JP2010185890A - Piezoelectric sensor and sensing device - Google Patents

Piezoelectric sensor and sensing device Download PDF

Info

Publication number
JP2010185890A
JP2010185890A JP2010127108A JP2010127108A JP2010185890A JP 2010185890 A JP2010185890 A JP 2010185890A JP 2010127108 A JP2010127108 A JP 2010127108A JP 2010127108 A JP2010127108 A JP 2010127108A JP 2010185890 A JP2010185890 A JP 2010185890A
Authority
JP
Japan
Prior art keywords
electrode
gold layer
layer
crystal
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010127108A
Other languages
Japanese (ja)
Other versions
JP4685962B2 (en
Inventor
Shigenori Watanabe
重徳 渡辺
Takeshi Muto
猛 武藤
Mitsuaki Koyama
光明 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2010127108A priority Critical patent/JP4685962B2/en
Publication of JP2010185890A publication Critical patent/JP2010185890A/en
Application granted granted Critical
Publication of JP4685962B2 publication Critical patent/JP4685962B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric sensor with improved detection capability and a sensing device including this piezoelectric sensor. <P>SOLUTION: The piezoelectric sensor, which keeps electrodes each including a gold layer respectively formed by sputtering on one surface side and the other surface side of a piezoelectric piece through joining layers, an adsorbing layer including an antibody provided on the surface of the electrode on one surface side, and the electrode on the other surface side being provided so as to face an airtight space to detect the antigen adsorbed by the antibody according to a change in the frequency of the piezoelectric piece, includes: a conductive passage through which the electrodes and an oscillation circuit are connected; and a conductive adhesive, provided so as to straddle the conductive passage from the electrodes in order to fix the electrodes to the conductive passage, in which a binder is cured with a conductive filler joined to the gold layer. The thickness of the gold layer is set to be 3,000 Å or above. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、圧電片の一面側に形成された電極の表面に抗体からなる吸着層が設けられ、抗原抗体反応により前記抗体に吸着された抗原を圧電片の振動数の変化に応じて検出するための圧電センサ及びこの圧電センサを用いた感知装置に関する。   In the present invention, an adsorption layer made of an antibody is provided on the surface of an electrode formed on one side of a piezoelectric piece, and an antigen adsorbed on the antibody by an antigen-antibody reaction is detected according to a change in the frequency of the piezoelectric piece. The present invention relates to a piezoelectric sensor and a sensing device using the piezoelectric sensor.

試料液中における微量物質、例えばマウスIGgなどの環境汚染物質あるいはC型肝炎ウイルスやC−反応性タンパク(CPR)などの疾病マーカーの有無を感知したり、これら物質の測定を行うために、水晶振動子を含んだ水晶センサと、この水晶センサに電気的に接続され、当該水晶振動子を発振させるための発振回路などを含んだ測定器とを利用した測定法が広く知られている(例えば特許文献1)。   In order to detect trace substances in the sample liquid, for example, environmental pollutants such as mouse IGg or disease markers such as hepatitis C virus and C-reactive protein (CPR), and to measure these substances, crystals A measurement method using a crystal sensor including a vibrator and a measuring instrument that is electrically connected to the crystal sensor and includes an oscillation circuit for oscillating the crystal vibrator is widely known (for example, Patent Document 1).

具体的に説明すると、前記測定方法は、例えば板状の水晶片とその水晶片の一面側および他面側に各々前記水晶片を挟むように設けられた一対の箔状の励振用の電極とを備えた、ランジュバン型と呼ばれる水晶振動子を含む水晶センサについて、一面側の電極が測定雰囲気(試料液)に接触すると共に、他面側の電極が気密空間に臨むように構成し、一面側の電極の表面に抗原を抗原抗体反応により捕捉する抗体を吸着層として形成し、この吸着層に抗原が捕捉され、その吸着量に応じて水晶振動子の固有振動数が変動する性質を利用するものである。そして抗原が吸着層に吸着する前の水晶振動子の固有振動数と抗原が吸着層に吸着した後の水晶振動子の固有振動数との差、即ち変化量を求め、この変化量に応じて測定対象物の有無あるいは濃度を検出している。   Specifically, the measurement method includes, for example, a plate-shaped crystal piece and a pair of foil-like excitation electrodes provided so as to sandwich the crystal piece on one side and the other side of the crystal piece, A crystal sensor including a crystal resonator called a Langevin type with an electrode is configured so that the electrode on one side contacts the measurement atmosphere (sample liquid) and the electrode on the other side faces the airtight space. An antibody that captures an antigen by an antigen-antibody reaction is formed as an adsorption layer on the surface of the electrode, and the antigen is captured in this adsorption layer, and the characteristic that the natural frequency of the quartz crystal varies according to the amount of adsorption is utilized. Is. Then, the difference between the natural frequency of the crystal unit before the antigen is adsorbed on the adsorption layer and the natural frequency of the crystal unit after the antigen is adsorbed on the adsorption layer, that is, the amount of change is obtained. The presence or concentration of the measurement object is detected.

図10は、前記水晶センサに設けられた水晶振動子の周辺の構成の一例を示したものである。図10中の11は配線基板であり、この配線基板11上に水晶振動子10が載置されている。この水晶振動子10は、板状の水晶片12の一面側及び他面側に、励振用の電極13が設けられており、前記電極13が導電性フィラー及びバインダーからなる導電性接着剤14を介して配線基板11側に設けられた電極11aに電気的に接続されている。   FIG. 10 shows an example of the configuration around the crystal resonator provided in the crystal sensor. In FIG. 10, reference numeral 11 denotes a wiring board, and the crystal resonator 10 is placed on the wiring board 11. In this crystal resonator 10, excitation electrodes 13 are provided on one side and the other side of a plate-like crystal piece 12, and the electrode 13 is provided with a conductive adhesive 14 made of a conductive filler and a binder. And is electrically connected to an electrode 11a provided on the wiring board 11 side.

図10中の15は配線基板11を厚さ方向に穿孔された貫通孔であり、図10中の15aは基板11の裏面側から貫通孔15を塞ぐ封止部材である。これら封止部材15a、貫通孔15及び水晶振動子10に囲まれる領域は気密空間を構成しており、その水晶振動子10の裏面側の電極13は、この気密空間に面している。図10中の16は例えばゴム等からなる板状の水晶押さえ部材であり、水晶振動子10を基板11に押圧して、その位置を固定している。   Reference numeral 15 in FIG. 10 denotes a through hole formed in the wiring substrate 11 in the thickness direction, and reference numeral 15 a in FIG. 10 denotes a sealing member that closes the through hole 15 from the back side of the substrate 11. A region surrounded by the sealing member 15a, the through-hole 15 and the crystal resonator 10 forms an airtight space, and the electrode 13 on the back surface side of the crystal resonator 10 faces the airtight space. Reference numeral 16 in FIG. 10 denotes a plate-like crystal pressing member made of rubber or the like, and presses the crystal resonator 10 against the substrate 11 to fix the position thereof.

図10中の17は、水晶押さえ部材16を厚さ方向に貫くように設けられた開口部であり、水晶振動子10の表面側の電極13に面している。図10中の18は水晶押さえ部材16の環状の突起である。そして前記開口部16及び環状突起18に囲まれる液収容空間19に所定量の試料液が収容され、前記電極13が測定雰囲気に接するようになっている。   Reference numeral 17 in FIG. 10 denotes an opening provided so as to penetrate the crystal pressing member 16 in the thickness direction, and faces the electrode 13 on the surface side of the crystal resonator 10. Reference numeral 18 in FIG. 10 denotes an annular protrusion of the crystal pressing member 16. A predetermined amount of sample liquid is stored in a liquid storage space 19 surrounded by the opening 16 and the annular protrusion 18 so that the electrode 13 is in contact with the measurement atmosphere.

