JP2010190757A - Load applying mechanism using buckling - Google Patents

Load applying mechanism using buckling Download PDF

Info

Publication number
JP2010190757A
JP2010190757A JP2009036011A JP2009036011A JP2010190757A JP 2010190757 A JP2010190757 A JP 2010190757A JP 2009036011 A JP2009036011 A JP 2009036011A JP 2009036011 A JP2009036011 A JP 2009036011A JP 2010190757 A JP2010190757 A JP 2010190757A
Authority
JP
Japan
Prior art keywords
buckling
fixed
load
elastic body
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009036011A
Other languages
Japanese (ja)
Inventor
Yoshihiro Tanaka
由浩 田中
Akito Sano
明人 佐野
Atsushi Yamada
篤史 山田
Hideo Fujimoto
英雄 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2009036011A priority Critical patent/JP2010190757A/en
Publication of JP2010190757A publication Critical patent/JP2010190757A/en
Pending legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a load applying mechanism using a buckling for maintaining approximately constant a contact force at a surface contacting mechanically with an object while dispensing with feedback systems such as force sensors. <P>SOLUTION: The load applying mechanism using a buckling consists of a fixed portion which contacts with an object, a movable portion which is moved to push and contact the fixed portion with the object, and an elastic portion of which both ends are fixed to the fixed portion and the movable portion and causes the buckling by bending or compression. The elastic portion causes the buckling by applying a load to the object, thereby fluctuation of the contact force of the fixed portion which contacts with an object is reduced in relation to a movement amount of the movable portion and the contact force to the object is maintained approximately constant. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、対象に対する接触力をほぼ一定に保つことができる座屈を利用した荷重負荷機構に関するものである。 The present invention relates to a load-loading mechanism using buckling capable of maintaining a contact force with respect to an object substantially constant.

対象に対し接触を必要とする作業器具や計測装置においては、使用時に接触力を一定に保つことが必要になることがある。
たとえば、接触力を計測可能な力センサを配置して、その情報をフィードバックすることにより一定の接触力を実現することができる。しかし、一般に力センサは電気を必要とし、生体内や電気的ノイズが非常に大きい環境下では使用することができない。
また、生体など対象が傷つきやすい場合、対象に対し過度の接触力が加わることを避ける必要がある。このとき、力センサを用いたフィードバック系は十分に安全ではない。
したがって、力センサを使用せず、機械的に対象に対する接触力を一定に保つことができる方法が望まれる。たとえば、特許文献1の表面凸部検出装置および表面凸部検出方法では、硬い材質の円筒状の容器とその内部の力検出部の上に設置した弾性体を用いて、上部から人の手によって押さえつけるとき、操作者から加えられる力の変動が直接は力検出部には伝わらずに、ほぼ一定の力を力検出部に与えることができる。しかし、円筒状の容器に力の変動が伝わるため、力検出部以外の接触面において、接触力が大きく変動してしまう。これは、上述した対象が傷つきやすい場合において、安全性を確保できない。
In a working tool or a measuring device that requires contact with an object, it may be necessary to keep the contact force constant during use.
For example, a constant contact force can be realized by arranging a force sensor capable of measuring the contact force and feeding back the information. However, a force sensor generally requires electricity and cannot be used in a living body or in an environment where electrical noise is very large.
In addition, when a subject such as a living body is easily damaged, it is necessary to avoid applying an excessive contact force to the subject. At this time, the feedback system using the force sensor is not sufficiently safe.
Therefore, there is a demand for a method that can maintain a constant contact force with respect to an object without using a force sensor. For example, in the surface convex part detection device and the surface convex part detection method of Patent Document 1, a cylindrical material made of a hard material and an elastic body installed on the internal force detection part are used, and the human hand from above. When pressing, the force variation applied by the operator is not directly transmitted to the force detector, but a substantially constant force can be applied to the force detector. However, since the fluctuation of the force is transmitted to the cylindrical container, the contact force largely fluctuates on the contact surface other than the force detection unit. This cannot ensure safety in the case where the above-described object is easily damaged.

特許公開2008−70169Patent Publication 2008-70169 特許出願2008−40053Patent application 2008-40053

本発明は、上記事情に鑑み、センサ等のフィードバック系を必要とせず、機械的に対象に対する接触力をほぼ一定に保つことができる座屈を利用した荷重負荷機構を提供することを目的とする。 SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a load-loading mechanism that uses buckling that does not require a feedback system such as a sensor and that can mechanically maintain a substantially constant contact force to an object. .

課題を解決するために、第1の発明は、対象に対する接触力をほぼ一定に保つことができる座屈を利用した荷重負荷機構であって、対象と接触する固定部と、該固定部を対象に押付けるため動かされる可動部と、両端が該固定部と該可動部に固定された、曲げまたは圧縮により座屈を起こす弾性体部と、からなることを特徴とする座屈を利用した荷重負荷機構にある(請求項1)。
第2の発明は、前記弾性体部が、複数形成されていることを特徴とする、請求項1に記載の座屈を利用した荷重負荷機構にある(請求項2)。
第3の発明は、前記弾性体部は、前記固定部および前記可動部に対して対称に配置されていることを特徴とする、請求項2に記載の座屈を利用した荷重負荷機構にある(請求項3)。
第4の発明は、前記固定部は、前記可動部と同軸上にあり、該可動部表面、または該可動部内部をスライドするプローブ部と接続されていることを特徴とする、請求項1〜3のいずれかに記載の座屈を利用した荷重負荷機構にある(請求項4)。
第5の発明は、前記弾性体部は、断面が円弧または円の形状であることを特徴とする、請求項1〜4のいずれかに記載の座屈を利用した荷重負荷機構にある(請求項5)。
第6の発明は、前記弾性体部は、平面板の形状であることを特徴とする、請求項1〜4のいずれかに記載の座屈を利用した荷重負荷機構にある(請求項6)。
In order to solve the problem, the first invention is a load-loading mechanism using buckling capable of maintaining a contact force with respect to a target substantially constant, and a fixing portion that contacts the target, and the fixing portion as a target. A load using buckling, characterized in that it comprises a movable part that is moved to press against the elastic part, and an elastic part that is buckled by bending or compression, both ends of which are fixed to the fixed part and the movable part. It exists in a load mechanism (Claim 1).
According to a second aspect of the present invention, there is provided a load-loading mechanism using buckling according to claim 1, wherein a plurality of the elastic body portions are formed (invention 2).
According to a third aspect of the present invention, there is provided the load applying mechanism using buckling according to claim 2, wherein the elastic body portion is disposed symmetrically with respect to the fixed portion and the movable portion. (Claim 3).
According to a fourth aspect of the present invention, the fixed portion is coaxial with the movable portion, and is connected to a surface of the movable portion or a probe portion that slides inside the movable portion. 3. A load-loading mechanism using buckling according to any one of claims 3 to 4.
According to a fifth aspect of the present invention, there is provided the load applying mechanism using buckling according to any one of claims 1 to 4, wherein the elastic body portion has an arc or circle cross section. Item 5).
According to a sixth aspect of the present invention, in the load-loading mechanism using buckling according to any one of the first to fourth aspects, the elastic body portion has a shape of a flat plate. .

本発明によれば、対象に対する接触力をほぼ一定に保つことができる座屈を利用した荷重負荷機構を提供できる。
特に、本発明の座屈を利用した荷重負荷機構では、対象に荷重を負荷することにより可動部と固定部の間にある弾性体部が座屈を起こす。座屈後は該可動部の移動量に対して、対象と接触する該固定部の接触力の変動を小さくすることができる。すなわち、対象に対する接触力がほぼ一定になる。
また、弾性体部の硬さや形状、枚数を変えることで、座屈後の接触力の大きさを任意に設定できる。
ADVANTAGE OF THE INVENTION According to this invention, the load loading mechanism using buckling which can keep the contact force with respect to object substantially constant can be provided.
In particular, in the load loading mechanism using buckling according to the present invention, the elastic body portion between the movable portion and the fixed portion buckles when a load is applied to the object. After buckling, the fluctuation of the contact force of the fixed part that contacts the object can be reduced with respect to the amount of movement of the movable part. That is, the contact force with respect to the object is substantially constant.
Moreover, the magnitude | size of the contact force after buckling can be arbitrarily set by changing the hardness, shape, and number of sheets of an elastic-body part.

本発明の第1実施形態における座屈を利用した荷重負荷機構の構成を示す図である。It is a figure which shows the structure of the load mechanism using the buckling in 1st Embodiment of this invention. 図1の状態から弾性体部を座屈させた状態を示した図である。It is the figure which showed the state which buckled the elastic-body part from the state of FIG. 本発明の第2実施形態における座屈を利用した荷重負荷機構において、可動部の動作を直動とした場合の構成を示す図である。It is a figure which shows the structure at the time of making the operation | movement of a movable part into a linear motion in the load mechanism using the buckling in 2nd Embodiment of this invention. 図3の断面図を示した図である。It is the figure which showed sectional drawing of FIG. 図3のA−A’断面図を示した図である。FIG. 4 is a cross-sectional view taken along the line A-A ′ of FIG. 3. 図4の状態から弾性体部を座屈させた状態を示した図である。It is the figure which showed the state which buckled the elastic-body part from the state of FIG. 本発明を触覚センサに応用した場合の構成を示す図である。It is a figure which shows the structure at the time of applying this invention to a tactile sensor. 図3に示した機構を用いて、対象に対し荷重を負荷した場合の可動部の移動量に対する固定部の接触力を測定した実験結果である。It is the experimental result which measured the contact force of the fixing | fixed part with respect to the moving amount | distance of a movable part at the time of applying a load with respect to object using the mechanism shown in FIG.

以下、本発明の座屈を利用した荷重負荷機構の実施の形態を説明する。
本発明の座屈を利用した荷重負荷機構は、対象と接触する固定部と、該固定部を対象に押付けるため動かされる可動部と、両端が該固定部と該可動部に固定された、曲げまたは圧縮により座屈を起こす弾性体部と、からなることを特徴とする。
Hereinafter, an embodiment of a load loading mechanism using buckling of the present invention will be described.
The load loading mechanism using buckling of the present invention is a fixed part that comes into contact with the object, a movable part that is moved to press the fixed part against the object, and both ends are fixed to the fixed part and the movable part. And an elastic body portion that buckles by bending or compression.

(第1実施形態)
図1は、本発明の第1実施形態における座屈を利用した荷重負荷機構の構成を示したものである。図1の可動部1を動かし、固定部2を対象に接触させる。可動部1と固定部2の間には両端を可動部1と固定部2に固定された弾性体部3がある。図1では、固定部2が対象を押すように可動部1を動かすことで弾性体部3に曲げモーメントが加わり座屈を起こす。図1に示した状態から座屈を起こした後の状態を図2に示す。座屈後は、図2に示すように弾性体部3が大変形を起こし、可動部1の移動量に対して固定部2の接触力の変動を小さくし、接触力をほぼ一定に保つことができる。なお、可動部1および固定部2に、樹脂を用いている。また、弾性体部3には、平面状のシリコーンゴムを用いている。
(First embodiment)
FIG. 1 shows the configuration of a load-loading mechanism using buckling in the first embodiment of the present invention. The movable part 1 in FIG. 1 is moved to bring the fixed part 2 into contact with the object. Between the movable part 1 and the fixed part 2, there is an elastic body part 3 having both ends fixed to the movable part 1 and the fixed part 2. In FIG. 1, when the movable part 1 is moved so that the fixed part 2 pushes the object, a bending moment is applied to the elastic body part 3 to cause buckling. FIG. 2 shows a state after buckling has occurred from the state shown in FIG. After buckling, as shown in FIG. 2, the elastic body portion 3 is largely deformed, and the variation of the contact force of the fixed portion 2 with respect to the moving amount of the movable portion 1 is reduced, and the contact force is kept almost constant. Can do. Resin is used for the movable part 1 and the fixed part 2. The elastic body 3 is made of planar silicone rubber.

(第2実施形態)
図3に、本発明の第2実施形態における可動部の動作を直動とした場合の座屈を利用した荷重負荷機構の構成を示す。また、図4に図3の断面図を示す。ここでは、固定部4およびプローブ部5は可動部6と同軸上にあり、固定部4は可動部6内部をスライドするプローブ部5と接続されている。固定部4と可動部6の間には両端を固定された弾性体部7が配置されている。弾性体部7は固定部4および可動部6に対して2枚対称に配置されている。また、図5に、図3のA−A’断面図を示す。弾性体部7の断面は円弧形状をしている。本実施形態においては、可動部6が直動に動くことにより、弾性体部7に圧縮力が加わり、座屈を起こす。図4に示した状態から座屈を起こした後の状態を図6に示す。座屈後は、図6に示すように弾性体部7が大変形を起こし、可動部6の移動量に対して固定部4の接触力の変動を小さくし、接触力をほぼ一定に保つことができる。
図3の可動部6については、外径5mm、内径3mm、高さ100mmのアクリル製中空の円柱を使用し、弾性体部7が固定される部分は、外径4mm、高さ3mmとした。プローブ部5には直径2mmのアクリル製円柱を使用した。固定部4には、直径5mm、高さ5mmのアクリル製円柱を使用し、弾性体部7が固定される部分は、直径4mm、高さ3mmとした。弾性体部7には、厚さ0.3mm、高さ15mm、断面形状がR2.5mm、円弧角90°のポリプロピレンを使用し、2枚対称に配置した。
(Second Embodiment)
FIG. 3 shows the configuration of a load load mechanism using buckling when the operation of the movable portion in the second embodiment of the present invention is a linear motion. 4 shows a cross-sectional view of FIG. Here, the fixed portion 4 and the probe portion 5 are coaxial with the movable portion 6, and the fixed portion 4 is connected to the probe portion 5 that slides inside the movable portion 6. Between the fixed portion 4 and the movable portion 6, an elastic body portion 7 having both ends fixed is disposed. Two elastic body portions 7 are arranged symmetrically with respect to the fixed portion 4 and the movable portion 6. FIG. 5 is a cross-sectional view taken along the line AA ′ of FIG. The cross section of the elastic body portion 7 has an arc shape. In this embodiment, when the movable part 6 moves linearly, a compressive force is applied to the elastic body part 7 to cause buckling. FIG. 6 shows a state after buckling from the state shown in FIG. After the buckling, as shown in FIG. 6, the elastic body portion 7 is largely deformed, and the variation of the contact force of the fixed portion 4 with respect to the moving amount of the movable portion 6 is reduced, so that the contact force is kept almost constant. Can do.
As for the movable portion 6 in FIG. 3, an acrylic hollow cylinder having an outer diameter of 5 mm, an inner diameter of 3 mm, and a height of 100 mm was used, and a portion to which the elastic body portion 7 was fixed had an outer diameter of 4 mm and a height of 3 mm. The probe unit 5 was an acrylic cylinder having a diameter of 2 mm. An acrylic cylinder having a diameter of 5 mm and a height of 5 mm was used for the fixing part 4, and the part to which the elastic body part 7 was fixed was 4 mm in diameter and 3 mm in height. The elastic body portion 7 was made of polypropylene having a thickness of 0.3 mm, a height of 15 mm, a cross-sectional shape of R2.5 mm, and an arc angle of 90 °, and the two were arranged symmetrically.

(他の実施形態)
第1実施形態では、可動部1、固定部2、および弾性体部3の材料を示したが、それ以外の材料でも良い。同一材料としても良い。
第1実施形態では、弾性体部3が平面板であることを示したが、弾性体部3の断面形状が円弧または円であっても良い。
第2実施形態では、可動部6内部をスライドするプローブ部5を用いることを示したが、可動部6表面をスライドするプローブ部を用いても良い。
第2実施形態では、弾性体部7の断面形状が円弧であることを示したが、弾性体部7が平面板であっても良い。
第2実施形態では、弾性体部7を2枚としたが、固定部4および可動部6に対して対称であれば複数用いて良い。
第2実施形態では、可動部、固定部、プローブ部および弾性体部の材料を示したが、それ以外の材料でも良い。同一材料としても良い。
第2実施形態では、具体的な寸法を示したが、上記以外の寸法でも良い。
(Other embodiments)
In 1st Embodiment, although the material of the movable part 1, the fixed part 2, and the elastic body part 3 was shown, other materials may be sufficient. The same material may be used.
In the first embodiment, it is shown that the elastic body portion 3 is a flat plate, but the cross-sectional shape of the elastic body portion 3 may be an arc or a circle.
In the second embodiment, it is shown that the probe unit 5 that slides inside the movable unit 6 is used. However, a probe unit that slides on the surface of the movable unit 6 may be used.
In 2nd Embodiment, although the cross-sectional shape of the elastic-body part 7 showed that it was a circular arc, the elastic-body part 7 may be a plane plate.
In the second embodiment, two elastic body portions 7 are used, but a plurality of elastic body portions 7 may be used as long as they are symmetrical with respect to the fixed portion 4 and the movable portion 6.
In 2nd Embodiment, although the material of a movable part, a fixed part, a probe part, and an elastic body part was shown, materials other than that may be used. The same material may be used.
Although specific dimensions are shown in the second embodiment, dimensions other than those described above may be used.

(応用例)
本発明の応用例を説明する。本発明は、たとえば、触覚センサのプローブに利用することが可能である。
(Application examples)
An application example of the present invention will be described. The present invention can be used for a probe of a tactile sensor, for example.

特許文献2では、流体を用いて、対象の硬さおよびぬめり等の表面性状を計測する触覚センシング方法および触覚センサを提案している。これは、流体を用いて、対象の硬さおよびぬめり等の表面性状を計測する方法であって、流体が満たされた柔軟なバルーンを対象に押当てる接触工程と、該バルーンの流体を制御し、該バルーンを膨張させる流体制御工程と、該バルーンの膨張における流体または該バルーンの形状の変化を計測する計測工程と、該計測工程から得られた情報を信号処理し、硬さおよびぬめり等の表面性状の評価値を算出する評価工程と、から構成されることを特徴としている。触覚センサは、流体が満たされた柔軟なバルーンを有するセンサ素子と、該バルーンの流体を制御し、該バルーンを膨張させる流体制御部と、該バルーンの膨張における流体または該バルーンの形状の変化を計測する計測部と、該計測部から得られた情報を信号処理し、硬さおよびぬめり等の表面性状の評価値を算出する評価部と、から構成されることを特徴としている。
前記接触工程は、前記バルーンに一定荷重を与えることが望ましく、本発明は前記センサ素子に搭載することができ、該接触工程を実現できる。
図7に、本発明を前記センサ素子に応用した場合の構成図を示す。固定部8の先端にはバルーン9が取り付けられている。固定部8およびプローブ部10が可動部11と同軸上にあり、可動部11内部をスライドするプローブ部10と固定部8は接続されている。固定部8と可動部11の間には両端を固定された弾性体部12が配置されている。弾性体部12は固定部8および可動部11に対して2枚対称に配置されている。なお、固定部8およびプローブ部10は中空でつながっており、バルーン9およびこの中空の中を流体が満たしている。プローブ部10は流体制御部とつながっている。
前記接触工程は、バルーン9のついた固定部8を対象に接触させ、可動部11を直動に動かすことにより実現できる。可動部11が直動に動くことで弾性体部12に圧縮力が加わり、座屈を起こす。座屈後は、可動部11の移動量に対して固定部8の接触力の変動を小さくし、接触力をほぼ一定にすることができる。なお、バルーン9のついた固定部8およびプローブ部10は中空であり流体で満たされ、これらを通じて流体制御部とつながっているから、流体を制御し、バルーン9を膨張させることが可能である。
本実施例の座屈を利用した荷重負荷機構の効果を実験的に確認するために、図3に示した実施形態を用いて、対象に対し荷重を負荷した場合に関し、可動部の移動量に対する固定部の接触力の測定実験を行った。
硬い鋼板に対し荷重を負荷した場合の固定部の接触力の測定実験の結果を図8に示す。図8より、始めは可動部の移動量に対し固定部の接触力が増加するが、移動量0.5mm以降は、接触力は移動量に対しほとんど変化しないことがわかる。すなわち、固定部の接触力をほぼ一定に保つことができるといえる。この接触力が変化しなくなる点は、弾性体部が座屈を起こした点を表す。また、弾性体部の硬さや形状、枚数を変えることで、座屈後の接触力の大きさを変えることができる。
Patent Document 2 proposes a tactile sensing method and a tactile sensor that measure a surface property such as hardness and sliminess of an object using a fluid. This is a method for measuring the surface properties such as hardness and sliminess of a target using a fluid, and controls a contact process of pressing a flexible balloon filled with the fluid against the target, and the fluid of the balloon. A fluid control step for inflating the balloon; a measurement step for measuring a change in the fluid or the shape of the balloon in the inflation of the balloon; and signal processing of information obtained from the measurement step, such as hardness and slimming And an evaluation step for calculating an evaluation value of the surface property. The tactile sensor includes a sensor element having a flexible balloon filled with a fluid, a fluid control unit that controls the fluid of the balloon and inflates the balloon, and changes in the fluid or the shape of the balloon in the inflation of the balloon. It is characterized by comprising a measuring unit for measuring, and an evaluating unit for processing information obtained from the measuring unit and calculating evaluation values of surface properties such as hardness and slime.
In the contact step, it is desirable to apply a constant load to the balloon, and the present invention can be mounted on the sensor element to realize the contact step.
FIG. 7 shows a configuration diagram when the present invention is applied to the sensor element. A balloon 9 is attached to the tip of the fixing portion 8. The fixed portion 8 and the probe portion 10 are coaxial with the movable portion 11, and the probe portion 10 that slides inside the movable portion 11 and the fixed portion 8 are connected. Between the fixed portion 8 and the movable portion 11, an elastic body portion 12 having both ends fixed is disposed. Two elastic body portions 12 are arranged symmetrically with respect to the fixed portion 8 and the movable portion 11. In addition, the fixing | fixed part 8 and the probe part 10 are connected in the hollow, and the fluid has filled the balloon 9 and this hollow. The probe unit 10 is connected to the fluid control unit.
The contact step can be realized by bringing the fixed portion 8 with the balloon 9 into contact with the object and moving the movable portion 11 in a linear motion. When the movable part 11 moves linearly, a compressive force is applied to the elastic body part 12 to cause buckling. After buckling, the variation of the contact force of the fixed portion 8 with respect to the amount of movement of the movable portion 11 can be reduced to make the contact force substantially constant. In addition, since the fixing | fixed part 8 and the probe part 10 with the balloon 9 are hollow and are filled with the fluid and are connected with the fluid control part through these, it is possible to control the fluid and to inflate the balloon 9.
In order to experimentally confirm the effect of the load loading mechanism using the buckling of the present embodiment, with respect to the case where a load is applied to the object using the embodiment shown in FIG. An experiment for measuring the contact force of the fixed part was performed.
The result of the measurement experiment of the contact force of the fixed part when a load is applied to a hard steel plate is shown in FIG. From FIG. 8, it can be seen that initially the contact force of the fixed portion increases with respect to the moving amount of the movable portion, but the contact force hardly changes with respect to the moving amount after the moving amount of 0.5 mm. That is, it can be said that the contact force of the fixed portion can be kept substantially constant. The point where the contact force does not change represents a point where the elastic body portion has buckled. Moreover, the magnitude | size of the contact force after buckling can be changed by changing the hardness, shape, and number of sheets of an elastic body part.

