JP2010185718A - Reaction card - Google Patents

Reaction card Download PDF

Info

Publication number
JP2010185718A
JP2010185718A JP2009028841A JP2009028841A JP2010185718A JP 2010185718 A JP2010185718 A JP 2010185718A JP 2009028841 A JP2009028841 A JP 2009028841A JP 2009028841 A JP2009028841 A JP 2009028841A JP 2010185718 A JP2010185718 A JP 2010185718A
Authority
JP
Japan
Prior art keywords
reaction
reaction vessel
carrier
exhaust port
exhaust pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009028841A
Other languages
Japanese (ja)
Inventor
Yoichi Sato
陽一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beckman Coulter Inc
Original Assignee
Beckman Coulter Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beckman Coulter Inc filed Critical Beckman Coulter Inc
Priority to JP2009028841A priority Critical patent/JP2010185718A/en
Publication of JP2010185718A publication Critical patent/JP2010185718A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reaction card capable of performing highly accurate analysis by suppressing collision of a reaction liquid against an air gap. <P>SOLUTION: This reaction card 1 includes: a body part 10 having a card shape; a reaction vessel 11 having an opening on an upper end plane part of the body part 10; and a seal 15 pasted on the body part 10, on which a bar code or a lot number for discrimination, an expiration date or the like are printed, and having a description column for specimen information or a reaction result. The reaction vessel 11 includes: a reaction part 12 having an approximately cylindrical shape, for reacting the specimen with a reagent; and an analysis part 13 provided in communication with a bottom part of the reaction part 12, and filled with a carrier C for generating a reaction image for determining existence of aggregation corresponding to the reaction result. Gas in the air gap of the reaction vessel 11 is exhausted by an exhaust pipe 14 connected to the analysis part 13, and thereby collision of the reaction liquid of the specimen and the reagent against the air gap can be prevented, to thereby enable highly accurate analysis. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、免疫学的凝集反応を行う反応容器を有する反応カードに関するものである。   The present invention relates to a reaction card having a reaction vessel for performing an immunological agglutination reaction.

従来、血漿、血球または血清などの検体を免疫学的に分析する分析方法においては、検査内容に対応した試薬を専用の反応カード内の反応容器で検体と混和して反応させ、必要に応じてインキュベーションを行った後、その反応カードを遠心器で遠心することによって生じる反応像から凝集の有無を確認し、検体と試薬との凝集反応パターンをもとに検体が抗体または抗原に対して陰性であるか陽性であるかを判定する(例えば、特許文献1参照)。   Conventionally, in an analysis method for immunologically analyzing a sample such as plasma, blood cells, or serum, a reagent corresponding to the test content is mixed with the sample in a reaction container in a dedicated reaction card and reacted. After incubation, the presence or absence of agglutination is confirmed from the reaction image generated by centrifuging the reaction card with a centrifuge. The sample is negative for antibody or antigen based on the agglutination pattern of the sample and reagent. It is determined whether it is positive or not (for example, see Patent Document 1).

また、上述した反応カードの反応容器は、検体と試薬とを混合させて免疫学的凝集反応を行なわせる反応部と、反応部下部に連結され、免疫学的凝集反応を行なわせた反応液を、凝集塊の大きさに応じて移動度を変化させる担体を収容した分析部とを有している。分析部に収容された担体が、遠心によって反応部から分析部へと移動する反応液中の凝集塊の大きさに応じて捕捉位置を変化させることで、検体の分析を行うことができる。ここで、反応部と分析部の担体との間の空間領域には、気体が形成する気層であるエアギャップが存在し、このエアギャップが、反応部に分注された検体及び試薬を張力またはエアギャップ内部の圧力によって保持することで、検体と試薬との反応前に、検体と試薬とが担体と接触することを防止している。   In addition, the reaction container of the above-described reaction card includes a reaction part that mixes a sample and a reagent to perform an immunological agglutination reaction, and a reaction solution that is connected to the lower part of the reaction part and that performs the immunological agglutination reaction. And an analysis unit containing a carrier whose mobility is changed according to the size of the aggregate. The sample contained in the analysis unit can be analyzed by changing the capture position according to the size of the aggregate in the reaction solution that moves from the reaction unit to the analysis unit by centrifugation. Here, in the space region between the reaction part and the carrier of the analysis part, there is an air gap that is a gas layer formed by the gas, and this air gap tensions the sample and the reagent dispensed to the reaction part. Alternatively, by holding the pressure inside the air gap, the sample and the reagent are prevented from contacting the carrier before the reaction between the sample and the reagent.

特公平8−7215号公報Japanese Patent Publication No.8-7215

しかしながら、特許文献1に示す反応カードは、遠心によって反応液を反応部から分析部に移動させた場合、反応液とエアギャップとの相対位置が入れ替わる際に、反応液とエアギャップ内の気体とが衝突して、反応液中の比較的弱い結合で形成される凝集塊が破壊され、この凝集塊が破壊されることによって、分析結果の誤判定を引き起こす場合があるという問題があった。   However, in the reaction card shown in Patent Document 1, when the reaction solution is moved from the reaction unit to the analysis unit by centrifugation, the reaction solution and the gas in the air gap are changed when the relative position of the reaction solution and the air gap is switched. Collided with each other to destroy aggregates formed by relatively weak bonds in the reaction solution, and the aggregates are destroyed, which may cause erroneous determination of analysis results.

本発明は、上記に鑑みてなされたものであって、精度の高い分析結果を得ることを可能とする反応カードを提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the reaction card which makes it possible to obtain a highly accurate analysis result.

上述した課題を解決し、目的を達成するために、本発明にかかる反応カードは、1つ以上の反応容器を有し、各反応容器に、該反応容器内の脱気を行なう排気口を形成したことを特徴とする。   In order to solve the above-described problems and achieve the object, the reaction card according to the present invention has one or more reaction vessels, and each reaction vessel is formed with an exhaust port for degassing the reaction vessel. It is characterized by that.

