JP2010184290A - Substrate alignment method, substrate alignment device, laser beam machining apparatus and solar panel manufacturing method - Google Patents

Substrate alignment method, substrate alignment device, laser beam machining apparatus and solar panel manufacturing method Download PDF

Info

Publication number
JP2010184290A
JP2010184290A JP2009031903A JP2009031903A JP2010184290A JP 2010184290 A JP2010184290 A JP 2010184290A JP 2009031903 A JP2009031903 A JP 2009031903A JP 2009031903 A JP2009031903 A JP 2009031903A JP 2010184290 A JP2010184290 A JP 2010184290A
Authority
JP
Japan
Prior art keywords
substrate
processing
alignment
image
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009031903A
Other languages
Japanese (ja)
Other versions
JP5253217B2 (en
Inventor
Masaki Araki
正樹 荒木
Kenji Katagiri
賢司 片桐
Makoto Izaki
良 井崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2009031903A priority Critical patent/JP5253217B2/en
Publication of JP2010184290A publication Critical patent/JP2010184290A/en
Application granted granted Critical
Publication of JP5253217B2 publication Critical patent/JP5253217B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Laser Beam Processing (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform alignment accurately without providing alignment marks on a substrate. <P>SOLUTION: At the point of time when the first machining process by a laser beam is finished, the image of places including both a shape changed portion formed by the machining process and the edge part of the substrate are obtained, and the image is utilized for the alignment process before the machining process in the next time or later. Because the image includes both images of the shape changed portion and the edge part of the substrate, picture recognizing process is facilitated. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、基板上の薄膜等をレーザ光を用いて加工する際に基板を所定位置にアイラメントする基板アライメント方法及び装置並びにソーラパネル製造方法に係り、特に基板上にアライメントマークを設けることなく正確にアライメント処理を行なうことのできる基板アライメント方法、基板アライメント装置、レーザ加工装置及びソーラパネル製造方法に関する。   The present invention relates to a substrate alignment method and apparatus for aligning a substrate at a predetermined position when processing a thin film or the like on the substrate using a laser beam, and a solar panel manufacturing method, and particularly without providing an alignment mark on the substrate. The present invention relates to a substrate alignment method, a substrate alignment apparatus, a laser processing apparatus, and a solar panel manufacturing method capable of accurately performing alignment processing.

従来、ソーラパネル製造工程では、透光性基板(ガラス基板)上に透明電極層、半導体層、金属層を順次形成し、形成後の各工程で各層をレーザ光を用いて短冊状に加工してソーラパネルモジュールを完成している。これらの各工程を行なう際に、ガラス基板をレーザ加工装置内に正確にアライメントしなければならない。ガラス基板をアライメントする方法については、特許文献1,2に記載のようなものが知られている。   Conventionally, in a solar panel manufacturing process, a transparent electrode layer, a semiconductor layer, and a metal layer are sequentially formed on a translucent substrate (glass substrate), and each layer is processed into a strip shape using laser light in each step after the formation. The solar panel module has been completed. In performing each of these steps, the glass substrate must be accurately aligned in the laser processing apparatus. As methods for aligning glass substrates, those described in Patent Documents 1 and 2 are known.

特開2000−353816号公報JP 2000-353816 A 特開2001−232486号公報JP 2001-232486 A

特許文献1に記載のものは、レーザ光でガラス基板の隅にアライメントマークを形成し、このアライメントマークを参照してアライメント処理を行なっている。特許文献2に記載のものは、ガラス基板を載置した状態で上下に移動する位置決めピンを用いて基板を突き当てて所定の位置に固定している。しかしながら、ソーラパネルを製造する場合、ガラス基板上の薄膜に例えば約10mmピッチでスクライブ線が形成され、このスクライブ線の線幅は約30μmで、線と線の間隔は約30μmとなるような3本の線で構成されている。従って、特許文献2のような突き当てによる位置決めでは、線と線が重なってしまい、所望のスクライブ線を形成することが困難である。また、特許文献1のようにガラス基板上にアライメントマークを形成した場合、その部分をソーラモジュールとして利用することができなくなるため、ソーラパネルの高効率化という観点から問題であった。   In the device described in Patent Document 1, an alignment mark is formed at a corner of a glass substrate with a laser beam, and alignment processing is performed with reference to the alignment mark. In the device described in Patent Document 2, the substrate is abutted and fixed at a predetermined position using a positioning pin that moves up and down with the glass substrate placed. However, when manufacturing a solar panel, scribe lines are formed on a thin film on a glass substrate at a pitch of, for example, about 10 mm, the line width of the scribe lines is about 30 μm, and the distance between the lines is about 30 μm. It consists of a line of books. Therefore, in the positioning by abutment as in Patent Document 2, the lines overlap each other, and it is difficult to form a desired scribe line. In addition, when an alignment mark is formed on a glass substrate as in Patent Document 1, the portion cannot be used as a solar module, which is a problem from the viewpoint of increasing the efficiency of a solar panel.

