JP2010189249A - Non-calcinated alumina-magnesia-carbon brick - Google Patents

Non-calcinated alumina-magnesia-carbon brick Download PDF

Info

Publication number
JP2010189249A
JP2010189249A JP2009058687A JP2009058687A JP2010189249A JP 2010189249 A JP2010189249 A JP 2010189249A JP 2009058687 A JP2009058687 A JP 2009058687A JP 2009058687 A JP2009058687 A JP 2009058687A JP 2010189249 A JP2010189249 A JP 2010189249A
Authority
JP
Japan
Prior art keywords
alumina
magnesia
weight
carbon brick
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009058687A
Other languages
Japanese (ja)
Other versions
JP5019301B2 (en
Inventor
Masahiro Yoshida
昌弘 吉田
Naoshi Tomitani
尚士 冨谷
Masanori Hazaki
正憲 羽崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP2009058687A priority Critical patent/JP5019301B2/en
Publication of JP2010189249A publication Critical patent/JP2010189249A/en
Application granted granted Critical
Publication of JP5019301B2 publication Critical patent/JP5019301B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-calcinated alumina-magnesia-carbon brick that is highly durable and lighter than conventional materials. <P>SOLUTION: The non-calcinated alumina-magnesia-carbon brick is produced by adding an calcia-magnesia-alumina aggregate containing 60-90 wt.% of Al<SB>2</SB>O<SB>3</SB>, 3-30 wt.% of MgO, 3-20 wt.% of CaO, 2 or less wt.% of others, and having a bulk density of 3.10-3.60, in place of alumina-based raw materials. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は溶鋼・溶銑用取鍋、混銑車などの溶融金属用容器の内張りに使用される不焼成アルミナ−マグネシア−カーボン質れんがに関する。  The present invention relates to a non-fired alumina-magnesia-carbon brick used for the lining of molten metal containers such as molten steel, hot metal ladle, and kneading wheel.

従来、アルミナ−マグネシア−カーボンれんがは溶鋼鍋をはじめとした溶銑、溶鋼用容器や精錬設備の内張り材として広く活用されている。  Conventionally, alumina-magnesia-carbon brick has been widely used as a lining material for molten iron, including molten steel pans, containers for molten steel, and refining equipment.

上記アルミナ−マグネシア−カーボンれんがに添加されているカーボンは高熱伝導率でスラグに濡れ難くれんがに添加した場合に耐熱スポ−リング性を付与するという特徴を有しているため、高融点骨材である高純度のアルミナと組み合わせることにより優れた耐用性を持つれんがを得ることができる。  The carbon added to the alumina-magnesia-carbon brick has a high thermal conductivity and has a feature of imparting heat-resistant spoiling property when added to the slag, so it is a high melting point aggregate. By combining with a certain high purity alumina, a brick having excellent durability can be obtained.

ところでアルミナ−マグネシア−カーボンれんがの耐用性を決定付ける要因の一つに骨材の種類や純度がある。この骨材の種類や純度は主として耐食性に大きく影響を与えるため、耐食性が重視される溶鋼取鍋等に適用されるれんがについては高純度のアルミナを使用するのが常である。  By the way, one of the factors that determine the durability of alumina-magnesia-carbon brick is the type and purity of the aggregate. Since the type and purity of the aggregate largely affects the corrosion resistance, high-purity alumina is usually used for bricks applied to a molten steel ladle or the like where corrosion resistance is important.

一方、耐食性がさほど必要でない部位に適用されるアルミナ−マグネシア−カーボンれんがについてはコスト面を勘案し低純度のアルミナ骨材が適用されるケ−スもある。  On the other hand, with respect to alumina-magnesia-carbon bricks applied to parts where corrosion resistance is not so much required, there is a case where low-purity alumina aggregate is applied in consideration of cost.

これらのれんがを溶銑、溶鋼用容器などに施工する築炉作業は作業者による手積みがほとんどであり、高温下での作業になることが多く且つ長時間の重筋労働を伴うこの築炉作業は作業内容の改善が求められている。  The furnace construction work to construct these bricks in hot metal, molten steel containers, etc. is mostly done by workers, and is often carried out at high temperatures and requires long heavy labor. There is a need for improved work.

また製鉄所内で溶銑、溶鋼用容器などを搬送する際にはクレーンの使用が一般的であるが、粗鋼を増産するために鍋容量を増やそうとした場合、クレーン能力の不足によって制約を受ける場合が多い。容器の内張りのれんがの重量が大きければ、その分、容器に収容できる溶銑や溶鋼の容量は限られてくる。  In addition, cranes are generally used to transport hot metal, molten steel containers, etc. in steelworks, but if you try to increase the pan capacity to increase the production of crude steel, you may be restricted by insufficient crane capacity. Many. If the weight of the brick lining the container is large, the capacity of hot metal or molten steel that can be accommodated in the container is limited accordingly.

これまでにれんがの軽量化は種々の方法により検討されている。
例えば中空の断熱アルミナ骨材を使用する方法、低かさ比重の天然アルミナ原料を使用する方法やれんがの締まりをゆるくし高気孔率化する方法などが挙げられる。しかしこれらの方法は何れもれんがの耐食性を大きく損なうため実際の使用には適していない。
So far, weight reduction of bricks has been studied by various methods.
For example, a method using a hollow heat-insulating alumina aggregate, a method using a natural alumina raw material having a low bulk specific gravity, a method of loosening bricks and increasing the porosity, and the like can be mentioned. However, these methods are not suitable for actual use because they greatly impair the corrosion resistance of bricks.

またアルミナ−マグネシア−カーボンれんが中のカーボン添加量を増やすことによりれんがのかさ比重を低下させる方法もあるが、前述のようにカーボンは高熱伝導率であるため鉄皮からの熱ロス増大を引き起こす。  There is also a method of reducing the bulk specific gravity of the brick by increasing the amount of carbon added in the alumina-magnesia-carbon brick. However, as described above, since carbon has a high thermal conductivity, it causes an increase in heat loss from the iron skin.

前述のような事情から築炉作業における作業負荷の軽減及び築炉作業の効率化に対してれんがの軽量化は有効な一方策となりうる。  In view of the circumstances described above, it is possible to reduce the weight of bricks for effective reduction of the work load and efficiency of the building work.

さらにれんがの軽量化により搬送用クレーンの能力を最大限に活用することも可能になり、不要な設備投資を行わずにすむ。  In addition, the weight reduction of bricks makes it possible to make the most of the capacity of the crane for transportation, eliminating unnecessary capital investment.

本発明は、アルミナ−マグネシア−カーボンれんがにカルシア−マグネシア−アルミナ骨材を適用することにより、軽量、高耐食性且つ低熱伝導性を有するアルミナ−マグネシア−カーボンれんがを提供することを目的としている。  An object of the present invention is to provide an alumina-magnesia-carbon brick having light weight, high corrosion resistance and low thermal conductivity by applying calcia-magnesia-alumina aggregate to alumina-magnesia-carbon brick.

本発明はカーボン質原料を0.5〜30重量%、アルミナ質原料を5〜95重量%、マグネシア質原料を0.5〜40%、金属粉を10重量%以下、適量の結合材からなるアルミナ−マグネシア−カーボンれんがに対し、アルミナ質原料に代えてカルシア−マグネシア−アルミナ骨材を添加したことを特徴とする不焼成炭素含有耐火物である。  The present invention comprises a carbonaceous raw material of 0.5 to 30% by weight, an alumina raw material of 5 to 95% by weight, a magnesia raw material of 0.5 to 40%, a metal powder of 10% by weight or less, and an appropriate amount of a binder. An unfired carbon-containing refractory characterized by adding calcia-magnesia-alumina aggregate to alumina-magnesia-carbon brick instead of the alumina material.

本発明により製造される高耐用軽量アルミナ−マグネシア−カーボンれんがは、耐食性を損ねることなくかさ比重を低くすることができ、さらにれんがに低熱伝導性を付与することができる。またかさ比重が低くなるとれんが1本あたりの重量が軽くなるため、築炉作業の迅速化及び築炉作業負荷の軽減を図ることができる。これらのことから溶鋼鍋や転炉等の内張り材として極めて効果的なれんがを提供することができる。  The high durability lightweight alumina-magnesia-carbon brick produced by the present invention can reduce the bulk specific gravity without impairing the corrosion resistance, and can further impart low thermal conductivity to the brick. Moreover, since the weight per brick will become light if bulk specific gravity becomes low, it can aim at speeding up of a furnace construction work and reduction of a furnace construction work load. From these things, a very effective brick can be provided as a lining material for a molten steel pan, a converter, or the like.

本発明で用いるカーボン質材料としては天然黒鉛、ピッチコ−クス、カーボンブラック等の既知のカーボン質材料が挙げられる。本発明においてカーボン量を0.5〜30重量%と限定する理由は、カーボン量が0.5重量%未満では耐浸潤性及び耐熱スポ−リング性が大きく低下し、また30%を超えて添加する場合には熱間強度の不足や酸化後の組織不良を招くためである。  Examples of the carbonaceous material used in the present invention include known carbonaceous materials such as natural graphite, pitch coke, and carbon black. In the present invention, the reason for limiting the amount of carbon to 0.5 to 30% by weight is that if the amount of carbon is less than 0.5% by weight, the infiltration resistance and heat-sparing resistance are greatly reduced, and more than 30% is added. In this case, the hot strength is insufficient and the structure is poor after oxidation.

マグネシア原料としては天然マグネシア、焼結マグネシア、電融マグネシアなどマグネシアを主体としたものであればいずれも適用可能であり、これらのうちの1種又は2種以上を選び配合することができる。本発明においてマグネシア原料の添加量を0.5〜40重量%と限定する理由は、マグネシア原料添加量が0.5重量%未満では耐浸潤性及び耐食性が大きく低下し、また40%を超えて添加する場合には稼働面付近の変質が大きくなり剥離損傷が甚大となるためである。  As the magnesia raw material, any material mainly composed of magnesia such as natural magnesia, sintered magnesia, and electrofused magnesia can be applied, and one or more of these can be selected and blended. In the present invention, the reason for limiting the addition amount of the magnesia raw material to 0.5 to 40% by weight is that when the addition amount of the magnesia raw material is less than 0.5% by weight, the infiltration resistance and the corrosion resistance are greatly reduced, and exceeds 40% This is because when it is added, the alteration near the working surface becomes large and the peeling damage becomes enormous.

金属粉としては金属シリコン、金属アルミニウム、金属マグネシウム、アルミニウム−マグネシウム合金、鉄粉などが適用可能であり、これらのうちの1種又は2種以上を選び配合することができる。  As the metal powder, metal silicon, metal aluminum, metal magnesium, aluminum-magnesium alloy, iron powder and the like can be applied, and one or more of these can be selected and blended.

表1及び表2に当社使用アルミナ原料の粒物性の測定結果の例を示す。アルミナ質原料に代えて本発明で用いるカルシア−マグネシア−アルミナ骨材は従来使用されているホワイトアルミナやブラウンアルミナのような電融アルミナ骨材、焼結アルミナ骨材や電融スピネル骨材と比較して同程度の気孔率でありながらかさ比重が大幅に低いことが特徴である。Tables 1 and 2 show examples of measurement results of the grain properties of the alumina raw materials used by our company. The calcia-magnesia-alumina aggregate used in the present invention in place of the alumina raw material is compared with conventionally used fused alumina aggregates such as white alumina and brown alumina, sintered alumina aggregates and fused spinel aggregates. Thus, the bulk specific gravity is significantly low while maintaining the same porosity.

Figure 2010189249
Figure 2010189249

Figure 2010189249
Figure 2010189249

このカルシア−マグネシア−アルミナ骨材の化学組成はAl:60〜90重量%、MgO:3〜30重量%、CaO:3〜20重量%、その他2%以下であり、鉱物組成はCaAlのようなCaO−Al系鉱物とMgO−Alスピネルを主体としている。このカルシア−マグネシア−アルミナ骨材は任意の割合で従来のアルミナ質原料と置換可能である。The calcia - magnesia - chemical composition of the alumina aggregate Al 2 O 3: 60~90 wt%, MgO: 3 to 30 wt%, CaO: 3 to 20 wt%, other is 2% or less, mineral composition CaAl Mainly composed of CaO—Al 2 O 3 mineral such as 4 O 7 and MgO—Al 2 O 3 spinel. The calcia-magnesia-alumina aggregate can be replaced with a conventional alumina raw material at an arbitrary ratio.

以下、実施例について説明する。各例は表3及び表4に示す配合物及び添加物を混練後、フリクションプレスを用いて成形し、200℃×24時間加熱乾燥し試験に用いた。  Examples will be described below. In each example, the blends and additives shown in Tables 3 and 4 were kneaded, molded using a friction press, dried by heating at 200 ° C. for 24 hours, and used for the test.

表3及び表4に示すれんがの見掛気孔率とかさ比重はJ1S R2202に従って測定を行った。The apparent porosity and bulk specific gravity of the bricks shown in Tables 3 and 4 were measured according to J1S R2202.

Figure 2010189249
Figure 2010189249

表3及び表4に示す溶損指数は1650℃×5時間、C/S=1.7のスラグに対するもので、試験後試料の侵食深さを測定し、比較品No.4を100として指数化している。数値は小さいほど良好である。  The erosion index shown in Tables 3 and 4 is for a slag of 1650 ° C. × 5 hours and C / S = 1.7, and the erosion depth of the sample after the test was measured. 4 is indexed as 100. The smaller the value, the better.

Figure 2010189249
Figure 2010189249

表3の結果から明らかなように、本発明実施例のうちNo.1〜No.3については従来のホワイトアルミナ原料を使用した比較品(No.4〜No.5)と同程度の見掛け気孔率を保ちつつ、低かさ比重となっている。また耐食性も電融アルミナを主骨材として使用したNo.4とほぼ同等であり、焼結アルミナを主骨材としたNo.5より良好であった。  As is clear from the results in Table 3, No. 1-No. No. 3 has a low specific gravity while maintaining an apparent porosity comparable to that of comparative products (No. 4 to No. 5) using a conventional white alumina raw material. Corrosion resistance is No. using fused alumina as the main aggregate. No. 4 with sintered alumina as the main aggregate. It was better than 5.

熱伝導率については本発明品であるNo.1〜No.3は比較品No.4、No.5、No.7及びNo.8より大幅に低い値となっており、礬土頁岩を適用したNo.6とほぼ同等であった。また発明品はカルシア−マグネシア−アルミナ骨材の添加量が増すに従って低熱伝導率化する傾向にある。  About thermal conductivity, it is No. which is the product of the present invention. 1-No. 3 is a comparative product No. 4, no. 5, no. 7 and no. No. 8 which is significantly lower than No. 8 6 was almost the same. In addition, the inventive product tends to have a lower thermal conductivity as the amount of calcia-magnesia-alumina aggregate added increases.

本発明によって、れんが築炉作業時における作業負荷を軽減し、かつ、高耐用で熱伝導率の低いアルミナ−マグネシア−カーボン質れんがを提供することができる。  According to the present invention, it is possible to provide an alumina-magnesia-carbon brick that reduces the work load during brick building work and has high durability and low thermal conductivity.

Claims (2)

アルミナ質原料に代えてAl:60〜90重量%、MgO:3〜30重量%、CaO:3〜20重量%、その他2%以下で、かさ比重が3.10〜3.60であるカルシア−マグネシア−アルミナ骨材を添加したことを特徴とする不焼成アルミナ−マグネシア−カーボンれんが。Instead of the alumina material, Al 2 O 3 : 60 to 90% by weight, MgO: 3 to 30% by weight, CaO: 3 to 20% by weight, and other 2% or less, and the bulk specific gravity is 3.10 to 3.60. A non-fired alumina-magnesia-carbon brick characterized by the addition of a certain calcia-magnesia-alumina aggregate. カーボン質原料を0.5〜30重量%、アルミナ質原料を5〜95重量%、マグネシア質原料を0.5〜40%、金属粉を10重量%以下、適量の結合材からなる請求項1に記載の不焼成アルミナ−マグネシア−カーボンれんが。  The carbonaceous material is 0.5 to 30% by weight, the alumina material is 5 to 95% by weight, the magnesia material is 0.5 to 40%, the metal powder is 10% by weight or less, and an appropriate amount of the binder. Unfired alumina-magnesia-carbon brick as described in 1.
JP2009058687A 2009-02-17 2009-02-17 Non-fired alumina-magnesia-carbon brick Active JP5019301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009058687A JP5019301B2 (en) 2009-02-17 2009-02-17 Non-fired alumina-magnesia-carbon brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009058687A JP5019301B2 (en) 2009-02-17 2009-02-17 Non-fired alumina-magnesia-carbon brick

Publications (2)

Publication Number Publication Date
JP2010189249A true JP2010189249A (en) 2010-09-02
JP5019301B2 JP5019301B2 (en) 2012-09-05

Family

ID=42815724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009058687A Active JP5019301B2 (en) 2009-02-17 2009-02-17 Non-fired alumina-magnesia-carbon brick

Country Status (1)

Country Link
JP (1) JP5019301B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215249A (en) * 1985-03-20 1986-09-25 東伸製鋼株式会社 Molding composition for steeling
JPH0360460A (en) * 1989-07-25 1991-03-15 Ube Chem Ind Co Ltd Clinker having spinel structure and refractory
JPH05237610A (en) * 1992-02-29 1993-09-17 Kurosaki Refract Co Ltd Internal hole body of continuous casting nozzle
JPH0873226A (en) * 1994-08-31 1996-03-19 Toshiba Ceramics Co Ltd Unburned spinel refractory for generator of glass kiln
JP2002121065A (en) * 2000-10-10 2002-04-23 Shinagawa Refract Co Ltd Refractory for converter tapping hole

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215249A (en) * 1985-03-20 1986-09-25 東伸製鋼株式会社 Molding composition for steeling
JPH0360460A (en) * 1989-07-25 1991-03-15 Ube Chem Ind Co Ltd Clinker having spinel structure and refractory
JPH05237610A (en) * 1992-02-29 1993-09-17 Kurosaki Refract Co Ltd Internal hole body of continuous casting nozzle
JPH0873226A (en) * 1994-08-31 1996-03-19 Toshiba Ceramics Co Ltd Unburned spinel refractory for generator of glass kiln
JP2002121065A (en) * 2000-10-10 2002-04-23 Shinagawa Refract Co Ltd Refractory for converter tapping hole

Also Published As

Publication number Publication date
JP5019301B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP4681456B2 (en) Low carbon magnesia carbon brick
CN103420683A (en) Tundish low-carbon corundum spinel impact brick and preparation method thereof
JP6358275B2 (en) Slide plate refractory
JP3952332B2 (en) Graphite-containing amorphous refractory material for chaotic vehicles
JP5967160B2 (en) Lined refractory for secondary refining equipment with decompression
JP5712888B2 (en) Lined lining structure for steelmaking containers
JP5019301B2 (en) Non-fired alumina-magnesia-carbon brick
JPS60180950A (en) Manufacture of sliding nozzle plate
JP4187183B2 (en) Magnesia-carbon brick
JP6266968B2 (en) Blast furnace hearth lining structure
JP5663122B2 (en) Castable refractories for non-ferrous metal smelting containers and precast blocks using the same
JP2012192430A (en) Alumina carbon-based slide gate plate
JP2022060911A (en) Method of producing lf-ladle magnesia-carbon brick
JP6315037B2 (en) Lined refractories for continuous casting tundish
JP4408552B2 (en) Alumina-magnesia castable refractories using magnesium carbonate as a magnesia source
JP6583968B2 (en) Refractory brick
JP2006021972A (en) Magnesia-carbon brick
JP4822192B2 (en) Non-fired carbon-containing refractories
JP2021004160A (en) Brick for hot metal ladle, and hot metal ladle lined with the same
TWI478892B (en) No carbon and aluminum magnesium does not burn bricks
JP2014024689A (en) Magnesia monolithic refractory
JPH0412065A (en) Double structure refractory
JP4361048B2 (en) Lightweight castable refractories for molten aluminum and aluminum alloys
JP6978677B2 (en) Refractory lining for secondary refractory equipment with decompression
JP2000335980A (en) Graphite-containing monolithic refractory

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

R150 Certificate of patent or registration of utility model

Ref document number: 5019301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250