また、本発明にかかる反応カードは、上記の発明において、前記反応容器は、検体と試薬とを収容し、該検体と該試薬との凝集反応を行なわせる反応部と、前記反応部下部に配置され、前記凝集反応による凝集塊の大きさによって移動度を変化させて該凝集塊を保持する担体を収容し、検体の分析を行う分析部と、を備え、前記排気口は、前記分析部の上端部と前記担体との間に形成された空間領域に設けられることを特徴とする。   The reaction card according to the present invention is the reaction card according to the above invention, wherein the reaction container contains a sample and a reagent, and performs agglutination reaction between the sample and the reagent, and is arranged at the lower part of the reaction unit. And an analysis unit that contains a carrier that retains the aggregate by changing the mobility depending on the size of the aggregate due to the aggregation reaction, and performs analysis of the sample, and the exhaust port of the analysis unit It is provided in the space area | region formed between an upper end part and the said support | carrier.

また、本発明にかかる反応カードは、上記の発明において、前記排気口に連結され、前記反応部の上部平面まで延伸された排気管を設けたことを特徴とする。   The reaction card according to the present invention is characterized in that, in the above invention, an exhaust pipe connected to the exhaust port and extending to an upper plane of the reaction section is provided.

また、本発明にかかる反応カードは、上記の発明において、前記排気口は、前記分析部側面に少なくとも1つ以上形成されることを特徴とする。   In the reaction card according to the present invention as set forth in the invention described above, at least one or more exhaust ports are formed on a side surface of the analysis unit.

また、本発明にかかる反応カードは、上記の発明において、前記担体側の排気口端部を通る前記反応容器の内径は、前記反応部側の排気口端部を通る前記反応容器の内径と比して大きくなっていることを特徴とする。   In the reaction card according to the present invention, in the above invention, the inner diameter of the reaction vessel that passes through the exhaust port end on the carrier side is larger than the inner diameter of the reaction vessel that passes through the exhaust port end on the reaction unit side. It is characterized by becoming larger.

また、本発明にかかる反応カードは、上記の発明において、前記反応容器上端部から前記担体の上端近傍まで挿入される内部管を設け、前記排気管は、前記反応容器内壁面と前記内部管外壁面との間に形成された環状空間であり、該環状空間の担体側の端部を排気口とすることを特徴とする。   In the reaction card according to the present invention, in the above invention, an inner tube inserted from the upper end of the reaction vessel to the vicinity of the upper end of the carrier is provided, and the exhaust pipe includes the inner wall surface of the reaction vessel and the outside of the inner tube. An annular space formed between the wall surface and the carrier-side end of the annular space is an exhaust port.

また、本発明にかかる反応カードは、上記の発明において、前記内部管の前記担体側の端部は、前記分析部の径方向に対して傾斜して形成されることを特徴とする。   The reaction card according to the present invention is characterized in that, in the above invention, an end of the inner tube on the carrier side is formed to be inclined with respect to a radial direction of the analysis unit.

また、本発明にかかる反応カードは、上記の発明において、前記反応部の上部開口部と前記排気管の他方端部とは、封止部材によって封止されていることを特徴とする。   The reaction card according to the present invention is characterized in that, in the above invention, the upper opening of the reaction section and the other end of the exhaust pipe are sealed by a sealing member.

本発明によれば、反応液を遠心した場合の反応液とエアギャップとの衝突を抑制するようにしたので、精度の高い分析を行うことができるという効果を奏する。   According to the present invention, since the collision between the reaction liquid and the air gap when the reaction liquid is centrifuged is suppressed, an effect that a highly accurate analysis can be performed is achieved.

以下、図面を参照して、この発明の実施の形態である反応カードについて説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付している。なお、以下の説明で参照する図面は模式的なものであって、同じ物体を異なる図面で示す場合には、寸法や縮尺等が異なる場合もある。   A reaction card according to an embodiment of the present invention will be described below with reference to the drawings. Note that the present invention is not limited to the embodiments. In the description of the drawings, the same parts are denoted by the same reference numerals. Note that the drawings referred to in the following description are schematic, and when the same object is shown in different drawings, dimensions, scales, and the like may be different.

(実施の形態1)
図1は、本発明の実施の形態1にかかる反応カード1を模式的に示す斜視図である。反応カード1は、カード状をなし、上端に平面部を有する本体部10と、本体部10の上端平面部に開口を有する反応容器11と、本体部10に貼付され、識別用のバーコードやロット番号、有効年月日等が印刷されているとともに、検体の情報や反応結果の記載欄を有するシール15とを有する。反応容器11は、略円筒形状をなし、検体と試薬とを反応させる反応部12と、反応部12の底部に連通して設けられ、反応の結果に応じた凝集の有無を判定するための反応像を生じさせる担体Cとしてゲル、ガラスビーズまたはプラスチックビーズが充填されて、検体と試薬との抗原抗体反応による反応液を遠心器によって遠心したものを保持する分析部13とを有する。分析部13の担体Cにおける反応液の捕捉位置によって4+〜1+(陽性)、−(陰性)、不明(陽性または陰性の判定ができない場合)と判定し、検体の分析を行う。反応カード1は、半透明の樹脂を用いて形成され、分析部13における凝集像は、目視によって確認可能である。また、本体部10の上部平面において、各反応容器11の上部開口部が封止部材16によって封止され、各反応容器11内部の密閉性が保たれている。反応カード1を使用する場合は、封止部材16を剥がすか、若しくは開口部分を穿孔することによって、反応容器11内に検体及び試薬を分注して使用する。
(Embodiment 1)
FIG. 1 is a perspective view schematically showing a reaction card 1 according to the first embodiment of the present invention. The reaction card 1 has a card shape, a main body portion 10 having a flat portion at the upper end, a reaction container 11 having an opening at the upper end flat portion of the main body portion 10, and a main body portion 10, and is attached with a bar code for identification. A lot number, effective date, and the like are printed, and a seal 15 having columns for specimen information and reaction results is provided. The reaction vessel 11 has a substantially cylindrical shape, and is provided in communication with the reaction unit 12 for reacting the specimen and the reagent, and the bottom of the reaction unit 12, and a reaction for determining the presence or absence of aggregation according to the result of the reaction. It has an analysis unit 13 that holds gel, glass beads, or plastic beads filled as a carrier C for generating an image, and holds a reaction solution obtained by antigen-antibody reaction between a specimen and a reagent, which is centrifuged by a centrifuge. Depending on the capture position of the reaction liquid in the carrier C of the analysis unit 13, it is determined as 4+ to 1+ (positive), − (negative), or unknown (when positive or negative cannot be determined), and the sample is analyzed. The reaction card 1 is formed using a translucent resin, and the aggregated image in the analysis unit 13 can be confirmed by visual observation. Further, the upper opening of each reaction vessel 11 is sealed by a sealing member 16 on the upper plane of the main body 10, and the hermeticity inside each reaction vessel 11 is maintained. When the reaction card 1 is used, the specimen and the reagent are dispensed into the reaction container 11 by peeling off the sealing member 16 or perforating the opening.

また、分析部13の側面であって、担体C上部には、本体部10の上部平面に連結された略柱状の排気管14が接続されている。排気管14の上部においても封止部材16によって封止されており、排気管14上部の封止部材16による封止が解除されると、反応容器11内に在る気体を外部に放出することができる。   A substantially columnar exhaust pipe 14 connected to the upper plane of the main body 10 is connected to the upper surface of the carrier C on the side surface of the analysis unit 13. The upper part of the exhaust pipe 14 is also sealed by the sealing member 16, and when the sealing by the sealing member 16 on the upper part of the exhaust pipe 14 is released, the gas present in the reaction vessel 11 is released to the outside. Can do.

なお、封止部材16は、弾性材または金属箔によって構成される。弾性材としては、ポリエステル、ナイロン、ポリプロピレン、ポリエチレン、ポリメチルペンテン等の樹脂が挙げられる。また、金属箔は、アルミニウム箔が挙げられ、その他、穿孔可能な金属であれば適用できる。   In addition, the sealing member 16 is comprised with an elastic material or metal foil. Examples of the elastic material include resins such as polyester, nylon, polypropylene, polyethylene, and polymethylpentene. Further, examples of the metal foil include an aluminum foil, and any other metal that can be perforated can be used.

また、図2は、図1に示す反応カード1の反応容器11の断面を示す断面図である。本体部10の上部には、反応容器11の開口部に沿った凸部10aを有し、封止部材16は、凸部10aの上部平面に貼付されることによって反応容器11を密閉する。凸部10aは、各反応容器11毎に設けられ、封止部材16によって密閉されている。さらに、図2に示すように、排気管14上部の本体部10上部平面にも凸部10bが設けられ、封止部材16と凸部10bとが密着することによって、排気管14が密閉される。なお、排気管14は、反応容器11との連結部に排気口141と、本体部10の凸部10bで形成される内部空間に排出口142とを有する。   Moreover, FIG. 2 is sectional drawing which shows the cross section of the reaction container 11 of the reaction card | curd 1 shown in FIG. An upper portion of the main body 10 has a convex portion 10a along the opening of the reaction vessel 11, and the sealing member 16 seals the reaction vessel 11 by being affixed to the upper plane of the convex portion 10a. The convex portion 10 a is provided for each reaction vessel 11 and is sealed by a sealing member 16. Further, as shown in FIG. 2, a convex portion 10b is also provided on the upper surface of the main body 10 above the exhaust pipe 14, and the exhaust pipe 14 is hermetically sealed when the sealing member 16 and the convex portion 10b are in close contact with each other. . The exhaust pipe 14 has an exhaust port 141 at a connection portion with the reaction vessel 11 and an exhaust port 142 in an internal space formed by the convex portion 10 b of the main body 10.

ここで、反応容器11内の脱気機構を、図3を参照して説明する。図3は、反応容器11の脱気機構を示す模式図である。まず、図3(a)において、針または分注プローブによって封止部材16の凸部10aで形成される内部領域を穿孔して反応容器11の開口部を開放し、検体と試薬とを分注する。分注された検体および試薬は、反応容器11内のエアギャップAによって担体Cとの間に空間を形成して保持される。その後、所定時間反応させた反応液Mの遠心処理を行う。遠心処理を行う前に、針または分注プローブを用いて封止部材16の凸部10bで形成される空間領域を穿孔して排出口142を開放する。反応カードを遠心すると、図3(b)において実線で示す矢印方向に遠心力が付加され、反応液Mも付加される力によって図3(b)下方向に移動する。この反応液Mの移動によってエアギャップAの内部圧力が上昇し、エアギャップA内の気体は、排気口141から排気管14へと送られる。遠心処理を継続することで、図3(c)に示すように、エアギャップA内の気体が排出口142から外部へと放出されるとともに、反応液Mが担体C内に入り込む。   Here, the deaeration mechanism in the reaction vessel 11 will be described with reference to FIG. FIG. 3 is a schematic diagram showing a degassing mechanism of the reaction vessel 11. First, in FIG. 3 (a), the internal region formed by the convex portion 10a of the sealing member 16 is perforated with a needle or a dispensing probe to open the opening of the reaction vessel 11, and the sample and the reagent are dispensed. To do. The dispensed specimen and reagent are held in a space between the carrier C and the air gap A in the reaction vessel 11. Thereafter, the reaction solution M reacted for a predetermined time is centrifuged. Before performing the centrifugal treatment, the discharge port 142 is opened by perforating the space region formed by the convex portion 10b of the sealing member 16 using a needle or a dispensing probe. When the reaction card is centrifuged, a centrifugal force is applied in the direction indicated by the solid line in FIG. 3B, and the reaction solution M is also moved downward in FIG. 3B by the applied force. Due to the movement of the reaction liquid M, the internal pressure of the air gap A rises, and the gas in the air gap A is sent from the exhaust port 141 to the exhaust pipe 14. By continuing the centrifugation process, the gas in the air gap A is released to the outside from the discharge port 142 and the reaction solution M enters the carrier C as shown in FIG.

上述した処理を行うことで、検体と試薬とが反応した反応液を保持するエアギャップと、反応液とが遠心処理によって配置転換されないため、反応液とエアギャップとが入れ替わった際の衝撃による反応液の凝集塊への影響を抑制することができ、分析精度を向上させることができる。また、4+〜1+(陽性)、−(陰性)の各判定際において、一層正確に判定することが可能であり、特に、陽性と陰性との判定際において、確実に判定することによって、輸血後の血液凝集または溶血を防止することができる。   By performing the above-described processing, the reaction between the air gap that holds the reaction liquid in which the specimen and the reagent have reacted and the reaction liquid is not rearranged by the centrifugal process, and thus the reaction caused by the impact when the reaction liquid and the air gap are switched. The influence of the liquid on the aggregate can be suppressed, and the analysis accuracy can be improved. Moreover, it is possible to make a more accurate determination in each determination of 4+ to 1+ (positive) and − (negative). Blood aggregation or hemolysis can be prevented.

ここで、図2に示す反応容器11の変形例1を、図4を参照して説明する。図4は、図2に示す反応容器11の変形例1を示す断面図である。図4に示す変形例1では、排気管14の配置を反応容器11の径方向に対して傾斜を設けることによって反応液Mが排気管14内に入り込むことをより確実に防止できる。反応液が排気口141付近に付着した場合においても、遠心力による図4下方向にかかる力によって反応液を分析部13に戻すことが可能となる。   Here, the modification 1 of the reaction container 11 shown in FIG. 2 is demonstrated with reference to FIG. FIG. 4 is a cross-sectional view showing Modification 1 of the reaction vessel 11 shown in FIG. In the first modification shown in FIG. 4, the arrangement of the exhaust pipe 14 is inclined with respect to the radial direction of the reaction vessel 11, so that the reaction liquid M can be more reliably prevented from entering the exhaust pipe 14. Even when the reaction solution adheres to the vicinity of the exhaust port 141, the reaction solution can be returned to the analysis unit 13 by the force applied in the downward direction in FIG.

また、図2に示す反応容器11の変形例2を、図5を参照して説明する。図5は、図2に示す反応容器11の変形例2を示す断面図である。図5に示す変形例2では、排気口141の下部に対応する分析部13の径が、排気口141の上部に対応する分析部13の径と比して大きく形成されている。この径の差異によって遠心処理を行って反応液が下方に移動した場合に、反応液が排気口141に付着することがなくなるため、反応液が排気管14内に入り込むことがなく、安定した分析を行うことが可能となる。   Moreover, the modification 2 of the reaction container 11 shown in FIG. 2 is demonstrated with reference to FIG. FIG. 5 is a cross-sectional view showing a second modification of the reaction vessel 11 shown in FIG. In the second modification shown in FIG. 5, the diameter of the analysis unit 13 corresponding to the lower part of the exhaust port 141 is formed larger than the diameter of the analysis unit 13 corresponding to the upper part of the exhaust port 141. When the reaction solution is moved downward due to the difference in diameter, the reaction solution does not adhere to the exhaust port 141. Therefore, the reaction solution does not enter the exhaust pipe 14, and stable analysis is performed. Can be performed.

さらに、図2に示す反応容器11の変形例3を、図6を参照して説明する。図6は、図2に示す反応容器11の変形例3を示す断面図である。図6に示す変形例3では、上述した変形例1,2を組み合わせた構成となっており、排気管14内に入り込む反応液をより確実に防止することができる。   Furthermore, Modification 3 of the reaction vessel 11 shown in FIG. 2 will be described with reference to FIG. FIG. 6 is a cross-sectional view showing a third modification of the reaction vessel 11 shown in FIG. In Modification 3 shown in FIG. 6, the above-described Modifications 1 and 2 are combined, and the reaction liquid that enters the exhaust pipe 14 can be more reliably prevented.

また、図2に示す反応容器11の変形例4を、図7を参照して説明する。図7は、図2に示す反応容器11の変形例4を示す断面図である。図7に示す変形例4では、複数の排気口143a〜143cが設けられている。複数の排気口143a〜143cを設けることで、遠心処理による反応液からの押圧によってエアギャップの圧力が上昇することを防止しつつ、反応部側の排気口から順次エアギャップ内の気体を排出でき、円滑な気体の排出を行なうことが可能となる。   Moreover, the modification 4 of the reaction container 11 shown in FIG. 2 is demonstrated with reference to FIG. FIG. 7 is a sectional view showing a fourth modification of the reaction vessel 11 shown in FIG. In the modified example 4 shown in FIG. 7, a plurality of exhaust ports 143a to 143c are provided. By providing the plurality of exhaust ports 143a to 143c, the gas in the air gap can be sequentially discharged from the exhaust port on the reaction part side while preventing the pressure of the air gap from increasing due to the pressure from the reaction solution by the centrifugal process. Smooth gas discharge can be performed.

なお、図7に示す変形例4において、図4に示す変形例1のように、反応容器11の径方向の領域に傾斜を設けてもよく、図5に示す変形例2のように排気口141の上部と下部とに対応する分析部13の径に差異をもたせてもよく、図6に示す変形例3のように、排気管14に傾斜を設け、排気口の上部と下部とに対応する分析部13の径に差異をもたせてもよい。ここで、各排気口143a〜143cは、反応容器11の軸心と平行であって、本体部10と同一平面に形成されることが好ましい。前述した配置にすることで、反応カード1が占める体積を最小限とすることができる。   In the modification 4 shown in FIG. 7, the radial region of the reaction vessel 11 may be inclined as in the modification 1 shown in FIG. 4, and the exhaust port as in the modification 2 shown in FIG. The diameter of the analysis part 13 corresponding to the upper part and the lower part of 141 may be made different, and the exhaust pipe 14 is inclined as shown in FIG. 6 to correspond to the upper and lower parts of the exhaust port. You may make a difference in the diameter of the analysis part 13 to perform. Here, each of the exhaust ports 143a to 143c is preferably formed in parallel with the axial center of the reaction vessel 11 and in the same plane as the main body 10. With the arrangement described above, the volume occupied by the reaction card 1 can be minimized.

上述した実施の形態1では、反応容器と本体部の上部平面とを連結した排気管によって、遠心処理を行った場合に、反応容器内に存在するエアギャップと、検体と試薬との反応液とが入れ替わる際の衝撃を防止できるため、反応液内の凝集塊が破壊されず、一層正確な分析を行うことを可能とする。特に、陽性であるべき結果が陰性と誤判定されることがなく、輸血後の血液凝集または溶血を防止することができる。   In the above-described first embodiment, when the centrifugal treatment is performed by the exhaust pipe connecting the reaction container and the upper plane of the main body, the air gap present in the reaction container, the reaction liquid of the specimen and the reagent, Since the impact at the time of replacement can be prevented, the agglomerates in the reaction solution are not destroyed and more accurate analysis can be performed. In particular, a result that should be positive is not erroneously determined as negative, and blood aggregation or hemolysis after blood transfusion can be prevented.

ここで、実施の形態1にかかる反応容器11の排気において、図8に示すように、排気管14を設けずに、排気口141で排気を行ってもよい。図8は、図2に示す反応容器11の変形例5を示す断面図である。排気口141は、防液透湿材20によって密閉され、気体のみを外部に放出できるようにされていることが好ましく、使用直前まで防液透湿材20を封止部材によって封止しておく。遠心処理による反応液の押圧によって、エアギャップ内の気体のみが外部に放出され、上述した実施の形態1と同様の効果を得ることができる。また、封止部材が別体となるため、特に封止部材を処理毎に剥がして使用する場合に処理が容易となる。   Here, in the exhaust of the reaction vessel 11 according to the first embodiment, as shown in FIG. 8, exhaust may be performed at the exhaust port 141 without providing the exhaust pipe 14. FIG. 8 is a cross-sectional view showing a fifth modification of the reaction vessel 11 shown in FIG. The exhaust port 141 is preferably sealed with a liquid-proof and moisture-permeable material 20 so that only gas can be released to the outside. The liquid-proof and moisture-permeable material 20 is sealed with a sealing member until just before use. . Only the gas in the air gap is released to the outside by pressing the reaction solution by the centrifugal treatment, and the same effect as in the first embodiment can be obtained. Further, since the sealing member is a separate body, the processing becomes easy particularly when the sealing member is peeled off for each processing.

また、反応カード1の遠心処理を行う場合に、遠心器内を陰圧に設定して、エアギャップ内の気体を外部から引きつけるようにしてもよい。遠心器内を陰圧に設定することによって、排気効率が向上し、遠心にかかる時間を短縮することができる。   Further, when the reaction card 1 is centrifuged, the inside of the centrifuge may be set to a negative pressure so as to attract the gas in the air gap from the outside. By setting the inside of the centrifuge to a negative pressure, the exhaust efficiency is improved and the time required for centrifugation can be shortened.

(実施の形態2)
つぎに、実施の形態2について説明する。図9は、本発明の実施の形態2にかかる反応カードの反応容器を模式的に示す斜視図である。また、図10は、図9に示す反応容器11の断面を模式的に示す断面図である。図9,10に示す反応容器11は、反応容器11内部に排気管17を配置し、排気管17は、支持部材17aによって反応容器11内部空間に支持されている。排気管17は、反応容器11の軸心上に配置された略柱状であって、凸部10aが形成する上部平面に設けた排出口172から反応容器11の下方に延伸され、担体C上部平面近傍に排気口171を有する。
(Embodiment 2)
Next, a second embodiment will be described. FIG. 9 is a perspective view schematically showing a reaction container of the reaction card according to the second embodiment of the present invention. FIG. 10 is a cross-sectional view schematically showing a cross section of the reaction vessel 11 shown in FIG. 9 and 10, an exhaust pipe 17 is disposed inside the reaction container 11, and the exhaust pipe 17 is supported in the internal space of the reaction container 11 by a support member 17a. The exhaust pipe 17 has a substantially columnar shape arranged on the axis of the reaction vessel 11, extends from the discharge port 172 provided in the upper plane formed by the convex portion 10 a to the lower side of the reaction vessel 11, and is an upper plane of the carrier C. An exhaust port 171 is provided in the vicinity.

また、支持部材17aは、一例として示す分注位置Pと重複しない位置に配置される。分注位置Pの考慮は、特に自動分析装置の分注プローブが自動で行なう場合に必要となる。試薬および検体は、分注位置Pから反応容器11と排気管17外周とで形成される空間内に分注されると、エアギャップによって担体Cとの間に空間を形成して保持され、遠心処理によってエアギャップ内の気体が排気管17を介して排出口172から外部に放出されることで、反応液を担体C内に送り込むことができる。   Moreover, the support member 17a is arrange | positioned in the position which does not overlap with the dispensing position P shown as an example. Consideration of the dispensing position P is necessary particularly when the dispensing probe of the automatic analyzer is automatically performed. When the reagent and the sample are dispensed from the dispensing position P into the space formed by the reaction vessel 11 and the outer periphery of the exhaust pipe 17, a space is formed between the reagent C and the carrier C by the air gap, and the reagent and specimen are centrifuged. The gas in the air gap is released to the outside through the exhaust pipe 17 through the exhaust pipe 17 by the processing, so that the reaction liquid can be sent into the carrier C.

上述した反応容器と排気管との構成において、排気管が反応容器内に配置されることによって、反応容器内のエアギャップ内の気体をより確実に排気することが可能となる。また、反応容器の軸心と平行に排気管を設けることで、気体の排気を効率よく行なうことができる。   In the configuration of the reaction container and the exhaust pipe described above, the gas in the air gap in the reaction container can be more reliably exhausted by disposing the exhaust pipe in the reaction container. Further, by providing an exhaust pipe in parallel with the axial center of the reaction vessel, gas can be exhausted efficiently.

ここで、本発明の実施の形態2にかかる変形例を、図11,12を参照して説明する。図11は、本発明の実施の形態2にかかる反応容器11の変形例を示す斜視図である。また、図12は、本発明の実施の形態2にかかる反応容器11の変形例を示す断面図である。図11,12に示す変形例では、本体部10と連結し、反応容器11の開口部を覆う板状部材10cの上部平面に封止部材16が貼付される。また、板状部材10c中心には、内部に円状の空間を持つ排出口172が形成され、排出口172から反応容器11の軸心上を下方向に延伸された内部に空間をもつ柱状部材である排気管17が接続されている。なお、担体C上部平面近傍に形成された排気口171が、排気管17の他方端部となっている。さらに、板状部材10cは、検体または試薬を分注する分注位置Pに、分注プローブが挿入可能な円筒状の分注孔を有する。   Here, a modification according to the second embodiment of the present invention will be described with reference to FIGS. FIG. 11 is a perspective view showing a modification of the reaction vessel 11 according to the second embodiment of the present invention. Moreover, FIG. 12 is sectional drawing which shows the modification of the reaction container 11 concerning Embodiment 2 of this invention. In the modification shown in FIGS. 11 and 12, the sealing member 16 is attached to the upper plane of the plate-like member 10 c that is connected to the main body 10 and covers the opening of the reaction vessel 11. In addition, a discharge port 172 having a circular space is formed in the center of the plate-shaped member 10c, and a columnar member having a space inside that extends downward from the discharge port 172 on the axis of the reaction vessel 11. The exhaust pipe 17 is connected. An exhaust port 171 formed in the vicinity of the upper surface of the carrier C is the other end of the exhaust pipe 17. Furthermore, the plate-like member 10c has a cylindrical dispensing hole into which a dispensing probe can be inserted at a dispensing position P where a specimen or reagent is dispensed.

なお、分注を行なう場合は、封止部材16の分注孔領域を分注プローブによって穿孔して反応容器11内壁と排気管17外壁とが形成する空間内に検体と試薬とを分注する。分注が終了すると、封止部材16の、排出口172の領域を針またはプローブで穿孔し、遠心処理を行うことで排気管17を介してエアギャップ内の気体を外部に放出して、反応液を担体C中に送り込む。   When dispensing, the sample and reagent are dispensed into the space formed by the inner wall of the reaction vessel 11 and the outer wall of the exhaust pipe 17 by drilling the dispensing hole region of the sealing member 16 with a dispensing probe. . When dispensing is completed, the region of the discharge port 172 of the sealing member 16 is pierced with a needle or a probe, and the gas in the air gap is discharged to the outside via the exhaust pipe 17 by performing a centrifugal process. The liquid is fed into the carrier C.

上述した実施の形態2にかかる反応カードの反応容器は、排気管が反応容器内であって、反応容器の軸心と平行に配置されるため、エアギャップ内の気体の排気効率がよく、分析精度の安定性を向上させることができる。   The reaction container of the reaction card according to the second embodiment described above has an exhaust pipe in the reaction container and is arranged in parallel with the axis of the reaction container. Accuracy stability can be improved.

また、実施の形態2にかかる変形例では、反応容器開口部が板状部材10cによって開口領域が必要最小限の面積であるため、反応容器の密閉を容易で確実なものとすることができ、コンタミネーションを防止するとともに、精度の高い分析を行うことが可能となる。   Further, in the modification according to the second embodiment, since the reaction container opening is the minimum necessary area by the plate member 10c, the reaction container can be easily and surely sealed, Contamination can be prevented and highly accurate analysis can be performed.

なお、実施の形態1,2にかかる排気管は、内部に空間をもつ形状であれば、径方向の断面は円でもよく、楕円でもよく、角形でもよい。   The exhaust pipes according to the first and second embodiments may have a circular cross section, an ellipse, or a square as long as the exhaust pipe has a space inside.

(実施の形態3)
つぎに、実施の形態3について説明する。図13は、本発明の実施の形態2にかかる反応カードの反応容器を模式的に示す斜視図である。また、図14は、図13に示す反応容器11の断面を模式的に示す断面図である。図13,14に示す反応容器11は、反応容器11と同軸であって、反応容器11と比して若干小さい径の排気管18を有し、底部には排気口181が設けられている。また、排気管18の上部は、凸部10aの上部平面と同一平面であって、凸部10aと排気管18が形成する環状空間には、排出口182が形成される。排気管18は、支持部材18aによって支持されている。検体および試薬は、一例として示す分注位置Pにおける封止部材16を穿孔して分注され、排気管18の内部空間に保持される。検体および試薬と担体Cとの間に位置するエアギャップ内の気体は、遠心処理による反応液の押圧によって排気口181に取り込まれ、反応容器11と排気管18とが形成する環状空間を介して排出口182から外部に排出される。なお、遠心処理前に分注プローブ等によって、封止部材16の排出口182にかかる領域を穿孔して、排出口182を開放する。封止部材16の穿孔は、複数箇所であることが好ましく、排出口182の形状に対応した穿孔部材を用いて開放してもよく、封止部材16を剥して開放してもよい。
(Embodiment 3)
Next, a third embodiment will be described. FIG. 13 is a perspective view schematically showing a reaction container of the reaction card according to the second embodiment of the present invention. FIG. 14 is a cross-sectional view schematically showing a cross section of the reaction vessel 11 shown in FIG. A reaction vessel 11 shown in FIGS. 13 and 14 is coaxial with the reaction vessel 11, has an exhaust pipe 18 having a slightly smaller diameter than the reaction vessel 11, and has an exhaust port 181 at the bottom. The upper part of the exhaust pipe 18 is flush with the upper plane of the convex part 10a, and a discharge port 182 is formed in an annular space formed by the convex part 10a and the exhaust pipe 18. The exhaust pipe 18 is supported by a support member 18a. The specimen and the reagent are dispensed by punching the sealing member 16 at the dispensing position P shown as an example, and held in the internal space of the exhaust pipe 18. The gas in the air gap located between the specimen and the reagent and the carrier C is taken into the exhaust port 181 by the pressure of the reaction liquid by centrifugal processing, and passes through the annular space formed by the reaction vessel 11 and the exhaust pipe 18. It is discharged from the discharge port 182 to the outside. In addition, the area | region concerning the discharge port 182 of the sealing member 16 is punctured with a dispensing probe etc. before centrifugation process, and the discharge port 182 is open | released. The perforation of the sealing member 16 is preferably performed at a plurality of locations, and may be opened using a perforation member corresponding to the shape of the discharge port 182, or the sealing member 16 may be peeled off and opened.

上述した構成を用いることによって、排気を行なう体積が大きくなり、一層効率よくエアギャップ内の気体の排気を行なうことが可能となる。また、検体と試薬との反応液が、エアギャップ内の気体を外径方向へ押し出すため外径側に排気口を設けることによって確実に排気を行なうことができる。   By using the above-described configuration, the volume of exhaust is increased, and the gas in the air gap can be exhausted more efficiently. Further, since the reaction liquid of the specimen and the reagent pushes the gas in the air gap in the outer diameter direction, the exhaust can be surely performed by providing an exhaust port on the outer diameter side.

ここで、本発明の実施の形態3にかかる変形例を、図15,16を参照して説明する。図15は、本発明の実施の形態3にかかる反応容器11の変形例を示す斜視図である。また、図16は、本発明の実施の形態3にかかる反応容器11の変形例を示す断面図である。図15,16に示す変形例では、支持部材19aによって支持された排気管19が、下部に排気口191と、上部に排出口192とを有し、排気口191は、反応容器11の径に対して傾斜を設け、排気を行う場合に異なる高さによってエアギャップ内の気体の排気を行なう。また、図13,14に示す反応容器と同様に封止部材16を穿孔または剥すことによって排出口192を開放して、排気を行う。   Here, a modification according to the third embodiment of the present invention will be described with reference to FIGS. FIG. 15 is a perspective view showing a modification of the reaction vessel 11 according to the third embodiment of the present invention. Moreover, FIG. 16 is sectional drawing which shows the modification of the reaction container 11 concerning Embodiment 3 of this invention. In the modification shown in FIGS. 15 and 16, the exhaust pipe 19 supported by the support member 19 a has an exhaust port 191 at the lower portion and an exhaust port 192 at the upper portion, and the exhaust port 191 has the diameter of the reaction vessel 11. In contrast, an inclination is provided, and the gas in the air gap is exhausted at different heights when exhausting. Further, similarly to the reaction container shown in FIGS. 13 and 14, the sealing member 16 is pierced or peeled to open the discharge port 192 and exhaust.

上述した実施の形態3にかかる反応カードの反応容器は、反応容器側面と排気管外周とで形成される空間を介してエアギャップ内の気体を排気するため、排気能力が高く、一層効率よく排気を行なうことを可能とする。   Since the reaction container of the reaction card according to the third embodiment described above exhausts the gas in the air gap through the space formed by the reaction container side surface and the outer periphery of the exhaust pipe, the exhaust capacity is high and the exhaust gas is more efficiently exhausted. It is possible to perform.

なお、上述した実施の形態1〜3において、反応カードは、分注処理、遠心処理および測光処理を自動で行う自動分析装置にも適用できる。すなわち、本発明は、ここでは記載していないさまざまな実施の形態等を含みうるものであり、特許請求の範囲により特定される技術的思想を逸脱しない範囲内において種々の設計変更等を施すことが可能である。   In Embodiments 1 to 3 described above, the reaction card can also be applied to an automatic analyzer that automatically performs a dispensing process, a centrifugal process, and a photometric process. That is, the present invention can include various embodiments and the like not described herein, and various design changes and the like can be made without departing from the technical idea specified by the claims. Is possible.

本発明の実施の形態1にかかる反応カードを模式的に示す斜視図である。It is a perspective view which shows typically the reaction card concerning Embodiment 1 of this invention. 図1に示す反応カードの反応容器の断面を模式的に示す断面図である。It is sectional drawing which shows typically the cross section of the reaction container of the reaction card | curd shown in FIG. 本発明の実施の形態1にかかる反応容器の脱気機構を示す模式図である。It is a schematic diagram which shows the deaeration mechanism of the reaction container concerning Embodiment 1 of this invention. 図2に示す反応容器の変形例1を示す断面図である。It is sectional drawing which shows the modification 1 of the reaction container shown in FIG. 図2に示す反応容器の変形例2を示す断面図である。It is sectional drawing which shows the modification 2 of the reaction container shown in FIG. 図2に示す反応容器の変形例3を示す断面図である。It is sectional drawing which shows the modification 3 of the reaction container shown in FIG. 図2に示す反応容器の変形例4を示す断面図である。It is sectional drawing which shows the modification 4 of the reaction container shown in FIG. 図2に示す反応容器の変形例5を示す断面図である。It is sectional drawing which shows the modification 5 of the reaction container shown in FIG. 本発明の実施の形態2にかかる反応カードの反応容器を模式的に示す斜視図である。It is a perspective view which shows typically the reaction container of the reaction card concerning Embodiment 2 of this invention. 図9に示す反応容器の断面を模式的に示す断面図である。It is sectional drawing which shows typically the cross section of the reaction container shown in FIG. 本発明の実施の形態2にかかる反応容器の変形例を示す斜視図である。It is a perspective view which shows the modification of the reaction container concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる反応容器の変形例を示す断面図である。It is sectional drawing which shows the modification of the reaction container concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかる反応カードの反応容器を模式的に示す斜視図である。It is a perspective view which shows typically the reaction container of the reaction card concerning Embodiment 3 of this invention. 図13に示す反応容器の断面を模式的に示す断面図である。It is sectional drawing which shows typically the cross section of the reaction container shown in FIG. 本発明の実施の形態3にかかる反応容器の変形例を示す斜視図である。It is a perspective view which shows the modification of the reaction container concerning Embodiment 3 of this invention. 本発明の実施の形態3にかかる反応容器の変形例を示す断面図である。It is sectional drawing which shows the modification of the reaction container concerning Embodiment 3 of this invention.

1 反応カード
10 本体部
10a,10b 凸部
10c 板状部材
11 反応容器
12 反応部
13 分析部
14,17,18,19 排気管
141,171,181,191 排気口
142,172,182,192 排出口
15 シール
16 封止部材
17a,18a,19a 支持部材
20 防液透湿材
A エアギャップ
C 担体
M 反応液
P 分注位置
DESCRIPTION OF SYMBOLS 1 Reaction card 10 Main-body part 10a, 10b Convex part 10c Plate-shaped member 11 Reaction container 12 Reaction part 13 Analysis part 14, 17, 18, 19 Exhaust pipe 141,171,181,191 Exhaust port 142,172,182,192 Exhaust Outlet 15 Seal 16 Sealing member 17a, 18a, 19a Support member 20 Liquid permeable and moisture permeable material A Air gap C Carrier M Reaction liquid P Dispensing position

Claims (8)

1つ以上の反応容器を有し、各反応容器に、該反応容器内の脱気を行なう排気口を形成したことを特徴とする反応カード。   A reaction card comprising one or more reaction vessels, wherein each reaction vessel is provided with an exhaust port for degassing the reaction vessel. 前記反応容器は、
検体と試薬とを収容し、該検体と該試薬との凝集反応を行なわせる反応部と、
前記反応部下部に配置され、前記凝集反応による凝集塊の大きさによって移動度を変化させて該凝集塊を保持する担体を収容し、検体の分析を行う分析部と、
を備え、
前記排気口は、前記分析部の上端部と前記担体との間に形成された空間領域に設けられることを特徴とする請求項1に記載の反応カード。
The reaction vessel is
A reaction part that contains a sample and a reagent, and causes the agglutination reaction between the sample and the reagent;
An analysis unit that is disposed in the lower part of the reaction unit, houses a carrier that holds the aggregate by changing mobility according to the size of the aggregate due to the aggregation reaction, and performs analysis of the specimen;
With
The reaction card according to claim 1, wherein the exhaust port is provided in a space region formed between an upper end portion of the analysis unit and the carrier.
前記排気口に連結され、前記反応部の上部平面まで延伸された排気管を設けたことを特徴とする請求項1または2に記載の反応カード。   The reaction card according to claim 1, wherein an exhaust pipe connected to the exhaust port and extending to an upper plane of the reaction unit is provided. 前記排気口は、前記分析部側面に少なくとも1つ以上形成されることを特徴とする請求項1〜3のいずれか一つに記載の反応カード。   The reaction card according to claim 1, wherein at least one exhaust port is formed on a side surface of the analysis unit. 前記担体側の排気口端部を通る前記反応容器の内径は、前記反応部側の排気口端部を通る前記反応容器の内径と比して大きくなっていることを特徴とする請求項1〜4のいずれか一つに記載の反応カード。   The inner diameter of the reaction vessel passing through the exhaust port end on the carrier side is larger than the inner diameter of the reaction vessel passing through the exhaust port end on the reaction side. 5. The reaction card according to any one of 4. 前記反応容器上端部から前記担体の上端近傍まで挿入される内部管を設け、
前記排気管は、前記反応容器内壁面と前記内部管外壁面との間に形成された環状空間であり、該環状空間の担体側の端部を排気口とすることを特徴とする請求項1または2に記載の反応カード。
An internal tube inserted from the upper end of the reaction vessel to the vicinity of the upper end of the carrier is provided,
2. The exhaust pipe is an annular space formed between an inner wall surface of the reaction vessel and an outer wall surface of the inner tube, and a carrier-side end portion of the annular space serves as an exhaust port. Or the reaction card of 2.
前記内部管の前記担体側の端部は、前記分析部の径方向に対して傾斜して形成されることを特徴とする請求項6に記載の反応カード。   The reaction card according to claim 6, wherein an end portion of the inner tube on the carrier side is formed to be inclined with respect to a radial direction of the analysis unit. 前記反応部の上部開口部と前記排気管の他方端部とは、封止部材によって封止されていることを特徴とする請求項1〜7のいずれか一つに記載の反応カード。   The reaction card according to claim 1, wherein the upper opening of the reaction part and the other end of the exhaust pipe are sealed by a sealing member.
JP2009028841A 2009-02-10 2009-02-10 Reaction card Withdrawn JP2010185718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009028841A JP2010185718A (en) 2009-02-10 2009-02-10 Reaction card

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009028841A JP2010185718A (en) 2009-02-10 2009-02-10 Reaction card

Publications (1)

Publication Number Publication Date
JP2010185718A true JP2010185718A (en) 2010-08-26

Family

ID=42766468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009028841A Withdrawn JP2010185718A (en) 2009-02-10 2009-02-10 Reaction card

Country Status (1)

Country Link
JP (1) JP2010185718A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108738338A (en) * 2016-01-28 2018-11-02 西门子医疗保健诊断公司 Method and apparatus for detecting the chaff interferent in sample

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108738338A (en) * 2016-01-28 2018-11-02 西门子医疗保健诊断公司 Method and apparatus for detecting the chaff interferent in sample
CN108738338B (en) * 2016-01-28 2022-01-14 西门子医疗保健诊断公司 Method and apparatus for detecting interferents in a sample

Similar Documents

Publication Publication Date Title
EP3380837B1 (en) Assay device
AU2013262815B2 (en) Clinical diagnostic system including instrument and cartridge
JP4889743B2 (en) Apparatus for detecting an analyte in a fluid sample
FI87279C (en) Means for testing the presence of an analyte in a liquid
AU2021200665B2 (en) Device and method for collecting and detecting samples
WO2011001646A1 (en) Magnetic particle transfer device and magnetic particle transfer method
US5024238A (en) Blood withdrawing apparatus and antigen testing method
JP4586054B2 (en) Automatic analyzer
US10527638B2 (en) Automated analyzer and nozzle-cleaning method
JP5430766B2 (en) Chip card plate for biochemical analysis and method of use thereof
CN106660040A (en) Rotatable cartridge for processing and analyzing a biological sample
JP2009139369A (en) Microchip
JP2009175145A (en) Diluent well produced in card format for immunodiagnostic testing
JP2010054232A (en) Reaction card and automatic analyzing apparatus
WO2017086199A1 (en) Inspection kit, liquid-feeding method using inspection kit, and inspection device
JP2007315832A (en) Biochemical analyzer and examination cartridge used therefor
JP2010185718A (en) Reaction card
JP5125680B2 (en) Separation chip and separation method
JP5347114B2 (en) Immunological examination tool
JPH0961312A (en) Simplified measuring device
US20220250053A1 (en) Apparatus and method for collecting and testing sample
JP7336101B2 (en) mixing container
JP2009014450A (en) Micro-fluid chip
WO2005116612A1 (en) Container
WO2021242768A1 (en) Extraction container

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120501