本発明は、上述の点に鑑みてなされたものであり、基板上にアライメントマークを設けることなく正確にアライメントを行なうことのできる基板アライメント方法、基板アライメント装置、レーザ加工装置及びソーラパネル製造方法を提供することである。   The present invention has been made in view of the above points, and provides a substrate alignment method, a substrate alignment apparatus, a laser processing apparatus, and a solar panel manufacturing method capable of performing accurate alignment without providing alignment marks on the substrate. Is to provide.

本発明に係る基板アライメント方法の特徴は、基板にレーザ光を照射する加工処理を施す際に、前記基板を前記加工位置にアライメント処理する基板アライメント方法において、前記レーザ光による最初の加工処理が終了した時点で、前記最初の加工処理によって形成された前記基板の形状変化部分と前記基板の縁部との両方を含む箇所の画像を取得し、前記画像を前記基板のIDデータとして記憶しておき、2回目以降の加工処理を施す際は前記IDデータに基づいて前記アライメント処理を行なうことにある。
基板にレーザ光を照射する加工処理としては、透光性基板(ガラス基板)上に金属層、半導体層、透明電極層を順次形成し、形成後の各工程で各層をレーザ光を用いて短冊状に加工してソーラパネルを作成するソーラパネル製造などが該当する。このようなレーザ加工においては、各工程でアライメント処理が行なわれる。この発明では、レーザ光による最初の加工処理が終了した時点で、その加工処理によって形成された形状変化部分と基板の縁部の両方を含む箇所の画像を取得し、その画像を次回以降の加工処理前のアライメント処理に利用するようにした。例えば、ソーラパネル製造の場合、レーザ加工によって形成されたスクライブ線と基板縁部との両方を含む箇所の画像を取得し、取得した画像に基づいてレーザ加工処理の前にアライメント処理を行なうようにした。画像の中に形状変化部分と基板縁部の両方の画像を含んでいるので、画像認識処理が容易となるという効果がある。例えば、ソーラパネル製造の場合、スクライブ線の画像と基板縁部の形状の画像の両方を含んでいるので、画像認識処理が容易となる。これによって、基板上にアライメントマークを設けることなく正確にアライメントを行なうことができる。
A feature of the substrate alignment method according to the present invention is that in the substrate alignment method for aligning the substrate to the processing position when performing the processing for irradiating the substrate with laser light, the first processing with the laser light is completed. At that time, an image of a portion including both the shape change portion of the substrate formed by the first processing and the edge of the substrate is acquired, and the image is stored as ID data of the substrate. When performing the second and subsequent processing, the alignment process is performed based on the ID data.
As processing for irradiating a substrate with laser light, a metal layer, a semiconductor layer, and a transparent electrode layer are sequentially formed on a light-transmitting substrate (glass substrate), and each layer is formed into a strip using laser light in each step after formation. For example, solar panel manufacturing that creates a solar panel by processing into a shape. In such laser processing, alignment processing is performed in each step. In the present invention, when the first processing by the laser beam is completed, an image of a portion including both the shape change portion formed by the processing and the edge of the substrate is acquired, and the image is processed after the next time. It was used for alignment processing before processing. For example, in the case of solar panel manufacturing, an image of a location including both the scribe line formed by laser processing and the substrate edge is acquired, and alignment processing is performed before laser processing based on the acquired image. did. Since the image includes both of the shape change portion and the substrate edge portion, there is an effect that the image recognition processing becomes easy. For example, in the case of manufacturing a solar panel, since both the image of the scribe line and the image of the shape of the substrate edge are included, the image recognition process becomes easy. As a result, alignment can be performed accurately without providing alignment marks on the substrate.

本発明に係る基板アライメント装置の特徴は、基板を保持する保持手段と、前記基板にレーザ光を照射して所定の加工処理を施すレーザ光照射手段と、前記基板を前記保持手段の所定位置にアライメント処理するアライメント手段と、前記レーザ光による最初の加工処理が終了した時点で、前記最初の加工処理によって形成された前記基板の形状変化部分と前記基板の縁部との両方を含む箇所の画像を取得する画像取得手段と、前記画像取得手段によって取得された前記画像を前記基板のIDデータとして記憶する記憶手段と、2回目以降の加工処理を施す際は、前記IDデータに基づいて前記アライメント手段によるアライメント処理を制御する制御手段とを備えたことにある。これは、前述の基板アライメント方法を具現化した装置の発明である。   The substrate alignment apparatus according to the present invention is characterized by holding means for holding a substrate, laser light irradiation means for irradiating the substrate with laser light to perform a predetermined processing, and placing the substrate at a predetermined position of the holding means. An image of a portion including both the shape changing portion of the substrate and the edge portion of the substrate formed by the first processing at the time when the first processing by the laser beam is completed after the alignment means for performing the alignment processing Image acquisition means for acquiring the image, storage means for storing the image acquired by the image acquisition means as ID data of the substrate, and when performing the second and subsequent processing, the alignment is performed based on the ID data. And a control means for controlling the alignment processing by the means. This is an apparatus invention embodying the above-described substrate alignment method.

本発明に係るレーザ加工装置の特徴は、前記基板アライメント方法又は前記基板アライメント装置を用いてワークに対してレーザ光による加工処理を行なうことにある。これは、前述の基板アライメント方法又は基板アライメント装置のいずれか1を用いて、レーザ光による加工処理を行なうようにしたものである。   A feature of the laser processing apparatus according to the present invention resides in that processing using a laser beam is performed on a workpiece using the substrate alignment method or the substrate alignment apparatus. In this method, processing using laser light is performed using any one of the above-described substrate alignment method or substrate alignment apparatus.

本発明に係るソーラパネル製造方法の特徴は、前記基板アライメント方法、前記基板アライメント装置又は前記レーザ加工装置を用いて、ソーラパネルを製造することにある。これは、前述の基板アライメント方法、基板アライメント装置又はレーザ加工装置のいずれか1を用いて、ソーラパネルを製造するようにしたものである。   The solar panel manufacturing method according to the present invention is characterized in that a solar panel is manufactured using the substrate alignment method, the substrate alignment apparatus, or the laser processing apparatus. In this method, a solar panel is manufactured using any one of the above-described substrate alignment method, substrate alignment apparatus, or laser processing apparatus.

本発明によれば、基板上にアライメントマークを設けることなく正確にアライメントを行なうことができるという効果がある。   According to the present invention, there is an effect that alignment can be performed accurately without providing an alignment mark on the substrate.

本発明の一実施の形態に係るレーザ加工装置の概略構成を示す図である。It is a figure which shows schematic structure of the laser processing apparatus which concerns on one embodiment of this invention. 図1のXYテーブル上にワークをアライメントする基板アライメント方法の概念を示す図であり、最初のスクライブ処理前のアイランメト処理を示す図である。It is a figure which shows the concept of the substrate alignment method which aligns a workpiece | work on the XY table of FIG. 1, and is a figure which shows the island met process before the first scribe process. 図1のXYテーブル上にワークをアライメントする基板アライメント方法の概念を示す図であり、2回目以降のスクライブ処理前のアライメント処理を示す図である。It is a figure which shows the concept of the board | substrate alignment method which aligns a workpiece | work on the XY table of FIG. 1, and is a figure which shows the alignment process before the scribe process after the 2nd time.

以下、図面に基づいて本発明の実施の形態を説明する。図1は、本発明の一実施の形態に係るレーザ加工装置の概略構成を示す図である。このレーザ加工装置は、ソーラパネル製造装置のレーザ光加工処理(レーザスクライブ)工程を行なうものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of a laser processing apparatus according to an embodiment of the present invention. This laser processing apparatus performs a laser beam processing (laser scribing) process of a solar panel manufacturing apparatus.

図1のソーラパネル製造装置は、台座10、XYテーブル20、レーザ発生装置40と、光学系部材50、アライメントカメラ装置60、リニアエンコーダ70、制御装置80及び検出光学系部材等によって構成されている。台座10上には台座10上でX軸方向及びY軸方向(XY平面)に沿って駆動制御されるXYテーブル20が設けられている。   The solar panel manufacturing apparatus of FIG. 1 includes a pedestal 10, an XY table 20, a laser generator 40, an optical system member 50, an alignment camera device 60, a linear encoder 70, a control device 80, a detection optical system member, and the like. . An XY table 20 that is driven and controlled along the X-axis direction and the Y-axis direction (XY plane) on the pedestal 10 is provided on the pedestal 10.

XYテーブル20は、X方向及びY方向へ移動制御される。なお、XYテーブル20の駆動手段としては、ボールネジやリニアモータ等が用いられるが、これらの図示は省略してある。XYテーブル20の上側にはレーザ加工の対象となるワーク1が保持されている。また、台座10の上には光学系部材を保持しながらY軸方向にスライド駆動されるスライドフレーム30が設けられている。XYテーブル20は、Z軸を回転軸としてθ方向に回転可能に構成されている。なお、スライドフレーム30によりY軸方向の移動量が十分に確保できる場合には、XYテーブル20は、X軸方向の移動だけを行なう構成であってもよい。この場合、XYテーブル20はX軸テーブルの構成でもよい。   The XY table 20 is controlled to move in the X direction and the Y direction. In addition, although a ball screw, a linear motor, etc. are used as a drive means of the XY table 20, these illustration is abbreviate | omitted. On the upper side of the XY table 20, a workpiece 1 to be laser processed is held. A slide frame 30 that is slid in the Y-axis direction while holding the optical system member is provided on the base 10. The XY table 20 is configured to be rotatable in the θ direction about the Z axis. Note that when the amount of movement in the Y-axis direction can be sufficiently secured by the slide frame 30, the XY table 20 may be configured to only move in the X-axis direction. In this case, the XY table 20 may have an X-axis table configuration.

スライドフレーム30は、台座10上の四隅に設けられた移動台に取り付けられている。スライドフレーム30は、この移動台によってY軸方向へ移動制御される。ベース板31と移動台との間には除振部材(図示せず)が設けられている。スライドフレーム30のベース板31には、レーザ発生装置40、光学系部材50、制御装置80及び検出光学系部材が設置されている。光学系部材50は、ミラーやレンズの組み合わせで構成され、レーザ発生装置40で発生したレーザ光を4系列に分割してXYテーブル20上のワーク1上に導くものである。なお、レーザ光の分割数は4系列に限るものではなく、2系列以上であればよい。   The slide frame 30 is attached to a movable table provided at four corners on the base 10. The slide frame 30 is controlled to move in the Y-axis direction by this moving table. A vibration isolation member (not shown) is provided between the base plate 31 and the moving table. The base plate 31 of the slide frame 30 is provided with a laser generator 40, an optical system member 50, a control device 80, and a detection optical system member. The optical system member 50 is constituted by a combination of a mirror and a lens, and divides the laser beam generated by the laser generator 40 into four lines and guides it onto the work 1 on the XY table 20. Note that the number of divisions of the laser light is not limited to four, but may be two or more.

アライメントカメラ装置60は、XYテーブル20上であってワーク1の両端部(X軸方向の前後縁部)付近の画像を取得する。このアライメントカメラ装置60で取得された画像は、制御装置80に出力される。制御装置80は、アライメントカメラ装置60からの画像を、ワーク1のIDデータと共にデータベース手段に格納し、これ以降のワーク1のアライメント処理に利用する。リニアエンコーダ70は、XYテーブル20のX軸移動テーブルの側面に設けられたスケール部材と検出部とから構成される。   The alignment camera device 60 acquires images near the both end portions (front and rear edge portions in the X-axis direction) of the work 1 on the XY table 20. An image acquired by the alignment camera device 60 is output to the control device 80. The control device 80 stores the image from the alignment camera device 60 in the database unit together with the ID data of the workpiece 1 and uses it for the subsequent alignment processing of the workpiece 1. The linear encoder 70 includes a scale member and a detection unit provided on the side surface of the X-axis movement table of the XY table 20.

リニアエンコーダ70は、XYテーブル20のX軸移動テーブルの側面に設けられたスケール部材と検出部とか構成される。リニアエンコーダ70の検出信号は、制御装置80に出力される。制御装置80は、リニアエンコーダ70からの検出信号に基づいてXYテーブル20のX軸方向の移動速度(移動周波数)を検出し、レーザ発生装置40の出力(レーザ周波数)を制御する。   The linear encoder 70 includes a scale member and a detection unit provided on the side surface of the X-axis movement table of the XY table 20. The detection signal of the linear encoder 70 is output to the control device 80. The control device 80 detects the moving speed (moving frequency) in the X-axis direction of the XY table 20 based on the detection signal from the linear encoder 70 and controls the output (laser frequency) of the laser generator 40.

光学系部材50は、図示のように、ベース板31の下面側に設けられている。レーザ発生装置40から出射されるレーザ光を光学系部材50に導くための反射ミラー33,35がベース板31上に設けられている。レーザ発生装置40から出射されたレーザ光は、反射ミラー33によって反射ミラー35へ向かって反射され、反射ミラー35は、反射ミラー33からの反射レーザ光をベース板31に設けられた挿通穴を介して光学系部材50に導く。なお、レーザ光発生装置40から出射されたレーザ光は、ベース板31に設けられた挿通穴から光学系部材50に対して上側から導入されるように構成されれば、どのような構成のものであってもよい。例えば、レーザ発生装置40を挿通穴の上側に設け、挿通穴を介して光学系部材50に直接レーザ光を導くようにしてもよい。   The optical system member 50 is provided on the lower surface side of the base plate 31 as illustrated. Reflecting mirrors 33 and 35 for guiding laser light emitted from the laser generator 40 to the optical system member 50 are provided on the base plate 31. The laser light emitted from the laser generator 40 is reflected by the reflection mirror 33 toward the reflection mirror 35, and the reflection mirror 35 passes the reflection laser light from the reflection mirror 33 through an insertion hole provided in the base plate 31. To the optical system member 50. The laser light emitted from the laser light generating device 40 may have any configuration as long as it is configured to be introduced from above into the optical system member 50 through the insertion hole provided in the base plate 31. It may be. For example, the laser generator 40 may be provided on the upper side of the insertion hole, and the laser beam may be directly guided to the optical system member 50 through the insertion hole.

図2及び図3は、図1のXYテーブル上にワークをアライメントする基板アライメント方法の概念を示す図であり、図2は最初のスクライブ処理前のアイランメト処理を示し、図3は2回目以降のスクライブ処理前のアライメント処理の一例をそれぞれ示す図である。まず、図2に示すようにワーク1を載置した状態でワーク1の左側端部の下側縁部を位置決めピン21に、ワーク1の下側端部の左側縁部を位置決めピン22に、ワーク1の下側端部の右側縁部を位置決めピン23に、それぞれ突き当て、ワーク1をXYテーブル20上の所定位置に位置決めする。この状態でワーク1上の金属層にレーザ光を照射し、スクライブ処理を実行する。最初のスクライブ処理の結果、ワーク1上には、ピッチ10mmでスクライブ線が形成される。   2 and 3 are diagrams showing the concept of the substrate alignment method for aligning the workpiece on the XY table of FIG. 1, FIG. 2 shows the island met process before the first scribe process, and FIG. 3 shows the second and subsequent times. It is a figure which shows an example of the alignment process before a scribe process, respectively. First, as shown in FIG. 2, with the workpiece 1 placed, the lower edge of the left end of the workpiece 1 is the positioning pin 21, the left edge of the lower end of the workpiece 1 is the positioning pin 22, The right edge of the lower end of the work 1 is abutted against the positioning pin 23 to position the work 1 at a predetermined position on the XY table 20. In this state, the metal layer on the workpiece 1 is irradiated with laser light, and a scribing process is executed. As a result of the first scribing process, scribe lines are formed on the work 1 with a pitch of 10 mm.

図2は複数のスクライブ線のうち、ワーク中央付近の1本のスクライブ線25を示す。このスクライブ線25の両端部付近、すなわちスクライブ線25とワーク1の縁部との両方を含む箇所27,29付近の画像27a,29aを前述のアライメントカメラ装置60で取得する。画像27a,29aを見ると分かるように、画像の中にスクライブ線25の画像とワーク1の縁部の形状の画像の両方を含んでいるので、画像認識処理が容易となる。取得された画像27a,29aは制御装置によってワーク1のIDデータとしてデータベース手段70に順次記憶される。   FIG. 2 shows one scribe line 25 near the center of the workpiece among the plurality of scribe lines. Images 27a and 29a in the vicinity of both ends of the scribe line 25, that is, in the vicinity of the places 27 and 29 including both the scribe line 25 and the edge of the work 1, are acquired by the alignment camera device 60 described above. As can be seen from the images 27a and 29a, since both the image of the scribe line 25 and the image of the shape of the edge of the work 1 are included in the image, the image recognition process is facilitated. The acquired images 27a and 29a are sequentially stored in the database means 70 as ID data of the work 1 by the control device.

図2のように、レーザ加工によるスクライブ処理と共に画像27a,29aの取得処理が終了すると、次は、この金属層の上に半導体層を形成する処理が行なわれる。半導体層形成処理が終了した後、ワーク1に対して前述と同様のレーザ光によるスクライブ処理が実行される。この2回目のスクライブ処理の前に図3に示すような方法でアライメント処理が行なわれる。   As shown in FIG. 2, when the acquisition processing of the images 27a and 29a is completed together with the scribing processing by laser processing, next, processing for forming a semiconductor layer on the metal layer is performed. After the semiconductor layer forming process is completed, a scribing process using laser light similar to that described above is performed on the workpiece 1. Prior to the second scribing process, an alignment process is performed as shown in FIG.

図3では、最初のアライメント処理と同じようにワーク1を載置した状態でワーク1の左側端部の下側縁部を位置決めピン21に、ワーク1の下側端部の左側縁部を位置決めピン22に、ワーク1の下側端部の右側縁部を位置決めピン23に、それぞれ突き当て、ワーク1をXYテーブル20上の所定位置に位置決めする。この状態で、スクライブ線25の両端部付近、すなわちスクライブ線25とワーク1の縁部との両方を含む箇所27,29付近の画像27b,29bをアライメントカメラ装置60で取得する。一方、制御装置は、データベース手段70からワーク1のIDデータの画像27a,29aを読みだす。制御装置によって、読み出された画像27a,29aと、アライメントカメラ装置60で取得された画像27b,29bとが比較され、両者が一致するように、XYテーブル20のX軸,Y軸及びθ軸が制御され、正確なアライメント処理が行なわれる。   In FIG. 3, the lower edge of the left end of the work 1 is positioned on the positioning pin 21 and the left edge of the lower end of the work 1 is positioned in the state where the work 1 is placed in the same manner as the first alignment process. The right edge of the lower end of the work 1 is brought into contact with the positioning pins 23 to the pins 22 to position the work 1 at a predetermined position on the XY table 20. In this state, the alignment camera device 60 obtains images 27b and 29b in the vicinity of both ends of the scribe line 25, that is, in the vicinity of locations 27 and 29 including both the scribe line 25 and the edge of the work 1. On the other hand, the control device reads the ID data images 27 a and 29 a of the work 1 from the database means 70. The read images 27a and 29a are compared with the images 27b and 29b acquired by the alignment camera device 60 by the control device, and the X-axis, Y-axis, and θ-axis of the XY table 20 are matched so that they match. Are controlled, and an accurate alignment process is performed.

図3のようにして、画像27a,29aと画像27b,29bの比較処理によるアライメント処理が終了すると、前回のスクライブ線25から約30μmはなれた位置でレーザ光によるスクライブ処理が実行される。このスクライブ処理が終了すると、別の装置で半導体層の上に透明電極層を形成する処理が行なわれる。再び、レーザ加工装置にワークが搬入され、図3と同様のアライメント処理が行なわれ、ワーク1に対して同様にレーザ光によるスクライブ処理が実行される。これによって、ワーク1には、3本のスクライブ線が形成される。   As shown in FIG. 3, when the alignment process by the comparison process between the images 27a and 29a and the images 27b and 29b is completed, the scribing process by the laser beam is executed at a position about 30 μm away from the previous scribe line 25. When this scribing process is completed, a process for forming a transparent electrode layer on the semiconductor layer is performed by another apparatus. Again, the work is carried into the laser processing apparatus, the alignment process similar to that shown in FIG. 3 is performed, and the work 1 is similarly subjected to a scribing process using laser light. As a result, three scribe lines are formed on the work 1.

上述の実施の形態では、薄膜の形成されたワーク1の表面からレーザ光を照射して薄膜にスクライブ線(溝)を形成する場合について説明したが、ワーク1の裏面からレーザ光を照射して、ワーク表面の薄膜にスクライブ線を形成するようにしてもよい。また、上述の実施の形態では、最初のスクライブ処理の結果、ワーク1上に形成されたスクライブ線を含む画像を取得する場合について説明したが、2回目のスクライブ処理の結果、ワーク1上に形成された2本のスクライブ線を含む画像を取得して、それを用いてアライメント処理を行なうようにしてもよい。   In the above-described embodiment, the case where the laser beam is irradiated from the surface of the workpiece 1 on which the thin film is formed to form the scribe line (groove) on the thin film is described. However, the laser beam is irradiated from the back surface of the workpiece 1. A scribe line may be formed on the thin film on the workpiece surface. In the above-described embodiment, the case where an image including a scribe line formed on the work 1 is acquired as a result of the first scribe process has been described. However, the image is formed on the work 1 as a result of the second scribe process. An image including the two scribe lines thus obtained may be acquired, and alignment processing may be performed using the acquired image.

上述の実施の形態では、ソーラパネル製造装置を例に説明したが、本発明はELパネル製造装置、ELパネル修正装置、FPD修正装置などのレーザ加工を行なう装置にも適用可能である。   In the above-described embodiment, the solar panel manufacturing apparatus has been described as an example. However, the present invention can also be applied to an apparatus that performs laser processing, such as an EL panel manufacturing apparatus, an EL panel correction apparatus, and an FPD correction apparatus.

1…ワーク
10…台座
20…XYテーブル
30…スライドフレーム
31…ベース板
40…レーザ発生装置
50…光学系部材
60…アライメントカメラ装置
70…リニアエンコーダ
80…制御装置
DESCRIPTION OF SYMBOLS 1 ... Work 10 ... Base 20 ... XY table 30 ... Slide frame 31 ... Base plate 40 ... Laser generator 50 ... Optical system member 60 ... Alignment camera device 70 ... Linear encoder 80 ... Control device

Claims (4)

基板にレーザ光を照射する加工処理を施す際に、前記基板を前記加工位置にアライメント処理する基板アライメント方法において、
前記レーザ光による最初の加工処理が終了した時点で、前記最初の加工処理によって形成された前記基板の形状変化部分と前記基板の縁部との両方を含む箇所の画像を取得し、前記画像を前記基板のIDデータとして記憶しておき、2回目以降の加工処理を施す際は前記IDデータに基づいて前記アライメント処理を行なうことを特徴とする基板アライメント方法。
In the substrate alignment method in which the substrate is aligned with the processing position when performing processing that irradiates the substrate with laser light,
When the first processing by the laser beam is completed, an image of a portion including both the shape change portion of the substrate and the edge of the substrate formed by the first processing is obtained, and the image is A substrate alignment method characterized in that the substrate alignment data is stored as ID data of the substrate and the alignment processing is performed based on the ID data when performing the second and subsequent processing.
基板を保持する保持手段と、
前記基板にレーザ光を照射して所定の加工処理を施すレーザ光照射手段と、
前記基板を前記保持手段の所定位置にアライメント処理するアライメント手段と、
前記レーザ光による最初の加工処理が終了した時点で、前記最初の加工処理によって形成された前記基板の形状変化部分と前記基板の縁部との両方を含む箇所の画像を取得する画像取得手段と、
前記画像取得手段によって取得された前記画像を前記基板のIDデータとして記憶する記憶手段と、
2回目以降の加工処理を施す際は、前記IDデータに基づいて前記アライメント手段によるアライメント処理を制御する制御手段と
を備えたことを特徴とする基板アライメント装置。
Holding means for holding the substrate;
Laser light irradiation means for irradiating the substrate with laser light to perform a predetermined processing;
Alignment means for aligning the substrate at a predetermined position of the holding means;
Image acquisition means for acquiring an image of a portion including both the shape change portion of the substrate and the edge of the substrate formed by the first processing at the time when the first processing by the laser beam is completed; ,
Storage means for storing the image acquired by the image acquisition means as ID data of the substrate;
And a control means for controlling the alignment process by the alignment means based on the ID data when performing the second and subsequent processing.
請求項1に記載の基板アライメント方法又は請求項2に記載の基板アライメント装置を用いてワークに対してレーザ光による加工処理を行なうことを特徴とするレーザ加工装置。   A laser processing apparatus that performs processing with a laser beam on a workpiece using the substrate alignment method according to claim 1 or the substrate alignment apparatus according to claim 2. 請求項1に記載の基板アライメント方法、請求項2に記載の基板アライメント装置又は請求項3に記載のレーザ加工装置を用いて、ソーラパネルを製造することを特徴とするソーラパネル製造方法。   A solar panel manufacturing method, wherein a solar panel is manufactured using the substrate alignment method according to claim 1, the substrate alignment apparatus according to claim 2, or the laser processing apparatus according to claim 3.
JP2009031903A 2009-02-13 2009-02-13 Substrate alignment method, substrate alignment apparatus, laser processing apparatus and solar panel manufacturing method Expired - Fee Related JP5253217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009031903A JP5253217B2 (en) 2009-02-13 2009-02-13 Substrate alignment method, substrate alignment apparatus, laser processing apparatus and solar panel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009031903A JP5253217B2 (en) 2009-02-13 2009-02-13 Substrate alignment method, substrate alignment apparatus, laser processing apparatus and solar panel manufacturing method

Publications (2)

Publication Number Publication Date
JP2010184290A true JP2010184290A (en) 2010-08-26
JP5253217B2 JP5253217B2 (en) 2013-07-31

Family

ID=42765263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009031903A Expired - Fee Related JP5253217B2 (en) 2009-02-13 2009-02-13 Substrate alignment method, substrate alignment apparatus, laser processing apparatus and solar panel manufacturing method

Country Status (1)

Country Link
JP (1) JP5253217B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012066281A (en) * 2010-09-24 2012-04-05 Kataoka Seisakusho:Kk Laser beam machine