また前記水晶振動子10の水晶片12の一面側及び他面側に設けられた電極13は、図11に示すように一般的に金(Au)層100と例えばクロム(Cr)、ニッケル(Ni)などの金属からなる下地層101との2層で構成されている。この2層は例えばスパッタリングによって形成される。上層に金を用いる理由は水晶を効率よく振動させるためであり、下層にクロムやニッケルなどの金属を用いる理由は金層100と水晶片12との固着力を高めるためである。そして前記金層100の膜厚は水晶片12を安定して振動させるために2000Åに設定されており、前記下地層101の膜厚は水晶片12と金層100との間の密着を十分に得るために100Åに設定されている。   Further, as shown in FIG. 11, the electrodes 13 provided on one side and the other side of the crystal piece 12 of the crystal unit 10 are generally composed of a gold (Au) layer 100 and, for example, chromium (Cr), nickel (Ni ) And the like and a base layer 101 made of a metal. These two layers are formed by sputtering, for example. The reason for using gold for the upper layer is to vibrate quartz efficiently, and the reason for using a metal such as chromium or nickel for the lower layer is to increase the adhesion between the gold layer 100 and the crystal piece 12. The film thickness of the gold layer 100 is set to 2000 mm in order to stably vibrate the crystal piece 12, and the film thickness of the base layer 101 is sufficient to ensure close contact between the crystal piece 12 and the gold layer 100. It is set to 100cm to get.

また従来は、配線基板11の電極11aと水晶振動子10の励振用の電極13との接合にバインダーであるシリコーン樹脂に例えば銀(Ag)からなる導電性フィラーを分散させた導電性接着剤14を用いている。しかしこの導電性接着剤14では、先にAgの周りの樹脂が硬化した後、金層100の表面部周囲の樹脂が硬化するため、金層100の表面に接合していたAgが硬化収縮により金層100の表面から遠ざかる方向に移動し、結果的に金層100の表面に樹脂膜が形成された格好となり通電性を阻害する。そこで金層100の表面に下地層101の金属例えばクロムを熱拡散によって析出させて、Agの周りの樹脂とCr表面部周囲の樹脂とが同じ速度で硬化することを利用して、硬化収縮によるAgの移動を抑えていた(特許文献2)。   Conventionally, a conductive adhesive 14 in which a conductive filler made of, for example, silver (Ag) is dispersed in a silicone resin as a binder for bonding between the electrode 11a of the wiring substrate 11 and the excitation electrode 13 of the crystal resonator 10 is used. Is used. However, in this conductive adhesive 14, since the resin around the surface portion of the gold layer 100 is cured after the resin around the Ag is cured first, the Ag bonded to the surface of the gold layer 100 is cured and contracted. It moves in the direction away from the surface of the gold layer 100, and as a result, a resin film is formed on the surface of the gold layer 100 and the conductivity is hindered. Therefore, by utilizing the fact that the metal of the underlayer 101 such as chromium is deposited on the surface of the gold layer 100 by thermal diffusion and the resin around the Ag and the resin around the Cr surface are cured at the same speed, The movement of Ag was suppressed (Patent Document 2).

しかし水晶センサでは図11に示すように電極13の表面に抗原200を抗原抗体反応により捕捉する抗体201を付着させて吸着層202を形成するため、クロムを金層100の表面に析出させると次のような問題が生じる。つまり抗体201例えばタンパク質などは金には付着し易いが、クロムには付着し難いため、クロムを金層100の表面に析出させると電極13表面における抗体201の付着量が減少し、当該水晶センサの検出能力が低下する。そこでこのような熱拡散処理は行わず、導電性接着剤14として金層100の表面に導電性フィラーが接合した状態でバインダーが硬化するものを用いていることを検討している。具体的には導電フィラーが例えば銀で、バインダーがエポキシ樹脂からなる導電性接着剤14を用いている。ところで、近年水晶センサにおいて微量な物質例えばダイオキシン等を高精度に検出する要求があり、この要求に応えていく必要がある。 However, in the quartz sensor, as shown in FIG. 11, the adsorption layer 202 is formed by adhering the antibody 201 that captures the antigen 200 by the antigen-antibody reaction to the surface of the electrode 13, so that if chromium is deposited on the surface of the gold layer 100, The following problems arise. That is, the antibody 201, such as protein, easily adheres to gold, but hardly adheres to chromium. Therefore, when chromium is deposited on the surface of the gold layer 100, the amount of the antibody 201 attached to the surface of the electrode 13 decreases, and the crystal sensor The detection ability of is reduced. Therefore, it is considered that such a thermal diffusion treatment is not performed and that the binder is cured as the conductive adhesive 14 with the conductive filler bonded to the surface of the gold layer 100. Specifically, a conductive adhesive 14 is used in which the conductive filler is, for example, silver and the binder is an epoxy resin. By the way, in recent years, there is a demand for detecting a very small amount of a substance such as dioxin in a quartz sensor, and it is necessary to meet this demand.

一方、特許文献3には、水晶片の表面に形成された電極膜に接続電極(リード)を半田で接合した後に行われるアニール処理やモールド工程等において、接合工程で電極膜の表面に拡散した半田成分が電極膜の中に拡散することから、これを防ぐために電極膜の上面にクロムを形成し、このクロム成分を電極膜の膜厚方向に熱拡散させることが記載されている。またこの発明では前記電極膜の膜厚を1000Å以上5000Å以下に設定することが記載されているが、上述した課題については何ら記載されていない。   On the other hand, in Patent Document 3, diffusion is performed on the surface of the electrode film in the bonding process in an annealing process, a molding process, or the like performed after the connection electrode (lead) is bonded to the electrode film formed on the surface of the crystal piece with solder. In order to prevent the solder component from diffusing into the electrode film, it is described that chromium is formed on the upper surface of the electrode film, and this chromium component is thermally diffused in the film thickness direction of the electrode film. In the present invention, it is described that the film thickness of the electrode film is set to 1000 mm or more and 5000 mm or less, but the above-described problem is not described at all.

特開2001−194866JP 2001-194866 A 特開2000−151345(段落0006〜段落0008、段落0014及段落0015)JP 2000-151345 (paragraph 0006 to paragraph 0008, paragraph 0014 and paragraph 0015) 特開2002−50937(段落0012及び段落0067)JP 2002-50937 (paragraph 0012 and paragraph 0067)

本発明はかかる事情に鑑みてなされたものであって、その目的は、圧電片の一面側に形成された電極の表面に抗体からなる吸着層が設けられ、抗原抗体反応により前記抗体に吸着された抗原を圧電片の振動数の変化に応じて検出するための圧電センサにおいて、当該圧電センサの検出能力の向上を図ることにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an adsorption layer made of an antibody on the surface of an electrode formed on one side of a piezoelectric piece and to adsorb the antibody by an antigen-antibody reaction. In the piezoelectric sensor for detecting the detected antigen according to the change in the vibration frequency of the piezoelectric piece, the detection capability of the piezoelectric sensor is to be improved.

本発明は、圧電片の一面側及び他面側に各々密着層を介してスパッタリングにより金層からなる電極が形成され、前記一面側の電極の表面には抗体からなる吸着層が設けられると共に、他面側の電極は気密空間に臨むように設けられ、抗原抗体反応により前記抗体に吸着された抗原を圧電片の振動数の変化に応じて検出するための圧電センサにおいて、
前記電極と発振回路とを接続するための導電路と、
前記電極を導電路に固定するために当該電極から導電路に跨って設けられ、前記金層に導電性フィラーが接合した状態でバインダーが硬化する導電性接着剤と、を備え、
前記金層の厚さは3000Å以上であることを特徴とする。
In the present invention, an electrode made of a gold layer is formed by sputtering through an adhesion layer on one side and the other side of the piezoelectric piece, and an adsorption layer made of an antibody is provided on the surface of the electrode on the one side. In the piezoelectric sensor for detecting the antigen adsorbed to the antibody by the antigen-antibody reaction according to the change in the frequency of the piezoelectric piece, the electrode on the other side is provided so as to face the airtight space,
A conductive path for connecting the electrode and the oscillation circuit;
A conductive adhesive that is provided across the conductive path from the electrode to fix the electrode to the conductive path, and the binder is cured in a state where a conductive filler is bonded to the gold layer;
The gold layer has a thickness of 3000 mm or more.

上述した圧電センサにおいて、前記導電フィラーは例えば銀及び金から選ばれる少なくとも一種であり、前記バインダーは例えばエポキシ樹脂であることが好ましい。前記密着層としては、例えばクロム、チタン、ニッケル、アルミニウム及び銅から選ばれる少なくとも一種であることが好ましい。   In the above-described piezoelectric sensor, it is preferable that the conductive filler is at least one selected from, for example, silver and gold, and the binder is, for example, an epoxy resin. The adhesion layer is preferably at least one selected from, for example, chromium, titanium, nickel, aluminum, and copper.

本発明によれば、圧電片の表面に形成された電極において金層の厚さを3000Å以上とすることで、後述する実施例に示すように前記金層の表面に形成されている吸着層に対する抗原の吸着量が大きくなる。これはスパッタリングにより金原子を堆積させて金層の厚みを増やすことによって金層の表面が粗くなって、金層表面における抗体との接触面積が大きくなり、金層の表面に吸着層を形成するにあたって金層の表面に付着する抗体の量が増えたからだと推測する。つまり前記金層の厚みを増やすことで、金層表面における抗体の付着量が増え、これにより多くの抗原を抗体によって捕捉することができるようになると考えられる。   According to the present invention, in the electrode formed on the surface of the piezoelectric piece, the thickness of the gold layer is set to 3000 mm or more, so that the adsorption layer formed on the surface of the gold layer as shown in the examples to be described later. Increased amount of antigen adsorption. This is because the surface of the gold layer is roughened by increasing the thickness of the gold layer by depositing gold atoms by sputtering, the contact area with the antibody on the gold layer surface is increased, and an adsorption layer is formed on the surface of the gold layer. It is presumed that the amount of antibody adhering to the surface of the gold layer has increased. That is, by increasing the thickness of the gold layer, the amount of antibody adhering to the gold layer surface increases, and it is considered that a large amount of antigen can be captured by the antibody.

本発明の実施形態に係る水晶センサの縦断面図である。It is a longitudinal cross-sectional view of the crystal sensor which concerns on embodiment of this invention. 本発明の実施形態に係る水晶片の構造を示した断面図である。It is sectional drawing which showed the structure of the crystal piece which concerns on embodiment of this invention. 前記水晶片の電極表面に形成される吸着層を説明した観念図である。It is an idea figure explaining the adsorption layer formed in the electrode surface of the said crystal piece. 金層表面における吸着層の形成について説明した観念図である。It is an idea figure explaining formation of an adsorption layer in the gold layer surface. 前記水晶センサの斜視図である。It is a perspective view of the crystal sensor. 前記水晶センサの分解斜視図である。It is a disassembled perspective view of the crystal sensor. 前記水晶センサを構成する水晶押さえ部材の裏面側の斜視図である。It is a perspective view of the back surface side of the crystal pressing member which comprises the said crystal sensor. 前記水晶センサを含む感知装置のブロック図である。It is a block diagram of the sensing apparatus containing the said quartz sensor. 本発明の効果を確認するために行った実験結果を示す説明図である。It is explanatory drawing which shows the experimental result performed in order to confirm the effect of this invention. 従来の水晶センサの要部を示す概略縦側面図である。It is a schematic vertical side view which shows the principal part of the conventional quartz sensor. 図10に示す水晶片の電極表面に形成される吸着層を説明した観念図である。It is an idea figure explaining the adsorption layer formed in the electrode surface of the crystal piece shown in FIG.

本発明に係る圧電センサの一例である水晶センサの実施形態について、図1〜図7を用いて説明する。図1は本発明に係る圧電センサの一例である水晶センサ20を示した縦断面図であり、図2は圧電センサに設けられた圧電振動子である水晶振動子2の構造を示した平面図である。また図5は水晶センサ20の斜視図であり、図6は水晶センサ20の各部品の上面側を示した分解斜視図である。図1、図5及び図6に示すように水晶センサ20は封止部材3A、配線基板3、水晶振動子2、水晶押さえ部材4、液注入用カバー5の各部品がこの順に下から重ね合わせることにより構成される。   An embodiment of a crystal sensor which is an example of a piezoelectric sensor according to the present invention will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view showing a quartz sensor 20 which is an example of a piezoelectric sensor according to the present invention, and FIG. 2 is a plan view showing the structure of a quartz vibrator 2 which is a piezoelectric vibrator provided in the piezoelectric sensor. It is. 5 is a perspective view of the crystal sensor 20, and FIG. 6 is an exploded perspective view showing the upper surface side of each component of the crystal sensor 20. As shown in FIG. As shown in FIGS. 1, 5, and 6, the quartz sensor 20 has a sealing member 3A, a wiring board 3, a quartz vibrator 2, a quartz pressing member 4, and a liquid injection cover 5 that are stacked in this order from the bottom. It is constituted by.

図1に示すように水晶振動子2は、圧電片である水晶片21の一面側及び他面側に励振用の電極22,23が形成されている。水晶片21の一面側に形成された電極22は他面側の周縁部に連続形成されていると共に、水晶片21の他面側に形成された電極23は一面側の周縁部に連続形成されている。図2に示すように前記電極22,23は、水晶を効率よく振動させるための金(Au)層70、当該金層70と水晶片21との固着力を高めるための例えばクロム(Cr)、チタン(Ti)、ニッケル(Ni)、アルミニウム(Al)及び銅(Cu)から選ばれる金属からなる密着層である下地層71を、下地層71から順に積層して構成される。   As shown in FIG. 1, the crystal resonator 2 has excitation electrodes 22 and 23 formed on one side and the other side of a crystal piece 21 which is a piezoelectric piece. The electrode 22 formed on the one surface side of the crystal piece 21 is continuously formed on the peripheral portion on the other surface side, and the electrode 23 formed on the other surface side of the crystal piece 21 is continuously formed on the peripheral portion on the one surface side. ing. As shown in FIG. 2, the electrodes 22 and 23 are composed of a gold (Au) layer 70 for efficiently vibrating the quartz crystal, for example, chromium (Cr) for increasing the fixing force between the gold layer 70 and the crystal piece 21, An underlayer 71 that is an adhesion layer made of a metal selected from titanium (Ti), nickel (Ni), aluminum (Al), and copper (Cu) is laminated in order from the underlayer 71.

また前記金層70の厚さは3000Å以上、この例では3000Åに設定されており、当該金層70の厚さをこのような大きさにすることで、後述する実施例に示すように金層70の表面に形成されている吸着層7に対する抗原74の吸着量が大きくなる。前記吸着層7に対する抗原74の吸着量が大きくなる理由としては、後述するようにスパッタリングにより下地層71の表面に金原子を堆積させて金層70の厚みを増やしているので、つまり不規則に堆積している金原子の上に新たに金原子を堆積させ、この堆積を繰り返して3000Åの金層70が形成されるため、結果的に金層70の表面は粗くなって金層70表面における抗体72との接触面積が大きくなり、後述するように金層70の表面に吸着層7を形成するにあたって金層70の表面に付着する抗体72の量が増えたからだと推測する。 The thickness of the gold layer 70 is set to 3000 mm or more, and in this example, 3000 mm. By setting the thickness of the gold layer 70 to such a size, the gold layer 70 is formed as shown in the examples described later. The adsorption amount of the antigen 74 with respect to the adsorption layer 7 formed on the surface of 70 increases. The reason why the adsorption amount of the antigen 74 on the adsorption layer 7 is increased is that the gold layer 70 is deposited on the surface of the base layer 71 by sputtering to increase the thickness of the gold layer 70 as described later. New gold atoms are deposited on the deposited gold atoms, and this deposition is repeated to form a 3000-thick gold layer 70. As a result, the surface of the gold layer 70 becomes rough and the surface of the gold layer 70 is reduced. It is presumed that the contact area with the antibody 72 is increased, and the amount of the antibody 72 adhering to the surface of the gold layer 70 is increased in forming the adsorption layer 7 on the surface of the gold layer 70 as will be described later.

前記金層70の厚さの上限値は10000Åとしており、これよりも大きくした場合には水晶振動子2において発振周波数のジャンプが起きやすくなる。また前記下地層71の厚さは水晶片21と金層70との間の密着を十分に得るために10〜500Å、この例では100Åに設定されている。前記電極22,23は例えば水晶片21の両面全体にスパッタリングにより下地層71、金層70をこの順に積層し、次いで水晶片21の両面に所定のパターンでマスクを形成し、エッチングを行って2層構造の電極パターンが得られる。 The upper limit value of the thickness of the gold layer 70 is 10,000 mm, and if it is larger than this, an oscillation frequency jump tends to occur in the crystal unit 2. In addition, the thickness of the underlayer 71 is set to 10 to 500 mm, and in this example, 100 mm in order to obtain sufficient adhesion between the crystal piece 21 and the gold layer 70. The electrodes 22 and 23 are formed by, for example, laminating a base layer 71 and a gold layer 70 in this order on both surfaces of the crystal piece 21 in this order, and then forming a mask with a predetermined pattern on both surfaces of the crystal piece 21 and performing etching. A layered electrode pattern is obtained.

また、後述するように電極22は、試料液が供給される液収容空間45に面するように設けられるため、図3に示すように当該電極22上には抗原74を抗原抗体反応により捕捉する抗体72が吸着層7として形成されており、さらに抗体72の隙間には測定対象物である抗原74が電極22の表面に吸着しないようにブロッキング用の物質(ブロック体)73が吸着している。   As will be described later, since the electrode 22 is provided so as to face the liquid storage space 45 to which the sample liquid is supplied, the antigen 74 is captured on the electrode 22 by an antigen-antibody reaction as shown in FIG. The antibody 72 is formed as the adsorption layer 7, and a blocking substance (block body) 73 is adsorbed in the gap between the antibodies 72 so that the antigen 74 as the measurement target is not adsorbed on the surface of the electrode 22. .

ここで金層100表面における吸着層7の形成について詳述する。本実施の形態では既述のようにスパッタリングにより下地層71の表面に金を蒸着させて厚さが3000Åの金層70を形成することで、当該金層70の表面を粗くして金層70表面における抗体72との接触面積を大きくしているので、図4(a)に示すように金層70の表面には抗体74が多数付着するようになる。一方、従来の水晶センサに用いられる水晶振動子12の電極13を構成する金層100は、本実施形態の金層70よりも厚さが小さいため、金層100の表面は殆ど粗くなっておらず、図4(b)に示すように当該金層100の表面における抗体201の付着量は本実施形態の金層70の表面における抗体74の付着量に比べて少なくなる。つまり金層70の厚みを増やすことによって金層70の表面における抗体74の付着量が増加することになる。 Here, the formation of the adsorption layer 7 on the surface of the gold layer 100 will be described in detail. In the present embodiment, as described above, gold is deposited on the surface of the base layer 71 by sputtering to form a gold layer 70 having a thickness of 3000 mm, so that the surface of the gold layer 70 is roughened and the gold layer 70 is formed. Since the contact area with the antibody 72 on the surface is increased, a large number of antibodies 74 adhere to the surface of the gold layer 70 as shown in FIG. On the other hand, since the gold layer 100 constituting the electrode 13 of the crystal resonator 12 used in the conventional quartz sensor has a smaller thickness than the gold layer 70 of this embodiment, the surface of the gold layer 100 is almost rough. First, as shown in FIG. 4B, the amount of antibody 201 attached to the surface of the gold layer 100 is smaller than the amount of antibody 74 attached to the surface of the gold layer 70 of this embodiment. That is, increasing the thickness of the gold layer 70 increases the amount of antibody 74 attached to the surface of the gold layer 70.

次に配線基板3について説明する。この配線基板3は例えばプリント基板により構成され、その表面の前端側から後端側に向けて電極31、電極32が間隔をおいて設けられている。また前記配線基板3の電極31,32が設けられている部位には、図1に示すように導電性フィラー及びバインダーからなる導電性接着剤8が貼着されており、後述するように水晶片21の他面側の周縁部に形成された電極22,23が前記導電性接着剤8を介して配線基板3側の電極31,32に重なるようになっている。前記導電性接着剤8としては、金層100の表面に導電性フィラーが接合した状態でバインダーが硬化するものが用いられ、具体的には導電フィラーが例えば銀及び金、この例では銀(Ag)で、バインダーがエポキシ樹脂からなる導電性接着剤8が用いられる。   Next, the wiring board 3 will be described. The wiring board 3 is composed of, for example, a printed circuit board, and electrodes 31 and 32 are provided at an interval from the front end side to the rear end side of the surface. Further, as shown in FIG. 1, a conductive adhesive 8 made of a conductive filler and a binder is attached to a portion of the wiring board 3 where the electrodes 31 and 32 are provided. The electrodes 22, 23 formed on the peripheral edge of the other surface 21 overlap the electrodes 31, 32 on the wiring board 3 side through the conductive adhesive 8. The conductive adhesive 8 is one in which the binder is cured in a state where the conductive filler is bonded to the surface of the gold layer 100. Specifically, the conductive filler is, for example, silver and gold, in this example, silver (Ag ), A conductive adhesive 8 whose binder is made of an epoxy resin is used.

ここで本実施の形態に用いられる導電性接着剤8について詳述する。この導電性接着剤8はバインダーとして硬化速度の速いエポキシ樹脂を用いているため、Agの周りの樹脂と金層70の表面部周囲の樹脂とが硬化するタイミングは殆ど変わらず、その結果、Agが金層70の表面に接合した状態で樹脂が素早く硬化することになる。従って、本実施形態に用いられる導電性接着剤8では、従来技術の項目にも述べたようにAgの周りの樹脂の硬化速度よりも金層100の表面部周囲の樹脂の硬化速度の方が遅いことで、金層70の表面に接合していたAgが硬化収縮により金100の表面から遠ざかる方向に移動するといった現象は起こらない。 Here, the conductive adhesive 8 used in the present embodiment will be described in detail. Since the conductive adhesive 8 uses an epoxy resin having a high curing speed as a binder, the timing at which the resin around the Ag and the resin around the surface portion of the gold layer 70 are hardly changed. As a result, the Ag However, the resin is quickly cured in a state where the resin is bonded to the surface of the gold layer 70. Therefore, in the conductive adhesive 8 used in this embodiment, as described in the item of the prior art, the curing rate of the resin around the surface portion of the gold layer 100 is higher than the curing rate of the resin around Ag. Due to the slowness, the phenomenon that Ag that has been bonded to the surface of the gold layer 70 moves away from the surface of the gold 100 due to curing shrinkage does not occur.

配線基板3の説明に戻ると、前記配線基板3の電極31,32の間には、これら電極31,32と間隔をおいて、配線基板3の厚さ方向に穿孔された貫通孔33が形成されている。この貫通孔33は、後述するように水晶振動子2の裏面側の電極23が臨む気密空間をなす凹部を構成するものである。また前記電極32が形成されている箇所よりも後端側寄りには、2本の並行するライン状の導電路パターンが、夫々接続端子部34,35として形成されている。一方の接続端子部34はパターン34aを介して電極31と電気的に接続されており、他方の接続端子部35はパターン35aを介して電極32と電気的に接続されている。   Returning to the description of the wiring board 3, a through-hole 33 is formed between the electrodes 31 and 32 of the wiring board 3 so as to be spaced from the electrodes 31 and 32 in the thickness direction of the wiring board 3. Has been. As will be described later, the through-hole 33 constitutes a recess that forms an airtight space where the electrode 23 on the back surface side of the crystal resonator 2 faces. Further, two parallel line-shaped conductive path patterns are formed as connection terminal portions 34 and 35, respectively, closer to the rear end side than the portion where the electrode 32 is formed. One connection terminal portion 34 is electrically connected to the electrode 31 via the pattern 34a, and the other connection terminal portion 35 is electrically connected to the electrode 32 via the pattern 35a.

図6中の36は堰であり、当該堰36は水晶振動子2の位置合わせをする役割を有し、この堰36に囲まれる領域に水晶振動子2が載置される。図6中の37a,37b,37cは係合孔であり、配線基板3の厚さ方向に穿孔されている。これら係合孔37a,37b,37cは、カバー5の下面に設けられた係合突起51a,51b,51cに夫々係合する。また図6中の38a,38b,38cは配線基板3の周縁に形成された切欠き部であり、カバー5の下面の周縁部に設けられた内側に屈曲した爪部52a,52b,52cに夫々係合する。前記封止部材3Aは、フィルム状の部材であり前記貫通孔33と共に気密空間をなす凹部を構成する。   In FIG. 6, reference numeral 36 denotes a weir. The weir 36 has a role of aligning the crystal resonator 2, and the crystal resonator 2 is placed in a region surrounded by the weir 36. In FIG. 6, 37 a, 37 b, and 37 c are engagement holes, which are drilled in the thickness direction of the wiring board 3. These engagement holes 37a, 37b, and 37c are engaged with engagement protrusions 51a, 51b, and 51c provided on the lower surface of the cover 5, respectively. In addition, 38a, 38b, and 38c in FIG. 6 are notches formed on the periphery of the wiring board 3, and are respectively formed on the claw portions 52a, 52b, and 52c bent inward provided on the periphery of the lower surface of the cover 5. Engage. The sealing member 3 </ b> A is a film-like member and constitutes a concave portion that forms an airtight space together with the through-hole 33.

図6及び図7中の4は水晶押さえ部材であり、当該水晶押さえ部材4は切欠き部38a,38b,38cに夫々対応する矩形状の切欠き部41a,41b,41cを夫々備えた板状に形成されている。また図1及び図7に示すように水晶押さえ部材4の下面には水晶振動子2を収容する凹部42が形成されている。この凹部42の天井面部(図7の向きで説明すれば底面部)の中央には、配線基板3の上面における前記貫通孔33よりも一回り大きい環状突起43が設けられている。前記水晶押さえ部材4の表面側には、開口部44が形成されており、この開口部44は、環状突起43に囲まれる空間に連通している。   In FIG. 6 and FIG. 7, reference numeral 4 denotes a crystal pressing member, and the crystal pressing member 4 has a plate-like shape having rectangular cutout portions 41a, 41b, and 41c respectively corresponding to the cutout portions 38a, 38b, and 38c. Is formed. Further, as shown in FIGS. 1 and 7, a recess 42 for accommodating the crystal resonator 2 is formed on the lower surface of the crystal pressing member 4. An annular protrusion 43 that is slightly larger than the through-hole 33 on the upper surface of the wiring board 3 is provided in the center of the ceiling surface portion (bottom surface portion in the case of description in FIG. 7) of the recess 42. An opening 44 is formed on the surface side of the crystal pressing member 4, and the opening 44 communicates with a space surrounded by the annular protrusion 43.

前記開口部44の周面44a及び環状突起43の内周面43aは、内側下方に向かって傾斜しており、前記環状突起43の先端部47は水晶片20の周縁部を押圧している。周面43a、44a及び水晶振動子2により囲まれる領域は、試料液を収納する液収容空間45を構成している。   The peripheral surface 44 a of the opening 44 and the inner peripheral surface 43 a of the annular protrusion 43 are inclined inward and downward, and the tip portion 47 of the annular protrusion 43 presses the peripheral edge of the crystal piece 20. A region surrounded by the peripheral surfaces 43a and 44a and the crystal resonator 2 constitutes a liquid storage space 45 for storing the sample liquid.

また図6中の46a,46bは押さえ部材4を厚さ方向に貫通するように穿孔された係合孔であり、前記配線基板3の係合孔37a,37b及び液注入用カバー5の係合突起51a,51bに対応するように形成されている。図6中の46cは後方側の一縁の中央に形成された弧状の切欠き部であり、配線基板3の係合孔37c及び液注入用カバー5の係合突起51cに対応している。   Further, 46a and 46b in FIG. 6 are engagement holes that are perforated so as to penetrate the pressing member 4 in the thickness direction, and the engagement holes 37a and 37b of the wiring board 3 and the liquid injection cover 5 are engaged. It is formed so as to correspond to the protrusions 51a and 51b. In FIG. 6, 46 c is an arc-shaped cutout formed at the center of the rear edge and corresponds to the engagement hole 37 c of the wiring board 3 and the engagement protrusion 51 c of the liquid injection cover 5.

前記カバー5の上面の前側、後側には試料液の注入口53、確認口54が夫々形成されている。前記カバー5の下面にはカバー5の長さ方向に沿って溝である注入路55が形成されており、この注入路55の一端、他端は、注入口53、確認口54に夫々接続されている。また注入路55は開口部44に面するように設けられており、注入口53に注入した試料液は注入路55を介して液収容空間45に供給されるようになっている。また前記カバー5の下面に注入路55を囲む環状の堰56を設け、試料液の漏れを防いでいる。   A sample solution injection port 53 and a confirmation port 54 are formed on the front and rear sides of the upper surface of the cover 5, respectively. An injection path 55, which is a groove, is formed in the lower surface of the cover 5 along the length direction of the cover 5. One end and the other end of the injection path 55 are connected to the injection port 53 and the confirmation port 54, respectively. ing. The injection path 55 is provided so as to face the opening 44, and the sample liquid injected into the injection port 53 is supplied to the liquid storage space 45 through the injection path 55. An annular weir 56 surrounding the injection path 55 is provided on the lower surface of the cover 5 to prevent leakage of the sample solution.

上記の水晶センサ20は次のようにして組み立てられる。先ず封止部材3Aにより配線基板3の貫通孔33を塞ぎ、基板3に凹部を形成する。続いて配線基板3の電極31,32の表面に所定量の導電性接着剤8を塗布する。しかる後、水晶片21の他面側の周縁部に形成されている電極22,23が配線基板3側の電極31,32に重なり且つ水晶片の他面側の中央部に形成されている電極23が前記凹部に重なるように、水晶振動子2を配線基板3に載置する。   The crystal sensor 20 is assembled as follows. First, the through hole 33 of the wiring board 3 is closed by the sealing member 3 </ b> A, and a recess is formed in the board 3. Subsequently, a predetermined amount of conductive adhesive 8 is applied to the surfaces of the electrodes 31 and 32 of the wiring board 3. Thereafter, the electrodes 22 and 23 formed on the peripheral portion on the other surface side of the crystal piece 21 overlap the electrodes 31 and 32 on the wiring substrate 3 side, and are formed on the center portion on the other surface side of the crystal piece. The crystal resonator 2 is placed on the wiring board 3 so that 23 overlaps the recess.

次に液注入用カバー5の係合突起51a〜51cを水晶押さえ部材4の係合孔46a,46b及び切欠き部46cに係合させ、液注入用カバー5と押さえ部材4とを重ね合わせた後、液注入用カバー5の爪部52a,52b,52cと配線基板3の切欠き部38a,38b,38cとを嵌合させるように被わせて配線基板3に向かって押圧する。これにより液注入用カバー5の各爪部52a〜52cが配線基板3の外側へと撓み、さらに各爪部52a〜52cが各切欠き部38a〜38cを介して配線基板3の周縁部の下面に回り込むと同時に各爪部52a〜52cが、内方側への復元力により元通りの形状になり、配線基板3が各爪部52a〜52cに挟み込まれて互いに係止されると同時に、配線基板3とカバー5とに挟まれた押さえ部材4がこれらに押圧される。   Next, the engagement protrusions 51a to 51c of the liquid injection cover 5 are engaged with the engagement holes 46a and 46b and the notch 46c of the crystal pressing member 4, and the liquid injection cover 5 and the pressing member 4 are overlapped. Thereafter, the claw portions 52 a, 52 b, 52 c of the liquid injection cover 5 and the notches 38 a, 38 b, 38 c of the wiring substrate 3 are put on each other and pressed toward the wiring substrate 3. Thereby, each claw part 52a-52c of the cover 5 for liquid injection is bent to the outer side of the wiring board 3, and also each claw part 52a-52c is the lower surface of the peripheral part of the wiring board 3 via each notch part 38a-38c. At the same time, the claw portions 52a to 52c are restored to their original shapes by the inward restoring force, and the wiring board 3 is sandwiched between the claw portions 52a to 52c and locked together. The pressing member 4 sandwiched between the substrate 3 and the cover 5 is pressed against them.

押圧された押さえ部材4の弾性により、環状突起43が、水晶振動子2の表面における前記凹部の外側部位を配線基板3側に押し付けることにより、水晶振動子2の位置が固定されると共に、その周縁部が配線基板3と密着して、貫通孔33と封止部材3Aとにより構成される凹部が気密空間となり、水晶片21の他面側の中央部に形成されている電極23がこの気密空間に臨むと共に、前記配線基板3の電極31,32表面に形成された導電性接着剤8と水晶片21の他面側の周縁部に形成された電極22,23とが接着し、前記電極22,23と配線基板3側の電極31,32とが電気的に夫々接続される。   Due to the elasticity of the pressed pressing member 4, the annular protrusion 43 presses the outer portion of the recess on the surface of the crystal resonator 2 toward the wiring substrate 3, thereby fixing the position of the crystal resonator 2. The peripheral portion is in close contact with the wiring substrate 3, and the concave portion formed by the through hole 33 and the sealing member 3 </ b> A becomes an airtight space, and the electrode 23 formed at the center portion on the other surface side of the crystal piece 21 While facing the space, the conductive adhesive 8 formed on the surfaces of the electrodes 31 and 32 of the wiring board 3 and the electrodes 22 and 23 formed on the peripheral portion on the other surface side of the crystal piece 21 are bonded to each other. 22 and 23 and the electrodes 31 and 32 on the wiring board 3 side are electrically connected to each other.

次に上述した水晶センサ20の作用について説明する。先ず、作業者が例えば注入器により液注入用カバー5の注入口53に試料液を注入する。注入口53に注入された試料液は、開口部44及び環状突起43により構成される試料液の液収容空間45に供給され、水晶振動子2の表面側の電極22が当該試料液に接し、電極22の表面に形成されている抗体72からなる吸着層7に試料液中の抗原74が抗原抗体反応によって吸着する。そして前記吸着層7に抗原74が吸着すると、この抗原74の吸着量に応じて水晶振動子2の固有振動数が低下する。これによって抗原74が吸着層7に吸着する前の水晶振動子2の固有振動数と抗原74が吸着層7に吸着した後の水晶振動子2の固有振動数との差、即ち変化量が求まる。   Next, the operation of the above-described quartz sensor 20 will be described. First, the operator injects the sample liquid into the injection port 53 of the liquid injection cover 5 using, for example, an injector. The sample liquid injected into the inlet 53 is supplied to the liquid storage space 45 of the sample liquid constituted by the opening 44 and the annular protrusion 43, and the electrode 22 on the surface side of the crystal unit 2 is in contact with the sample liquid. The antigen 74 in the sample solution is adsorbed by the antigen-antibody reaction to the adsorption layer 7 made of the antibody 72 formed on the surface of the electrode 22. When the antigen 74 is adsorbed on the adsorption layer 7, the natural frequency of the crystal unit 2 is reduced according to the amount of adsorption of the antigen 74. As a result, the difference between the natural frequency of the crystal unit 2 before the antigen 74 is adsorbed on the adsorption layer 7 and the natural frequency of the crystal unit 2 after the antigen 74 is adsorbed on the adsorption layer 7, that is, the amount of change is obtained. .

上述の実施形態によれば、水晶片21の表面に形成された電極22,23において金層70の厚さを3000Å、この例では3000Åとすることで、後述する実施例に示すように前記金層70の表面に形成されている吸着層7に対する抗原74の吸着量が大きくなる。これは上述したようにスパッタリングにより下地層71の表面に金原子を堆積させて金層70の厚みを増やしているので、つまり不規則に堆積している金原子の上に新たに金原子を堆積させ、この堆積を繰り返して3000Åの金層70が形成されるため、結果的に金層70の表面は粗くなって金層70表面における抗体72との接触面積が大きくなり、後述するように金層70の表面に吸着層7を形成するにあたって金層70の表面に付着する抗体72の量が増えたからだと推測する。つまり前記金層70の厚みを増やすことで、金層70表面における抗体72の付着量が増え、これにより多くの抗原74を抗体72によって捕捉することができるようになると考えられる。   According to the above-described embodiment, the gold layer 70 has a thickness of 3000 mm, in this example 3000 mm, in the electrodes 22 and 23 formed on the surface of the crystal piece 21, so that the gold layer 70 is shown in the examples described later. The adsorption amount of the antigen 74 to the adsorption layer 7 formed on the surface of the layer 70 is increased. This is because, as described above, gold atoms are deposited on the surface of the base layer 71 by sputtering to increase the thickness of the gold layer 70, that is, new gold atoms are deposited on the irregularly deposited gold atoms. This deposition is repeated to form a 3000-mm gold layer 70. As a result, the surface of the gold layer 70 becomes rough and the contact area with the antibody 72 on the surface of the gold layer 70 increases, as described later. It is presumed that the amount of antibody 72 adhering to the surface of the gold layer 70 has increased in forming the adsorption layer 7 on the surface of the layer 70. That is, by increasing the thickness of the gold layer 70, it is considered that the amount of the antibody 72 attached to the surface of the gold layer 70 increases, so that more antigen 74 can be captured by the antibody 72.

また上述の実施形態において、金層70の厚さを3000Å以上、この例では3000Åにすることで次のような効果が得られる。金層70と水晶片21との固着力を高めるために用いられる下地層71の金属例えばクロムは、時間の経過とともに徐々に金層70の中に拡散する。図11及び図12に示す従来の水晶センサのように金層100の厚さが2000Åであると、半年から1年で金層100の表面にクロムが析出し、この析出したクロムによって金層100の表面に付着している抗体201が脱離し、水晶センサの使用寿命を短くさせていたが、金層70の厚さを3000Åに設定することで、金層100の表面にクロムが析出するのに1年以上かかるため、これにより水晶センサの使用寿命が長くなるといった効果もある。   In the above-described embodiment, the following effects can be obtained by setting the thickness of the gold layer 70 to 3000 mm or more, in this example 3000 mm. The metal, for example, chromium, of the underlayer 71 used to increase the adhesion between the gold layer 70 and the crystal piece 21 gradually diffuses into the gold layer 70 over time. When the thickness of the gold layer 100 is 2000 mm as in the conventional quartz sensor shown in FIGS. 11 and 12, chromium is deposited on the surface of the gold layer 100 in half to one year, and the gold layer 100 is deposited by the deposited chromium. The antibody 201 adhering to the surface of the gold was detached and the service life of the quartz sensor was shortened. However, by setting the thickness of the gold layer 70 to 3000 mm, chromium is deposited on the surface of the gold layer 100. Since this takes more than one year, this has the effect of extending the service life of the quartz sensor.

また上述した水晶センサ20は、例えばブロック図である図8で示されるような構成を持つ測定器本体7に接続されることで感知装置の検知部として使用される。図8中の62は、水晶センサ20の水晶片21を発振させる発振回路、63は基準周波数信号を発生する基準クロック発生部、64は例えばヘテロダイン検波器からなる周波数差検出手段であり、発振回路62からの周波数信号及び基準クロック発生部63からのクロック信号に基づいて両者の周波数差に対応する周波数信号を取り出す。65は増幅部、66は増幅部65からの出力信号の周波数をカウントするカウンタ、67はデータ処理部である。   Further, the above-described quartz sensor 20 is used as a detection unit of a sensing device by being connected to a measuring device body 7 having a configuration as shown in FIG. 8 which is a block diagram, for example. In FIG. 8, 62 is an oscillation circuit that oscillates the crystal piece 21 of the crystal sensor 20, 63 is a reference clock generation unit that generates a reference frequency signal, and 64 is a frequency difference detection means that includes, for example, a heterodyne detector. Based on the frequency signal from 62 and the clock signal from the reference clock generator 63, a frequency signal corresponding to the frequency difference between the two is extracted. 65 is an amplifying unit, 66 is a counter that counts the frequency of an output signal from the amplifying unit 65, and 67 is a data processing unit.

水晶センサ20の周波数は9.2MHzであるため、基準クロック発生部63の周波数としては例えば10MHzが選ばれる。測定対象物である抗原74、例えばダイオキシンが水晶センサ20の水晶振動子2に設けられた上述の吸着層7に吸着していないときには、周波数差検出手段64では、水晶センサ側からの周波数と基準クロックの周波数との差である1MHzの周波数信号(周波数差信号)が出力されるが、試料溶液に含まれる抗原74が水晶振動子2の吸着層7に吸着すると、水晶振動子2の固有振動数が変化し、このため周波数差信号も変化するので、カウンタ66におけるカウント値が変化し、こうして測定対象物の濃度あるいはその物質の有無を検知できる。   Since the frequency of the quartz sensor 20 is 9.2 MHz, for example, 10 MHz is selected as the frequency of the reference clock generator 63. When the antigen 74 that is the measurement object, for example, dioxin, is not adsorbed on the adsorption layer 7 provided on the quartz crystal resonator 2 of the quartz sensor 20, the frequency difference detecting means 64 uses the frequency and the reference from the quartz sensor side. A frequency signal (frequency difference signal) of 1 MHz, which is a difference from the clock frequency, is output. When the antigen 74 contained in the sample solution is adsorbed to the adsorption layer 7 of the crystal resonator 2, the natural vibration of the crystal resonator 2 is output. Since the number changes, and therefore the frequency difference signal also changes, the count value in the counter 66 changes, and thus the concentration of the measurement object or the presence or absence of the substance can be detected.

本発明の効果を確認するために行った実験について説明する。
(実施例1)
図1に示す水晶センサ20において、金層70の厚さが3000Å、下地層71の厚さが100Åからなる電極22表面に抗体72により吸着層7を形成した。この吸着層7の形成は次のようにして行った。先ず、液収容空間45内に緩衝溶液を0.2ml供給し、次いで抗体72であるBSA(牛血清アルブミン)というタンパク質が100μg/ml含まれている試料液を前記液収容空間45内に0.2ml供給した。これにより抗体72が電極22表面に付着し、吸着層7が形成される。
吸着層7を形成した後、当該水晶センサの注入口53に抗原74例えばマウスIGgが10μg/ml含まれている試料液を1ml注入した。そして電極22の表面の吸着層7に吸着した抗原74の量を、抗原74が吸着層7に吸着する前の水晶振動子2の固有振動数と抗原74が吸着層7に吸着した後の水晶振動子2の固有振動数との差を取ることで求めた。
(実施例2)
金層70の厚さを4000Åにした他は実施例1と同様にして、吸着層7を形成し、その後、マウスIGgが含有されている試料液を注入して電極22の表面の吸着層7に吸着した抗原74の量を求めた。
(実施例3)
金層の厚さを5000Åにした他は実施例2と同様の試験を行った。
(実施例4)
金層の厚さを6000Åにした他は実施例2と同様の試験を行った。
(実施例5)
金層の厚さを7000Åにした他は実施例2と同様の試験を行った。
(比較例1)
金層70の厚さを1000Åにした他は実施例1と同様にして、吸着層7を形成し、その後、マウスIGgが含有されている試料液を注入して電極22の表面の吸着層7に吸着した抗原74の量を求めた。
An experiment conducted for confirming the effect of the present invention will be described.
Example 1
In the crystal sensor 20 shown in FIG. 1, the adsorption layer 7 was formed by the antibody 72 on the surface of the electrode 22 having a gold layer 70 having a thickness of 3000 mm and a base layer 71 having a thickness of 100 mm. The adsorption layer 7 was formed as follows. First, 0.2 ml of a buffer solution is supplied into the liquid storage space 45, and then a sample solution containing 100 μg / ml of a protein called BSA (bovine serum albumin), which is the antibody 72, is added to the liquid storage space 45. 2 ml was supplied. Thereby, the antibody 72 adheres to the electrode 22 surface, and the adsorption layer 7 is formed.
After the adsorption layer 7 was formed, 1 ml of a sample solution containing 10 μg / ml of antigen 74, for example, mouse IGg, was injected into the injection port 53 of the crystal sensor. Then, the amount of the antigen 74 adsorbed on the adsorption layer 7 on the surface of the electrode 22 is determined based on the natural frequency of the crystal resonator 2 before the antigen 74 is adsorbed on the adsorption layer 7 and the crystal after the antigen 74 is adsorbed on the adsorption layer 7. It was obtained by taking the difference from the natural frequency of the vibrator 2.
(Example 2)
The adsorption layer 7 is formed in the same manner as in Example 1 except that the thickness of the gold layer 70 is 4000 mm. Thereafter, a sample solution containing mouse IGg is injected to adsorb the adsorption layer 7 on the surface of the electrode 22. The amount of the antigen 74 adsorbed on was determined.
(Example 3)
The same test as in Example 2 was performed except that the thickness of the gold layer was 5000 mm.
Example 4
The same test as in Example 2 was performed except that the thickness of the gold layer was 6000 mm.
(Example 5)
The same test as in Example 2 was performed, except that the thickness of the gold layer was changed to 7000 mm.
(Comparative Example 1)
The adsorption layer 7 was formed in the same manner as in Example 1 except that the thickness of the gold layer 70 was changed to 1000 mm, and then a sample solution containing mouse IGg was injected to adsorb the adsorption layer 7 on the surface of the electrode 22. The amount of the antigen 74 adsorbed on was determined.

(比較例2)
金層70の厚さを2000Åにした他は実施例1と同様にして、吸着層7を形成し、その後、マウスIGgが含有されている試料液を注入して電極22の表面の吸着層7に吸着した抗原74の量を求めた。
(結果及び考察)
図9に示すよう実施例1〜5の抗原74の吸着量は夫々9.8ng/cm、11.0ng/cm 、11.7ng/cm 、12.0ng/cm 及び12.2ng/cm であった。また比較例1及び比較例2の抗原74の吸着量は6.5ng/cm 及び8.0ng/cm であった。つまり金層100の厚みを増やすことによって金層100の表面に形成されている吸着層7に対する抗原74の吸着量が大きくなることが分かる。これは上述したようにスパッタリングにより下地層71の表面に金原子を堆積させて金層70の厚みを増やして行くと、それに伴って金層70の表面は粗くなって金層70表面における抗体201との接触面積が大きくなり、金層100の表面における抗体72の付着量が多くなるからだと推測する。従って金層100の厚みを3000Å以上とすれば抗体72の付着量が多くなり圧電センサーについて高い感度が得られることが分かる。尚、測定周波数に基づいて反応量を求める式はサーベリーの式を用いた。
(Comparative Example 2)
The adsorption layer 7 was formed in the same manner as in Example 1 except that the thickness of the gold layer 70 was 2000 mm, and then a sample solution containing mouse IGg was injected to adsorb the adsorption layer 7 on the surface of the electrode 22. The amount of the antigen 74 adsorbed on was determined.
(Results and discussion)
As shown in FIG. 9, the adsorption amounts of the antigens 74 of Examples 1 to 5 were 9.8 ng / cm 2 , 11.0 ng / cm 2 , 11.7 ng / cm 2 , 12.0 ng / cm 2 and 12.2 ng / cm 2 . The adsorption amount of the antigen 74 of Comparative Example 1 and Comparative Example 2 was 6.5 ng / cm 2 and 8.0 ng / cm 2. That is, it can be seen that the amount of the antigen 74 adsorbed on the adsorption layer 7 formed on the surface of the gold layer 100 increases by increasing the thickness of the gold layer 100. As described above, when gold atoms are deposited on the surface of the underlayer 71 by sputtering and the thickness of the gold layer 70 is increased as described above, the surface of the gold layer 70 becomes rough accordingly, and the antibody 201 on the surface of the gold layer 70 is increased. This is presumed to be because the contact area with the surface of the gold layer 100 increases and the amount of antibody 72 attached to the surface of the gold layer 100 increases. Therefore, it can be seen that when the thickness of the gold layer 100 is 3000 mm or more, the amount of the antibody 72 attached increases and high sensitivity can be obtained for the piezoelectric sensor. In addition, the Cerbury equation was used as the equation for obtaining the reaction amount based on the measurement frequency.

20 水晶センサ
2 水晶振動子
21 水晶片
22,23 電極
3 配線基板
4 水晶押さえ部材
45 液収容空間
5 液注入用カバー
6 測定器本体
7 吸着層
70 金層
71 下地層
72 抗体
73 ブロック本体
74 抗原
20 Crystal sensor 2 Crystal oscillator 21 Crystal piece 22 and 23 Electrode 3 Wiring board 4 Crystal holding member 45 Liquid storage space 5 Liquid injection cover 6 Measuring instrument body 7 Adsorption layer 70 Gold layer 71 Underlayer 72 Antibody 73 Block body 74 Antigen

Claims (4)

圧電片の一面側及び他面側に各々密着層を介してスパッタリングにより金層からなる電極が形成され、前記一面側の電極の表面には抗体からなる吸着層が設けられると共に、他面側の電極は気密空間に臨むように設けられ、抗原抗体反応により前記抗体に吸着された抗原を圧電片の振動数の変化に応じて検出するための圧電センサにおいて、
前記電極と発振回路とを接続するための導電路と、
前記電極を導電路に固定するために当該電極から導電路に跨って設けられ、前記金層に導電性フィラーが接合した状態でバインダーが硬化する導電性接着剤と、を備え、
前記金層の厚さは3000Å以上であることを特徴とする圧電センサ。
Electrodes made of a gold layer are formed on the one surface side and the other surface side of the piezoelectric piece by sputtering through an adhesion layer, respectively, and an adsorption layer made of an antibody is provided on the surface of the electrode on the one surface side. In the piezoelectric sensor for detecting the antigen adsorbed to the antibody by the antigen-antibody reaction according to the change in the frequency of the piezoelectric piece, the electrode is provided to face the airtight space,
A conductive path for connecting the electrode and the oscillation circuit;
A conductive adhesive that is provided across the conductive path from the electrode to fix the electrode to the conductive path, and the binder is cured in a state where a conductive filler is bonded to the gold layer;
The piezoelectric sensor according to claim 1, wherein the gold layer has a thickness of 3000 mm or more.
前記導電フィラーは銀及び金から選ばれる少なくとも一種であり、前記バインダーはエポキシ樹脂であることを特徴とする請求項1に記載の圧電センサ。   The piezoelectric sensor according to claim 1, wherein the conductive filler is at least one selected from silver and gold, and the binder is an epoxy resin. 前記密着層が、クロム、チタン、ニッケル、アルミニウム及び銅から選ばれる少なくとも一種であることを特徴とする請求項1または2に記載の圧電センサ。   The piezoelectric sensor according to claim 1, wherein the adhesion layer is at least one selected from chromium, titanium, nickel, aluminum, and copper. 請求項1ないし3のいずれか一つに記載の圧電センサと、圧電振動子の固有振動数を検出し、その検出結果に基づいて抗原を検知する測定器本体と、を備えたことを特徴とする感知装置。   A piezoelectric sensor according to any one of claims 1 to 3, and a measuring instrument main body that detects the natural frequency of the piezoelectric vibrator and detects an antigen based on the detection result. Sensing device.
JP2010127108A 2010-06-02 2010-06-02 Piezoelectric sensor and sensing device Expired - Fee Related JP4685962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010127108A JP4685962B2 (en) 2010-06-02 2010-06-02 Piezoelectric sensor and sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010127108A JP4685962B2 (en) 2010-06-02 2010-06-02 Piezoelectric sensor and sensing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008132348A Division JP2009281786A (en) 2008-05-20 2008-05-20 Piezoelectric sensor and sensing device

Publications (2)

Publication Number Publication Date
JP2010185890A true JP2010185890A (en) 2010-08-26
JP4685962B2 JP4685962B2 (en) 2011-05-18

Family

ID=42766611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010127108A Expired - Fee Related JP4685962B2 (en) 2010-06-02 2010-06-02 Piezoelectric sensor and sensing device

Country Status (1)

Country Link
JP (1) JP4685962B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166373A (en) * 1980-05-27 1981-12-21 Toshiba Glass Co Ltd Method for smoothing vapor-deposited film surface
JPH05281177A (en) * 1992-04-03 1993-10-29 Nok Corp Gas sensor
WO2006046509A1 (en) * 2004-10-27 2006-05-04 Mitsubishi Chemical Corporation Cantilever sensor, sensor system and method of detecting analyte in specimen liquid
JP2006275865A (en) * 2005-03-30 2006-10-12 Citizen Watch Co Ltd Determination method using qcm sensor
JP2007101225A (en) * 2005-09-30 2007-04-19 Ulvac Japan Ltd Sensor and measuring instrument equipped with it
JP2007147556A (en) * 2005-11-30 2007-06-14 Canon Inc Thin film, method for manufacturing same, and chemical sensor using same
JP2008112930A (en) * 2006-10-31 2008-05-15 Fuji Xerox Co Ltd Semiconductor device and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166373A (en) * 1980-05-27 1981-12-21 Toshiba Glass Co Ltd Method for smoothing vapor-deposited film surface
JPH05281177A (en) * 1992-04-03 1993-10-29 Nok Corp Gas sensor
WO2006046509A1 (en) * 2004-10-27 2006-05-04 Mitsubishi Chemical Corporation Cantilever sensor, sensor system and method of detecting analyte in specimen liquid
JP2006275865A (en) * 2005-03-30 2006-10-12 Citizen Watch Co Ltd Determination method using qcm sensor
JP2007101225A (en) * 2005-09-30 2007-04-19 Ulvac Japan Ltd Sensor and measuring instrument equipped with it
JP2007147556A (en) * 2005-11-30 2007-06-14 Canon Inc Thin film, method for manufacturing same, and chemical sensor using same
JP2008112930A (en) * 2006-10-31 2008-05-15 Fuji Xerox Co Ltd Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP4685962B2 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
JP2009281786A (en) Piezoelectric sensor and sensing device
US7389673B2 (en) Sensor for detecting analyte in liquid and device for detecting analyte in liquid using the same
US9406868B2 (en) Manufacturing method for piezoelectric resonator device
WO2006064951A1 (en) Quartz sensor and sensing device
JP5160583B2 (en) Sensing device and sensing method
WO2006064954A1 (en) Quartz sensor and sensing device
EP2058642A1 (en) Piezoelectric sensor and sensing device
US8664837B2 (en) Piezoelectric device and method for fabricating the same
KR20080007552A (en) Electrically responsive device
TW201203470A (en) Manufacturing method of electronic device package, electronic device package, and oscillator
US8256275B2 (en) In-liquid-substance detection sensor
JP4256871B2 (en) Quartz sensor and sensing device
JP2011142587A (en) Piezoelectric vibrator and piezoelectric oscillator
JP2004264254A (en) Mass measuring chip and masses measuring device
JP4685962B2 (en) Piezoelectric sensor and sensing device
JP2007093239A (en) Qcm analyzer
JP4473815B2 (en) Quartz sensor and sensing device
JP5069094B2 (en) Piezoelectric sensor and sensing device
JP5066442B2 (en) Piezoelectric sensor and sensing device
JP2004286585A (en) Mass-measuring chip, method for manufacturing the same and mass-measuring apparatus
JP2005241380A (en) Piezo-electric device, cellular phone unit using piezo-electric device and electronic device using piezo-electric device
JP2007192650A (en) Qcm sensor and qcm sensor device
TW201111783A (en) Quartz sensor and sensing device
JP2004096403A (en) Piezoelectric device and manufacturing method thereof, and mobile phone device utilizing piezoelectric device, and electronic equipment
JP2009182873A (en) Method for manufacturing piezoelectric oscillation device, and piezoelectric oscillation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100602

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100917

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4685962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees