the apex of the regular n-gon,
n light guide members are arranged in front of the LED irradiation direction in each of the LED groups, and the light guide member is connected to one bar-shaped light guide trunk and one end of the light guide trunk. And n light guide branches connected to the light guide branch,
The n light guide branches are uniformly inclined to the light guide branch with respect to the central axis of the light guide trunk, and the center of the incident surface coincides with the center of the light emitting part of each of the n LEDs constituting the LED group. To counter,
The other end portion of the light guide trunk portion is configured to oppose the incident portion of the light distribution control means as a light exit surface, and is an LED illumination device of a type that irradiates the light emission colors of each LED by mixing colors. Yes,
The above-described object is achieved by providing the LED lighting device characterized in that the n LEDs in each LED group are set so that their positional relationship satisfies the following condition (a) or (b). The
(A) The n LEDs in each LED group, including the positional relationship with each other, are arranged to rotate by [2π / n] ° with respect to the dispersion center point P of the LED group.
(B) The positional relationship of the n LEDs in each LED group is the n sets of LED groups that are dispersedly arranged while maintaining the positional relationship of the n LEDs in each LED group defined in the condition (a). Arrangement of at least two arbitrary LED groups is equivalent to the arrangement replaced by translation while maintaining the positional relationship of the LEDs.

本発明の請求項2に記載の発明によれば、
請求項1によるLED照明装置を構成単位として複数個を千鳥格子状に光照射面が同一平面状となるように配置してなる面状照明装置において、
nを3、4および6として
該LED照明装置に分散配置されたn組のLED群のLED配置中心点Sを結ぶ正n角形と、
隣接しあう二つまたは三つのLED照明装置間を隔てて、各LED照明装置間の中央付近で接近するn組のLED群のLED配置中心点Sを結ぶ正n角形が合同の関係にあり、其れ等の正n角形が平面充填されるように各LED照明装置間の配置間隔が決定されることを特徴とした面状照明装置とすることで、前記LED照明装置を複数用いた面状照明装置を提供することができ、これにより色ムラを低減できる利点がある。
According to invention of Claim 2 of this invention,
In the planar illumination device formed by arranging a plurality of LED illumination devices according to claim 1 as a structural unit so that the light irradiation surfaces are in the same plane in a staggered pattern,
n is 3, 4 and 6
A regular n-gon shape connecting the LED arrangement center points S of the n LED groups distributed and arranged in the LED illumination device;
There is a congruent relationship between two or three adjacent LED illuminating devices, and a regular n-gon shape connecting the LED arrangement center points S of n groups of LED groups approaching near the center between the LED illuminating devices, The planar illumination device is characterized in that the arrangement interval between the LED illumination devices is determined so that the regular n-gons thereof are plane-filled, and thus a planar shape using a plurality of the LED illumination devices. An illuminating device can be provided, which has an advantage that color unevenness can be reduced.

本発明によれば、演色性に優れ、色ムラの少ないLED照明装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can provide the LED lighting apparatus which is excellent in color rendering property and has few color nonuniformity.

図1は、本発明に係る各LED群におけるLED配置を示す図である。FIG. 1 is a diagram showing an LED arrangement in each LED group according to the present invention. 図2は、本発明に係る図6の照明装置の基板上における各LED群の配置を示す図である。FIG. 2 is a diagram showing the arrangement of each LED group on the substrate of the illumination device of FIG. 6 according to the present invention. 図3は、図2におけるLED配置を変更した例を示す図である。FIG. 3 is a diagram showing an example in which the LED arrangement in FIG. 2 is changed. 図4は、本発明による基板上におけるLED群とLED群を編成する各LED配置とスクリーンへの照射される各LEDの照射パターンの位置関係を模式的に示す図である。FIG. 4 is a diagram schematically showing the positional relationship between the LED groups on the substrate according to the present invention, each LED arrangement for knitting the LED groups, and the irradiation pattern of each LED irradiated on the screen. 図5は、本発明に係り図2と異なる条件に従って配置された基板上におけるLED群とLED群を編成する各LED配置の一例を示す図である。FIG. 5 is a diagram illustrating an example of LED arrangements for knitting LED groups and LED groups on a substrate arranged according to the present invention according to conditions different from those in FIG. 2. 図6は、本発明の照明装置の一例を示す斜視図である。FIG. 6 is a perspective view showing an example of the illumination device of the present invention. 図7は、図6の照明装置の内部構成を示す模式的断面図である。FIG. 7 is a schematic cross-sectional view showing the internal configuration of the illumination device of FIG. 図8は、図6の照明装置の基板上におけるLED群とLED群を編成する各LED配置の一例を示す図である。FIG. 8 is a diagram showing an example of LED groups on the substrate of the lighting device of FIG. 図9は、図6の照明装置の導光部材を示す斜視図である。FIG. 9 is a perspective view showing a light guide member of the illumination device of FIG. 図10は、図9の導光部材を説明する図で、(a)が正面図、(b)が側面図である。10A and 10B are diagrams illustrating the light guide member of FIG. 9, in which FIG. 10A is a front view and FIG. 10B is a side view. 図11は、図9の導光部材における導光枝部入射面の形状の一例を説明する図である。FIG. 11 is a diagram for explaining an example of the shape of the light guide branch entrance surface in the light guide member of FIG. 9. 図12は、図6の照明装置の配光制御用レンズアレイの斜視図をである。FIG. 12 is a perspective view of a light distribution control lens array of the illumination device of FIG. 図13は、図12と反対の面側の配光制御用レンズの斜視図である。FIG. 13 is a perspective view of a light distribution control lens on the surface side opposite to FIG. 図14は、本照明装置における駆動部の例を示す図である。FIG. 14 is a diagram illustrating an example of a drive unit in the illumination device. 図15は、一組のLED群からの照射パターンを模式的に示した図である。FIG. 15 is a diagram schematically showing an irradiation pattern from a set of LED groups. 図16は、本発明による照明装置を複数個用いて面状照明装置を構築した例で、照射方向からみたLED配置のみを明示した図である。FIG. 16 is an example in which a planar illumination device is constructed using a plurality of illumination devices according to the present invention, and is a diagram clearly showing only the LED arrangement as seen from the irradiation direction. 図17は、本発明に基づき、図16の例に用いた照明装置を基板に搭載されたLED群の組数とLEDの個数を変更したものとして面状照明装置を構築した例で、照射方向からみたLED配置のみを明示した図である。FIG. 17 is an example in which a planar lighting device is constructed based on the present invention, in which the lighting device used in the example of FIG. 16 is changed in the number of LED groups mounted on the substrate and the number of LEDs. It is the figure which clarified only the LED arrangement | positioning seen from.

本発明に係る照明装置の基本的な構成は、複数の異なる発光色のLED光源(以下、LEDと表記する)からの光の混色性を高めるための、複数の導光枝部をもつ棒状の導光部材を用い、各導光枝部と各LEDを個々に結合させて混色された光を出射させるものである。以下、図を参照しながら本照明装置の基本的な機構および機能および本発明に係る特徴を詳細に説明することとする。   The basic configuration of the lighting device according to the present invention is a rod-shaped light guide having a plurality of light guide branches for enhancing the color mixing of light from a plurality of LED light sources having different emission colors (hereinafter referred to as LEDs). Each light guide branch and each LED are individually coupled using an optical member to emit mixed color light. Hereinafter, the basic mechanism and function of the present lighting device and the features according to the present invention will be described in detail with reference to the drawings.

図6は本発明に係る照明装置の一例を示す斜視図、図7は図6の照明装置1の内部構成を示す模式的断面図である。照明装置1は、複数の異なる発光色のLEDを調色可能な照明装置であり、本例では外部から電源及びLED駆動制御信号の供給を受けて発色の調整がされる様になっている。   FIG. 6 is a perspective view showing an example of a lighting device according to the present invention, and FIG. 7 is a schematic cross-sectional view showing an internal configuration of the lighting device 1 of FIG. The illuminating device 1 is an illuminating device capable of toning a plurality of LEDs of different emission colors. In this example, the color is adjusted by receiving a power supply and an LED drive control signal from the outside.

照明装置1は、照射方向の内径を大きくした略円筒状の筐体40と筐体40の前面に設けた前面カバーを兼ねた配光制御レンズアレイ60と筐体40の後面の放熱器を兼ねた蓋部50と備え、放熱器50からは外部電源及び駆動信号の供給元に接続するためのケーブル70を備えている。筐体内部には、光源20と、光源20を搭載した基板11と、光源の照射方向前方に設けた導光部材30と、プリズム部63が組み込まれた配光制御用レンズアレイ60および導光部材30を支えるための保持部材12が収納されている。光源20は、基板11上に搭載した複数のシングルパッケージLEDである。基板11上には、電磁妨害波の発生を抑制するためにも、好ましくは各LEDを駆動ためのLEDドライバおよびDC/DCコンバータなどによる駆動部を搭載するのが望ましい(図示せず)。基板11の背面に設けた蓋部を兼ねた放熱器50により、各LEDで生じた熱は基板11を通して放熱器50へ伝熱され、気中へと熱放散される。   The illuminating device 1 also serves as a substantially cylindrical housing 40 having an enlarged inner diameter in the irradiation direction, a light distribution control lens array 60 that also serves as a front cover provided on the front surface of the housing 40, and a radiator on the rear surface of the housing 40. And a cable 70 for connecting from the radiator 50 to an external power source and a drive signal supply source. Inside the housing, the light source 20, the substrate 11 on which the light source 20 is mounted, the light guide member 30 provided in front of the light source in the irradiation direction, the light distribution control lens array 60 incorporating the prism portion 63, and the light guide. The holding member 12 for supporting the member 30 is accommodated. The light source 20 is a plurality of single package LEDs mounted on the substrate 11. In order to suppress the generation of electromagnetic interference waves, it is desirable that an LED driver for driving each LED and a drive unit such as a DC / DC converter are mounted on the substrate 11 (not shown). The heat generated by each LED is transferred to the radiator 50 through the substrate 11 by the radiator 50 that also serves as a lid portion provided on the back surface of the substrate 11, and is dissipated into the air.

図8は、光源20を搭載した基板11を照明装置の照射方向、すなわち、図7の紙面左手側からみた基板正面図である。基板11は筐体40内の取付位置の内部断面形状と略一致する形状とした金属ベース基盤で、アルミニウムあるいは銅をベース金属とし、部品搭載面には絶縁層および所定パターンの導体配線層を積層した所謂金属ベース回路基板である。本例おいては、円形状としている。基盤11の光照射方向側となる部品搭載面側には、複数のシングルパッケージLED21,22,23を搭載され、導体配線層に電気的に接続されている。   FIG. 8 is a front view of the board 11 when the board 11 on which the light source 20 is mounted is viewed from the irradiation direction of the lighting device, that is, from the left-hand side of FIG. The substrate 11 is a metal base substrate having a shape substantially matching the internal cross-sectional shape of the mounting position in the housing 40, and is made of aluminum or copper as a base metal, and an insulating layer and a conductor wiring layer having a predetermined pattern are laminated on the component mounting surface. This is a so-called metal base circuit board. In this example, it is circular. A plurality of single package LEDs 21, 22, and 23 are mounted on the component mounting surface side that is the light irradiation direction side of the substrate 11, and are electrically connected to the conductor wiring layer.

LEDは、第1のLED21,第2のLED22および第3のLED23の3個で一つのLED群25を形成し、基板11上に3組のLED群25を搭載している。したがって、LEDは合計9個が搭載されている。尚、使用するシングルパッケージLEDは面実装タイプのLEDとして、導光部材30との結合効率を稼ぐためにはPLCCパッケージ品のように搭載面に対し上方に光放射の開口をもつものが好ましい。   The LED includes a first LED 21, a second LED 22, and a third LED 23 that form one LED group 25, and three sets of LED groups 25 are mounted on the substrate 11. Therefore, a total of nine LEDs are mounted. Note that the single package LED to be used is a surface mount type LED, and in order to increase the coupling efficiency with the light guide member 30, it is preferable to have a light emission opening above the mounting surface like a PLCC package product.

なお、図8において基板11の部品搭載面側には暗色系のレジストもしくはシルク印刷が施されている。これにより導体配線層および絶縁層を覆うことで、基板11表面に届く迷光、すなわち導光部材30表面や導光部材と各LEDの結合部から漏れた混光が不十分な光が、全面カバー43の方向に向けて反射され、配光制御用レンズ60を通して照明光に入り交り、それにより照明品質の悪化を防いでいる。 In FIG. 8, a dark color resist or silk printing is applied to the component mounting surface side of the substrate 11. By covering the conductor wiring layer and the insulating layer, stray light reaching the surface of the substrate 11, that is, light with insufficient mixed light leaking from the surface of the light guide member 30 or the coupling portion between the light guide member and each LED, covers the entire surface. The light is reflected in the direction of 43 and enters the illumination light through the light distribution control lens 60, thereby preventing deterioration in illumination quality.

図8におけるLED21,22,23夫々の発光色は様々の組み合わせが可能である。
例えば、LED21,22,23を各々光の三原色である赤色・緑色・青色の発光色を発するものとする。赤色・緑色・青色はAlGaInP系の赤色発光、InGaN系の緑色および青色の組み合わせのように各LEDは各々に用いられる基板材料のバンドギャップ固有の波長で発光するものでもよいが、InGaN系の紫色(または近紫外線)の放射光を使って各々赤色、緑色、青色という3種類の蛍光体を励起するものとすれば、LED21,22,23の電気特性は概ね揃えることが可能となり、LED駆動の観点では優位である。
Various combinations of the emission colors of the LEDs 21, 22, and 23 in FIG. 8 are possible.
For example, it is assumed that the LEDs 21, 22, and 23 emit red, green, and blue light emission colors that are the three primary colors of light. Red, green, and blue are AlGaInP-based red light emission, and each LED may emit light at a wavelength specific to the band gap of the substrate material used for each, such as a combination of InGaN-based green and blue. If the three types of phosphors of red, green, and blue are excited using radiant light (or near-ultraviolet rays), the electrical characteristics of the LEDs 21, 22, and 23 can be substantially uniform, and LED driving From a viewpoint, it is superior.

別の例としては、第1のLED21は、例えば色温度3000Kの疑似白色発光のLED、また第2のLED22は、例えば色温度6500Kの疑似白色発光のLEDを用いる。LED21およびLED22ともにInGaN系の半導体発光層による青色発光のLEDチップを搭載し、黄色蛍光体を混ぜたモールド樹脂にて青色発光LEDチップを覆うことで半導体発光層からの青色光と蛍光体からの黄色光の合成にて疑似白色光を照射するものである。色温度の違いはInGaN系青色発光素子の発光波長分布、蛍光体の混和率、および、蛍光体の分光特性等に差異を持たせること作成される。第3のLED23は、例えば赤色発光のLEDを用いる。これはLED21およびLED22において擬似白色で不足しがちな赤色領域のスペクトラムを補償するためである。赤発光のLED23としてAlGaInP系の半導体発光層による赤色発光のLEDチップを搭載し、モールド樹脂にて赤色発光LEDチップを覆った赤色光を照射するものである。   As another example, the first LED 21 is a pseudo white light emitting LED having a color temperature of 3000K, for example, and the second LED 22 is a pseudo white light emitting LED having a color temperature of 6500K, for example. The LED 21 and the LED 22 are both mounted with a blue light emitting LED chip with an InGaN-based semiconductor light emitting layer, and the blue light emitting LED chip is covered with a mold resin mixed with a yellow fluorescent material, so that the blue light from the semiconductor light emitting layer and the phosphor The pseudo white light is irradiated by the synthesis of yellow light. The difference in color temperature is created by making a difference in the emission wavelength distribution of the InGaN-based blue light-emitting element, the mixing ratio of the phosphor, the spectral characteristics of the phosphor, and the like. For example, a red LED is used as the third LED 23. This is to compensate for the spectrum of the red region, which tends to be deficient in pseudo white in the LEDs 21 and 22. A red light emitting LED chip with an AlGaInP-based semiconductor light emitting layer is mounted as the red light emitting LED 23, and the red light that covers the red light emitting LED chip with a molding resin is irradiated.

図9および図10は、光源20の照射方向前方に配設した導光部材30で基板固定部(フランジ部)を省略して示したものである。導光部材30は、円柱形状の導光幹部35と、導光分岐部34と、3つの導光枝部31,32,33を有し、アクリル樹脂等の透明樹脂により一体に成形されている。導光枝部31,32,33の端部が前記したLED21,22,23に対向する導光枝部入射面36,36,36となり、導光幹部35の端部が導光幹部出射面37となり導光部材30に入射したLED21,22,23の出射光を照射する。図10(a)の示すように導光枝部31,32,33は前述のLED21,22,23の発光中心の配置に合わせて三つの入射面36の中心が対抗するように配置されている。   9 and 10 show the light guide member 30 disposed in front of the light source 20 in the irradiation direction, omitting the substrate fixing portion (flange portion). The light guide member 30 includes a columnar light guide trunk 35, a light guide branch 34, and three light guide branches 31, 32, 33, and is integrally formed of a transparent resin such as an acrylic resin. The ends of the light guide branches 31, 32, 33 are the light guide branch entrance surfaces 36, 36, 36 facing the LEDs 21, 22, 23, and the ends of the light guide trunk 35 are the light guide trunk exit surface 37. The light emitted from the LEDs 21, 22 and 23 incident on the optical member 30 is irradiated. As shown in FIG. 10A, the light guide branches 31, 32, 33 are arranged so that the centers of the three incident surfaces 36 face each other in accordance with the arrangement of the emission centers of the LEDs 21, 22, 23 described above.

各導光枝部入射面36はLED21,22,23との結合効率との向上を図り、中央を凸形状として屈折方向を調整し、周囲に反射プリズム部を形成することで、中央凸部の傾斜面のままでは反射光成分が多くなり内部取り込みが少なくなる問題を解消するなどの工夫がなされている。
具体的には図11に示す様に、第1のLED21の中心から素子外周までに対応する第1の入射面36aと、第1の入射面36aより外周側の反射プリズム部からなる。第1の入射面36aは、LED21の中心、すなわち光軸側がLED21に近い距離とされ、LED21の外周側に向かうにしたがってLED21から離れた距離とする傾斜面である。この傾斜角度を適宜調整することで第1の入射面36aから入射する光の進行方向を調整する。この例では導光枝部31の中心軸とほぼ平行に進む屈折角となるように傾斜角度が設定されている。反射プリズム部は第2の入射面36bと傾斜反射面36cからなる。第2の入射面36bはLED素子21の光軸とほぼ平行とされ、LED素子21からの直射光の一部および第1の入射面36aによる反射光の一部が入射する。傾斜反射面36cは、第1の入射面36aと同様な傾き方向とした傾斜面とされている。第2の入射面36bに入射した光は、傾斜反射面36cに向かって進行し、傾斜反射面36cにて、導光枝部31の中心軸と平行な方向に向かって反射する反射面となる角度とする。傾斜反射面36cはスネルの法則に基づく内面反射を利用する反射面とするのが好適であるが、表面に反射膜を設けてもよい。すなわち、導光枝部31,32,33においては、できるだけ夫々の中心軸と平行に直進させることで内面反射が少なくなるようにしている。
Each light guide branch entrance surface 36 improves the coupling efficiency with the LEDs 21, 22, 23, adjusts the refraction direction with the center as a convex shape, and forms a reflecting prism portion around it, thereby tilting the central convex portion The device has been devised to solve the problem that the reflected light component increases and the internal capture decreases with the surface as it is.
Specifically, as shown in FIG. 11, the first LED 21 includes a first incident surface 36a corresponding to the center of the first LED 21 to the outer periphery of the element, and a reflecting prism portion on the outer peripheral side of the first incident surface 36a. The first incident surface 36a is an inclined surface whose center, that is, the optical axis side of the LED 21, is a distance close to the LED 21 and is a distance away from the LED 21 toward the outer peripheral side of the LED 21. The traveling direction of light incident from the first incident surface 36a is adjusted by appropriately adjusting the tilt angle. In this example, the inclination angle is set so that the refraction angle proceeds substantially parallel to the central axis of the light guide branch 31. The reflecting prism portion is composed of a second incident surface 36b and an inclined reflecting surface 36c. The second incident surface 36b is substantially parallel to the optical axis of the LED element 21, and a part of the direct light from the LED element 21 and a part of the reflected light from the first incident surface 36a are incident thereon. The inclined reflecting surface 36c is an inclined surface having the same inclination direction as that of the first incident surface 36a. The light incident on the second incident surface 36b travels toward the inclined reflecting surface 36c, and is an angle that becomes a reflecting surface that reflects on the inclined reflecting surface 36c in a direction parallel to the central axis of the light guide branch 31. And The inclined reflecting surface 36c is preferably a reflecting surface using internal reflection based on Snell's law, but a reflecting film may be provided on the surface. That is, in the light guide branches 31, 32, and 33, the internal reflection is reduced by moving straight in parallel with the respective central axes as much as possible.

導光枝部入射面36から入射したLEDからの光は、夫々の導光枝部31,32,33の内部を進んで導光分岐部34に進み、各LEDの発光色が混色される。導光幹部35の中心軸と、3個の導光枝部31,32,33の夫々の中心軸は、平行ではなく所定の傾き角をもって一体化されているので、導光幹部35内においては、導光幹部に入射した光は内面反射を繰返しながら進むことになる。
これにより、3個のLED21,22,23の照射光は略均一に混色される。
The light from the LED incident from the light guide branch entrance surface 36 travels through the light guide branches 31, 32, 33 to the light guide branch 34, and the emission colors of the LEDs are mixed. Since the central axis of the light guide trunk 35 and the central axes of the three light guide branches 31, 32, 33 are not parallel but are integrated with a predetermined inclination angle, in the light guide trunk 35, The light incident on the light guide trunk travels while repeating internal reflection.
Thereby, the irradiation light of three LED 21,22,23 is mixed substantially uniformly.

尚、導光幹部35および導光枝部31の断面形状は、できる限り円柱形状であることが好ましい。また射出成型にて導光部材を作成する場合は、内壁での反射損失を低減するため、射出成型時のパーティングラインを導光幹部35および導光枝部31の側面から避けるように配置する。導光幹部の長手に型抜き方向を設定すると、抜き勾配の処理で導光幹部の出射面の径が小さくなりすぎる様な場合には、側面にパーティングラインが形成される様にして、切削および研磨による仕上げ加工を施すことが好ましい。   The cross-sectional shapes of the light guide trunk 35 and the light guide branch 31 are preferably cylindrical as much as possible. When the light guide member is formed by injection molding, the parting line at the time of injection molding is arranged to be avoided from the side surfaces of the light guide trunk 35 and the light guide branch 31 in order to reduce reflection loss on the inner wall. If the die cutting direction is set in the longitudinal direction of the light guide trunk, if the diameter of the exit surface of the light guide trunk becomes too small due to the drafting process, the parting line is formed on the side surface and cutting is performed. It is preferable to perform finishing by polishing.

さらに導光枝部31、32、33による三つ股構成によってはアンダーカット処理の問題で、射出成型では成型できない場合、注型成型を用いて作成する。この場合の材料は、アクリルのほか透明エポキシ樹脂も光学特性上好ましい選択肢となる。   Furthermore, depending on the three-pronged structure by the light guide branches 31, 32, 33, if it cannot be molded by injection molding due to the problem of undercut processing, it is created using cast molding. In this case, a transparent epoxy resin as well as acrylic is a preferable option in terms of optical characteristics.

図12および図13は配光制御手段としての複数のプリズムを組み込んだ配光制御用レンズアレイ60の斜視図を示すものである。図12および図13に示す例は本発明にとって必ずしも必須の要件ではないが、前記導光部材用いた光学系に対して結合効率を考慮した配光制御手段で、より好ましい態様として説明するものである。図12が照明装置1の照射方向斜め前方から観た斜視図、図13が照明装置1の照射方向斜め後方から見た斜視図である。図13は配光制御用レンズアレイ60照明装置1では、3組のLED群25を設け、夫々のLED群25に対応して3個の導光部材30を設けており、配光制御レンズ60も、3個のプリズム部63を有している。プリズム部63は、配光制御用レンズアレイ60の後方に突出する略円錐台形状をなす。円錐台形状の円錐斜面の外周面64と、頂部に設けた凹部61を有する。3個のプリズム部63は、アクリル樹脂により成形され、別体に作製した樹脂円板部62の円形の開口に嵌合して固定することで一体化されている。円板部62に用いる樹脂は、導光部材30や各LED光源と導光枝部入射面36との結合部から漏れた混色不足の光は照明装置1から出射されないように、導光カーボンブラック等の遮光性顔料を分散させた添加しポリカーボネイト等の樹脂が好ましい。円板部62は、レンズ保持部材12に固定される。また、図12に示すごとく、必要に応じて、各々のプリズム部63の光出射面表面は成型による波打ち面65や、あるいはブラスト加工による粗面とし、より一層LED素子群25の混色度合いを高める措置が施される。   12 and 13 show perspective views of a light distribution control lens array 60 incorporating a plurality of prisms as light distribution control means. The examples shown in FIGS. 12 and 13 are not necessarily indispensable requirements for the present invention, but a light distribution control means that takes into account the coupling efficiency with respect to the optical system using the light guide member and will be described as a more preferable embodiment. is there. FIG. 12 is a perspective view of the illumination device 1 viewed from obliquely forward in the irradiation direction, and FIG. 13 is a perspective view of the illumination device 1 viewed obliquely from the rear of the irradiation direction. FIG. 13 shows a light distribution control lens array 60. In the lighting device 1, three sets of LED groups 25 are provided, and three light guide members 30 are provided corresponding to the respective LED groups 25. Also has three prism portions 63. The prism portion 63 has a substantially truncated cone shape protruding rearward of the light distribution control lens array 60. It has the outer peripheral surface 64 of the truncated cone-shaped cone slope, and the recessed part 61 provided in the top part. The three prism parts 63 are formed by acrylic resin, and are integrated by being fitted and fixed to a circular opening of a resin disk part 62 produced separately. The resin used for the disc portion 62 is light guide carbon black or the like so that light with insufficient color mixture leaked from the light guide member 30 or the coupling portion between each LED light source and the light guide branch entrance surface 36 is not emitted from the lighting device 1. A resin such as polycarbonate added with a light-shielding pigment dispersed therein is preferred. The disc part 62 is fixed to the lens holding member 12. As shown in FIG. 12, if necessary, the light exit surface of each prism portion 63 is a corrugated surface 65 formed by molding or a rough surface formed by blasting to further increase the degree of color mixing of the LED element group 25. Measures are taken.

プリズム部63と導光幹部出射面37は適宜の距離を隔てて配設され、プリズム部63は、導光幹部出射面37から出射した光が略平行光線として波打ち面65に向かうように設計されている。凹部61は、導光幹部35の外径よりも大きな内径とした井戸形状を形成する。凹部61の内径を導光幹部出射面37よりも大きくすることで、凹部61の内側の側面および凹部底面が出射面37から照射される光の主たる入射面となる。凹部底面は中央部を凸とした曲面である。凹部底面は、導光幹部出射面37と互いの中心が対向するように配設し、出射面37から出射した光が、凹部底面にて屈折して入光することで略平行光線としている。凹部側面は、出射面37から出射した光が、凹部側面にて屈折して入射した後、外周面64にて内面反射することで略平行光線としている。したがって、出射面37の大きさを小さくすれば、配光制御用レンズアレイ60との距離、レンズ径を小さくすることができる。   The prism part 63 and the light guide trunk part exit surface 37 are arranged at an appropriate distance, and the prism part 63 is designed so that the light emitted from the light guide trunk part exit surface 37 is directed to the corrugated surface 65 as a substantially parallel light beam. ing. The recess 61 forms a well shape having an inner diameter larger than the outer diameter of the light guide trunk 35. By making the inner diameter of the recess 61 larger than the light guide trunk exit surface 37, the side surface inside the recess 61 and the bottom surface of the recess become the main incident surface of the light irradiated from the exit surface 37. The bottom surface of the recess is a curved surface with a convex central portion. The bottom surface of the recess is disposed so that the center of the light guide trunk exit surface 37 faces each other, and the light emitted from the exit surface 37 is refracted and incident on the bottom surface of the recess to obtain a substantially parallel light beam. The side surface of the concave portion is made into a substantially parallel light beam by the light emitted from the emission surface 37 being refracted and incident on the side surface of the concave portion and then internally reflected by the outer peripheral surface 64. Therefore, if the size of the emission surface 37 is reduced, the distance from the light distribution control lens array 60 and the lens diameter can be reduced.

混色したいLED間の距離を短くして近接配置すれば、照射光が混色されるまでの距離を短くすることができる。面実装タイプのLEDを基板11上に搭載する場合、面実装タイプのLEDは小型ではあるものの、基板11上に実装する場合、隣接するLEDの発光中心間の距離は、反射枠や外部接続端子等を考慮して数mm程度離さなくてはならない。それゆえ隣接する導光枝部入射面36間の距離も同様に離れる。前記制御用レンズアレイ60を小さくする場合、換言すればプリズム部63を小さくする場合、導光部材30の出射面37を小さくする必要がある。出射面37を小さくすれば配光制御用レンズアレイ60との距離、レンズ径(プリズム部63の径)を小さくすることができる。   If the distance between the LEDs to be mixed is shortened and arranged close to each other, the distance until the irradiation light is mixed can be shortened. When a surface mount type LED is mounted on the substrate 11, the surface mount type LED is small, but when mounted on the substrate 11, the distance between the light emission centers of adjacent LEDs is the reflection frame or external connection terminal. In consideration of the above, it should be separated by several mm. Therefore, the distance between the adjacent light guide branch entrance surfaces 36 is also increased. When the control lens array 60 is reduced, in other words, when the prism portion 63 is reduced, it is necessary to reduce the exit surface 37 of the light guide member 30. If the emission surface 37 is made smaller, the distance from the light distribution control lens array 60 and the lens diameter (the diameter of the prism portion 63) can be made smaller.

また、導光幹部35内で光は内面反射を繰り返し、入射面から入射した光を均一に混合する。このとき、混色の均一度合いについて、円柱部の長さは円柱の径によって決まり、径に対して長ければ長いほど均一度合いが良好となる。   In addition, the light repeats internal reflection in the light guide trunk 35 and uniformly mixes the light incident from the incident surface. At this time, with respect to the degree of color mixing uniformity, the length of the cylindrical portion is determined by the diameter of the cylinder, and the longer the diameter, the better the degree of uniformity.

照明装置1を駆動する場合、市販のRGBLEDドライバを用いる方法が平易である。図14に駆動例を示す。図14の例におけるLEDドライバ101はナショナルセミコンダクター社のRGB LEDドライバ_LP5520である。LP5520は最大60mAのLED駆動が可能で、本照明装置に用いるようなシングルパッケージLEDの電流定格に相応しい。照明装置の三組のLED群は、例えばLED21、22、23の各発光色別に直列にLEDストリングが形成されている。LP5520はRGB三色LED用のドライバであるが、この発光色の組み合わせに限らず、種々の組み合わせが可能である。LP5520はMCU(マイクロコントロールユニット)103からSPIまたはI2Cインタフェースにより輝度制御され、内部メモリにより色調補正しながらRGB各LEDストリングのパルス定電流駆動が可能である。更に、LP5520はDC/DCコンバータ102の電圧出力を各LEDストリングの降下電圧に応じて最適値に制御する。   When driving the illumination device 1, a method using a commercially available RGB LED driver is easy. FIG. 14 shows an example of driving. The LED driver 101 in the example of FIG. 14 is an RGB LED driver_LP5520 manufactured by National Semiconductor. The LP5520 can drive an LED of up to 60 mA, and is suitable for the current rating of a single package LED used in the present lighting device. In the three LED groups of the lighting device, for example, LED strings are formed in series for each light emission color of the LEDs 21, 22, and 23. The LP5520 is a driver for RGB three-color LEDs. However, the present invention is not limited to this combination of light emission colors, and various combinations are possible. The LP5520 is controlled in luminance from an MCU (micro control unit) 103 by an SPI or I2C interface, and can drive a pulse constant current of each RGB LED string while correcting the color tone by an internal memory. Further, the LP5520 controls the voltage output of the DC / DC converter 102 to an optimum value according to the voltage drop of each LED string.

尚、LEDドライバおよびDC/DCコンバータは電磁妨害波を抑制するためにも、本照明装置の基板11にLEDとともに実装されることが好ましい。この場合、照明装置へは制御インタフェースおよび電源供給線がケーブル70として接続される。   Note that the LED driver and the DC / DC converter are preferably mounted together with the LEDs on the substrate 11 of the lighting device in order to suppress electromagnetic interference. In this case, a control interface and a power supply line are connected as a cable 70 to the lighting device.

ここまで説明した照明装置1は、複数の導光枝部をもつ棒状の導光部材を用い、各導光枝部と各LEDを個々に結合させて混色された光を出射させるようにしているため、照射面での色ムラはかなり軽減されるもののまだ不十分である。照射パターンを観察すると、図15に示すように、LED21〜23各々の照射パターン中心が照射光軸から各々オフセットし、スクリーンパターンには照射パターンエリヤ縁部にLED光色が十分の混合されない領域が僅かながら認められる。無論、実用域を無視して前記導光部材の導光幹部の長さを長くすることができれば、照射パターンエリヤ縁部の色ムラは更に軽減される筈であるが、それでは、LED使用の照明装置に求められるコンパクト性や利便性が失われてしまう。   Since the illuminating device 1 described so far uses a bar-shaped light guide member having a plurality of light guide branches, each light guide branch and each LED are individually coupled to emit mixed color light. Although color unevenness on the irradiated surface is considerably reduced, it is still insufficient. When the irradiation pattern is observed, as shown in FIG. 15, the center of the irradiation pattern of each of the LEDs 21 to 23 is offset from the irradiation optical axis, and the screen pattern has a region where the LED light color is not sufficiently mixed at the edge of the irradiation pattern area. Slightly recognized. Of course, if the length of the light guide trunk of the light guide member can be increased by ignoring the practical range, the color unevenness at the edge of the irradiation pattern area should be further reduced. The compactness and convenience required for the device are lost.

そこで本発明では、三つのLED群25において各々の照射パターンも遠視野領域にて互いに重畳して各照射パターンエリヤ縁部の光色混合不足領域において不足光色を互に補うことで色ムラ感を軽減するように、各LED群を構成するLEDを発光色毎に、各LED群間における相対位置条件を規定することした。以下、実施例によりLED配置の関する措置について具体的に説明をする。   Therefore, in the present invention, each of the irradiation patterns in the three LED groups 25 are also superimposed on each other in the far-field region, and the insufficient light color is compensated for in the insufficient light color mixing region at the edge of each irradiation pattern area. The relative position condition between the LED groups is defined for each light emission color of the LEDs constituting each LED group. Hereinafter, the measures regarding the LED arrangement will be specifically described by way of examples.

まず、図1は各LED群25の三個のLEDの配置関係を示すもので、三個のLEDは夫々の発光部中心が正三角形(破線にて表示)の頂点に位置するように隣接配置される。尚、点SはLED配置中心点を示すものである。そして図2に示すように基板11上で、三組のLED群25は各LED群25のLED配置中心点Sで結ばれた幾何模様が正三角形(破線にて表示)となるように分散配置される。尚、図2中央の点Pは、三組のLED群25の配置中心位置を示すものである。   First, FIG. 1 shows the arrangement relationship of three LEDs in each LED group 25. The three LEDs are arranged adjacent to each other so that the center of each light emitting portion is located at the apex of an equilateral triangle (indicated by a broken line). Is done. The point S indicates the LED arrangement center point. As shown in FIG. 2, the three LED groups 25 are distributed on the substrate 11 so that the geometric pattern connected by the LED arrangement center point S of each LED group 25 is an equilateral triangle (indicated by a broken line). Is done. In addition, the point P in the center of FIG. 2 indicates the arrangement center position of the three sets of LED groups 25.

このようなLED配置とすることにより、前述した導光部材30を組み合わせることで、プリズム部63から照射される照射パターンは、図15に示した三つのパターンエリヤ縁部に発生する光色混合不足領域の大きさが略均等で、光色混合不足領域のLED光色が、互いに略120°回転対象となってスクリーンに照射されるようになる。   By adopting such an LED arrangement, by combining the light guide member 30 described above, the irradiation pattern irradiated from the prism portion 63 causes insufficient light color mixing occurring at the three pattern area edges shown in FIG. The size of the area is substantially uniform, and the LED light colors in the light color mixing insufficient area are irradiated to the screen as being rotated by about 120 °.

ここで本発明では更に、各LED群25相互間の発光色ごとのLED位置関係を以下の条件(a)に従うこととする。
(a).各LED群25における各LEDは夫々互いの位置関係も含めて点Pに対し120°回転対象に配置される。従って、各LED群25における三つのLED(LED21,22,23)の点Pに対する相対位置関係は一定である。
但し、点Pに対する三つLEDの配置は限定するものではなく、例えば、図3は図2とは別の本LED配置則によるLED配置を示すもの(基板11は省略してある)で、図2においては、各LED群25のLED配置中心Sを結ぶ円の外側に各LED群25の中の一つのLEDが円の接線方向と平行に設置されているが、図3においては、前記円の内側に各LED群25の中の一つのLEDが円の接線方向と平行に設置されている。
Here, in the present invention, it is further assumed that the LED positional relationship between the LED groups 25 for each emission color is in accordance with the following condition (a).
(A). Each LED in each LED group 25 is arranged to be rotated by 120 ° with respect to the point P including the mutual positional relationship. Therefore, the relative positional relationship with respect to the point P of the three LEDs (LEDs 21, 22, 23) in each LED group 25 is constant.
However, the arrangement of the three LEDs with respect to the point P is not limited. For example, FIG. 3 shows an LED arrangement according to this LED arrangement rule different from FIG. 2 (the substrate 11 is omitted). 2, one LED in each LED group 25 is installed in parallel to the tangential direction of the circle outside the circle connecting the LED arrangement centers S of the LED groups 25. In FIG. One LED in each LED group 25 is installed in parallel to the tangential direction of the circle.

図1乃至図3に示したように基板11部品搭載面上の三組のLED群25の限定的な配置と、前述した条件(a)に従うように各LED群25相互間における発光色ごとのLED位置関係を定めることによって、三組のLED群25夫々からの照射パターンにおけるパターンエリヤ縁部に発生する各LED光色ごとの光色混合不足領域の配置は、三組の照射パターンが遠視野領域にて重畳した時の不足色を補完しあうような配置となる。   As shown in FIGS. 1 to 3, the limited arrangement of the three sets of LED groups 25 on the substrate 11 component mounting surface and the light emission colors between the LED groups 25 according to the condition (a) described above. By determining the LED positional relationship, the arrangement of the light color mixing insufficient region for each LED light color generated at the edge of the pattern area in the irradiation pattern from each of the three sets of LED groups 25 is determined so that the three irradiation patterns are in the far field. The arrangement is such that the insufficient colors when they are superimposed in the region are complemented.

図4に各LED群25相互間における発光色ごとのLED位置関係が前述した条件(a)に従う場合での、基板11部品搭載面上の三組のLED群25におけるLED21,22,23の位置関係とスクリーンへの照射されるLED21,22,23各々の照射パターンの位置関係を模式的に示す。図4において三組のLED群二十五による照射パターンA,B,Cは互いに離れて図示されているが、照明装置として遠視野領域を照射した場合、前記照射パターンA,B,Cは重畳するように観測される。
図15で説明した各照射パターン縁部の光色混合不足領域は、各照射パターンA,B,Cが重畳し、互いの光色混合不足領域の不足光色を補うことで、その結果として本照明装置からの各照射パターンは統合され、照射パターンエリヤ縁部の色ムラ感が軽減される。
FIG. 4 shows the positions of the LEDs 21, 22, and 23 in the three sets of LED groups 25 on the board 11 component mounting surface when the LED positional relationship between the respective LED groups 25 is in accordance with the condition (a) described above. The relationship and the positional relationship of the irradiation patterns of the LEDs 21, 22, and 23 irradiated on the screen are schematically shown. In FIG. 4, the irradiation patterns A, B, and C by the three groups of LED groups 25 are shown apart from each other, but when the far field region is irradiated as an illumination device, the irradiation patterns A, B, and C are superimposed. Observed to do.
In the light color mixing insufficient region at each irradiation pattern edge described in FIG. 15, the irradiation patterns A, B, and C are overlapped to compensate for the insufficient light color of the light color mixing insufficient region. Each irradiation pattern from the illumination device is integrated, and the color unevenness at the edge of the irradiation pattern area is reduced.

ここで確認の為に以下のような構成にて、前述のLED配置に関する措置を実施した照明装置1を作成して、効果の確認を行った。
■使用LED PLCCタイプ,赤色、青色、緑色の三色
■各LED群25のLED配置中心を結ぶ円の直径 40mm
■導光部材 直径4mm 導光幹部長さ 30mm
■配光制御用レンズ径 24mm
■配光角 約40°
■被照射面〜照明装置光出射面距離 1.2m
照射パターンエリヤ縁部で感じられていた色ムラ感は、大幅に改善された結果となった。尚、配光制御用レンズによる配光は40°とあえて挟配光の照明装置としては、色ムラ感を顕著に確認できることを意図したものである。配光を広くすれば色ムラ感はさらに抑制できることは明らかである。
Here, for confirmation, the lighting device 1 in which the measures related to the LED arrangement described above were performed was created with the following configuration, and the effect was confirmed.
■ LED used: PLCC type, red, blue, green
■ 40mm diameter circle connecting the LED center of each LED group 25
■ Light guide member Diameter 4mm Light guide trunk length 30mm
■ Light distribution control lens diameter 24mm
■ Light distribution angle about 40 °
■ Distance from irradiated surface to illumination device light exit surface 1.2m
The color unevenness felt at the edge of the irradiation pattern area was greatly improved. Incidentally, the light distribution by the light distribution control lens is intended to be 40 [deg.], And it is intended that the color unevenness can be remarkably confirmed as an illumination device with a narrow light distribution. It is clear that the color unevenness can be further suppressed by widening the light distribution.

本発明における照射パターンエリヤ縁部の色ムラ感が軽減の効果は夫々のLED群を構成する各シングルパッケージLEDの各発光色と輝度が十分に均等に調整されていることが必要要件となる。従って、前述のように、個々のシングルパッケージLEDは基板11への実装段階で少なくとも、出力ランクと発光スペクトル分布については、正確なビンニングに基づいて選択される。これは、異なる発光色のLEDチップを一つのパッケージに組み込んだ所謂多色マルチチップパッケージによるアセンブリ工程ではLEDチップ相互の輝度比のばらつきなどが障害となり、容易に実現できないものである。   In order to reduce the color unevenness at the edge of the irradiation pattern area in the present invention, it is necessary that the emission colors and the luminances of the single package LEDs constituting the respective LED groups are adjusted sufficiently evenly. Therefore, as described above, individual single package LEDs are selected based on accurate binning at least in terms of output rank and emission spectrum distribution at the stage of mounting on the substrate 11. This is not easily realized in an assembly process using a so-called multi-color multi-chip package in which LED chips of different light emission colors are incorporated in one package, because the variation in luminance ratio between LED chips becomes an obstacle.

遠視野領域にて、三つのLED群25各々の照射パターンも互いに重畳して各照射パターンエリヤ縁部の光色混合不足領域において互に不足光色を補うことが可能となるLED位置関係は、前述の条件(a)による位置関係の他に、次の条件(b)も考えられる。
(b).各LED群25における三個のLEDの位置関係は、条件(a)で定められた各LED群における三個のLEDの位置関係を保持して分散配置された三組のLED群25において、任意の二か所のLED群25の配置が、各々LEDの位置関係を保持したまま平行移動によって置き換えられたものに等しい。
In the far-field region, the LED positional relationship in which the irradiation patterns of the three LED groups 25 are superimposed on each other to compensate for the insufficient light color in the light color mixing insufficient region at the edge of each irradiation pattern area, In addition to the positional relationship based on the above condition (a), the following condition (b) is also conceivable.
(B). The positional relationship of the three LEDs in each LED group 25 is arbitrary in the three groups of LED groups 25 that are dispersedly arranged while maintaining the positional relationship of the three LEDs in each LED group defined in the condition (a). The arrangement of the two LED groups 25 is equal to that of the LED group 25 replaced by the parallel movement while maintaining the positional relationship of the LEDs.

図5に本条件(b)に従う三組のLED群25における各LEDの位置関係の例を示す。図の例は、条件(a)によって各LEDの位置が決定済みのX、Y、Zと符号をつけた三組のLED群25が、条件(b)によりZがYの位置へ、またYがZの位置へと平行移動して置き換えられた様子を示している。   FIG. 5 shows an example of the positional relationship of each LED in the three sets of LED groups 25 according to this condition (b). In the example shown in the figure, three LED groups 25 having the signs X, Y, and Z in which the positions of the respective LEDs have been determined according to the condition (a) are changed to the position where Z is Y according to the condition (b). Shows a state of being translated and moved to the Z position.

条件(b)に従うLED配置としても、三つのLED群25から照射される三つの照射パターンは、
各々のパターンエリヤ縁部に発生する光色混合不足領域のLED光色が、互いに略120°回転対象となってスクリーンに照射される。従って、条件(a)の場合と同様に照射パターンエリヤ縁部の色ムラ感が軽減される。
Even as the LED arrangement according to the condition (b), the three irradiation patterns irradiated from the three LED groups 25 are:
The LED light colors in the light color mixture insufficient region generated at the edge portions of the pattern areas are irradiated to the screen as rotation targets of about 120 °. Accordingly, as in the case of the condition (a), the color unevenness at the edge of the irradiation pattern area is reduced.

これまで照明装置1は3個のLEDで形成したLED群が基板上に三組搭載された構成で説明してきたが、本発明による照明装置1および色ムラ低減のためのLED配置は、前述の構成に限定されるものではない。   Until now, the lighting device 1 has been described with a configuration in which three LED groups formed of three LEDs are mounted on a substrate. However, the lighting device 1 according to the present invention and the LED arrangement for reducing color unevenness are described above. The configuration is not limited.

例えば、4個のLEDを使用した照明装置の場合、LED配置に関しては、3個のLEDで形成した3組のLED群を用いた照明装置の場合と同様に、4個のLEDで形成したLED群が基板上に4組設けられ、各LED群のLED配置中心点Sの位置は正方形の頂点の位置に一致するように配置される。
また、各LED群における4個のLEDのLED群の分散中心点Pに対する相対位置関係を規定する条件(a)、(b)は
(a)各LED群における4個のLEDは夫々互いの位置関係も含めてLED群の分散中心点Pに対し[90]°回転対象に配置される。従って、各LED群における4個のLEDの点Pに対する相対位置関係は一定である。
(b)各LED群における4個のLEDの位置関係は、条件(a)で定められた各LED群における4個のLEDの位置関係を保持して分散配置された4組のLED群において、少なくとも任意の二か所以上のLED群の配置が、各々LEDの位置関係を保持したまま平行移動によって置き換えられたものに等しい。
となる。
そして各LED群の夫々は4本の導光枝部を有した導光部材と組み合わされ、各LED郡中の夫々のLEDは導光枝部の光入射面と光学的に結合される。そして4個の導光部材の導光幹部の光出射面は、4個のプリズムを組み込んだ配光制御用レンズアレイと光学的に結合されて照明装置が構成される。
For example, in the case of a lighting device using four LEDs, the LED arrangement is the same as in the case of a lighting device using three sets of LED groups formed by three LEDs, and an LED formed by four LEDs. Four groups are provided on the substrate, and the LED arrangement center point S of each LED group is arranged to coincide with the position of the apex of the square.
In addition, the conditions (a) and (b) for defining the relative positional relationship of the four LEDs in each LED group with respect to the dispersion center point P of the LED group are (a) the four LEDs in each LED group are positioned relative to each other. Including the relationship, the LED group is arranged to be rotated by [90] ° with respect to the dispersion center point P of the LED group. Therefore, the relative positional relationship of the four LEDs in each LED group with respect to the point P is constant.
(B) The positional relationship of the four LEDs in each LED group is as follows. In the four sets of LED groups that are dispersedly arranged while maintaining the positional relationship of the four LEDs in each LED group defined in the condition (a), Arrangement of at least two arbitrary LED groups is equivalent to the arrangement replaced by translation while maintaining the positional relationship of the LEDs.
It becomes.
Each LED group is combined with a light guide member having four light guide branches, and each LED in each LED group is optically coupled to the light incident surface of the light guide branch. The light emitting surfaces of the light guide trunks of the four light guide members are optically coupled to a light distribution control lens array incorporating four prisms to constitute an illumination device.

例えば、LED群を構成するLEDを4個とし、LEDの発光色を光の三原色である赤色,緑色及び青色の他に黄色を加えることにより、欠落するスペクトル領域が補完され一般照明としてより演色性の良好な照明装置とすることができる。   For example, the number of LEDs constituting the LED group is four, and by adding yellow in addition to the three primary colors red, green, and blue, the missing spectral region is complemented and the color rendering is more general as a general illumination. It can be set as the favorable illuminating device.

更に、6色のLEDを使用した照明装置の場合でも、6個のLEDで形成したLED群が基板上に6組設けられ、各LED群のLED配置中心点Sの位置は正六角形の頂点の位置に一致するように配置され、前述の条件(a)、(b)は
(a)各LED群における6個のLEDは夫々互いの位置関係も含めてLED群の分散中心点Pに対し[60]°回転対象に配置される。従って、各LED群における6個のLEDの点Pに対する相対位置関係は一定である。
(b)各LED群における6個のLEDの位置関係は、条件(a)で定められた各LED群における4個のLEDの位置関係を保持して分散配置された6組のLED群において、少なくとも任意の二か所以上のLED群の配置が、各々LEDの位置関係を保持したまま平行移動によって置き換えられたものに等しい。
となる。その他、導光部材および配光制御用レンズアレイとの組み合わせは、3個のLEDを用いたLED群を用いる場合や4個のLEDを用いたLED群を用いる場合と同様である。
Furthermore, even in the case of a lighting device using six-color LEDs, six LED groups formed of six LEDs are provided on the substrate, and the LED arrangement center point S of each LED group is located at the apex of a regular hexagon. The above-mentioned conditions (a) and (b) are (a) the six LEDs in each LED group with respect to the dispersion center point P of the LED group including the mutual positional relationship [ 60] ° is arranged for rotation. Accordingly, the relative positional relationship of the six LEDs in each LED group with respect to the point P is constant.
(B) The positional relationship of the six LEDs in each LED group is as follows. In the six sets of LED groups dispersedly arranged while maintaining the positional relationship of the four LEDs in each LED group defined in the condition (a), Arrangement of at least two arbitrary LED groups is equivalent to the arrangement replaced by translation while maintaining the positional relationship of the LEDs.
It becomes. In addition, the combination of the light guide member and the light distribution control lens array is the same as the case of using an LED group using three LEDs or the case of using an LED group using four LEDs.

例えば、三原色のLEDに橙色,黄色,青緑色のLEDを加えて6色とすることで、色ムラ感が少なく、平均演色評価係数Raの高い照明装置が実現可能である。一般的に4色や6色のLEDを用いて良好に混色された光を得るためには、LEDの配置や混色方法が困難となり、現実的ではないが、照明装置1の導光部材を用いた光学構造と本発明による色ムラ低減効果により、具現化が可能である。   For example, by adding orange, yellow, and blue-green LEDs to the three primary color LEDs to obtain six colors, it is possible to realize an illumination device that has less color unevenness and a high average color rendering evaluation coefficient Ra. In general, in order to obtain light having a good color mixture using LEDs of four colors or six colors, the arrangement of the LEDs and the color mixing method become difficult, which is not practical, but the light guide member of the lighting device 1 is used. The present invention can be realized by the optical structure and the color unevenness reduction effect of the present invention.

[ LED配置のまとめ ]
以上のことから本発明のLED配置に関する特徴を、n個のLEDで形成したLED群を用いた場合に拡張すれば、
n個のLEDが夫々の発光部中心を正n角形の頂点に位置するように基板上に隣接配置されて、そのn個のLEDで構成されるLED群がn組あり、さらに、n組のLED群はLED配置中心点Sが正n角形の頂点に位置するように分散配置されており、
各LED群におけるn個のLEDは夫々互いの位置関係が以下の条件(a)あるいは(b)を満たすように定められている。
(a)各LED群におけるn個のLEDは夫々互いの位置関係も含めてLED群の分散中心点Pに対し[2π/n]°回転対象に配置される。従って、各LED群におけるn個のLEDの点Pに対する相対位置関係は一定である。
(b)各LED群におけるn個のLEDの位置関係は、条件(a)で定められた各LED群におけるn個のLEDの位置関係を保持して分散配置されたn組のLED群において、少なくとも任意の二か所以上のLED群の配置が、各々LEDの位置関係を保持したまま平行移動によって置き換えられたものに等しい。
と包括的に表現できる。
尚、この場合、照明装置における導光部材の配置構成の表現も
n個の導光部材が前記LED群夫々にLEDの照射方向前方に配設されており、前記導光部材は、1本の棒状の導光幹部と、導光幹部の一方の端部に接続する導光分岐部と、導光分岐部に接続するn本の導光枝部を備え、
n本の導光枝部は該導光幹部の中心軸に対して導光分岐部まで均等に傾斜されて、前記LED群を構成するn個のLED夫々の発光部中心に入射面の中心が一致するように対抗し、
前記導光幹部の他方の端部は出射面として、配光制御手段の入射部に対抗するようにして構成されてLEDの各発光色を混色して照射する配置構成、
とまとめることができる。
[Summary of LED layout]
From the above, if the characteristics related to the LED arrangement of the present invention are extended to the case where an LED group formed of n LEDs is used,
There are n LED groups arranged adjacent to each other on the substrate so that the center of each light emitting portion is located at the apex of a regular n-gon, and there are n sets of LED groups composed of the n LEDs. The LED group is dispersedly arranged such that the LED arrangement center point S is located at the apex of the regular n-gon,
The n LEDs in each LED group are determined so that their positional relationship satisfies the following condition (a) or (b).
(A) The n LEDs in each LED group, including the positional relationship with each other, are arranged to rotate by [2π / n] ° with respect to the dispersion center point P of the LED group. Accordingly, the relative positional relationship of the n LEDs in each LED group with respect to the point P is constant.
(B) The positional relationship of the n LEDs in each LED group is the n sets of LED groups that are dispersedly arranged while maintaining the positional relationship of the n LEDs in each LED group defined in the condition (a). Arrangement of at least two arbitrary LED groups is equivalent to the arrangement replaced by translation while maintaining the positional relationship of the LEDs.
And can be expressed comprehensively.
In this case, in the expression of the arrangement configuration of the light guide member in the illumination device, n light guide members are arranged in front of the LED irradiation direction in each of the LED groups, and the light guide member is a single light guide member. A rod-shaped light guide trunk, a light guide branch connected to one end of the light guide trunk, and n light guide branches connected to the light guide branch,
The n light guide branches are uniformly inclined to the light guide branch with respect to the central axis of the light guide trunk, and the center of the incident surface coincides with the center of the light emitting part of each of the n LEDs constituting the LED group. To counter,
An arrangement configuration in which the other end of the light guide trunk is configured to oppose the incident portion of the light distribution control means as the exit surface, and the light emission colors of the LEDs are mixed and irradiated,
Can be summarized.

[ 面照明装置への応用 ]
本発明を用いた照明装置1は、照明装置1を一つの構成単位として、発光面を平面上に複数個配置して混色性、色バラツキの少ない色調可変型面状照明装置を構築することが可能である。
[Application to surface lighting equipment]
The illuminating device 1 using the present invention can construct a color tone variable type planar illuminating device with a small color mixing property and color variation by arranging a plurality of light emitting surfaces on a plane with the illuminating device 1 as one structural unit. Is possible.

図16は例えば前述までRGB各発光色のLEDによる複数個の照明装置1を用いて千鳥配置した面状照明装置2で、面状照明装置2の照射方向からみたLED配置のみを明示したもので(基板11の外形を省略している)、LED群25を構成する各LEDをRGBで符号を付している。図16に示すごとく、面状照明装置2では一つの照明装置1内のLED群25とこれに隣接する別の一つあるいは二つの照明装置1内のLED群25において、各照明装置1間を隔てて接近する三組のLED群25の各LED配置中心を結んで描かれる三角形が正三角となるように配置され、前記正三角形は一つの照明装置1の中の三組のLED群25のLED配置中心を結んで描かれる正三角形に対して幾何的に合同の関係にあり、複数の照明装置1はそれら正三角形が平面充填される様に配置されている。   FIG. 16 shows, for example, a planar illumination device 2 arranged in a zigzag manner using a plurality of illumination devices 1 of LEDs of RGB colors, and only the LED arrangement viewed from the irradiation direction of the planar illumination device 2 is clearly shown. (The external shape of the board | substrate 11 is abbreviate | omitted.) Each LED which comprises the LED group 25 is attached | subjected the code | symbol in RGB. As shown in FIG. 16, in the planar illumination device 2, the LED group 25 in one illumination device 1 and the LED group 25 in another one or two illumination devices 1 adjacent to the LED group 25 are connected between the illumination devices 1. The triangles drawn by connecting the LED arrangement centers of the three groups of LED groups 25 approaching apart from each other are arranged to be regular triangles, and the regular triangles of the three groups of LED groups 25 in one lighting device 1 are arranged. It has a geometrically congruent relationship with the equilateral triangle drawn by connecting the LED arrangement centers, and the plurality of illumination devices 1 are arranged so that the equilateral triangles are filled in a plane.

すなわち、図16の面状照明装置2に用いられる各照明装置1内のLED群25のLED配置中心を結んで描かれる三角形をD、二つの照明装置1内のLED群25において各照明装置1間を隔てて接近する三組のLED群25の各LED配置中心を結んで描かれる三角形をE、更に隣接する三つの照明装置1内のLED群25において各照明装置1間を隔て,三つの照明装置1の中央付近で接近する三組のLED群25の各LED配置中心を結んで描かれる三角形をF、とすれば、
三角形D,E、Fは全て正三角形で、かつ 三角形D ≡ 三角形E ≡ 三角形F
の関係である。
That is, a triangle drawn by connecting the LED arrangement centers of the LED groups 25 in each illumination device 1 used in the planar illumination device 2 in FIG. 16 is D, and each illumination device 1 in the LED groups 25 in the two illumination devices 1 is D. E is a triangle drawn by connecting the LED arrangement centers of three groups of LED groups 25 that are close to each other and three LED groups 25 in three adjacent lighting devices 1 are separated from each other by three lighting devices 1. If the triangle drawn by connecting the LED arrangement centers of the three LED groups 25 approaching near the center of the lighting device 1 is F,
Triangles D, E, and F are all equilateral triangles, and triangle D ≡ triangle E ≡ triangle F
It is a relationship.

ここで前記三角形Dを構成する位置にあるLED群25は、一つの照明装置1を構成するものであり、前述のLED位置関係に関する条件(a)または条件(b)に従っている。
そして前記三角形Eを構成する位置にあるLED群25のLED位置関係に関する条件は、前記三角形Dを構成するLED群のLED位置関係が条件(a)に従っている場合、条件(b)に従い、また前記三角形Dを構成するLED群のLED位置関係が条件(b)に従っている場合、条件(a)に従うものとなる。
さらに前記三角形Fを構成する位置にあるLED群25のLED位置関係に関する条件は、前記三角形Dを構成するLED群のLED位置関係の条件と同じとなる。
Here, the LED group 25 at the position constituting the triangle D constitutes one lighting device 1 and complies with the condition (a) or the condition (b) related to the LED positional relationship described above.
And the condition regarding the LED positional relationship of the LED group 25 at the position constituting the triangle E is in accordance with the condition (b) when the LED positional relationship of the LED group constituting the triangle D is in accordance with the condition (a), and When the LED positional relationship among the LED groups constituting the triangle D conforms to the condition (b), it conforms to the condition (a).
Furthermore, the conditions regarding the LED positional relationship of the LED group 25 at the position constituting the triangle F are the same as the conditions of the LED positional relationship of the LED group constituting the triangle D.

従って、本面状照明装置2においては、構成単位である照明装置1を前述のように配置することで、照明装置1に含まれる三つLED群25のみに限らず、各照明装置1を隔てて前記正三角形配置を構成する任意の三つのLED群25は、LED位置関係が前述の条件(a)または条件(b)の何れかに従うこととなり、遠視野領域にて各照射パターンも互いに重畳して各照射パターンエリヤ縁部の光色混合不足領域において互に不足光色を補うことが可能となる。
これにより照明装置1を一つの構成単位として、発光面を平面上に複数個配置した場合において、各照明装置1の配置間で僅かに存在する色偏差が抑制され、混色性、色バラツキの少ない照明光を照射することが可能な色調可変型面状照明装置が構築可能となる。
Therefore, in the planar lighting device 2, the lighting device 1, which is a structural unit, is arranged as described above, so that the lighting devices 1 are not limited to the three LED groups 25 included in the lighting device 1. Thus, the arbitrary three LED groups 25 constituting the equilateral triangle arrangement have the LED positional relationship according to either the above-mentioned condition (a) or condition (b), and the irradiation patterns are also superimposed on each other in the far field region. Thus, it becomes possible to compensate for the insufficient light color in the light color mixing insufficient region at the edge of each irradiation pattern area.
As a result, when a plurality of light emitting surfaces are arranged on a plane with the lighting device 1 as one structural unit, a slight color deviation between the arrangements of the lighting devices 1 is suppressed, and there is little color mixing and color variation. It is possible to construct a color tone variable surface illumination device that can irradiate illumination light.

正方形および正六角形は平面充填可能であるため、実施例5の平面照明装置2の場合と同様に、4個のLEDで形成した4組LED群で構成される照明装置や、6個のLEDで形成した6組LED群で構成される照明装置が、前述した本発明による照明装置の特徴に従う構成であれば、これらの照明装置を構成単位として、複数個の発光面を千鳥配置して混色性、色バラツキの少ない色調可変型面状照明装置を構築することが可能である。   Since squares and regular hexagons can be filled in a plane, as in the case of the flat illumination device 2 of the fifth embodiment, the illumination device is composed of four LED groups formed by four LEDs, or six LEDs. If the illuminating device composed of the formed six LED groups is configured according to the characteristics of the illuminating device according to the present invention described above, a plurality of light emitting surfaces are arranged in a staggered manner with these illuminating devices as a structural unit, and color mixing properties Therefore, it is possible to construct a color tone variable surface illumination device with little color variation.

図17は例えばRGBY各発光色のLED4色使用よる照明装置1’を複数個用いた面状照明装置2’で、面状照明装置2’の照射方向からみたLED配置のみを明示したもので(LEDを搭載した基板の外形を省略している)、図16の場合と同様に、面状照明装置2’では一つの照明装置1’内のLED群25’とこれに隣接する別の一つあるいは二つの照明装置1’内のLED群25’において、各照明装置1’間で接近する四組のLED群25’の各LED配置中心を結んで描かれる四角形が正方形となるように配置され、前記正方形は一つの照明装置1’の中の四組のLED群25’のLED配置中心を結んで描かれる正方形に対して幾何的に合同の関係にあり、複数の照明装置1’はそれら正方形が平面充填される様に配置されている。   FIG. 17 shows, for example, a planar illumination device 2 ′ using a plurality of illumination devices 1 ′ using four colors of RGBY emission LEDs, and clearly shows only the LED arrangement as seen from the irradiation direction of the planar illumination device 2 ′ ( As in the case of FIG. 16, in the planar illumination device 2 ′, the LED group 25 ′ in one illumination device 1 ′ and another one adjacent to the LED group 25 ′ are omitted. Or in LED group 25 'in two illuminating devices 1', it arrange | positions so that the square drawn by connecting each LED arrangement center of four groups LED group 25 'which approaches between each illuminating device 1' may become a square. The square is geometrically congruent with the square drawn by connecting the LED arrangement centers of the four LED groups 25 ′ in one lighting device 1 ′, and the plurality of lighting devices 1 ′ Arranged so that the square is flat filled There.

ここで、図17の面状照明装置2’に用いられる各照明装置1’内のLED群25’のLED配置中心を結んで描かれる四角形をD’、二つの照明装置1内のLED群25’において各照明装置1’間で接近する四組のLED群25’の各LED配置中心を結んで描かれる四角形をE’、三つの照明装置1’内のLED群25において各照明装置1’間で各照明装置1’間を隔て、三つの照明装置1’の中央付近で接近する四組のLED群25’の各LED配置中心を結んで描かれる四角形をF’、とすれば、
四角形D’,E’、F’は全て正方形で、かつ 四角形D’ ≡ 四角形E’ ≡ 四角形F’
の関係である。
Here, D ′ is a quadrilateral drawn by connecting the LED arrangement centers of the LED groups 25 ′ in each illumination device 1 ′ used in the planar illumination device 2 ′ of FIG. 17, and the LED groups 25 in the two illumination devices 1. A square drawn by connecting the LED arrangement centers of the four LED groups 25 'approaching between the respective lighting devices 1' in E ', and each lighting device 1' in the LED groups 25 in the three lighting devices 1 '. F ′, a quadrilateral drawn by connecting each LED arrangement center of four groups of LED groups 25 ′ that are close to each other in the vicinity of the center of the three lighting devices 1 ′, with the lighting devices 1 ′ interposed therebetween.
The squares D ′, E ′, and F ′ are all squares, and the square D ′ ≡ the square E ′ ≡ the square F ′
It is a relationship.

同様に、LED6色使用による照明装置を複数個用いた面状照明装置も可能である。ただし、平面充填される正六角形を形成するのは構成単位となる個々の照明装置のLED群の各LED配置中心を結んで描かれるものと、三つの照明装置間を隔て、三つの照明装置の中央付近で接近する六組のLED群の各LED配置中心を結んで描かれるものの二通りのみとなる。尚、正六角形を平面充填されたパターンは所謂、亀甲柄となるが、図示による説明は、内容が重複するため省略する。   Similarly, a planar lighting device using a plurality of lighting devices using six colors of LEDs is also possible. However, the regular hexagon that is filled in the plane is formed by connecting the LED arrangement centers of the LED groups of the individual lighting devices as the structural unit, and the three lighting devices, with the three lighting devices being separated from each other. There are only two types of what is drawn by connecting the LED arrangement centers of the six LED groups approaching near the center. Note that the pattern in which regular hexagons are plane-filled is a so-called turtle shell pattern.

上記実施例におけるLED発光色の組み合わせは単なる例示にすぎない。例えば、6個のLEDを使用したLED群が6組で配置されて構成される照明装置において、一つ置きに3組のLED群と別の3組のLED群のLED発光色の組み合わせを変えて夫々混光により実現する光色範囲を二様としたり、LED発光色が全て色温度の異なる疑似白色LEDとしたものなども本発明に包含される。 The combinations of LED emission colors in the above embodiments are merely examples. For example, in an illuminating device configured by arranging six LED groups using six LEDs, the combination of the LED emission colors of three LED groups and another three LED groups is changed every other group. In addition, the present invention also includes two types of light color ranges that are realized by mixed light, or pseudo white LEDs having different color temperatures for all LED emission colors.

本発明に係る照明装置は、色温度可変照明装置として一般照明や演出照明の他、ディスプレイや装飾用のカラー照明などの用途にも適用できる。   The illuminating device according to the present invention can be applied as a color temperature variable illuminating device to applications such as display and decorative color illumination in addition to general illumination and effect illumination.

1 照明装置
2 面照明装置
11 基板
12 レンズ保持部材
20 光源
21 第1のLED
22 第2のLED
23 第3のLED
25 LED素子群
30 導光部材
31 第1の導光枝部
32 第2の導光枝部
33 第3の導光枝部
34 導光分岐部
35 導光幹部
36 導光枝部入射面
37 導光幹部出射面
40 筐体
50 放熱器
60 配光制御用レンズアレイ
63 プリズム部
64 外周面
65 波打ち面
70 ケーブル
101 LEDドライバ
102 DC/DCコンバータ
103 MCU
DESCRIPTION OF SYMBOLS 1 Illuminating device 2 Surface illuminating device 11 Board | substrate 12 Lens holding member 20 Light source 21 1st LED
22 Second LED
23 Third LED
25 LED element group 30 Light guide member 31 First light guide branch 32 Second light guide branch 33 Third light guide branch 34 Light guide branch 35 Light guide trunk 36 Light guide branch incident surface 37 Light guide trunk exit surface 40 Housing 50 Radiator 60 Lens array for light distribution control 63 Prism unit 64 Outer peripheral surface 65 Wave surface 70 Cable 101 LED driver 102 DC / DC converter 103 MCU

Claims (2)

nを3以上の整数として、
n個の互いに異なる発光波長分布特性を有するLED夫々の発光部中心を正n角形の頂点に位置するように基板上に隣接配置されて1組のLED群を形成し、
前記基板上には前記編成のLED群がn組存在し、n組のLED群はLED配置中心点Sが正n角形の頂点に位置するように分散配置されており、
n個の導光部材が前記LED群夫々にLEDの照射方向前方に配設されており、前記導光部材は、1本の棒状の導光幹部と、導光幹部の一方の端部に接続する導光分岐部と、導光分岐部に接続するn本の導光枝部を備え、
n本の導光枝部は該導光幹部の中心軸に対して導光分岐部まで均等に傾斜されて、前記LED群を構成するn個のLED夫々の発光部中心に入射面の中心が一致するように対抗し、
前記導光幹部の他方の端部は光出射面として、配光制御手段の入射部に対抗するようにして構成されることで各LEDの発光色を混色して照射する方式のLED照明装置であり、
各LED群におけるn個のLEDは夫々互いの位置関係が以下の条件(a)あるいは(b)を満たすように設定されたことを特徴とするLED照明装置。
(a)各LED群におけるn個のLEDは夫々互いの位置関係も含めてLED群の分散中心点Pに対し[2π/n]°回転対象に配置される。
(b)各LED群におけるn個のLEDの位置関係は、条件(a)で定められた各LED群におけるn個のLEDの位置関係を保持して分散配置されたn組のLED群において、少なくとも任意の二か所以上のLED群の配置が、各々LEDの位置関係を保持したまま平行移動によって置き換えられたものに等しい。
n is an integer of 3 or more,
A set of LEDs is formed by being adjacently arranged on the substrate so that the center of the light emitting portion of each of the n LEDs having different emission wavelength distribution characteristics is located at the apex of the regular n-gon,
On the substrate, there are n sets of LED groups of the organization, and the n sets of LED groups are distributed and arranged so that the LED arrangement center point S is located at the apex of the regular n-gon,
n light guide members are arranged in front of the LED irradiation direction in each of the LED groups, and the light guide member is connected to one bar-shaped light guide trunk and one end of the light guide trunk. And n light guide branches connected to the light guide branch,
The n light guide branches are uniformly inclined to the light guide branch with respect to the central axis of the light guide trunk, and the center of the incident surface coincides with the center of the light emitting part of each of the n LEDs constituting the LED group. To counter,
The other end portion of the light guide trunk portion is configured to oppose the incident portion of the light distribution control means as a light exit surface, and is an LED illumination device of a type that irradiates the light emission colors of each LED by mixing colors. Yes,
An LED lighting device, wherein the n LEDs in each LED group are set so that their positional relationship satisfies the following condition (a) or (b):
(A) The n LEDs in each LED group, including the positional relationship with each other, are arranged to rotate by [2π / n] ° with respect to the dispersion center point P of the LED group.
(B) The positional relationship of the n LEDs in each LED group is the n sets of LED groups that are dispersedly arranged while maintaining the positional relationship of the n LEDs in each LED group defined in the condition (a). Arrangement of at least two arbitrary LED groups is equivalent to the arrangement replaced by translation while maintaining the positional relationship of the LEDs.
請求項1によるLED照明装置を構成単位として複数個を千鳥格子状に光照射面が同一平面状となるように配置してなる面状照明装置において、
nを3、4および6として
該LED照明装置に分散配置されたn組のLED群のLED配置中心点Sを結ぶ正n角形と、
隣接しあう二つまたは三つのLED照明装置間を隔てて、各LED照明装置間の中央付近で接近するn組のLED群のLED配置中心点Sを結ぶ正n角形が合同の関係にあり、其れ等の正n角形が平面充填されるように各LED照明装置間の配置間隔が決定されることを特徴とした面状照明装置。
In the planar illumination device formed by arranging a plurality of LED illumination devices according to claim 1 as a structural unit so that the light irradiation surfaces are in the same plane in a staggered pattern,
n is 3, 4 and 6
A regular n-gon shape connecting the LED arrangement center points S of the n LED groups distributed and arranged in the LED illumination device;
There is a congruent relationship between two or three adjacent LED illuminating devices, and a regular n-gon shape connecting the LED arrangement center points S of n groups of LED groups approaching near the center between the LED illuminating devices, A planar illumination device characterized in that an arrangement interval between the LED illumination devices is determined so that the regular n-gons are planarly filled.
JP2011261555A 2011-11-30 2011-11-30 Led lighting device Pending JP2013114965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011261555A JP2013114965A (en) 2011-11-30 2011-11-30 Led lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011261555A JP2013114965A (en) 2011-11-30 2011-11-30 Led lighting device

Publications (1)

Publication Number Publication Date
JP2013114965A true JP2013114965A (en) 2013-06-10

Family

ID=48710306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011261555A Pending JP2013114965A (en) 2011-11-30 2011-11-30 Led lighting device

Country Status (1)

Country Link
JP (1) JP2013114965A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104329611A (en) * 2014-10-17 2015-02-04 复旦大学 Eco-friendly intelligent dimming color-mixing LED (light emitting diode) streetlamp
JP2015216014A (en) * 2014-05-09 2015-12-03 株式会社小糸製作所 Light source module
CN106523941A (en) * 2016-12-31 2017-03-22 深圳市优必选科技有限公司 Light module
JP2017063073A (en) * 2015-09-24 2017-03-30 東芝ライテック株式会社 Light emitting device and luminaire
JP2018142433A (en) * 2017-02-27 2018-09-13 パナソニックIpマネジメント株式会社 Lighting device, lighting system, and mobile body
CN112996205A (en) * 2019-12-02 2021-06-18 核工业西南物理研究院 Multipath adjustable light signal generator
US11125416B2 (en) 2018-04-16 2021-09-21 Midori Kawano Lighting device
KR20220018926A (en) * 2020-08-07 2022-02-15 애플 인크. Electronic device with visual feedback

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544133A (en) * 2006-07-18 2009-12-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Compound light source
WO2010113091A1 (en) * 2009-03-31 2010-10-07 Koninklijke Philips Electronics, N.V. Optics device for stage lighting
JP2011232478A (en) * 2010-04-27 2011-11-17 Panasonic Corp Illumination optical device and projection display device comprising the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544133A (en) * 2006-07-18 2009-12-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Compound light source
WO2010113091A1 (en) * 2009-03-31 2010-10-07 Koninklijke Philips Electronics, N.V. Optics device for stage lighting
JP2011232478A (en) * 2010-04-27 2011-11-17 Panasonic Corp Illumination optical device and projection display device comprising the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015216014A (en) * 2014-05-09 2015-12-03 株式会社小糸製作所 Light source module
CN104329611A (en) * 2014-10-17 2015-02-04 复旦大学 Eco-friendly intelligent dimming color-mixing LED (light emitting diode) streetlamp
JP2017063073A (en) * 2015-09-24 2017-03-30 東芝ライテック株式会社 Light emitting device and luminaire
CN106523941A (en) * 2016-12-31 2017-03-22 深圳市优必选科技有限公司 Light module
CN106523941B (en) * 2016-12-31 2024-02-09 深圳市优必选科技有限公司 Light module
JP2018142433A (en) * 2017-02-27 2018-09-13 パナソニックIpマネジメント株式会社 Lighting device, lighting system, and mobile body
US11125416B2 (en) 2018-04-16 2021-09-21 Midori Kawano Lighting device
CN112996205A (en) * 2019-12-02 2021-06-18 核工业西南物理研究院 Multipath adjustable light signal generator
KR20220018926A (en) * 2020-08-07 2022-02-15 애플 인크. Electronic device with visual feedback
JP2022031245A (en) * 2020-08-07 2022-02-18 アップル インコーポレイテッド Electronic device with visual feedback
CN114110531A (en) * 2020-08-07 2022-03-01 苹果公司 Electronic device with visual feedback
US11536446B2 (en) 2020-08-07 2022-12-27 Apple Inc. Electronic device with visual feedback
KR102626078B1 (en) * 2020-08-07 2024-01-18 애플 인크. Electronic device with visual feedback
CN114110531B (en) * 2020-08-07 2024-05-24 苹果公司 Electronic device with visual feedback

Similar Documents

Publication Publication Date Title
JP2013114965A (en) Led lighting device
US8529102B2 (en) Reflector system for lighting device
JP4399663B2 (en) LED lighting device
US9269697B2 (en) System and methods for warm white LED light source
TWI356518B (en) Illuminating arrangement
JP4861328B2 (en) Lighting system
US7731389B2 (en) Light source comprising light-emitting clusters
CN1702507A (en) LED package and backlight assembly for LCD comprising the same
JP6446202B2 (en) Wide-angle diffusion optical system and illumination device using the same
JP2015103323A (en) Luminaire
JP2009245712A (en) Illumination fixture
JP2012503273A (en) Color mixing method for consistent color quality
US7566152B2 (en) Vehicular lamp unit
US8546823B2 (en) Light emitting device and illumination apparatus including same
US8833995B2 (en) Lighting module
CN217361580U (en) LED light source module
JP2011040664A (en) Surface light source and liquid crystal display device
TW201616682A (en) Light-emitting device
US10883672B1 (en) Reflector structures for lighting devices
TWI544178B (en) Light emitting unit and light source module
CN211667600U (en) LED lighting device
JP2011009024A (en) Irradiation unit and irradiation device
US11867370B2 (en) Lighting device for multiple automotive lighting functions
KR100744802B1 (en) Direct type backlight unit and liquid crystal display
TWI412687B (en) Lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151020