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245134A (en) * 1984-05-18 1985-12-04 Nippon Kogaku Kk <Nikon> Positioning device
JPH05183053A (en) * 1991-12-28 1993-07-23 Disco Abrasive Syst Ltd Cutting method through groove alignment
JPH06232254A (en) * 1993-02-01 1994-08-19 Sumitomo Electric Ind Ltd Method and apparatus for detection of position of cutting line on semiconductor wafer
JPH08298236A (en) * 1995-04-26 1996-11-12 Sony Corp Pattern exposure method and device
JPH10216976A (en) * 1996-12-05 1998-08-18 Nikon Corp Laser beam machine and alignment device
JP2004239877A (en) * 2003-02-10 2004-08-26 Renesas Technology Corp Inspection method of circuit pattern, and manufacturing method of semiconductor device
JP2006019658A (en) * 2004-07-05 2006-01-19 Toshiba Corp Exposure system, and manufacturing method for semiconductor device
JP2007033537A (en) * 2005-07-22 2007-02-08 Sharp Corp Apparatus for manufacturing flexible display element and method for manufacturing the element
JP2007111754A (en) * 2005-10-21 2007-05-10 Disco Abrasive Syst Ltd Laser beam machining method and laser beam machining system
WO2007144565A2 (en) * 2006-06-14 2007-12-21 Oerlikon Balzers Coating (Uk) Limited Process for laser scribing
JP2008177364A (en) * 2007-01-18 2008-07-31 Denso Corp Method of manufacturing semiconductor device, and semiconductor device
JP2009289786A (en) * 2008-05-27 2009-12-10 Disco Abrasive Syst Ltd Cutting method of wafer

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245134A (en) * 1984-05-18 1985-12-04 Nippon Kogaku Kk <Nikon> Positioning device
JPH05183053A (en) * 1991-12-28 1993-07-23 Disco Abrasive Syst Ltd Cutting method through groove alignment
JPH06232254A (en) * 1993-02-01 1994-08-19 Sumitomo Electric Ind Ltd Method and apparatus for detection of position of cutting line on semiconductor wafer
JPH08298236A (en) * 1995-04-26 1996-11-12 Sony Corp Pattern exposure method and device
JPH10216976A (en) * 1996-12-05 1998-08-18 Nikon Corp Laser beam machine and alignment device
JP2004239877A (en) * 2003-02-10 2004-08-26 Renesas Technology Corp Inspection method of circuit pattern, and manufacturing method of semiconductor device
JP2006019658A (en) * 2004-07-05 2006-01-19 Toshiba Corp Exposure system, and manufacturing method for semiconductor device
JP2007033537A (en) * 2005-07-22 2007-02-08 Sharp Corp Apparatus for manufacturing flexible display element and method for manufacturing the element
JP2007111754A (en) * 2005-10-21 2007-05-10 Disco Abrasive Syst Ltd Laser beam machining method and laser beam machining system
WO2007144565A2 (en) * 2006-06-14 2007-12-21 Oerlikon Balzers Coating (Uk) Limited Process for laser scribing
JP2008177364A (en) * 2007-01-18 2008-07-31 Denso Corp Method of manufacturing semiconductor device, and semiconductor device
JP2009289786A (en) * 2008-05-27 2009-12-10 Disco Abrasive Syst Ltd Cutting method of wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012066281A (en) * 2010-09-24 2012-04-05 Kataoka Seisakusho:Kk Laser beam machine

Also Published As

Publication number Publication date
JP5253217B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
KR102355837B1 (en) Laser machining apparatus
KR101352243B1 (en) Apparatus and method for irradiating polarized light for light alignment
EP2250534B1 (en) Laser processing a multi-device panel
JP6278451B2 (en) Marking device and pattern generation device
JP5556774B2 (en) Exposure equipment
JP2007048835A (en) Laser machining apparatus and solar cell substrate patterning method using it
CN103033130B (en) The optically focused facula position detection method of laser processing device
JP6223091B2 (en) Position measuring apparatus, alignment apparatus, pattern drawing apparatus, and position measuring method
JP5392943B2 (en) Laser processing method, laser processing apparatus, and solar panel manufacturing method
JP5224343B2 (en) Laser processing equipment
JP2013500867A (en) Latitudinal contour scribing, stitching, and simplified laser and scanner control
TW201315554A (en) Laser processing device and laser processing method
KR101886357B1 (en) Method for detecting laser beam spot shape and apparatus for detecting laser beam spot shape
TWI414384B (en) Laser processing method, laser processing device, and manufacturing method of solar panels
JP5268749B2 (en) Substrate condition inspection method, laser processing apparatus, and solar panel manufacturing method
JP5253217B2 (en) Substrate alignment method, substrate alignment apparatus, laser processing apparatus and solar panel manufacturing method
JP2010188395A (en) Laser beam machining method, laser beam machining device, and method for producing solar panel
JP5349352B2 (en) Laser light state inspection method and apparatus, laser processing method and apparatus, and solar panel manufacturing method
JP2008171873A (en) Positioning apparatus, positioning method, processing apparatus and processing method
KR20160107992A (en) Laser Marking Apparatus
WO2016147977A1 (en) Image-rendering device
JP2015131303A (en) Operation characteristic detection method for processing feeding mechanism in laser processor, and laser processor
JP7355629B2 (en) How to adjust laser processing equipment
JP2009160610A (en) Laser beam repairing device
TWI419254B (en) A desk that penetrates lighting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees