JP2010192193A - Sealed alkaline storage battery - Google Patents

Sealed alkaline storage battery Download PDF

Info

Publication number
JP2010192193A
JP2010192193A JP2009033786A JP2009033786A JP2010192193A JP 2010192193 A JP2010192193 A JP 2010192193A JP 2009033786 A JP2009033786 A JP 2009033786A JP 2009033786 A JP2009033786 A JP 2009033786A JP 2010192193 A JP2010192193 A JP 2010192193A
Authority
JP
Japan
Prior art keywords
negative electrode
sided
conductive core
active material
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009033786A
Other languages
Japanese (ja)
Other versions
JP5456333B2 (en
Inventor
Seiji Wada
聖司 和田
Toshiyuki Kondo
敏之 近藤
Isao Mugima
勲 麦間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009033786A priority Critical patent/JP5456333B2/en
Publication of JP2010192193A publication Critical patent/JP2010192193A/en
Application granted granted Critical
Publication of JP5456333B2 publication Critical patent/JP5456333B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealed alkaline storage battery superior in safety function by forming a cylindrical part in which the center part of a spiral electrode group does not form a blocked state. <P>SOLUTION: The conductive core body 11 used in a negative electrode 10 of the spiral electrode group is constituted of a porous steel plate, a double-sided coated part X on which both faces of the conductive core body 11 are coated with a negative electrode active material 12, and a one-sided coated part Y, on which its one face is coated with the negative electrode active material are formed. A winding part of the negative electrode 10 of the spiral electrode group is constituted of a double-sided exposed part X1, in which the negative electrode active material 12 of both faces of the conductive core body 11 is removed; both faces of the conductive core body 11 are exposed, and a one-sided exposed part X2, in which the negative electrode active material 12 of one face of the conductive core body 11 is removed and only one face of the conductive core body 11 is exposed; and in the first of the winding of the electrode 10 of the innermost circumference of the spiral electrode group, the tip part of the double-sided exposed part X1 is welded to one part of the one-sided exposed part X2 and is made into a cylindrical form. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、密閉型アルカリ蓄電池に係わり、特に、水素吸蔵合金を負極活物質とする水素吸蔵合金負極と、水酸化ニッケルを主正極活物質とする正極とを備え、これらの両極を隔離するセパレータを介して渦巻状に巻回された渦巻状電極群と、アルカリ電解液とを外装缶内に収容した密閉型アルカリ蓄電池に関する。   The present invention relates to a sealed alkaline storage battery, and in particular, a separator comprising a hydrogen storage alloy negative electrode using a hydrogen storage alloy as a negative electrode active material and a positive electrode using nickel hydroxide as a main positive electrode active material, and isolating these two electrodes The present invention relates to a sealed alkaline storage battery in which a spiral electrode group wound in a spiral shape and an alkaline electrolyte are accommodated in an outer can.

近年、携帯用電子機器の急速な普及に伴い、これらの機器に用いられる密閉型電池には、小型・軽量・高エネルギー化が求められている。この種の密閉型電池の中でも、充放電が可能な二次電池が普及してきている。ここで、この種の密閉型蓄電池(二次電池)は、セパレータを間に介在させて正極と負極を渦巻状に巻回して渦巻状電極群を作製し、その両端面に集電体を溶接させるか、または負極をケースと接触させ、正極の一部に溶接されたリードを封口板と溶接し、電解液を注液して封口して密閉して作製されている。   In recent years, with the rapid spread of portable electronic devices, sealed batteries used in these devices are required to be small, light and high in energy. Among these types of sealed batteries, secondary batteries capable of charging and discharging have become widespread. Here, in this type of sealed storage battery (secondary battery), a spiral electrode group is formed by winding a positive electrode and a negative electrode in a spiral manner with a separator interposed therebetween, and current collectors are welded to both end faces thereof. Alternatively, the negative electrode is brought into contact with the case, the lead welded to a part of the positive electrode is welded to the sealing plate, the electrolytic solution is injected, sealed, and sealed.

ところで、この種の密閉型蓄電池においては、充電器の故障などに起因した異常充電に伴う過充電が発生したり、機器の動作不良や使用手順のミス等により温度上昇が引き起こされて電池の内部が異常状態になる場合がある。このような過充電が発生したり、電池の内部が異常状態になると、正極板の膨化やセパレータ溶融が引き起こされたりして、やがては渦巻状電極群の中心部が閉塞状態となる。このような渦巻状電極群の中心部が閉塞状態になると、安全性機能が低下して、電池に亀裂が生じたり、最悪の場合には、電池が破裂するという事態が生じることとなる。   By the way, in this type of sealed storage battery, overcharge due to abnormal charging due to a failure of the charger or the like occurs, or the temperature rise is caused by malfunction of the device or mistake of use procedure, etc. May be in an abnormal state. When such overcharge occurs or the inside of the battery is in an abnormal state, the positive electrode plate is expanded or the separator is melted, and the central portion of the spiral electrode group eventually becomes closed. When the central part of such a spiral electrode group is in a closed state, the safety function is deteriorated and the battery is cracked or, in the worst case, the battery is ruptured.

そこで、渦巻状電極群の中心部が閉塞状態にならないような種々の方策が提案されるようになった。例えば、特許文献1(特開2002−75434号公報)においては、渦巻状電極群の中央部に大きな空間を構成するようにして、この空間に多くの電解液を保持できる構造にしたものが提案されている。また、特許文献2(特開2003−229177号公報)においては、内部短絡による異常発熱を生じ難い密閉型蓄電池とするために、渦巻状電極群の中心部の内部空間に筒状のセンターピンを挿設するとともに、このセンターピンの側壁の端部の一部領域が渦巻状電極群と接触しないようにしたものが提案されている。   Therefore, various measures have been proposed so that the central part of the spiral electrode group is not closed. For example, Patent Document 1 (Japanese Patent Laid-Open No. 2002-75434) proposes a structure in which a large space is formed at the center of the spiral electrode group and a large amount of electrolyte can be held in this space. Has been. In Patent Document 2 (Japanese Patent Application Laid-Open No. 2003-229177), a cylindrical center pin is provided in the inner space of the center of the spiral electrode group in order to obtain a sealed storage battery that is unlikely to cause abnormal heat generation due to an internal short circuit. An arrangement has been proposed in which a part of the end of the side wall of the center pin is not in contact with the spiral electrode group.

