JP2009014450A - Micro-fluid chip - Google Patents

Micro-fluid chip Download PDF

Info

Publication number
JP2009014450A
JP2009014450A JP2007175328A JP2007175328A JP2009014450A JP 2009014450 A JP2009014450 A JP 2009014450A JP 2007175328 A JP2007175328 A JP 2007175328A JP 2007175328 A JP2007175328 A JP 2007175328A JP 2009014450 A JP2009014450 A JP 2009014450A
Authority
JP
Japan
Prior art keywords
liquid sample
length
opening
longitudinal direction
microfluidic chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007175328A
Other languages
Japanese (ja)
Other versions
JP4987592B2 (en
Inventor
Yoko Hayashi
陽子 林
Hiroki Takeuchi
弘樹 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2007175328A priority Critical patent/JP4987592B2/en
Publication of JP2009014450A publication Critical patent/JP2009014450A/en
Application granted granted Critical
Publication of JP4987592B2 publication Critical patent/JP4987592B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a micro-fluid chip capable of coping with not only two-center centrifugal operation but also a centrifugal force using the third, fourth or higher center on the same plane as the two centers as a rotation center. <P>SOLUTION: In this micro-fluid chip having an introduction means storage part for storing a liquid sample introduction means, the introduction means storage part is equipped with an opening part for inserting the liquid sample introduction means, and the opening part is provided on the upper surface or on the lower surface of the micro-fluid chip. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、DNA、タンパク質、細胞または血液等の生化学検査に使用するバイオチップや化学合成または環境分析などに使用するμ−TAS(Micro Total Analysis System)等に適用されるチップなどのマイクロ流体チップに関し、より詳しくは、液体試料導入手段を埋め込むための部位を有するマイクロ流体回路に関する。   The present invention relates to microfluids such as biochips used for biochemical tests of DNA, proteins, cells, blood, etc., and chips applied to μ-TAS (Micro Total Analysis System) used for chemical synthesis or environmental analysis. More particularly, the present invention relates to a microfluidic circuit having a portion for embedding a liquid sample introduction means.

近年、医療や健康、食品、創薬などの分野で、DNA(Deoxyribo Nucleic Acid)や酵素、抗原、抗体、タンパク質、ウィルスおよび細胞などの生体物質、ならびに化学物質を検知、検出あるいは定量する重要性が増してきており、それらを簡便に測定できる様々なバイオチップおよびマイクロ化学チップなどのマイクロ流体チップが提案されている。   In recent years, the importance of detecting, detecting or quantifying biological substances such as DNA (Deoxyribo Nucleic Acid), enzymes, antigens, antibodies, proteins, viruses and cells, and chemical substances in fields such as medicine, health, food, and drug discovery Microfluidic chips such as various biochips and microchemical chips that can easily measure them have been proposed.

マイクロ流体チップは、その内部に流体回路を有しており、該流体回路は、たとえば検査・分析の対象となる液体試料(たとえば、血液等)を処理する、あるいは該液体試料と反応させるための液体試薬を保持する液体試薬保持室、該液体試料と液体試薬とを混合する混合室、混合液について分析および/または検査するための検出部などの各部と、これら各部を適切に接続する微細な流路とから主に構成される。このような流体回路を有するマイクロ流体チップは、実験室で行なっている一連の実験・分析操作を、数cm角で厚さ数mm程度のチップ内で行なえることから、液体試料および試薬が微量で済み、コストが安く、反応速度が速く、ハイスループットな検査ができ、液体試料を採取した現場で直ちに検査結果を得ることができるなど多くの利点を有し、たとえば血液検査等の生化学検査用として好適に用いられている。   The microfluidic chip has a fluid circuit therein, and the fluid circuit is for processing a liquid sample (for example, blood, etc.) to be tested or analyzed, or for reacting with the liquid sample. Each part such as a liquid reagent holding chamber for holding a liquid reagent, a mixing chamber for mixing the liquid sample and the liquid reagent, a detection unit for analyzing and / or inspecting the mixed liquid, and a fine connection for appropriately connecting these parts It is mainly composed of a flow path. A microfluidic chip having such a fluid circuit can perform a series of experiments and analysis operations performed in a laboratory in a chip having a thickness of several centimeters and a thickness of several millimeters. It has many advantages such as low cost, high reaction rate, high-throughput testing, and the ability to obtain test results immediately at the site where a liquid sample is collected. For example, biochemical tests such as blood tests It is suitably used as an application.

ここで、従来のマイクロ流体チップの一例を示す。図6は、特許文献1に開示されている試料プロセッサ・カードの上面図である。図6において、血液試料を含むキャピラリーが挿入口53から挿入され、点Aを回転中心とする遠心力を印加することにより、キャピラリーから排出された血液試料は、試料保持室36に保持された後、試料分離室50に運ばれる。次に、固体粒状物質が分離された血液試料は、点Bを回転中心とする遠心力を印加することにより、試料保持室61に保持された後、試料計量室63にて計量される。ついで、計量された血液試料は、反応試剤計量室54で計量された反応試剤と混合室60にて混合され、該反応液はキュベット室62に移送されて光源および検出器を用いて分析、検査される。このように、適切な方向の遠心力を印加することにより、液体試料の導入、計量、混合等が流体回路内で行なわれる。   Here, an example of a conventional microfluidic chip is shown. FIG. 6 is a top view of the sample processor card disclosed in Patent Document 1. As shown in FIG. In FIG. 6, after a capillary containing a blood sample is inserted from the insertion port 53 and a centrifugal force with the point A as the center of rotation is applied, the blood sample discharged from the capillary is held in the sample holding chamber 36. The sample is separated into the sample separation chamber 50. Next, the blood sample from which the solid particulate matter has been separated is held in the sample holding chamber 61 by applying a centrifugal force with the point B as the center of rotation, and then measured in the sample measuring chamber 63. Next, the weighed blood sample is mixed with the reaction reagent weighed in the reaction reagent metering chamber 54 in the mixing chamber 60, and the reaction solution is transferred to the cuvette chamber 62 for analysis and inspection using a light source and a detector. Is done. Thus, by applying a centrifugal force in an appropriate direction, introduction, measurement, mixing, and the like of the liquid sample are performed in the fluid circuit.

しかしながら、上記特許文献1に開示されるチップは、2中心遠心操作、すなわち、上記点Aおよび点Bのみを回転中心とする操作を前提とするものであり、たとえば図6中の点Cを回転中心とする遠心力をチップに印加することはできない。かかる方向の遠心力を印加すると、挿入したキャピラリーが飛び出したり、あるいは導入した液体試料が挿入口から漏出する不具合が生じるからである。一方、マイクロ流体チップには、その内部においてより複雑な工程を行なえることが求められており、そのためには様々な方向の遠心力(たとえば、図6に示されるような点A〜Dを回転中心とする遠心力)にも適用可能な構造を有している必要がある。
米国特許第4,883,763号明細書
However, the chip disclosed in Patent Document 1 is premised on a two-center centrifugal operation, that is, an operation with only the point A and the point B as a rotation center. For example, the point C in FIG. Central centrifugal force cannot be applied to the chip. This is because when the centrifugal force in such a direction is applied, the inserted capillary is ejected or the introduced liquid sample leaks from the insertion port. On the other hand, the microfluidic chip is required to perform a more complicated process in the inside thereof. For that purpose, centrifugal force in various directions (for example, rotating points A to D as shown in FIG. 6). It is necessary to have a structure applicable to the central centrifugal force).
U.S. Pat. No. 4,883,763

本発明は、上記課題を解決するためになされたものであって、その目的は、2中心遠心操作だけでなく、当該2中心と同一平面上の第3、第4またはそれ以上を回転中心とする遠心力にも対応可能なマイクロ流体チップを提供することである。   The present invention has been made to solve the above-mentioned problems, and its purpose is not limited to the two-center centrifugal operation, but the third, fourth, or more on the same plane as the two centers. The present invention is to provide a microfluidic chip that can cope with centrifugal force.

本発明は、液体試料導入手段を収容するための導入手段収容部を有するマイクロ流体チップであって、該導入手段収容部は、該液体試料導入手段を挿入するための開口部を備えており、該開口部は、マイクロ流体チップの上面または下面に設けられているマイクロ流体チップを提供する。ここで、該開口部は、略長方形の形状を有していることが好ましい。   The present invention is a microfluidic chip having an introducing means accommodating portion for accommodating a liquid sample introducing means, the introducing means accommodating portion comprising an opening for inserting the liquid sample introducing means, The opening provides a microfluidic chip provided on the upper surface or the lower surface of the microfluidic chip. Here, it is preferable that the opening has a substantially rectangular shape.

また、上記開口部の長手方向の長さは、上記液体試料導入手段の長手方向の長さより短いことが好ましい。さらに、上記開口部の長手方向の長さは、液体試料導入手段に対して、下記式(1)を満たすことが好ましい。   The length of the opening in the longitudinal direction is preferably shorter than the length of the liquid sample introducing means in the longitudinal direction. Furthermore, it is preferable that the length of the opening in the longitudinal direction satisfies the following formula (1) with respect to the liquid sample introduction unit.

開口部の長手方向の長さ>Lmin (1)
ここで、Lmin={(d/cosθ)+t}×(1/tanθ)であり、θは、導入手段収容部下面と液体試料導入手段とがなす角度であって、sinθ=(t+D)/lを満たす。Dは導入手段収容部の深さ、tは導入手段収容部の天井面の厚さ、lは液体試料導入手段の長手方向の長さ、dは液体試料導入手段の短手方向の長さである。
Length in the longitudinal direction of the opening> L min (1)
Here, L min = {(d / cos θ) + t} × (1 / tan θ), where θ is an angle formed by the lower surface of the introduction unit accommodating portion and the liquid sample introduction unit, and sin θ = (t + D) / 1 is satisfied. D is the depth of the introducing means accommodating portion, t is the thickness of the ceiling surface of the introducing means accommodating portion, l is the length in the longitudinal direction of the liquid sample introducing means, and d is the length in the short direction of the liquid sample introducing means. is there.

上記開口部の短手方向の長さは、長手方向の全領域にわたって、または長手方向の一部の領域において、上記液体試料導入手段の短手方向の長さ以下であることが好ましい。   The length in the short direction of the opening is preferably equal to or less than the length in the short direction of the liquid sample introduction means over the entire region in the longitudinal direction or in a partial region in the longitudinal direction.

本発明によれば、キャピラリー等の液体試料導入手段の挿入口を、遠心力がかからないチップの上面または下面に設けているため、マイクロ流体チップが載置される面上のいずれの場所にも遠心中心を設定できる。これにより、マイクロ流体チップ内で液体試料等をより複雑に操作することができる。   According to the present invention, since the insertion port of the liquid sample introducing means such as the capillary is provided on the upper surface or the lower surface of the chip where no centrifugal force is applied, the liquid sample introduction means is centrifuged at any location on the surface on which the microfluidic chip is placed. You can set the center. Thereby, a liquid sample etc. can be manipulated more complicatedly in the microfluidic chip.

図1は、本発明のマイクロ流体チップの好ましい一例を示す概略図であり、図1(a)は、その上面図、図1(b)は、図1(a)のI−Iにおける断面図である。図1に示されるマイクロ流体チップ100は、特に限定されるものではないが、たとえば数cm角、厚さ数mm程度の板状である。マイクロ流体チップ100は、通常、第1の基板101と、第2の基板102とを貼り合わせてなり、その内部に流体回路を有している(図1において図示せず)。第1の基板101および第2の基板102はそれぞれ、たとえばポリエチレンテレフタレート等のプラスチック基板とすることができる。   FIG. 1 is a schematic view showing a preferred example of the microfluidic chip of the present invention, FIG. 1 (a) is a top view thereof, and FIG. 1 (b) is a cross-sectional view taken along II in FIG. 1 (a). It is. The microfluidic chip 100 shown in FIG. 1 is not particularly limited, but has a plate shape of, for example, a few cm square and a thickness of several mm. The microfluidic chip 100 is usually formed by bonding a first substrate 101 and a second substrate 102 and has a fluid circuit therein (not shown in FIG. 1). Each of the first substrate 101 and the second substrate 102 may be a plastic substrate such as polyethylene terephthalate.

流体回路は、特に限定されないが、たとえば、液体試料(検体)との反応等に供される液体試薬を貯留する液体試薬保持部、液体試料や液体試薬を計量するための計量部、液体試料と液体試薬との混合および/または反応を行なう混合部、混合液中の対象成分の検出等が行なわれる検出部などの、適切な位置に配置された各部と、これらを連結する流路とから主に構成される。これら各部の位置や数および各部位の必要性は、チップ内で行なわれる所望される操作に応じて決められる。   Although the fluid circuit is not particularly limited, for example, a liquid reagent holding unit that stores a liquid reagent to be used for reaction with a liquid sample (analyte), a measuring unit for measuring a liquid sample or a liquid reagent, a liquid sample, and the like Mainly from each part arranged at an appropriate position, such as a mixing part for mixing and / or reacting with a liquid reagent, a detection part for detecting a target component in the mixed liquid, and a flow path connecting them. Configured. The position and number of each part and the necessity of each part are determined according to a desired operation performed in the chip.

本発明のマイクロ流体チップにおいては、チップ内処理に供される液体試料(たとえば、血液)の流体回路への導入は、該液体試料を含む液体試料導入手段を、チップ内部にある導入手段収容部103内に設置することにより行なわれる。図示されていないが、導入手段収容部103は、流体回路と接続されており、適切な方向の遠心力により、液体試料導入手段内の液体試料は、流体回路内へと導入される。液体試料導入手段は、導入手段収容部103に設けられた開口部104から挿入されて、導入手段収容部103内に収容される。導入手段収容部103は、第1の基板101の貼り合わせ面に設けられた凹部と第2の基板102の貼り合わせ面とから形成されている。該凹部は、第2の基板102の貼り合わせ面に形成するようにしてもよい。導入手段収容部103に設けられた開口部104は、導入手段収容部103の天井面を構成する第1の基板101の一部を除去して形成され、これにより、導入手段収容部103は、開口部104を介してチップ外部と接続されている。   In the microfluidic chip of the present invention, a liquid sample (for example, blood) to be subjected to in-chip processing is introduced into a fluid circuit by introducing a liquid sample introducing means including the liquid sample into an introducing means accommodating portion inside the chip. It is performed by installing in 103. Although not shown, the introduction means accommodating portion 103 is connected to the fluid circuit, and the liquid sample in the liquid sample introduction means is introduced into the fluid circuit by centrifugal force in an appropriate direction. The liquid sample introducing means is inserted from the opening 104 provided in the introducing means accommodating portion 103 and accommodated in the introducing means accommodating portion 103. The introducing means accommodating portion 103 is formed of a recess provided on the bonding surface of the first substrate 101 and a bonding surface of the second substrate 102. The recess may be formed on the bonding surface of the second substrate 102. The opening 104 provided in the introducing means accommodating portion 103 is formed by removing a part of the first substrate 101 that constitutes the ceiling surface of the introducing means accommodating portion 103, whereby the introducing means accommodating portion 103 is It is connected to the outside of the chip through the opening 104.

ここで、開口部104は、マイクロ流体チップ100の上面に設けられている。これにより、マイクロ流体チップ100が載置される面上である限り、いずれの場所に遠心中心を設定しても、導入手段収容部103に置かれた液体試料導入手段が飛び出したり、液体試料が漏れるという問題は生じない。したがって、より複雑な操作をマイクロ流体チップに行なわせることができる。勿論、開口部104の位置は、マイクロ流体チップ100の下面であってもよい。   Here, the opening 104 is provided on the upper surface of the microfluidic chip 100. As a result, as long as the microfluidic chip 100 is on the surface on which the microfluidic chip 100 is placed, the liquid sample introduction means placed in the introduction means accommodating portion 103 jumps out or the liquid sample is placed regardless of where the centrifugal center is set The problem of leakage does not occur. Therefore, a more complicated operation can be performed on the microfluidic chip. Of course, the position of the opening 104 may be the lower surface of the microfluidic chip 100.

液体試料導入手段としては、内部に液体試料を取り込むことができ、遠心力の印加により、該液体試料を放出可能なものである限り、特に制限されないが、通常、キャピラリー等を採用することができる。キャピラリーとは、たとえばガラス製の中空管であって、通常、数mmから数cmの長さを有し、その外径は、数百μm〜数mm程度である。   The liquid sample introduction means is not particularly limited as long as the liquid sample can be taken into the liquid sample and can be discharged by application of centrifugal force. Usually, a capillary or the like can be employed. . A capillary is a hollow tube made of glass, for example, and usually has a length of several mm to several cm, and its outer diameter is about several hundreds μm to several mm.

導入手段収容部についてより詳細に説明する。導入手段収容部103の形状は、特に制限されるものではなく、液体試料導入手段を収容可能な形状および大きさに設定される。上記のように、液体試料導入手段は、典型的には数mmから数cm程度の長さを有し、外径数百μm〜数mm程度の円柱状のキャピラリーであるから、導入手段収容部103の形状および大きさは、該キャピラリーが収容可能に設定される。具体的には、導入手段収容部103の長手方向の長さ、短手方向の長さおよび導入手段収容部103の深さ(高さ)は、それぞれ、該キャピラリーの長手方向の長さ、キャピラリーの外径、およびキャピラリーの外径と同じか、またはそれ以上とすることができる。   The introduction means accommodating portion will be described in more detail. The shape of the introduction means accommodating portion 103 is not particularly limited, and is set to a shape and size that can accommodate the liquid sample introduction means. As described above, the liquid sample introducing means is typically a cylindrical capillary having a length of several millimeters to several centimeters and an outer diameter of several hundreds μm to several millimeters. The shape and size of 103 are set so that the capillary can be accommodated. Specifically, the length in the longitudinal direction of the introducing means accommodating portion 103, the length in the short direction, and the depth (height) of the introducing means accommodating portion 103 are respectively the length in the longitudinal direction of the capillary and the capillary. The outer diameter of the capillary and the outer diameter of the capillary may be equal to or greater than that.

導入手段収容部103に設けられた開口部104の形状および大きさは、液体試料導入手段(典型的にはキャピラリー)を、該開口部から挿入して、導入手段収容部103内に収容可能である限り特に限定されないが、その形状は、たとえば、上記キャピラリーの縦断面形状と同様の形状である、略長方形状とすることができる。また、開口部104の長手方向の長さLは、液体試料導入手段の長手方向の長さlより短くすることが好ましい。これにより、たとえばチップを落下したとき等の衝撃で、導入手段収容部103内の液体試料導入手段がチップから飛び出すことを防止することができる。   The shape and size of the opening 104 provided in the introducing means accommodating portion 103 is such that a liquid sample introducing means (typically a capillary) can be inserted into the introducing means accommodating portion 103 and inserted into the introducing means accommodating portion 103. Although there is no particular limitation as long as it is present, the shape can be, for example, a substantially rectangular shape that is the same shape as the longitudinal cross-sectional shape of the capillary. The length L in the longitudinal direction of the opening 104 is preferably shorter than the length l in the longitudinal direction of the liquid sample introduction means. Thereby, it is possible to prevent the liquid sample introduction means in the introduction means accommodating portion 103 from jumping out of the chip due to an impact such as when the chip is dropped.

開口部104の長手方向の長さを液体試料導入手段の長手方向の長さより短くする場合、液体試料導入手段を該開口部から挿入して、導入手段収容部103内に完全に収容できるようにするためには、開口部104の長手方向の長さは、該液体試料導入手段に対して、下記式(1)を満たすことが好ましい。   When the length in the longitudinal direction of the opening 104 is made shorter than the length in the longitudinal direction of the liquid sample introduction means, the liquid sample introduction means can be inserted from the opening so that it can be completely accommodated in the introduction means accommodating portion 103. In order to achieve this, the length of the opening 104 in the longitudinal direction preferably satisfies the following formula (1) with respect to the liquid sample introduction means.

開口部の長手方向の長さ>Lmin (1)
ここで、Lmin={(d/cosθ)+t}×(1/tanθ)である。
Length in the longitudinal direction of the opening> L min (1)
Here, L min = {(d / cos θ) + t} × (1 / tan θ).

図2は、開口部の長手方向の長さLの好ましい値を説明するための概略断面図である。図2に示されるように、マイクロ流体チップ200の導入手段収容部203内に、その開口部から液体試料導入手段205を、sinθ=(t+D)/lを満たす角度で挿入したとき、上記式(1)を満たすと、液体試料導入手段205全体が開口部を通り抜けることができる。θは、導入手段収容部203の下面と液体試料導入手段205とがなす角度である。Dは導入手段収容部203の深さ(高さ)、tは導入手段収容部203の天井面の厚さ、lは液体試料導入手段205の長手方向の長さ、dは液体試料導入手段205の短手方向の長さ(キャピラリーの外径)である。   FIG. 2 is a schematic cross-sectional view for explaining a preferable value of the length L in the longitudinal direction of the opening. As shown in FIG. 2, when the liquid sample introduction means 205 is inserted into the introduction means accommodating part 203 of the microfluidic chip 200 through the opening at an angle satisfying sin θ = (t + D) / l, the above formula ( When 1) is satisfied, the entire liquid sample introduction means 205 can pass through the opening. θ is an angle formed between the lower surface of the introducing means accommodating portion 203 and the liquid sample introducing means 205. D is the depth (height) of the introducing means accommodating portion 203, t is the thickness of the ceiling surface of the introducing means accommodating portion 203, l is the length in the longitudinal direction of the liquid sample introducing means 205, and d is the liquid sample introducing means 205. The length in the short direction (the outer diameter of the capillary).

たとえば、外径d1.5mm、長手方向の長さ35.0mmのキャピラリーを、深さDが2.0mmであり、天井面の厚さtが0.5mmの導入手段収容部に収容しようとする場合、開口部の長手方向の長さLは28.0mmより長くすることが好ましい。   For example, a capillary having an outer diameter of d1.5 mm and a length in the longitudinal direction of 35.0 mm is to be accommodated in an introduction means accommodating portion having a depth D of 2.0 mm and a ceiling surface thickness t of 0.5 mm. In this case, the length L in the longitudinal direction of the opening is preferably longer than 28.0 mm.

開口部104の短手方向の長さ(幅)Wは、特に制限されず、液体試料導入手段の幅(キャピラリーの外径)以上とすることができる。また、開口部104の短手方向の長さ(幅)Wの上限に特に限定はないが、液体試料導入手段の長手方向の長さl未満とすることが好ましく、下記式(2)を満たすことがより好ましい。   The length (width) W in the short direction of the opening 104 is not particularly limited and can be equal to or greater than the width of the liquid sample introduction means (the outer diameter of the capillary). Further, the upper limit of the length (width) W in the short direction of the opening 104 is not particularly limited, but is preferably less than the length l in the longitudinal direction of the liquid sample introduction unit, and satisfies the following formula (2). It is more preferable.

W<(l2−Lmin 21/2 (2)
より具体的には、長手方向の長さ35.0mmのキャピラリーを用い、開口部の長手方向の長さを28mm程度とした場合、開口部104の短手方向の長さ(幅)は、21mm未満とすることが好ましい。
W <(l 2 −L min 2 ) 1/2 (2)
More specifically, when a capillary with a length of 35.0 mm in the longitudinal direction is used and the length in the longitudinal direction of the opening is about 28 mm, the length (width) of the opening 104 in the short direction is 21 mm. It is preferable to make it less than.

また、開口部の短手方向の長さ(幅)は、図1(a)に示されるように、長手方向の全領域にわたって、同じであってもよいし、長手方向の全領域にわたって、あるいは長手方向の一部の領域において、液体試料導入手段の長手方向の長さlより短い幅狭部を有していてもよい。図3は、開口部に幅狭部301を有するマイクロ流体チップの一例を示す概略図である。このような幅狭部301は、ストッパーとしての役割を果たし、液体試料導入手段を導入手段収容部に収容した後にチップを落下した場合であっても、液体試料導入手段がチップから飛び出すことを防止することができる。   Further, the length (width) in the short direction of the opening may be the same over the entire region in the longitudinal direction, as shown in FIG. 1A, or over the entire region in the longitudinal direction, or A partial region in the longitudinal direction may have a narrow portion shorter than the length 1 in the longitudinal direction of the liquid sample introduction means. FIG. 3 is a schematic diagram illustrating an example of a microfluidic chip having a narrow portion 301 in the opening. Such a narrow portion 301 serves as a stopper and prevents the liquid sample introducing means from jumping out of the chip even when the chip is dropped after the liquid sample introducing means is accommodated in the introducing means accommodating portion. can do.

また本発明のマイクロ流体チップは、液体試料導入手段を導入手段収容部に収容する際に、該液体試料導入手段の先端がチップ表面に接触しにくいように、好ましくは開口部の端部に、幅広部を有していることが好ましい。液体試料導入手段の先端には、検体である液体試料が付着している場合が多いからである。幅広部401の形状は、特に制限されるものではなく、たとえば図4に示されるように、円形状(もしくは略円形状)、長方形状などとすることができる。   Further, the microfluidic chip of the present invention is preferably provided at the end of the opening so that the tip of the liquid sample introducing means is less likely to contact the chip surface when the liquid sample introducing means is accommodated in the introducing means accommodating portion. It is preferable to have a wide part. This is because a liquid sample as a specimen often adheres to the tip of the liquid sample introduction means. The shape of the wide portion 401 is not particularly limited, and for example, as shown in FIG. 4, it can be circular (or substantially circular), rectangular, or the like.

開口部の位置は、チップ表面上(上面または下面)のいずれの位置であってもよく、流体回路の構成等に応じて適宜選択される。図5(a)および(b)に示されるように、開口部の位置は、中央部付近とすることも可能である。また、開口部の向きもマイクロ流体チップの辺と平行である必要はなく、たとえば図5(c)のような向きとすることも可能である。   The position of the opening may be any position on the chip surface (upper surface or lower surface), and is appropriately selected according to the configuration of the fluid circuit. As shown in FIGS. 5A and 5B, the position of the opening may be near the center. Further, the direction of the opening does not have to be parallel to the side of the microfluidic chip, and for example, the direction as shown in FIG.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明のマイクロ流体チップの好ましい一例を示す概略図である。It is the schematic which shows a preferable example of the microfluidic chip | tip of this invention. 開口部の長手方向の長さLの好ましい値を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the preferable value of the length L of the longitudinal direction of an opening part. 本発明のマイクロ流体チップの好ましい一例を示す概略図である。It is the schematic which shows a preferable example of the microfluidic chip | tip of this invention. 本発明のマイクロ流体チップにおける開口部形状の別の例を示す概略図である。It is the schematic which shows another example of the opening part shape in the microfluidic chip | tip of this invention. 本発明のマイクロ流体チップの好ましい別の例を示す概略図である。It is the schematic which shows another preferable example of the microfluidic chip | tip of this invention. 従来のマイクロ流体チップの一例を示す上面図である。It is a top view which shows an example of the conventional microfluidic chip.

符号の説明Explanation of symbols

100,200 マイクロ流体チップ、101 第1の基板、102 第2の基板、103,203 導入手段収容部、104 開口部、205 液体試料導入手段。   100, 200 microfluidic chip, 101 first substrate, 102 second substrate, 103, 203 introduction means accommodating portion, 104 opening, 205 liquid sample introduction means.

Claims (5)

液体試料導入手段を収容するための導入手段収容部を有するマイクロ流体チップであって、
前記導入手段収容部は、前記液体試料導入手段を挿入するための開口部を備えており、
前記開口部は、マイクロ流体チップの上面または下面に設けられているマイクロ流体チップ。
A microfluidic chip having an introduction means accommodating portion for accommodating a liquid sample introduction means,
The introducing means accommodating portion includes an opening for inserting the liquid sample introducing means,
The opening is a microfluidic chip provided on an upper surface or a lower surface of the microfluidic chip.
前記開口部は、略長方形の形状を有する請求項1のマイクロ流体チップ。   The microfluidic chip according to claim 1, wherein the opening has a substantially rectangular shape. 前記開口部の長手方向の長さは、前記液体試料導入手段の長手方向の長さより短い請求項2に記載のマイクロ流体チップ。   3. The microfluidic chip according to claim 2, wherein the length of the opening in the longitudinal direction is shorter than the length of the liquid sample introduction unit in the longitudinal direction. 前記開口部の長手方向の長さは、液体試料導入手段に対して、下記式(1)を満たす請求項3に記載のマイクロ流体チップ。
開口部の長手方向の長さ>Lmin (1)
ここで、Lmin={(d/cosθ)+t}×(1/tanθ)であり、θは、導入手段収容部下面と液体試料導入手段とがなす角度であって、sinθ=(t+D)/lを満たす。Dは導入手段収容部の深さ、tは導入手段収容部の天井面の厚さ、lは液体試料導入手段の長手方向の長さ、dは液体試料導入手段の短手方向の長さである。
The microfluidic chip according to claim 3, wherein the length of the opening in the longitudinal direction satisfies the following formula (1) with respect to the liquid sample introduction unit.
Length in the longitudinal direction of the opening> L min (1)
Here, L min = {(d / cos θ) + t} × (1 / tan θ), where θ is an angle formed by the lower surface of the introduction unit accommodating portion and the liquid sample introduction unit, and sin θ = (t + D) / 1 is satisfied. D is the depth of the introducing means accommodating portion, t is the thickness of the ceiling surface of the introducing means accommodating portion, l is the length in the longitudinal direction of the liquid sample introducing means, and d is the length in the short direction of the liquid sample introducing means. is there.
前記開口部の短手方向の長さは、長手方向の全領域にわたって、または長手方向の一部の領域において、前記液体試料導入手段の短手方向の長さ未満である請求項2〜4のいずれかに記載のマイクロ流体チップ。   The length in the short direction of the opening is less than the length in the short direction of the liquid sample introduction means over the entire region in the longitudinal direction or in a partial region in the longitudinal direction. The microfluidic chip according to any one of the above.
JP2007175328A 2007-07-03 2007-07-03 Microfluidic chip Active JP4987592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007175328A JP4987592B2 (en) 2007-07-03 2007-07-03 Microfluidic chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007175328A JP4987592B2 (en) 2007-07-03 2007-07-03 Microfluidic chip

Publications (2)

Publication Number Publication Date
JP2009014450A true JP2009014450A (en) 2009-01-22
JP4987592B2 JP4987592B2 (en) 2012-07-25

Family

ID=40355545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007175328A Active JP4987592B2 (en) 2007-07-03 2007-07-03 Microfluidic chip

Country Status (1)

Country Link
JP (1) JP4987592B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133126A1 (en) * 2013-02-28 2014-09-04 ブラザー工業株式会社 Test chip
JP2017519223A (en) * 2014-05-08 2017-07-13 ラディセンス ダイアグノスティクス リミテッド Sample applicator for point-of-care devices
JP2019132749A (en) * 2018-02-01 2019-08-08 株式会社島津製作所 Pretreatment method of specimen held in microchannel, pretreatment device for executing pretreatment method, and analysis system equipped with pretreatment device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238760A (en) * 1984-05-03 1985-11-27 アボツト ラボラトリーズ Processor-card for centrifugal separator
JPS6319558A (en) * 1986-07-11 1988-01-27 Konica Corp Method and apparatus for inspecting blood
JPH0572210A (en) * 1991-02-05 1993-03-23 Hitachi Ltd Apparatus and method for automatic analysis
JP2007139480A (en) * 2005-11-16 2007-06-07 Hitachi High-Technologies Corp Biochemical analyzer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238760A (en) * 1984-05-03 1985-11-27 アボツト ラボラトリーズ Processor-card for centrifugal separator
JPS6319558A (en) * 1986-07-11 1988-01-27 Konica Corp Method and apparatus for inspecting blood
JPH0572210A (en) * 1991-02-05 1993-03-23 Hitachi Ltd Apparatus and method for automatic analysis
JP2007139480A (en) * 2005-11-16 2007-06-07 Hitachi High-Technologies Corp Biochemical analyzer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133126A1 (en) * 2013-02-28 2014-09-04 ブラザー工業株式会社 Test chip
JP2014167452A (en) * 2013-02-28 2014-09-11 Brother Ind Ltd Inspection chip
JP2017519223A (en) * 2014-05-08 2017-07-13 ラディセンス ダイアグノスティクス リミテッド Sample applicator for point-of-care devices
JP2020126062A (en) * 2014-05-08 2020-08-20 ラディセンス ダイアグノスティクス リミテッド Sample applicator for point-of-care device
JP2022044735A (en) * 2014-05-08 2022-03-17 ラディセンス ダイアグノスティクス リミテッド Sample applicator for point-of-care device
JP2019132749A (en) * 2018-02-01 2019-08-08 株式会社島津製作所 Pretreatment method of specimen held in microchannel, pretreatment device for executing pretreatment method, and analysis system equipped with pretreatment device
JP7024461B2 (en) 2018-02-01 2022-02-24 株式会社島津製作所 An analysis system equipped with a pretreatment method for a sample held in a microchannel, a pretreatment device for executing the pretreatment method, and a pretreatment device thereof.
US11385251B2 (en) 2018-02-01 2022-07-12 Shimadzu Corporation Pretreatment method for specimen held in microchannel, pretreatment apparatus for performing pretreat method, and analysis system provided with pretreatment apparatus

Also Published As

Publication number Publication date
JP4987592B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4665960B2 (en) Biological sample reaction chip, biological sample reaction device, and biological sample reaction method
JP5137012B2 (en) Microchip
CN103827324B (en) Device and method for detecting an analyte
KR101661098B1 (en) Multiwell cuvette with integrated reaction and detection means
JP2009535635A (en) Devices and methods for chemical, biochemical, biological and physical analysis, reactions, assays, etc.
JP5298718B2 (en) Centrifugal device for filling biological sample reaction chip with reaction solution
JP2009128229A (en) Microchip
JP2018522241A (en) Fluid system for performing the assay
JP2009139369A (en) Microchip
JP5425757B2 (en) Apparatus for processing liquid samples
JP5137007B2 (en) Microchip
JP4987592B2 (en) Microfluidic chip
JP4880419B2 (en) Chip having measuring unit and method for measuring liquid sample using the same
JP5172461B2 (en) Microchip
KR20150107231A (en) A microplate having well with membrane
JP2008101984A (en) Chip having measurement section and method of measuring liquid sample using the chip
JP5137014B2 (en) Microchip
JP5077945B2 (en) Microchip
JP5017723B2 (en) Microchip having optical measurement cuvette and method of using the same
JP5057227B2 (en) Microchip for blood test
JP5057226B2 (en) Microchip for blood test and method of using the same
JP6808940B2 (en) Array device, biomolecule analysis kit and solvent sealing method
BR112021000974A2 (en) multiplexed sample plate
JP2009085818A (en) Liquid reagent built-in type microchip
JP2009150754A (en) Chip, apparatus and method for biological sample reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120425

R150 Certificate of patent or registration of utility model

Ref document number: 4987592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250