1 可動部
2 固定部
3 弾性体部
4 固定部
5 プローブ部
6 可動部
7 弾性体部
8 固定部
9 バルーン
10 プローブ部
11 可動部
12 弾性体部
DESCRIPTION OF SYMBOLS 1 Movable part 2 Fixed part 3 Elastic body part 4 Fixed part 5 Probe part 6 Movable part 7 Elastic body part 8 Fixed part 9 Balloon 10 Probe part 11 Movable part 12 Elastic body part

Claims (6)

対象に対する接触力をほぼ一定に保つことができる座屈を利用した荷重負荷機構であって、対象と接触する固定部と、該固定部を対象に押付けるため動かされる可動部と、両端が該固定部と該可動部に固定された、曲げまたは圧縮により座屈を起こす弾性体部と、からなることを特徴とする座屈を利用した荷重負荷機構。 A load-loading mechanism using buckling that can keep the contact force to an object substantially constant, a fixed part that comes into contact with the object, a movable part that is moved to press the fixed part against the object, A load-loading mechanism using buckling, comprising: a fixed portion and an elastic body portion fixed to the movable portion and causing buckling by bending or compression. 前記弾性体部は、複数形成されていることを特徴とする、請求項1に記載の座屈を利用した荷重負荷機構。 The load applying mechanism using buckling according to claim 1, wherein a plurality of the elastic body portions are formed. 前記弾性体部は、前記固定部および前記可動部に対して対称に配置されていることを特徴とする、請求項2に記載の座屈を利用した荷重負荷機構。 The load applying mechanism using buckling according to claim 2, wherein the elastic body portion is disposed symmetrically with respect to the fixed portion and the movable portion. 前記固定部は、前記可動部と同軸上にあり、該可動部表面、または該可動部内部をスライドするプローブ部と接続されていることを特徴とする、請求項1〜3のいずれかに記載の座屈を利用した荷重負荷機構。 The said fixed part is coaxial with the said movable part, and is connected to the probe part which slides inside this movable part surface or this movable part, The Claim 1 characterized by the above-mentioned. Load-bearing mechanism using the buckling of 前記弾性体部は、断面が円弧または円の形状であることを特徴とする、請求項1〜4のいずれかに記載の座屈を利用した荷重負荷機構。 The load mechanism using buckling according to any one of claims 1 to 4, wherein the elastic body section has a circular or circular cross section. 前記弾性体部は、平面板の形状であることを特徴とする、請求項1〜4のいずれかに記載の座屈を利用した荷重負荷機構。 The load applying mechanism using buckling according to any one of claims 1 to 4, wherein the elastic body portion has a shape of a flat plate.
JP2009036011A 2009-02-19 2009-02-19 Load applying mechanism using buckling Pending JP2010190757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009036011A JP2010190757A (en) 2009-02-19 2009-02-19 Load applying mechanism using buckling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009036011A JP2010190757A (en) 2009-02-19 2009-02-19 Load applying mechanism using buckling

Publications (1)

Publication Number Publication Date
JP2010190757A true JP2010190757A (en) 2010-09-02

Family

ID=42816949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009036011A Pending JP2010190757A (en) 2009-02-19 2009-02-19 Load applying mechanism using buckling

Country Status (1)

Country Link
JP (1) JP2010190757A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109668794A (en) * 2017-10-17 2019-04-23 中国石油化工股份有限公司 Four-point bending corrosion experimental device and purposes
KR102084194B1 (en) * 2018-11-27 2020-03-03 조선대학교산학협력단 Apparatus for flaw detection for nondestructive inspection

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447651U (en) * 1990-08-28 1992-04-22
JPH04166743A (en) * 1990-10-30 1992-06-12 Omron Corp Hardness detector
JPH0729838U (en) * 1993-11-08 1995-06-02 日本電子材料株式会社 Vertical motion probe card with buckling stress reduction mechanism
JPH09218223A (en) * 1996-02-13 1997-08-19 Nippon Denshi Zairyo Kk Vertical probe card and probe therefor
JPH09304435A (en) * 1996-05-10 1997-11-28 Nippon Denshi Zairyo Kk Vertical type probe card
JPH10221374A (en) * 1997-02-03 1998-08-21 Nippon Denshi Zairyo Kk Perpendicularly operating probe card and probe unit used in the same and manufacture of probe unit
JPH11118790A (en) * 1997-10-09 1999-04-30 Kurabo Ind Ltd Distinguishing method of different plastic materials, method and apparatus for distinguishing between pvc bottle and pet bottle, and pet bottle collector
JPH11293674A (en) * 1998-04-09 1999-10-26 Tokyo Electric Power Co Inc:The Penetration amount measuring device for pile
JP2000241443A (en) * 1999-02-24 2000-09-08 Matsushita Electric Ind Co Ltd Probe contact device
JP2000292439A (en) * 1999-04-06 2000-10-20 Japan Electronic Materials Corp Vertical operation-type probe card
JP2001281266A (en) * 2000-04-03 2001-10-10 Nec Corp Semiconductor device measuring apparatus
JP2001337109A (en) * 2000-05-26 2001-12-07 Hioki Ee Corp Contact probe
JP2007139592A (en) * 2005-11-18 2007-06-07 Saitama Prefecture Instrument of measuring ultramicro hardness or the like and measuring method
JP2007155474A (en) * 2005-12-05 2007-06-21 Japan Electronic Materials Corp Probe and its manufacturing method
JP2007536985A (en) * 2004-05-13 2007-12-20 オムニソニックス メディカル テクノロジーズ インコーポレイテッド Ultrasound medical device and method for treating urolithiasis
JP2008070169A (en) * 2006-09-12 2008-03-27 Nagoya Institute Of Technology Surface projecting part detection device and surface projecting part detection method
JP2008298555A (en) * 2007-05-31 2008-12-11 Hioki Ee Corp Probe unit, probe pin, and circuit board inspection apparatus
JP2009198302A (en) * 2008-02-21 2009-09-03 Nagoya Institute Of Technology Tactile sensing method using fluid and tactile sensor using fluid

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447651U (en) * 1990-08-28 1992-04-22
JPH04166743A (en) * 1990-10-30 1992-06-12 Omron Corp Hardness detector
JPH0729838U (en) * 1993-11-08 1995-06-02 日本電子材料株式会社 Vertical motion probe card with buckling stress reduction mechanism
JPH09218223A (en) * 1996-02-13 1997-08-19 Nippon Denshi Zairyo Kk Vertical probe card and probe therefor
JPH09304435A (en) * 1996-05-10 1997-11-28 Nippon Denshi Zairyo Kk Vertical type probe card
JPH10221374A (en) * 1997-02-03 1998-08-21 Nippon Denshi Zairyo Kk Perpendicularly operating probe card and probe unit used in the same and manufacture of probe unit
JPH11118790A (en) * 1997-10-09 1999-04-30 Kurabo Ind Ltd Distinguishing method of different plastic materials, method and apparatus for distinguishing between pvc bottle and pet bottle, and pet bottle collector
JPH11293674A (en) * 1998-04-09 1999-10-26 Tokyo Electric Power Co Inc:The Penetration amount measuring device for pile
JP2000241443A (en) * 1999-02-24 2000-09-08 Matsushita Electric Ind Co Ltd Probe contact device
JP2000292439A (en) * 1999-04-06 2000-10-20 Japan Electronic Materials Corp Vertical operation-type probe card
JP2001281266A (en) * 2000-04-03 2001-10-10 Nec Corp Semiconductor device measuring apparatus
JP2001337109A (en) * 2000-05-26 2001-12-07 Hioki Ee Corp Contact probe
JP2007536985A (en) * 2004-05-13 2007-12-20 オムニソニックス メディカル テクノロジーズ インコーポレイテッド Ultrasound medical device and method for treating urolithiasis
JP2007139592A (en) * 2005-11-18 2007-06-07 Saitama Prefecture Instrument of measuring ultramicro hardness or the like and measuring method
JP2007155474A (en) * 2005-12-05 2007-06-21 Japan Electronic Materials Corp Probe and its manufacturing method
JP2008070169A (en) * 2006-09-12 2008-03-27 Nagoya Institute Of Technology Surface projecting part detection device and surface projecting part detection method
JP2008298555A (en) * 2007-05-31 2008-12-11 Hioki Ee Corp Probe unit, probe pin, and circuit board inspection apparatus
JP2009198302A (en) * 2008-02-21 2009-09-03 Nagoya Institute Of Technology Tactile sensing method using fluid and tactile sensor using fluid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109668794A (en) * 2017-10-17 2019-04-23 中国石油化工股份有限公司 Four-point bending corrosion experimental device and purposes
CN109668794B (en) * 2017-10-17 2021-07-27 中国石油化工股份有限公司 Four-point bending corrosion experimental device and application
KR102084194B1 (en) * 2018-11-27 2020-03-03 조선대학교산학협력단 Apparatus for flaw detection for nondestructive inspection

Similar Documents

Publication Publication Date Title
US10365172B2 (en) Tactile sensor that includes two sheets each having at least either flexibility or elasticity
Vatani et al. Force and slip detection with direct-write compliant tactile sensors using multi-walled carbon nanotube/polymer composites
Sun et al. Hybrid architectures of heterogeneous carbon nanotube composite microstructures enable multiaxial strain perception with high sensitivity and ultrabroad sensing range
US8056423B2 (en) Sensing the tendon tension through the conduit reaction forces
KR101449410B1 (en) Highly Sensitive Tactile Sensor using Interlocking of Conducting nano or micro pillars
US9857245B2 (en) Soft-body deformation and force sensing
KR101477010B1 (en) A tactile sensor and manufacturing method for thereof
TW200717750A (en) An apparatus and test device for the application and measurement of prescribed, predicted and controlled contact pressure on wires
US7678064B2 (en) Apparatus for detecting tactile sensitivity
JP2019105553A (en) Tactile sensor and Android
Kim et al. Soft tactile sensor to detect the slip of a Robotic hand
JP2010190757A (en) Load applying mechanism using buckling
JP4632202B2 (en) Tactile sensor
EP1997218B1 (en) Self-sensing actuator and method of controlling thereof
JP6274246B2 (en) Monitoring device
Zhou et al. A novel liquid metal sensor with three microchannels embedded in elastomer
JP2012021924A (en) Device for measuring deformed state
JP6224372B2 (en) Measuring instrument
CN111033203A (en) Pressure measuring device and pressure measuring method
JP6506104B2 (en) Electromagnetic field measurement device
EP2275788A2 (en) Weight detection apparatus
KR101136400B1 (en) Testing device of ring-shaped test object and test system having the same
KR102082657B1 (en) Apparatus for Stiffness Measurement
KR101924546B1 (en) Apparatus for measuring pressure
KR101953760B1 (en) Sensor capable of measuring pressure or shear stress, sensor substrate and insole using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120208

A977 Report on retrieval

Effective date: 20121203

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130528