また、特許文献3(特開2001−210385号公報)においては、正極あるいは負極の内端において、正極芯体あるいは負極芯体に正極活物質合剤あるいは負極活物質合剤が塗布されていない芯体領域が形成され、この芯体領域によって、渦巻状電極群の中心部に、電池本体を軸方向に貫通する筒状中心孔を形成する筒状部を構成したものが提案されている。   Moreover, in patent document 3 (Unexamined-Japanese-Patent No. 2001-210385), the core by which the positive electrode active material mixture or the negative electrode active material mixture is not apply | coated to the positive electrode core body or the negative electrode core body in the inner end of a positive electrode or a negative electrode. A body region is formed, and this core region region has been proposed in which a cylindrical portion that forms a cylindrical center hole penetrating the battery body in the axial direction is formed in the central portion of the spiral electrode group.

特開2002−75434号公報JP 2002-75434 A 特開2003−229177号公報JP 2003-229177 A 特開2001−210385号公報Japanese Patent Laid-Open No. 2001-210385

しかしながら、特許文献1にて提案されるように、渦巻状電極群の中央部に大きな空間を構成するようにして、この空間に多くの電解液を保持できるような構造とすると、電池内に充填される活物質量が減少するため、高容量の密閉型蓄電池が得られてなくて、この種の密閉型蓄電池の品質が低下するという問題を生じた。
また、特許文献2にて提案されるように、渦巻状電極群の中心部の内部空間に筒状のセンターピンを挿設すると、コストが上昇するとともに、センターピンを挿設するための作業が複雑で、容易に製造できないという問題も生じた。
However, as proposed in Patent Document 1, a large space is formed at the center of the spiral electrode group, and a structure that can hold a large amount of electrolyte in this space is filled in the battery. Since the amount of the active material to be reduced is reduced, a high-capacity sealed battery is not obtained, and the quality of this type of sealed battery is deteriorated.
Further, as proposed in Patent Document 2, when a cylindrical center pin is inserted into the inner space of the center portion of the spiral electrode group, the cost increases and an operation for inserting the center pin is performed. There was also a problem that it was complicated and could not be easily manufactured.

さらに、特許文献3にて提案されるように、芯体領域によって渦巻状電極群の中心部に筒状中心孔となる筒状部を形成するようにしても、この筒状部は金属箔(正極芯体の場合はアルミ箔で、負極芯体の場合は銅箔)で形成されるため、機械的強度が弱く、渦巻状電極群の中心部が閉塞状態になる恐れが生じることとなる。   Furthermore, as proposed in Patent Document 3, even if a cylindrical part that forms a cylindrical central hole is formed in the central part of the spiral electrode group by the core region, the cylindrical part is made of metal foil ( In the case of the positive electrode core body, it is made of an aluminum foil, and in the case of the negative electrode core body, it is formed of a copper foil). Therefore, the mechanical strength is weak, and the central portion of the spiral electrode group may be closed.

そこで、本発明は上記した問題を解決するためになされたものであって、渦巻状電極群の中心部が閉塞状態とならないような筒状部を形成して、安全機能に優れた密閉型アルカリ蓄電池を提供することを目的とするものである。   Therefore, the present invention has been made to solve the above-described problems, and is formed with a cylindrical portion that prevents the central portion of the spiral electrode group from being closed, thereby providing a sealed alkali excellent in safety function. The object is to provide a storage battery.

本発明の密閉型アルカリ蓄電池は、水素吸蔵合金を負極活物質とする負極と、水酸化ニッケルを主正極活物質とする正極とを備え、これらの両極を隔離するセパレータを介して渦巻状に巻回された渦巻状電極群と、アルカリ電解液とを外装缶内に収容している。そして、上記目的を達成するため、渦巻状電極群の負極に用いられた導電性芯体は多孔性の鋼板からなるとともに、当該導電性芯体の両面に負極活物質が塗布された両面塗布部とその片面に負極活物質が塗布された片面塗布部とが形成されており、渦巻状電極群の負極の巻き始め部は、導電性芯体の両面の負極活物質が除去されて導電性芯体の両面が露出した両面露出部と、導電性芯体の片面の負極活物質が除去されて導電性芯体の片面のみが露出した片面露出部とからなり、渦巻状電極群の最内周の負極の巻回の1周目は両面露出部の先端部が片面露出部の一部に溶接されて円筒状となされていることを特徴とする。   The sealed alkaline storage battery of the present invention includes a negative electrode using a hydrogen storage alloy as a negative electrode active material and a positive electrode using nickel hydroxide as a main positive electrode active material, and is wound in a spiral shape through a separator that separates both the electrodes. The rotated spiral electrode group and the alkaline electrolyte are accommodated in an outer can. And in order to achieve the said objective, while the conductive core used for the negative electrode of the spiral electrode group consists of a porous steel plate, the negative electrode active material was apply | coated to both surfaces of the said conductive core. And a single-side coated portion in which a negative electrode active material is coated on one side thereof, and the negative electrode winding start portion of the spiral electrode group is formed by removing the negative electrode active material on both sides of the conductive core body. A double-sided exposed portion where both sides of the body are exposed, and a single-sided exposed portion where only one side of the conductive core is exposed by removing the negative electrode active material on one side of the conductive core, and the innermost circumference of the spiral electrode group In the first turn of the negative electrode winding, the tip of the double-sided exposed portion is welded to a part of the single-sided exposed portion to form a cylindrical shape.

ここで、導電性芯体は多孔性の鋼板からなり、かつ、上述のような両面露出部の先端部が片面露出部の一部に溶接されて渦巻状電極群の最内周の負極の巻回の1周目が両面露出部の先端部が片面露出部の一部に溶接されて円筒状となされていると、この渦巻状電極群の最内周の負極の巻回の1周目の強度は大きいこととなる。これにより、渦巻状電極群の中心部に形成された円筒状の最内周は閉塞状態となることが防止でき、安全機能に優れた密閉型アルカリ蓄電池を得ることが可能となる。この場合、片面露出部の一部は当該片面露出部の付け根部であるのが望ましく、多孔性の鋼板からなる導電性芯体は鋼板製のパンチングメタルであるのが望ましい。   Here, the conductive core is made of a porous steel plate, and the tip of the double-sided exposed portion as described above is welded to a part of the single-sided exposed portion to wind the innermost negative electrode of the spiral electrode group. If the tip of the double-sided exposed part is welded to a part of the single-sided exposed part to form a cylindrical shape, the first turn of the innermost negative electrode of this spiral electrode group The strength will be great. Thereby, the cylindrical innermost periphery formed in the central part of the spiral electrode group can be prevented from being closed, and a sealed alkaline storage battery excellent in safety function can be obtained. In this case, it is desirable that a part of the single-side exposed portion is a base portion of the single-side exposed portion, and it is desirable that the conductive core made of a porous steel plate is a steel plate punching metal.

本発明においては、渦巻状電極群の中心部に形成された円筒状の最内周の強度が大きいいため、渦巻状電極群の中心部が閉塞状態となることが防止できるようになる。この結果、安全機能に優れた密閉型アルカリ蓄電池を提供することが可能となる。   In the present invention, since the strength of the innermost circumference of the cylindrical shape formed in the central portion of the spiral electrode group is large, it is possible to prevent the central portion of the spiral electrode group from being closed. As a result, it is possible to provide a sealed alkaline storage battery having an excellent safety function.

本発明の密閉型アルカリ蓄電池に用いられる水素吸蔵合金を負極活物質とする負極を模式的に示す図であり、図1(a)は、負極の平面を模式的に示す平面図であり、図1(b)は、図1(a)のA−A’断面を模式的に示す断面図であり、図1(c)は、図1(b)の巻始側の一部を巻回させて渦巻状電極群の中心部の負極の1周目が略円筒状になった状態を拡大して模式的に示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows typically the negative electrode which uses the hydrogen storage alloy used for the sealed alkaline storage battery of this invention as a negative electrode active material, FIG.1 (a) is a top view which shows the plane of a negative electrode typically, 1 (b) is a cross-sectional view schematically showing the AA ′ cross section of FIG. 1 (a), and FIG. 1 (c) is a part of the winding start side of FIG. It is sectional drawing which expands and shows typically the state by which the 1st round of the negative electrode of the center part of the spiral electrode group became substantially cylindrical shape. 本発明の密閉型アルカリ蓄電池を模式的に示す断面図である。It is sectional drawing which shows typically the sealed alkaline storage battery of this invention.

ついで、本発明の実施の形態を以下に詳細に説明するが、本発明はこれに限定されるものでなく、その要旨を変更しない範囲で適宜変更して実施することができる。   Next, embodiments of the present invention will be described in detail below. However, the present invention is not limited to these embodiments, and can be appropriately modified and implemented without departing from the scope of the present invention.

1.水素吸蔵合金負極
(1)実施例
本実施例の水素吸蔵合金を負極活物質とする負極10は、図1に示すように、多孔性基板(パンチングメタル)からなる導電性芯体11の表面に負極活物質となる水素吸蔵合金粉末を含有する負極合剤層12が形成されたものである。この場合、導電性芯体11はニッケルメッキを施した軟鋼材製の多孔性基板(パンチングメタル)からなり、このパンチングメタルの開口率([芯体の開口部の総面積/芯体の長さ×幅]×100)が25〜30%となるような開口が形成されたものを用いている。
1. Hydrogen Storage Alloy Negative Electrode (1) Example As shown in FIG. 1, a negative electrode 10 using the hydrogen storage alloy of this example as a negative electrode active material is formed on the surface of a conductive core 11 made of a porous substrate (punching metal). A negative electrode mixture layer 12 containing a hydrogen storage alloy powder serving as a negative electrode active material is formed. In this case, the conductive core 11 is composed of a nickel-plated soft steel porous substrate (punching metal), and the punching metal opening ratio ([total area of the opening of the core / length of the core). × width] × 100) is used in which openings are formed so as to be 25 to 30%.

また、負極合剤層12は水素吸蔵合金粉末を含有する水素吸蔵合金スラリーを導電性芯体11の表面に塗布することにより形成され、図1(b)に示すように、導電性芯体11の両面に水素吸蔵合金スラリーが塗布された両面塗布部Xと、導電性芯体11の片面のみに水素吸蔵合金スラリーが塗布された片面塗布部Yとからなる。なお、両面塗布部Xの先端部(渦巻状電極群とする際の巻始側となる)においては、両面の負極合剤層12が剥離された両面剥離部X1と、片面の負極合剤層12が剥離された片面剥離部X2とが形成されている。   The negative electrode mixture layer 12 is formed by applying a hydrogen storage alloy slurry containing a hydrogen storage alloy powder to the surface of the conductive core 11, and as shown in FIG. The double-sided application part X where the hydrogen storage alloy slurry is applied to both sides of the conductive core 11 and the single-sided application part Y where the hydrogen storage alloy slurry is applied only to one side of the conductive core 11. In addition, in the front-end | tip part (it becomes the winding start side at the time of setting it as a spiral electrode group) of the double-sided application part X, the double-sided peeling part X1 from which the double-sided negative mix layer 12 peeled, and the single-sided negative mix layer A single-side peeled portion X2 from which 12 is peeled is formed.

なお、この実施例においては、両面塗布部Xの長さは100mmとし、その内、先端部から2mmまでを両面剥離部X1とし、この両面剥離部X1の末端から10mmまでを片面剥離部X2としている。また、片面塗布部Yの長さは43mmとしている。   In this embodiment, the length of the double-sided application part X is 100 mm, of which 2 mm from the tip is the double-sided peeling part X1, and 10 mm from the end of this double-sided peeling part X1 is the single-sided peeling part X2. Yes. Moreover, the length of the single-side application part Y is 43 mm.

ついで、上述のような実施例の水素吸蔵合金負極10の作製例の一例を以下に説明する。まず、水素吸蔵合金(この場合は、例えばLa0.2Nd0.7Mg0.1Ni3.7Al0.1で表されるもの)の粉末と、この水素吸蔵合金粉末100質量部に対して、0.1質量%のCMC(カルボキシメチルセルロース)と水(あるいは純水)とからなる水溶性結着剤に、熱可塑性エラストマーとしてのスチレンブタジエンラテックス(SBR)と、炭素系導電剤としてのケッチェンブラックとを添加する。この後、これらを混合し、混練して水素吸蔵合金スラリーを作製する。 Next, an example of the production of the hydrogen storage alloy negative electrode 10 of the above-described embodiment will be described below. First, a powder of a hydrogen storage alloy (in this case, for example, one represented by La 0.2 Nd 0.7 Mg 0.1 Ni 3.7 Al 0.1 ) and 0.1% by mass of CMC with respect to 100 parts by mass of the hydrogen storage alloy powder. A styrene butadiene latex (SBR) as a thermoplastic elastomer and ketjen black as a carbon-based conductive agent are added to a water-soluble binder composed of (carboxymethylcellulose) and water (or pure water). Thereafter, these are mixed and kneaded to prepare a hydrogen storage alloy slurry.

ついで、ニッケルメッキを施した軟鋼材製の多孔性基板(パンチングメタル)からなる導電性芯体11を用意し、この導電性芯体11に、所定の充填密度(例えば、5.0g/cm3)となるように水素吸蔵合金スラリーを塗布し、乾燥させた後、所定の厚みになるように圧延する。なお、このスラリーを塗布時に、上述のような両面塗布部Xと片面塗布部Yとが形成されるように塗布する。これにより、導電性芯体11の両面に水素吸蔵合金スラリーが塗布された両面塗布部Xと、導電性芯体11の片面のみに水素吸蔵合金スラリーが塗布された片面塗布部Yとからなる負極合剤層12が形成されることとなる。 Next, a conductive core 11 made of a nickel-plated soft steel porous substrate (punching metal) is prepared, and a predetermined filling density (for example, 5.0 g / cm 3 ) is provided in the conductive core 11. The hydrogen storage alloy slurry is applied so as to become), dried, and then rolled to a predetermined thickness. In addition, it applies so that the above-mentioned double-side application part X and the single-side application part Y may be formed at the time of application | coating this slurry. Thereby, the negative electrode which consists of the double-sided application part X by which the hydrogen storage alloy slurry was apply | coated to both surfaces of the conductive core 11, and the single-sided application part Y by which the hydrogen storage alloy slurry was apply | coated to only one side of the conductive core 11 The mixture layer 12 is formed.

乾燥後、所定の厚みになるように圧延し、所定の寸法になるように切断した後、両面塗布部Xの最先端から所定の部位(この場合は、最先端から長さ方向に2mmの部位までとした)までの両面の負極合剤層12を剥離させて両面剥離部X1を形成し、この両面剥離部X1の末端から所定の部位(この場合は、X1の末端から長さ方向に10mmの部位までとした)まで片面の負極合剤層12を剥離させて片面剥離部X2を形成して、実施例の水素吸蔵合金負極10(a)を作製する。   After drying, rolling to a predetermined thickness, cutting to a predetermined dimension, and then a predetermined part from the leading edge of the double-side coated part X (in this case, a part 2 mm from the leading edge in the length direction) The double-sided peelable portion X1 is formed by peeling off the negative electrode mixture layer 12 on both sides up to a predetermined portion (in this case, 10 mm from the end of X1 in the length direction). The single-sided negative electrode mixture layer 12 is peeled up to a portion of the above-mentioned part to form a single-sided peeled portion X2, thereby producing the hydrogen storage alloy negative electrode 10 (a) of the example.

(2)比較例
一方、比較例の水素吸蔵合金負極10(x)においては、上述した実施例の水素吸蔵合金負極10(a)と相違するところは、両面塗布部Xの先端部(渦巻状電極群とする際の巻始側となる)に、両面の負極合剤層12が剥離された両面剥離部X1と、片面の負極合剤層12が剥離された片面剥離部X2とが形成されていないことであって、その以外は上述した実施例の水素吸蔵合金負極10(a)と同様であるのでその説明は省略することとする。
(2) Comparative Example On the other hand, in the hydrogen storage alloy negative electrode 10 (x) of the comparative example, the difference from the hydrogen storage alloy negative electrode 10 (a) of the above-described example is that the tip of the double-side coated part X (spiral shape) The double-sided peeling portion X1 from which the double-sided negative electrode mixture layer 12 has been peeled off and the single-sided peeling portion X2 from which the single-sided negative electrode mixture layer 12 has been peeled off are formed on the winding start side when forming an electrode group). Other than that, since it is the same as the hydrogen storage alloy negative electrode 10 (a) of the above-described embodiment, the description thereof will be omitted.

2.ニッケル正極
ニッケル正極20は、多孔性ニッケル焼結基板に所定量の水酸化ニッケルを主体とする正極活物質が充填されて形成されたものである。ついで、このようなニッケル正極20の作製例の一例を以下に説明する。まず、多孔度が約85%の多孔性ニッケル焼結基板を比重が1.75の硝酸ニッケルと硝酸コバルトの混合水溶液に浸漬して、多孔性ニッケル焼結基板の細孔内にニッケル塩およびコバルト塩を保持させる。この後、この多孔性ニッケル焼結基板を25質量%の水酸化ナトリウム(NaOH)水溶液中に浸漬して、ニッケル塩およびコバルト塩をそれぞれ水酸化ニッケルおよび水酸化コバルトに転換させる。
2. Nickel positive electrode The nickel positive electrode 20 is formed by filling a porous nickel sintered substrate with a positive electrode active material mainly composed of a predetermined amount of nickel hydroxide. Next, an example of manufacturing such a nickel positive electrode 20 will be described below. First, a porous nickel sintered substrate having a porosity of about 85% is immersed in a mixed aqueous solution of nickel nitrate and cobalt nitrate having a specific gravity of 1.75, and nickel salt and cobalt are placed in the pores of the porous nickel sintered substrate. Keep salt. Thereafter, the porous nickel sintered substrate is immersed in a 25% by mass sodium hydroxide (NaOH) aqueous solution to convert the nickel salt and the cobalt salt into nickel hydroxide and cobalt hydroxide, respectively.

ついで、充分に水洗してアルカリ溶液を除去した後、乾燥を行って、多孔性ニッケル焼結基板の細孔内に水酸化ニッケルを主成分とする活物質を充填する。このような活物質充填操作を所定回数(例えば6回)繰り返して、多孔性焼結基板の細孔内に水酸化ニッケルを主体とする活物質の充填密度が2.5g/cm3になるように充填する。この後、室温で乾燥させた後、所定の寸法に切断してニッケル正極20を作製する。なお、このニッケル正極20においては、後述する封口体50に溶接するための正極リード21がこのニッケル正極20の上辺の適宜箇所に溶接されている。 Next, after sufficiently washing with water to remove the alkaline solution, drying is performed, and the active material mainly composed of nickel hydroxide is filled in the pores of the porous nickel sintered substrate. Such an active material filling operation is repeated a predetermined number of times (for example, 6 times) so that the filling density of the active material mainly composed of nickel hydroxide in the pores of the porous sintered substrate becomes 2.5 g / cm 3. To fill. Then, after making it dry at room temperature, it cut | disconnects to a predetermined dimension and the nickel positive electrode 20 is produced. In the nickel positive electrode 20, a positive electrode lead 21 for welding to a sealing body 50 described later is welded to an appropriate location on the upper side of the nickel positive electrode 20.

3.ニッケル−水素蓄電池
ついで、上述のような構成となる実施例の水素吸蔵合金負極10(a)あるいは比較例の水素吸蔵合金負極10(x)と、ニッケル正極20とを用いてニッケル−水素蓄電池を作製する例について、以下に説明する。まず、水素吸蔵合金負極10(a,x)とニッケル正極20とを用意し、スルフォン化処理された不織布からなるセパレータ30がこれらの電極10,20間に介在させて積層体とする。この後、実施例の水素吸蔵合金負極10(a)においては、渦巻状電極群とする際の巻始側となる両面剥離部X1の先端部が片面剥離部X2の略付け根部(片面剥離部X2と剥離部が形成されていない部位との境界部)の近傍に位置するように巻回させた後、これらの積層体を巻回して渦巻状電極群とする。この場合、得られた渦巻状電極群の最外周は水素吸蔵合金負極10(a,x)の片面塗布部Yが位置し、この片面塗布部Yの導電性芯体11が露出することとなる。
3. Nickel-hydrogen storage battery Next, a nickel-hydrogen storage battery using the hydrogen storage alloy negative electrode 10 (a) of the example having the above-described configuration or the hydrogen storage alloy negative electrode 10 (x) of the comparative example and the nickel positive electrode 20 is used. An example of manufacturing will be described below. First, a hydrogen storage alloy negative electrode 10 (a, x) and a nickel positive electrode 20 are prepared, and a separator 30 made of a nonwoven fabric subjected to a sulfonation treatment is interposed between these electrodes 10 and 20 to form a laminate. After that, in the hydrogen storage alloy negative electrode 10 (a) of the example, the tip of the double-sided peeling portion X1 that becomes the winding start side when the spiral electrode group is formed is an approximately root (single-side peeling portion) of the single-sided peeling portion X2. After winding so that it may be located in the vicinity of the boundary part of X2 and the site | part in which the peeling part is not formed, these laminated bodies are wound and it is set as a spiral electrode group. In this case, the single-sided application portion Y of the hydrogen storage alloy negative electrode 10 (a, x) is located on the outermost periphery of the spiral electrode group obtained, and the conductive core 11 of the single-side application portion Y is exposed. .

この後、実施例の水素吸蔵合金負極10(a)を用いて作製された渦巻状電極群においては、渦巻状電極群の中心部に小型の溶接電極棒を押し当てるとともに、渦巻状電極群の最外周に露出した導電性芯体11に対極となる溶接電極を押し当てる。そして、これらの一対の溶接電極に所定の溶接電圧を印加して、両面剥離部X1の先端部と片面剥離部X2の略付け根部の近傍の導電性芯体11同士を溶接し、導電性芯体11の幅方向に溶接部11aを形成するようにしている。これにより、実施例の水素吸蔵合金負極10(a)を用いて作製された渦巻状電極群においては、渦巻状電極群の中心部の最内周の1周目からなる略円筒状の筒状部Zが形成されることとなる。なお、比較例の水素吸蔵合金負極10(x)を用いて作製された渦巻状電極群においては、このような溶接工程は備えていない。   Thereafter, in the spiral electrode group produced using the hydrogen storage alloy negative electrode 10 (a) of the example, a small welding electrode rod was pressed against the center of the spiral electrode group, and the spiral electrode group A welding electrode as a counter electrode is pressed against the conductive core 11 exposed on the outermost periphery. Then, a predetermined welding voltage is applied to the pair of welding electrodes, and the conductive cores 11 in the vicinity of the front end portion of the double-sided peeling portion X1 and the substantially root portion of the single-sided peeling portion X2 are welded together. A welded portion 11 a is formed in the width direction of the body 11. Thereby, in the spiral electrode group produced using the hydrogen storage alloy negative electrode 10 (a) of the example, a substantially cylindrical tubular shape formed from the first innermost circumference of the central part of the spiral electrode group. The part Z will be formed. In addition, the spiral electrode group manufactured using the hydrogen storage alloy negative electrode 10 (x) of the comparative example does not include such a welding process.

なお、上述のように、渦巻状電極群を形成した後に、両面剥離部X1の先端部と片面剥離部X2の略付け根部の近傍の導電性芯体11同士を溶接して導電性芯体11の幅方向に溶接部11aを形成することに代えて、渦巻状電極群を形成する前に溶接部11aを形成するようにしてもよい。   As described above, after the spiral electrode group is formed, the conductive cores 11 are welded to each other in the vicinity of the front end portion of the double-sided peeling portion X1 and the substantially root portion of the single-sided peeling portion X2. Instead of forming the welded portion 11a in the width direction, the welded portion 11a may be formed before forming the spiral electrode group.

この場合は、巻始側となる両面剥離部X1の先端部が片面剥離部X2の略付け根部の近傍に位置するように巻回させた後、中心部に小型の溶接電極棒を押し当てるとともに、渦巻状電極群の最外周に露出した導電性芯体11に対極となる溶接電極を押し当てる。そして、これらの一対の溶接電極に所定の溶接電圧を印加して、両面剥離部X1の先端部と片面剥離部X2の略付け根部の近傍の導電性芯体11同士を溶接し、導電性芯体11の幅方向に溶接部11aを形成するようにすればよい。   In this case, after winding the tip of the double-sided peeling portion X1 that is the winding start side so as to be positioned near the root of the single-sided peeling portion X2, a small welding electrode rod is pressed against the center portion. The welding electrode as a counter electrode is pressed against the conductive core 11 exposed on the outermost periphery of the spiral electrode group. Then, a predetermined welding voltage is applied to the pair of welding electrodes, and the conductive cores 11 in the vicinity of the front end portion of the double-sided peeling portion X1 and the substantially root portion of the single-sided peeling portion X2 are welded together. What is necessary is just to form the welding part 11a in the width direction of the body 11. FIG.

ついで、得られた渦巻状電極群を鉄にニッケルメッキを施した有底筒状の外装缶(底面の外面は負極外部端子となる)40内に収納した後、ニッケル正極20の上辺の適宜箇所に溶接された正極リード21を外周部に絶縁ガスケット44が装着された封口体50の底部を構成する封口板51に溶接する。なお、封口体50には正極端子となる正極キャップ52が設けられていて、これらの封口板51と正極キャップ52とで形成される空間内に所定の圧力になると変形する弁体53とスプリング54よりなる圧力弁が配置されている。   Next, after the obtained spiral electrode group is housed in a bottomed cylindrical outer can 40 in which iron is nickel-plated (the outer surface of the bottom surface becomes a negative electrode external terminal), an appropriate location on the upper side of the nickel positive electrode 20 The positive electrode lead 21 welded to the sealing plate 51 is welded to the sealing plate 51 constituting the bottom of the sealing body 50 having the insulating gasket 44 attached to the outer periphery. The sealing body 50 is provided with a positive electrode cap 52 serving as a positive electrode terminal, and a valve body 53 and a spring 54 that are deformed when a predetermined pressure is reached in a space formed by the sealing plate 51 and the positive electrode cap 52. The pressure valve which consists of is arrange | positioned.

ついで、外装缶40の上部外周部に環状溝部41を形成した後、電解液を注液し、外装缶40の上部に形成された環状溝部41の上に封口体50の外周部に装着された絶縁ガスケット44を載置する。この後、外装缶40の開口端縁42をかしめることにより、ニッケル−水素蓄電池を作製する。この場合、外装缶40内に30質量%の水酸化カリウム(KOH)水溶液からなるアルカリ電解液を、電池容量(Ah)当り2.5g(2.5g/Ah)となるように注入して、電池容量が2700mAhとなるニッケル−水素蓄電池A,Xを作製した。なお、実施例の水素吸蔵合金負極10(a)を用いたものをニッケル−水素蓄電池Aとし、比較例の水素吸蔵合金負極10(x)を用いたものをニッケル−水素蓄電池Xとした。   Next, after forming the annular groove 41 on the outer periphery of the upper portion of the outer can 40, the electrolytic solution was injected, and the outer peripheral portion of the sealing body 50 was mounted on the annular groove 41 formed on the upper portion of the outer can 40. An insulating gasket 44 is placed. Then, the nickel-hydrogen storage battery is produced by caulking the opening edge 42 of the outer can 40. In this case, an alkaline electrolyte composed of a 30% by mass potassium hydroxide (KOH) aqueous solution is poured into the outer can 40 so as to be 2.5 g (2.5 g / Ah) per battery capacity (Ah), Nickel-hydrogen storage batteries A and X having a battery capacity of 2700 mAh were produced. In addition, what used the hydrogen storage alloy negative electrode 10 (a) of the Example was made into the nickel-hydrogen storage battery A, and what used the hydrogen storage alloy negative electrode 10 (x) of the comparative example was made into the nickel-hydrogen storage battery X.

4.過充電試験
ついで、これらのニッケル−水素蓄電池A,Xをそれぞれ20個ずつ用いて、7.5A過充電試験を行って外装缶40の破裂個数を求めると、下記の表1に示すような結果となった。この場合、7.5A過充電試験は以下のようにして行った。即ち、各電池A,Xをそれぞれ横置きにし、正・負極端子でこれらの各電池A,Xをそれぞれ挟み込み、各電池A,Xが完全にショートするまで7.5A定電流充電を行った。

Figure 2010192193
4). Overcharge test Next, 20 nickel hydride storage batteries A and X were used, respectively, and the 7.5A overcharge test was performed to determine the number of ruptures of the outer can 40. The results shown in Table 1 below were obtained. It became. In this case, the 7.5A overcharge test was performed as follows. That is, the batteries A and X were placed horizontally, the batteries A and X were sandwiched between the positive and negative terminals, respectively, and 7.5 A constant current charging was performed until the batteries A and X were completely short-circuited.
Figure 2010192193

上記表1の結果から明らかなように、比較例の水素吸蔵合金負極10(x)を用いて作製されたニッケル−水素蓄電池Xにおいては、外装缶の破裂個数が4個で、その割合は20%に達していることが分かる。これに対して、実施例の水素吸蔵合金負極10(a)を用いて作製されたニッケル−水素蓄電池Aにおいては、外装缶の破裂個数が0個で、極めて安全性が向上していることが分かる。   As is clear from the results in Table 1 above, in the nickel-hydrogen storage battery X manufactured using the hydrogen storage alloy negative electrode 10 (x) of the comparative example, the number of ruptured outer cans was 4, and the ratio was 20 % Is reached. On the other hand, in the nickel-hydrogen storage battery A manufactured using the hydrogen storage alloy negative electrode 10 (a) of the example, the number of ruptures of the outer can is 0, and the safety is extremely improved. I understand.

これは、ニッケル−水素蓄電池Xにおいては、渦巻状電極群の中心部が強固に固定されていないため、過充電により電池Xの内部が異常状態になって、ニッケル正極20の膨化やセパレータ30の溶融が引き起こされたりして、渦巻状電極群の中心部が閉塞状態となって、電池Xが破裂するという事態が生じたためと考えられる。
一方、ニッケル−水素蓄電池Aにおいては、渦巻状電極群の中心部に略円筒状の筒状部Zが形成されて強固に固定されているため、過充電により電池Aの内部が異常状態になって、ニッケル正極20の膨化やセパレータ30の溶融が引き起こされたとしても、渦巻状電極群の中心部が閉塞状態とならないため、電池Aが破裂するという事態が生じなかったと考えられる。
This is because, in the nickel-hydrogen storage battery X, the central part of the spiral electrode group is not firmly fixed, so that the inside of the battery X becomes abnormal due to overcharging, and the nickel positive electrode 20 expands and the separator 30 This is probably because the center of the spiral electrode group is closed due to melting or the battery X is ruptured.
On the other hand, in the nickel-hydrogen storage battery A, since the substantially cylindrical tubular portion Z is formed and firmly fixed at the center of the spiral electrode group, the inside of the battery A becomes abnormal due to overcharging. Even if the nickel positive electrode 20 is expanded or the separator 30 is melted, the central portion of the spiral electrode group is not closed, so that it is considered that the battery A does not rupture.

なお、上述した実施形態においては、本発明の密閉型アルカリ蓄電池をニッケル−水素蓄電池に適用する例について説明したが、本発明の密閉型アルカリ蓄電池はニッケル−水素蓄電池に限らず、ニッケル−カドミウム蓄電池などの他の密閉型アルカリ蓄電池に適用できることは勿論である。   In the above-described embodiment, an example in which the sealed alkaline storage battery of the present invention is applied to a nickel-hydrogen storage battery has been described. However, the sealed alkaline storage battery of the present invention is not limited to a nickel-hydrogen storage battery, but a nickel-cadmium storage battery. Of course, the present invention can be applied to other sealed alkaline storage batteries.

10…水素吸蔵合金負極、11…負極用導電性芯体、12…活物質層、X…両面塗布部、X1…両面剥離部、X2…片面剥離部、Y…片面塗布部、Z…略円筒状の筒状部、20…ニッケル正極、21…正極用リード、30…セパレータ、40…外装缶、41…環状溝部、42…開口端縁、43…絶縁ガスケット、50…封口体、51…封口板、52…正極キャップ、53…弁板、54…スプリング DESCRIPTION OF SYMBOLS 10 ... Hydrogen storage alloy negative electrode, 11 ... Electroconductive core for negative electrodes, 12 ... Active material layer, X ... Double-sided coating part, X1 ... Double-sided peeling part, X2 ... Single-sided peeling part, Y ... Single-sided coating part, Z ... Substantially cylindrical Cylindrical portion, 20 ... nickel positive electrode, 21 ... positive electrode lead, 30 ... separator, 40 ... outer can, 41 ... annular groove, 42 ... opening edge, 43 ... insulating gasket, 50 ... sealing body, 51 ... sealing Plate 52 ... Positive electrode cap 53 ... Valve plate 54 ... Spring

Claims (3)

水素吸蔵合金を負極活物質とする負極と、水酸化ニッケルを主正極活物質とする正極とを備え、これらの両極を隔離するセパレータを介して渦巻状に巻回された渦巻状電極群と、アルカリ電解液とを外装缶内に収容した密閉型アルカリ蓄電池であって、
前記渦巻状電極群の前記負極に用いられた導電性芯体は多孔性の鋼板からなるとともに、当該導電性芯体の両面に前記負極活物質が塗布された両面塗布部とその片面に負極活物質が塗布された片面塗布部とが形成されており、
前記渦巻状電極群の前記負極の巻き始め部は、前記導電性芯体の両面の前記負極活物質が除去されて導電性芯体の両面が露出した両面露出部と、前記導電性芯体の片面の前記負極活物質が除去されて導電性芯体の片面のみが露出した片面露出部とからなり、
前記前記渦巻状電極群の最内周の前記負極の巻回の1周目は前記両面露出部の先端部が前記片面露出部の一部に溶接されて円筒状となされていることを特徴とする密閉型アルカリ蓄電池。
A spiral electrode group comprising a negative electrode having a hydrogen storage alloy as a negative electrode active material and a positive electrode having nickel hydroxide as a main positive electrode active material, and spirally wound through a separator separating these two electrodes; A sealed alkaline storage battery that contains an alkaline electrolyte in an outer can,
The conductive core used for the negative electrode of the spiral electrode group is made of a porous steel plate, and a double-sided coating portion in which the negative electrode active material is applied to both surfaces of the conductive core, and a negative electrode active on one side thereof. A single-sided application part coated with a substance is formed,
The winding start portion of the negative electrode of the spiral electrode group includes a double-sided exposed portion in which the negative electrode active material on both surfaces of the conductive core body is removed and both surfaces of the conductive core body are exposed, and the conductive core body The negative electrode active material on one side is removed and a single-side exposed portion where only one side of the conductive core is exposed,
In the first round of winding of the negative electrode at the innermost circumference of the spiral electrode group, the tip of the double-sided exposed part is welded to a part of the single-sided exposed part to form a cylindrical shape. Sealed alkaline storage battery.
前記片面露出部の一部は当該片面露出部の付け根部であることを特徴とする請求項1に記載の密閉型アルカリ蓄電池。   2. The sealed alkaline storage battery according to claim 1, wherein a part of the one-side exposed portion is a base portion of the one-side exposed portion. 前記多孔性の鋼板は鋼板からなるパンチングメタルであることを特徴とする請求項1または請求項2に記載の密閉型アルカリ蓄電池。   The sealed alkaline storage battery according to claim 1, wherein the porous steel plate is a punching metal made of a steel plate.
JP2009033786A 2009-02-17 2009-02-17 Sealed alkaline storage battery Active JP5456333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009033786A JP5456333B2 (en) 2009-02-17 2009-02-17 Sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009033786A JP5456333B2 (en) 2009-02-17 2009-02-17 Sealed alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2010192193A true JP2010192193A (en) 2010-09-02
JP5456333B2 JP5456333B2 (en) 2014-03-26

Family

ID=42818016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009033786A Active JP5456333B2 (en) 2009-02-17 2009-02-17 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JP5456333B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014102889A (en) * 2012-11-16 2014-06-05 Sony Corp Battery, battery pack, electronic apparatus, electric vehicle, power storage device and power system
WO2018038448A1 (en) * 2016-08-24 2018-03-01 삼성에스디아이 주식회사 Electrode assembly, and secondary battery comprising same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132758A (en) * 1988-11-11 1990-05-22 Matsushita Electric Ind Co Ltd Cylindrical secondary battery
JPH02220365A (en) * 1989-02-21 1990-09-03 Japan Storage Battery Co Ltd Manufacture of spiral electrode group for alkaline battery
JPH09161847A (en) * 1995-12-11 1997-06-20 Toray Ind Inc Battery
JPH10116626A (en) * 1996-10-11 1998-05-06 Toshiba Battery Co Ltd Manufacture of nickel hydrogen secondary battery
JPH10162855A (en) * 1996-11-29 1998-06-19 Hitachi Maxell Ltd Hydride secondary battery
JP2000299104A (en) * 1999-04-16 2000-10-24 Toshiba Battery Co Ltd Manufacture of nickel hydrogen secondary battery
JP2001210385A (en) * 2000-01-27 2001-08-03 Sony Corp Sealed type battery
JP2005056682A (en) * 2003-08-04 2005-03-03 Sanyo Electric Co Ltd Cylindrical alkaline storage battery
JP2005056678A (en) * 2003-08-04 2005-03-03 Sanyo Electric Co Ltd Cylindrical alkaline storage battery and cylindrical nickel hydrogen secondary battery
JP2005209530A (en) * 2004-01-23 2005-08-04 Toshiba Corp Non-aqueous electrolyte secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132758A (en) * 1988-11-11 1990-05-22 Matsushita Electric Ind Co Ltd Cylindrical secondary battery
JPH02220365A (en) * 1989-02-21 1990-09-03 Japan Storage Battery Co Ltd Manufacture of spiral electrode group for alkaline battery
JPH09161847A (en) * 1995-12-11 1997-06-20 Toray Ind Inc Battery
JPH10116626A (en) * 1996-10-11 1998-05-06 Toshiba Battery Co Ltd Manufacture of nickel hydrogen secondary battery
JPH10162855A (en) * 1996-11-29 1998-06-19 Hitachi Maxell Ltd Hydride secondary battery
JP2000299104A (en) * 1999-04-16 2000-10-24 Toshiba Battery Co Ltd Manufacture of nickel hydrogen secondary battery
JP2001210385A (en) * 2000-01-27 2001-08-03 Sony Corp Sealed type battery
JP2005056682A (en) * 2003-08-04 2005-03-03 Sanyo Electric Co Ltd Cylindrical alkaline storage battery
JP2005056678A (en) * 2003-08-04 2005-03-03 Sanyo Electric Co Ltd Cylindrical alkaline storage battery and cylindrical nickel hydrogen secondary battery
JP2005209530A (en) * 2004-01-23 2005-08-04 Toshiba Corp Non-aqueous electrolyte secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014102889A (en) * 2012-11-16 2014-06-05 Sony Corp Battery, battery pack, electronic apparatus, electric vehicle, power storage device and power system
WO2018038448A1 (en) * 2016-08-24 2018-03-01 삼성에스디아이 주식회사 Electrode assembly, and secondary battery comprising same
US11043689B2 (en) 2016-08-24 2021-06-22 Samsung Sdi Co., Ltd. Electrode assembly, and rechargeable battery comprising same

Also Published As

Publication number Publication date
JP5456333B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP4359100B2 (en) Cylindrical alkaline storage battery
JP5899495B2 (en) Cylindrical lithium-ion battery
WO2017090219A1 (en) Cylindrical battery
JP4868809B2 (en) Cylindrical alkaline storage battery
WO2017168963A1 (en) Nickel-hydrogen battery
JP2005056674A (en) Cylindrical alkaline battery
JP4931492B2 (en) Cylindrical storage battery
JP3260972B2 (en) Hydrogen storage alloy electrode and sealed nickel-hydrogen storage battery using the same
JPWO2019244818A1 (en) Non-aqueous electrolyte secondary battery
JP5456333B2 (en) Sealed alkaline storage battery
JP2005056676A (en) Cylindrical alkaline storage battery
JPWO2020004135A1 (en) Non-aqueous electrolyte secondary battery
JP5110889B2 (en) Nickel metal hydride secondary battery
JP2002343366A (en) Electrode plate for alkaline storage battery and alkaline battery using same
JP2007311095A (en) Alkaline storage battery
JP4359099B2 (en) Cylindrical alkaline storage battery
JP2010061892A (en) Secondary battery with spirally-rolled electrode group
JPWO2019244817A1 (en) Non-aqueous electrolyte secondary battery
JP6719101B2 (en) Nickel-hydrogen battery and manufacturing method thereof
JP6151106B2 (en) Nickel metal hydride storage battery
WO2021192978A1 (en) Alkaline storage battery
JP2011008930A (en) Cylindrical type alkaline storage battery
JP2002025548A (en) Square alkaline storage battery
JP2005056675A (en) Cylindrical alkaline battery
JP2001351673A (en) Alkali storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140108

R150 Certificate of patent or registration of utility model

Ref document number: 5456333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150