JP2010182744A - Substrate buffer unit - Google Patents

Substrate buffer unit Download PDF

Info

Publication number
JP2010182744A
JP2010182744A JP2009022813A JP2009022813A JP2010182744A JP 2010182744 A JP2010182744 A JP 2010182744A JP 2009022813 A JP2009022813 A JP 2009022813A JP 2009022813 A JP2009022813 A JP 2009022813A JP 2010182744 A JP2010182744 A JP 2010182744A
Authority
JP
Japan
Prior art keywords
substrate
air
shelf
casing
buffer unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009022813A
Other languages
Japanese (ja)
Other versions
JP4884486B2 (en
Inventor
Kazuhito Miyazaki
一仁 宮崎
Naoki Imoto
直樹 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2009022813A priority Critical patent/JP4884486B2/en
Priority to CN2010100034264A priority patent/CN101794720B/en
Priority to TW099102131A priority patent/TWI425585B/en
Priority to KR1020100009351A priority patent/KR20100089770A/en
Publication of JP2010182744A publication Critical patent/JP2010182744A/en
Application granted granted Critical
Publication of JP4884486B2 publication Critical patent/JP4884486B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67706Mechanical details, e.g. roller, belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G45/00Lubricating, cleaning, or clearing devices
    • B65G45/10Cleaning devices
    • B65G45/22Cleaning devices comprising fluid applying means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/061Lifting, gripping, or carrying means, for one or more sheets forming independent means of transport, e.g. suction cups, transport frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/063Transporting devices for sheet glass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67769Storage means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Ventilation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate buffer unit where a substrate conveyed in one direction along a substrate conveyance path is temporarily evacuated, air in buffer space is efficiently cleaned and the cost can be reduced. <P>SOLUTION: The substrate buffer unit includes a box-shaped shelf portion 2 provided halfway in the substrate conveyance path, having a mount portion 6 for mounting the substrate and provided to move to a predetermined position off the substrate conveyance path, a clean air supply means 4 provided to an upper surface or side surface of the box-shaped shelf portion and supplying clean air having been cleaned, and a ventilation path 5 connecting the clean air supply means to the one side surface of the shelf portion. The clean air supplied from the clean air supply means is supplied from an air intake 7 formed on the one side surface of the box-shaped shelf portion to the mounting portion and discharged from an air outlet 8 formed on the side surface of the box-shaped shelf portion on the opposite side to the air intake. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、基板搬送路を搬送される、例えばフラットパネルディスプレイ(FPD)に用いられるガラス基板を一時的に基板搬送路から退避させるための基板バッファユニットに関し、特にバッファ装置内空間の空気洗浄を効率的に行うことのできる基板バッファユニットに関する。   The present invention relates to a substrate buffer unit for temporarily retracting a glass substrate transported through a substrate transport path, for example, used in a flat panel display (FPD), from the substrate transport path, and in particular, for cleaning the air inside the buffer device. The present invention relates to a substrate buffer unit that can be efficiently performed.

FPDの製造においては、FPD用のガラス基板上に回路パターンを形成するためにフォトリソグラフィ技術が用いられる。フォトリソグラフィによる回路パターンの形成は、ガラス基板上にレジスト液を塗布してレジスト膜を形成し、回路パターンに対応するようにレジスト膜を露光し、これを現像処理するといった手順で行われている。回路パターンの形成には、レジスト液の塗布や現像処理などの処理を行う各処理ユニットを搬送ライン(基板搬送路)に沿って設置した製造ラインが用いられている。ガラス基板は、搬送ラインを搬送されつつ、各処理ユニットで所定の処理が施されていくこととなる。   In manufacturing an FPD, a photolithography technique is used to form a circuit pattern on a glass substrate for FPD. A circuit pattern is formed by photolithography by applying a resist solution on a glass substrate to form a resist film, exposing the resist film to correspond to the circuit pattern, and developing the resist film. . For the formation of the circuit pattern, a production line is used in which each processing unit that performs processing such as application of a resist solution and development processing is installed along a transport line (substrate transport path). The glass substrate is subjected to predetermined processing in each processing unit while being transported along the transport line.

ところで、前記製造ラインでは通常、各処理ユニット間での基板の受け取り、及び引き渡しのタイミング調整を行うため、ガラス基板を搬送ラインから一時的に退避させて保管するバッファ装置が設置される。
このようなバッファ装置として、本願出願人は、ガラス基板を多段に載置可能な棚部を昇降させることにより基板の搬入出を行うエレベータ式のバッファ装置(以下、エレベータバッファ装置と呼ぶ)を特許文献1において開示している。
By the way, in order to adjust the timing of receiving and delivering the substrate between the processing units, the manufacturing line is usually provided with a buffer device for temporarily retracting and storing the glass substrate from the transfer line.
As such a buffer device, the present applicant has patented an elevator-type buffer device (hereinafter referred to as an elevator buffer device) that carries in and out a substrate by moving up and down a shelf on which glass substrates can be placed in multiple stages. It is disclosed in Document 1.

特許文献1に開示のエレベータバッファ装置の基板退避動作について図9に基づき簡単に説明する。図9(a)〜図9(c)に示すエレベータバッファ装置200は、搬送ライン途中に設けられており、多段に設けられた基板の載置部202a〜202fを有する棚部205と、この棚部205を昇降移動可能に支持する昇降機構206とを備えている。
エレベータバッファ装置200に基板を退避させる必要が生じると、X方向下流側の補助コンベア機構210の駆動が停止される。さらに、図9(a)に示すようにX方向上流側から搬送されてきた最初の基板G1が筐体201の搬入口201aを通過し、基板全体が載置部202a上に載ると、コンベヤ機構250aが停止される。これにより基板G1が載置部202a上に載置された状態となる。
The substrate retracting operation of the elevator buffer device disclosed in Patent Document 1 will be briefly described with reference to FIG. The elevator buffer device 200 shown in FIGS. 9A to 9C is provided in the middle of the transport line, and a shelf 205 having substrate mounting portions 202a to 202f provided in multiple stages, and the shelf And an elevating mechanism 206 that supports the unit 205 so as to be movable up and down.
When the elevator buffer device 200 needs to retract the substrate, the driving of the auxiliary conveyor mechanism 210 on the downstream side in the X direction is stopped. Furthermore, as shown in FIG. 9A, when the first substrate G1 conveyed from the upstream side in the X direction passes through the carry-in port 201a of the housing 201 and the entire substrate is placed on the placement unit 202a, the conveyor mechanism 250a is stopped. As a result, the substrate G1 is placed on the placement unit 202a.

次いで、X方向上流側から次の基板G2が搬送されてくると、コンベヤ機構250aとその駆動源との接続が解除される。
そして、載置部202b〜202fのいずれか、例えば図9(b)に示すように、載置部202bが搬送ラインの高さに一致するよう昇降機構206により棚部205を上昇させ、載置部202bのコンベヤ機構250bをその駆動部に接続して駆動させる。ここで、基板G1は、載置部202aごと搬送ラインから退避した状態となる。そして、基板G2の全体が載置部202b上に載ると、コンベヤ機構250bの駆動が停止される。
このような工程を繰り返すことにより、基板搬送の待機状態が解除されるまで、搬送ラインを搬送されてきた後続の基板G3、G4、・・・がそれぞれ、載置部202c、202d、・・・上に載置されて保管されることとなる(図9(c)参照)。
Next, when the next substrate G2 is transported from the upstream side in the X direction, the connection between the conveyor mechanism 250a and its drive source is released.
Then, as shown in FIG. 9B, for example, as shown in FIG. 9B, the shelf 205 is moved up by the elevating mechanism 206 so that the placement unit 202b matches the height of the transport line. The conveyor mechanism 250b of the part 202b is connected to the drive part and driven. Here, the board | substrate G1 will be in the state evacuated from the conveyance line with the mounting part 202a. And if the whole board | substrate G2 is mounted on the mounting part 202b, the drive of the conveyor mechanism 250b will be stopped.
By repeating such a process, the subsequent substrates G3, G4,... That have been transported on the transport line until the standby state of the substrate transport is canceled are respectively placed on the placement units 202c, 202d,. It is placed on top and stored (see FIG. 9C).

ところで、前記エレベータバッファ装置200は、他のユニットと共にクリーンルーム内に設置される。クリーンルームの天井部には、FFU(ファン・フィルタ・ユニット)と呼ばれる清浄空気供給装置が設置され、これにより、下方に空気が流れる垂直層流(ダウンフロー)が形成される。
従来、このダウンフローによりルーム内の清浄度、ひいては基板が収容される棚部205内の清浄度が確保されている。
By the way, the elevator buffer device 200 is installed in a clean room together with other units. A clean air supply device called FFU (fan filter unit) is installed on the ceiling of the clean room, thereby forming a vertical laminar flow (down flow) through which air flows downward.
Conventionally, the cleanliness of the room, and thus the cleanliness of the shelf 205 in which the substrate is accommodated, is ensured by this downflow.

従来のエレベータバッファ装置内を清浄化するための構成について、図10のバッファ装置の断面図を用いて具体的に説明する。尚、図10にあっては、図9において同等の機能を有するものは同じ符号を用いて説明する。
図10において、外装パネルである筐体201内には、複数の基板を多段に収容可能な棚部205と、この棚部205を下方から昇降移動可能に支持する昇降機構206とが設けられている。尚、棚部205にあっては、図中、紙面に向かって手前側から奥に基板搬入がなされるものとする。
A configuration for cleaning the inside of a conventional elevator buffer device will be specifically described with reference to a sectional view of the buffer device in FIG. In FIG. 10, components having the same functions in FIG. 9 will be described using the same reference numerals.
In FIG. 10, in a casing 201 that is an exterior panel, a shelf 205 that can accommodate a plurality of substrates in multiple stages, and an elevating mechanism 206 that supports the shelf 205 so that it can be moved up and down from below are provided. Yes. In addition, in the shelf part 205, a board | substrate is carried in from the near side toward the back in the figure toward the paper surface.

筐体201の天板201aには、上方から下方に流れる清浄空気を筐体内201に取り込むためのスリット(図示せず)が形成され、筐体201の下部側面には、排気のためのスリット(図示せず)が形成されている。このため、筐体201内に矢印に示すように、上方から棚部205の上面に当たった清浄空気は、棚部205の周囲に回り込み、下方へ流れて排気される。
ここで、基板収容部である棚部205内には、棚部205の周囲に回り込んだ前記清浄空気が一方の側面(空気導入面205a)から導入されて、反対側面側を通って排気され、棚部205内が清浄化されるようになされている。
The top plate 201a of the housing 201 is formed with a slit (not shown) for taking clean air flowing downward from above into the housing 201, and a slit for exhaust (on the lower side surface of the housing 201). (Not shown) is formed. For this reason, as indicated by an arrow in the housing 201, the clean air that hits the upper surface of the shelf 205 from above flows around the shelf 205 and flows downward to be exhausted.
Here, in the shelf 205 which is a substrate housing portion, the clean air that has entered the periphery of the shelf 205 is introduced from one side surface (air introduction surface 205a) and exhausted through the opposite side surface side. The inside of the shelf 205 is cleaned.

特開2007−250671号公報JP 2007-250671 A

しかしながら、クリーンルームの天井から降りてくるダウンフローを効率よく利用するには、FFUがバッファ装置200の直上に位置する必要があり、製造ラインの設置の際にクリーンルーム内の設備配置の制約を受ける虞があった。
また、バッファ装置200の直上にFFUが設置されていても、ダウンフローの風量がエレベータバッファ装置に到達するまでに大幅に弱まり、筐体201内では、棚部205内に清浄空気を十分に供給できるだけの風量を得ることができなかった。
このため、従来は、図10に示すように、棚部205内に大量の清浄空気を引き込み、バッファ装置200外に排気するための排気装置220を設けることにより対応していた。
しかしながら、排気装置220を設けると、排気装置220からクリーンルーム外に排気するための配管設備を設ける必要があり、設備コストが嵩むという課題があった。
However, in order to efficiently use the downflow coming down from the ceiling of the clean room, the FFU needs to be positioned immediately above the buffer device 200, and there is a possibility that the installation of the production line in the clean room may be restricted. was there.
Even if the FFU is installed immediately above the buffer device 200, the amount of downflow is greatly reduced until it reaches the elevator buffer device, and clean air is sufficiently supplied into the shelf 205 in the housing 201. I couldn't get as much airflow as possible.
For this reason, conventionally, as shown in FIG. 10, a large amount of clean air is drawn into the shelf 205 and an exhaust device 220 for exhausting the buffer device 200 is provided.
However, when the exhaust device 220 is provided, it is necessary to provide a piping facility for exhausting the exhaust device 220 to the outside of the clean room, which causes a problem that the equipment cost increases.

また、棚部205は昇降機構206により筐体207内で昇降移動するが、それに伴い棚部205下方の空間の容積が変化する。このため、棚部205の昇降移動の度に昇降機構206の周囲の空間が圧縮膨張され、昇降機構206からのダストの巻き上げが生じ、ダストが棚部205内に流れ込む虞があった。
このような課題に対し、従来は、図示するように昇降機構206をケーシング212で囲い込み、ケーシング212内の空気を排気装置220で吸引して排気処理していた。
しかしながら、この場合もクリーンルーム側に配管設備を設ける必要があり、コストが嵩むという課題があった。
Further, the shelf 205 is moved up and down in the housing 207 by the lifting mechanism 206, and the volume of the space below the shelf 205 changes accordingly. For this reason, every time the shelf 205 moves up and down, the space around the lifting mechanism 206 is compressed and expanded, and dust is rolled up from the lifting mechanism 206, and dust may flow into the shelf 205.
Conventionally, as shown in the figure, the lifting mechanism 206 is enclosed by a casing 212, and the air in the casing 212 is sucked by the exhaust device 220 and exhausted.
However, also in this case, it is necessary to provide piping equipment on the clean room side, and there is a problem that costs increase.

さらに、従来の棚部205の構造にあっては、空気導入面205aから導入された清浄空気は、基板搬送の駆動部である搬送駆動機構213を通過し、排気装置220から排出される。
しかしながら、排気装置220の排気動作が停止すると、棚部205内が陰圧状態となって空気が逆流し、搬送駆動機構213から生じたダストが載置部に流れ込むという課題があった。
Further, in the structure of the conventional shelf portion 205, the clean air introduced from the air introduction surface 205a passes through the transport driving mechanism 213 that is a substrate transport driving portion and is discharged from the exhaust device 220.
However, when the exhaust operation of the exhaust device 220 is stopped, there is a problem that the inside of the shelf 205 is in a negative pressure state, the air flows backward, and the dust generated from the transport drive mechanism 213 flows into the placement unit.

本発明は、前記したような事情の下になされたものであり、基板搬送路を一方向に搬送される基板を一時的に退避させる基板バッファユニットにおいて、バッファ空間の空気洗浄を効率的に行い、且つ、コストを低減することのできる基板バッファユニットを提供することを目的とする。   The present invention has been made under the circumstances as described above, and in the substrate buffer unit that temporarily retracts the substrate transported in one direction on the substrate transport path, the buffer space is efficiently cleaned with air. And it aims at providing the substrate buffer unit which can reduce cost.

前記した課題を解決するために、本発明に係る基板バッファユニットは、基板搬送路を搬送される基板を一時的に収容し、前記基板搬送路から退避させる基板バッファユニットにおいて、前記基板搬送路の途中に設けられ、基板を載置する載置部を有すると共に、前記基板搬送路から外れた所定位置に移動可能に設けられた箱状の棚部と、前記箱状の棚部の上面または側面に設けられ、浄化された清浄空気を供給する清浄空気供給手段と、前記清浄空気供給手段と前記棚部の一側面とを接続する通風路とを備え、前記清浄空気供給手段から供給された清浄空気は、前記箱状の棚部の一側面に設けられた空気導入口から前記載置部に供給され、前記箱状の棚部における前記空気導入口とは反対側の側面に設けられた空気導出口から排気されることに特徴を有する。   In order to solve the above-described problems, a substrate buffer unit according to the present invention is a substrate buffer unit that temporarily stores a substrate transported through a substrate transport path and retreats from the substrate transport path. A box-shaped shelf that is provided in the middle and has a placement unit for placing a substrate and is movable to a predetermined position off the substrate transport path, and an upper surface or a side surface of the box-like shelf The clean air supplied from the clean air supply means is provided with a clean air supply means for supplying purified clean air, and an air passage connecting the clean air supply means and one side of the shelf. Air is supplied from the air inlet provided on one side of the box-shaped shelf to the mounting portion, and the air provided on the side opposite to the air inlet in the box-shaped shelf. Exhaust from the outlet To have the feature.

このように構成することにより、棚部の下流側に排気装置を設けなくても、各段の載置部に十分な流量の清浄空気の流れを形成し、棚部内の清浄度を確保することができる。
したがって、従来のようにクリーンルームにおけるFFUの配置を考慮しなくてもよく、クリーンルーム側の制約を受けずに製造ラインを設置することができる。
また、排気装置を設ける必要が無いため、設備コストの増加を抑制し、且つ、清浄空気供給手段の下流となる棚部内を陽圧状態とすることができるため、排気装置を設けることにより生じる不具合(稼働停止時の逆流等)を無くすことができる。
By configuring in this way, it is possible to form a flow of clean air with a sufficient flow rate on the mounting portion of each stage without providing an exhaust device on the downstream side of the shelf, and to ensure the cleanliness in the shelf. Can do.
Therefore, it is not necessary to consider the arrangement of the FFU in the clean room as in the prior art, and the production line can be installed without being restricted by the clean room.
In addition, since there is no need to provide an exhaust device, an increase in equipment costs can be suppressed, and the inside of the shelf that is downstream of the clean air supply means can be in a positive pressure state. (Such as backflow when operation is stopped) can be eliminated.

また、前記箱状の棚部は、内部に複数の前記棚部が多段に設けられた箱状のケーシングを有し、前記ケーシングの一側面において、前記空気導入口は、多段に設けられた各載置部に対応して複数設けられ、清浄空気を前記複数の空気導入口に分配する分配整流部材が前記通風路に設けられていることが望ましい。
このような分配整流部材を設けることにより、各段の空気導入口への分流量を均等化することができる。
Further, the box-shaped shelf has a box-shaped casing in which a plurality of the shelves are provided in multiple stages, and on one side of the casing, the air inlet is provided in multiple stages. It is desirable that a plurality of distribution rectification members that are provided corresponding to the mounting portions and distribute clean air to the plurality of air introduction ports are provided in the ventilation path.
By providing such a distribution rectifying member, it is possible to equalize the flow rate to the air inlets of each stage.

また、前記空気導入口に設けられ、該空気導入口から前記載置部上に供給される清浄空気を扇状に拡げる拡張整流部材を備えることが望ましい。
この拡張整流部材を設けることにより、各載置部に導入された清浄空気を扇状に拡げ、載置部に気流滞留が生じない状態とすることができる。
また、扇状に拡がる流れにより、基板搬入出口からの空気の流れ込みを抑制するだけでなく、基板搬入出口からの排気を可能とすることができる。
Moreover, it is desirable to provide an expansion rectifying member that is provided at the air inlet and expands the clean air supplied from the air inlet onto the mounting portion in a fan shape.
By providing this extended rectifying member, the clean air introduced into each placement portion can be expanded in a fan shape so that no airflow stays in the placement portion.
Further, the fan-shaped flow not only suppresses the inflow of air from the substrate carry-in / out port, but also enables exhaust from the substrate carry-in / out port.

また、前記空気導出口は、前記箱状の棚部における前記空気導入口とは反対側の側面に複数形成されると共に、その断面は中空構造であって、前記箱状の棚部は、前記載置部に対する基板の搬入出を行うための基板搬送手段と、前記載置部上に供給される清浄空気の下流側に設けられ、前記基板搬送手段を駆動する搬送駆動手段と、前記中空構造の空気導出口と分離され、前記搬送駆動手段に供給された清浄空気のみを排気する駆動系排気手段を備えることが望ましい。
空気導出口をこのような中空構造とすることにより、パイプ内が排気の下流側よりも陽圧状態となり、排気された空気の逆流、及び棚部外からの空気の流れ込みを防止することができる。
また、排気経路を分離して整流することにより、搬送駆動手段から生じるダストの載置部への流れ込みを防止することができる。
A plurality of the air outlets are formed on the side surface of the box-shaped shelf opposite to the air inlet, and the cross-section has a hollow structure, and the box-shaped shelf is A substrate transfer means for carrying the substrate in and out of the placement section; a transport drive means provided on the downstream side of the clean air supplied onto the placement section; and driving the substrate transport means; and the hollow structure It is desirable to provide drive system exhaust means that exhausts only clean air that is separated from the air outlet and is supplied to the transport drive means.
By adopting such a hollow structure for the air outlet, the inside of the pipe is in a more positive pressure state than the downstream side of the exhaust, and the backflow of the exhausted air and the inflow of air from outside the shelf can be prevented. .
Further, by separating and rectifying the exhaust path, it is possible to prevent the dust generated from the transport driving means from flowing into the placement portion.

また、前記複数の空気導出口にはそれぞれ、該空気導出口を流れる空気流量を制限する流量絞り手段が設けられていることが望ましい。
前記流量絞り手段を各空気導出口において調整することにより、全ての空気導出口からの排気量を均等化することができる。
Preferably, each of the plurality of air outlets is provided with a flow restriction means for restricting the flow rate of air flowing through the air outlet.
By adjusting the flow rate restricting means at each air outlet, the exhaust amount from all the air outlets can be equalized.

また、少なくとも前記棚部のケーシングを覆う筐体を備え、前記筐体と前記棚部のケーシングとの間の隙間空間において、前記空気導入口と前記空気導出口とがそれぞれ形成された棚部の一側面と、該一側面に対向する前記筐体の内側面との間の隙間空間をそれぞれ独立に形成するための仕切り部材が、前記筐体の内壁またはケーシングの外壁に設けられることが望ましい。
この仕切り部材が設けられることにより、空気導出口からの排気がケーシングの他の側面側に回り込むことがなく、基板搬入出口からの載置部への排気の流れ込みを防ぐことができる。
A housing that covers at least the casing of the shelf, wherein the air inlet and the air outlet are respectively formed in a gap space between the housing and the casing of the shelf. It is desirable that a partition member for independently forming a gap space between one side surface and the inner side surface of the casing facing the one side surface is provided on the inner wall of the casing or the outer wall of the casing.
By providing this partition member, the exhaust from the air outlet port does not flow around to the other side surface of the casing, and the exhaust can be prevented from flowing into the mounting portion from the substrate carry-in / out port.

本発明によれば、基板搬送路を一方向に搬送される基板を一時的に退避させる基板バッファユニットにおいて、バッファ空間の空気洗浄を効率的に行い、且つ、コストを低減することのできる基板バッファユニットを得ることができる。   According to the present invention, in the substrate buffer unit that temporarily retracts the substrate transported in one direction on the substrate transport path, the substrate buffer can efficiently perform air cleaning of the buffer space and reduce the cost. You can get a unit.

図1は、本発明に係る基板バッファユニットの側断面図である。FIG. 1 is a side sectional view of a substrate buffer unit according to the present invention. 図2は、図1のA−A矢視断面図(ユニット筐体内の平面図)である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 図3は、図2のB−B矢視断面図である。3 is a cross-sectional view taken along line BB in FIG. 図4は、図2のC−C矢視断面図である。4 is a cross-sectional view taken along the line CC in FIG. 図5は、図2のD−D矢視断面図である。5 is a cross-sectional view taken along the line DD in FIG. 図6は、分配整流部材の断面図である。FIG. 6 is a cross-sectional view of the distribution rectifying member. 図7は、拡張整流部材の斜視図である。FIG. 7 is a perspective view of the expanded rectifying member. 図8は、流量絞り部材の断面図である。FIG. 8 is a cross-sectional view of the flow restrictor. 図9は、エレベータバッファ装置の基板退避動作について説明するための図である。FIG. 9 is a diagram for explaining the substrate retracting operation of the elevator buffer device. 図10は、従来のエレベータバッファ装置内を清浄化するための構成について説明するための断面図である。FIG. 10 is a cross-sectional view for explaining a configuration for cleaning the inside of a conventional elevator buffer device.

以下、本発明の基板バッファユニットの実施形態について図に基づき詳細に説明する。本発明の基板バッファユニットは、例えばフォトリソグラフィ工程により回路パターンを形成する製造ライン途中に設けられ、被処理基板であるFPD用のガラス基板を一時的に収容し退避させるものである。
また、本発明に係る基板バッファユニットは、図9を例に説明したエレベータ式のバッファ装置に好適に用いることができる。以下の実施形態においては、エレベータバッファ装置に適用した例について説明する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a substrate buffer unit of the present invention will be described in detail with reference to the drawings. The substrate buffer unit of the present invention is provided in the middle of a production line for forming a circuit pattern by, for example, a photolithography process, and temporarily accommodates and retracts a glass substrate for FPD that is a substrate to be processed.
Further, the substrate buffer unit according to the present invention can be suitably used in the elevator type buffer device described with reference to FIG. In the following embodiments, an example applied to an elevator buffer device will be described.

図1は、本発明に係る基板バッファユニットの側断面図、図2は図1のA−A矢視断面図(ユニット筐体内の平面図)、図3は図2のB−B矢視断面図、図4は図2のC−C矢視断面図、図5は図2のD−D矢視断面図である。
図示する基板バッファユニット100は、ユニット筐体1内に被処理基板のガラス基板Gを多段(図では6段)に載置可能な箱状の棚部2と、この棚部2を下方から支持すると共に昇降移動させる昇降機構3とを備える。
1 is a side sectional view of a substrate buffer unit according to the present invention, FIG. 2 is a sectional view taken along line AA in FIG. 1 (plan view inside the unit housing), and FIG. 3 is a sectional view taken along line BB in FIG. 4 is a cross-sectional view taken along the line CC in FIG. 2, and FIG. 5 is a cross-sectional view taken along the line DD in FIG.
The substrate buffer unit 100 shown in the figure supports a box-shaped shelf 2 on which glass substrates G as substrates to be processed can be placed in multiple stages (six stages in the figure) in a unit housing 1 and supports the shelf 2 from below. And a lifting mechanism 3 that moves up and down.

この基板バッファユニット100に対し、ガラス基板Gは例えば図3,4に示すユニット筐体1の搬入口1aから搬入され、棚部2に収容後、適宜、反対側の搬出口1bから搬出される。
前記筐体1における搬入口1a及び搬出口1bは、バッファユニット100の上流及び下流に設けられた所謂平流し方式の基板搬送ライン(基板搬送路)の高さ位置に合わせて設けられている。
図1に示すように棚部2は、箱状のケーシング20を有し、このケーシング20内に例えば6段に基板Gの載置部6(6a〜6f)が設けられている。図3,4に示すようにケーシング20において、前記筐体1の搬入出口1a,1bに臨む側面には、各段の載置部6に対応して複数の基板搬入口2aと搬出口2bとが設けられている。
For example, the glass substrate G is carried into the substrate buffer unit 100 from the carry-in port 1a of the unit housing 1 shown in FIGS. 3 and 4, and after being accommodated in the shelf 2, is suitably carried out from the carry-out port 1b on the opposite side. .
The carry-in port 1 a and the carry-out port 1 b in the housing 1 are provided according to the height position of a so-called flat-flow type substrate transfer line (substrate transfer path) provided upstream and downstream of the buffer unit 100.
As shown in FIG. 1, the shelf 2 has a box-shaped casing 20, and the placement portions 6 (6 a to 6 f) for the substrate G are provided in, for example, six stages. As shown in FIGS. 3 and 4, on the side surface of the casing 20 facing the loading / unloading ports 1a and 1b of the casing 1, a plurality of substrate loading ports 2a and loading / unloading ports 2b corresponding to the mounting portions 6 of each stage are provided. Is provided.

棚部2(ケーシング20)は筐体1内で昇降機構3により昇降移動可能であるため、所定の段の載置部6に対してガラス基板Gの搬入出を行う場合には、その所定の段の載置部6が前記搬入口1a及び搬出口1bの高さとなるよう昇降機構3により棚部2が昇降移動される。
また、所定の載置部6に基板Gを載置した後、昇降機構3により、棚部2を基板搬送ラインから外れた所定位置まで昇降移動させることで、その基板Gを基板搬送ラインから退避させることができる。
尚、図1、図5に示すように、各載置部6には、基板搬送を行うための複数のコロ搬送シャフト13(基板搬送手段)が並列に設けられており、各シャフト13の一端部には、各シャフト13を回転駆動するためのモータ等からなるシャフト回転駆動機構14(搬送駆動手段)が設けられている。
Since the shelf 2 (casing 20) can be moved up and down by the lifting mechanism 3 in the housing 1, when the glass substrate G is carried into and out of the mounting unit 6 at a predetermined stage, the predetermined The shelf portion 2 is moved up and down by the elevating mechanism 3 so that the stage mounting portion 6 is at the height of the carry-in port 1a and the carry-out port 1b.
In addition, after placing the substrate G on the predetermined placement unit 6, the lifting and lowering mechanism 3 moves the shelf 2 up and down to a predetermined position off the substrate transport line, thereby retracting the substrate G from the substrate transport line. Can be made.
As shown in FIGS. 1 and 5, each placement unit 6 is provided with a plurality of roller transport shafts 13 (substrate transport means) for transporting the substrate in parallel, and one end of each shaft 13 is provided. The part is provided with a shaft rotation drive mechanism 14 (conveyance drive means) composed of a motor or the like for rotationally driving each shaft 13.

このバッファユニット100において、棚部2のケーシング20上面には、図2に示すように複数(図では4基)のFFU(ファンフィルタユニット)4a〜4d(まとめてFFU4とする)が設置される。これらFFU4は、それぞれ所定方向に回転駆動されるファンを有し、ファンの回転により上方から空気を取り入れ、フィルタを介することによって浄化された空気(清浄空気)を生成し、下方に吹き出すユニットである。即ち、FFU4は清浄空気供給手段として機能する。   In the buffer unit 100, a plurality (four in the figure) of FFU (fan filter units) 4a to 4d (collectively referred to as FFU 4) are installed on the upper surface of the casing 20 of the shelf 2 as shown in FIG. . Each of these FFUs 4 is a unit that has a fan that is driven to rotate in a predetermined direction, takes air from above by rotation of the fan, generates purified air (clean air) through a filter, and blows it downward. . That is, the FFU 4 functions as a clean air supply unit.

各FFU4の下方には、下方に吹き出された清浄空気の流路となる通風路5(5a、5b、5c、5d)が設けられ、この通風路5は棚部2において前記基板搬入出口1a,1bが設けられた側面と直交する一側面に連通している。
より具体的に説明すると、図3に示す棚部2への清浄空気の導入は、前記通風路5が連通する前記棚部2の一側面に形成された複数のエア導入口7(空気導入口)からなされる。これらエア導入口7は、例えば縦方向に載置部の段数と同じ6段、横方向に6個の全36個が設けられている。即ち、1段の載置部6につき、6個のエア導入口7がその側方に設けられている。
Below each FFU 4, there is provided a ventilation path 5 (5a, 5b, 5c, 5d) that serves as a flow path for the clean air blown downward, and this ventilation path 5 is connected to the substrate loading / unloading port 1a, It communicates with one side surface orthogonal to the side surface provided with 1b.
More specifically, the introduction of clean air into the shelf 2 shown in FIG. 3 is performed by a plurality of air introduction ports 7 (air introduction ports) formed on one side surface of the shelf 2 through which the ventilation path 5 communicates. ) These air introduction ports 7 are provided in a total of 36, for example, six in the vertical direction, which is the same as the number of stages of the mounting portion, and six in the horizontal direction. That is, six air inlets 7 are provided on the side of each stage 6.

この実施形態の場合、全36箇所のエア導入口7は、棚部2の上部に設けられたFFU4の数に合わせ、4つのグループに分けられる。即ち図3に示すように、上3段の載置部6a、6b、6cに対応するエア導入口7は、グループ7A、7Bの左右2つに分けられ、下3段の載置部6d、6e、6fに対応するエア導入口7は、グループ7C、7Dの左右2つに分けられる。
このうち、FFU4aにより供給される清浄空気はグループ7Aの9つのエア導入口7から供給され、FFU4bにより供給される清浄空気はグループ7Bの9つのエア導入口7から供給される。また、FFU4cにより供給される清浄空気はグループ7Cの9つのエア導入口7から供給され、FFU4dにより供給される清浄空気はグループ7Dの9つのエア導入口7から供給される。
ここで、各FFU4からそれぞれ縦3段のエア導入口7に清浄空気が供給されるが、その分流量をより均等とするために、通風路5における導入口手前において、図6に示すように気流を3段の導入口7に合わせて分配する分配整流部材10が設けられる。
尚、図6に示すように、この分配整流部材10の分配壁10a、10bは、その位置が図中矢印に示す方向に移動自在に設けられており、その位置調整により3段のエア導入口7に導入される清浄空気の流量が調整され、より均等化される構成となされている。
In the case of this embodiment, all 36 air inlets 7 are divided into four groups according to the number of FFUs 4 provided in the upper part of the shelf 2. That is, as shown in FIG. 3, the air introduction ports 7 corresponding to the upper three stages of mounting parts 6a, 6b, 6c are divided into left and right groups 7A, 7B, and the lower three stages of mounting parts 6d, The air inlets 7 corresponding to 6e and 6f are divided into two groups on the left and right of the groups 7C and 7D.
Of these, the clean air supplied by the FFU 4a is supplied from the nine air inlets 7 of the group 7A, and the clean air supplied by the FFU 4b is supplied from the nine air inlets 7 of the group 7B. The clean air supplied by the FFU 4c is supplied from the nine air inlets 7 of the group 7C, and the clean air supplied by the FFU 4d is supplied from the nine air inlets 7 of the group 7D.
Here, clean air is supplied from the respective FFUs 4 to the air inlets 7 in the three vertical stages. In order to make the flow rate more equal, as shown in FIG. A distribution rectifying member 10 that distributes the airflow in accordance with the three-stage inlets 7 is provided.
As shown in FIG. 6, the distribution walls 10a and 10b of the distribution rectifying member 10 are provided such that their positions are movable in the direction indicated by the arrows in the figure. The flow rate of the clean air introduced into 7 is adjusted so that it is more equalized.

さらに、FFU4から供給された清浄空気の流れは、エア導入口7から載置部に導入されると、図5に矢印で示すように、扇状に広がり、載置部6の隅々まで清浄空気が行き届く状態が望ましい。
そのため、各載置部6につき、左右両端側のエア導入口7には、例えば図7の斜視図に示すような左右方向に気流の向きを拡げるための拡張整流部材12が設けられる。この拡張整流部材12が設けられることにより、各載置部6上に導入された清浄空気は、図5に示すように扇状に拡がり、載置部6に気流滞留が生じない状態となされる。
また、扇状に拡がる空気の流れにより、基板搬入出口2a、2bからの空気の流れ込みを抑制するだけでなく、基板搬入出口2a、2bから排気を行うことができる。
Further, when the flow of clean air supplied from the FFU 4 is introduced from the air introduction port 7 to the mounting portion, as shown by an arrow in FIG. It is desirable to have a state where
For this reason, for each mounting portion 6, an extended rectifying member 12 for expanding the direction of the airflow in the left-right direction as shown in the perspective view of FIG. By providing the expansion rectifying member 12, the clean air introduced onto each placement unit 6 spreads in a fan shape as shown in FIG. 5, and no airflow stays in the placement unit 6.
Further, the flow of air spreading like a fan not only suppresses the flow of air from the substrate loading / unloading ports 2a and 2b, but also allows exhausting from the substrate loading / unloading ports 2a and 2b.

一方、各載置部6に供給された空気を排気するエア導出口8は、ケーシング20において前記複数のエア導入口7が形成された側面とは反対側の側面に、載置部6の段毎に設けられる。即ち、図4に示すように、縦方向に載置部6の段数と同じ6段、横方向に6個のエア導出口8(各載置部6につき、6個のエア導出口8)が設けられている。
このうち、図4において左右両端列のエア導出口8aは、筐体2の側壁に偏平状の孔が開けられ形成されている。
また、前記左右両端列のエア導出口8aの間に設けられた4つのエア導出口8bは、図1、図2に示すように排気方向に所定の長さ延設され、その断面が中空構造(例えば偏平状のパイプ構造)となされている。
On the other hand, the air outlet port 8 for exhausting the air supplied to each mounting unit 6 is provided on the side surface of the casing 20 opposite to the side surface on which the plurality of air introduction ports 7 are formed. Provided for each. That is, as shown in FIG. 4, there are six air outlets 8 (six air outlets 8 for each mounting part 6) in the vertical direction and the same six stages as the stage number of the mounting parts 6 in the horizontal direction. Is provided.
Among these, in FIG. 4, the air outlets 8 a in the left and right end rows are formed by making flat holes in the side wall of the housing 2.
Further, the four air outlets 8b provided between the air outlets 8a in the left and right end rows extend a predetermined length in the exhaust direction as shown in FIG. 1 and FIG. (For example, a flat pipe structure).

このような中空構造のエア導出口8bは、図5に示すように各載置部6において複数のシャフト13をそれぞれ回転駆動するシャフト回転駆動機構14の付近に設けられている。
詳しく説明すると、複数のシャフト回転駆動機構14は、カバー部材15(駆動系排気手段)により覆われ、前記中空構造のエア導出口8bは、図5に示すように、このカバー部材15内を突き抜けるように挿設されている。カバー部材15の下部には、図1、図4に示すように下方に延びる排気管16(駆動系排気手段)が設けられ、その先端は、昇降機構3近傍で開放されている。
The air outlet 8b having such a hollow structure is provided in the vicinity of a shaft rotation drive mechanism 14 that rotationally drives a plurality of shafts 13 in each mounting portion 6 as shown in FIG.
More specifically, the plurality of shaft rotation drive mechanisms 14 are covered with a cover member 15 (drive system exhaust means), and the hollow air outlet 8b penetrates through the cover member 15 as shown in FIG. It is inserted as follows. As shown in FIGS. 1 and 4, an exhaust pipe 16 (drive system exhaust means) extending downward is provided at the lower part of the cover member 15, and the tip thereof is opened in the vicinity of the elevating mechanism 3.

即ち、載置部6を通過した清浄空気が、主に中空構造のエア導出口8bを流れ、シャフト回転駆動機構14を通らずに排気される構造となされている。また、シャフト回転駆動機構14を流れる清浄空気は、排気管16から排気される。このように排気経路を分離して整流することにより、シャフト回転駆動機構14から生じるダストの載置部6への流れ込みを防止することができる。   That is, the clean air that has passed through the mounting portion 6 mainly flows through the air outlet 8 b having a hollow structure and is exhausted without passing through the shaft rotation drive mechanism 14. The clean air flowing through the shaft rotation drive mechanism 14 is exhausted from the exhaust pipe 16. By separating the exhaust path and rectifying in this manner, it is possible to prevent the dust generated from the shaft rotation drive mechanism 14 from flowing into the placement portion 6.

また、前記のようにエア導出口8bが偏平状であって、所定長さの中空構造となされ、さらには、図8の断面図に示すように各導出口8bの先端部分には、空気流量を制限する絞り手段としての板状の流量絞り部材11が設けられている。
これにより、前記中空構造内が排気の下流側よりも陽圧状態となり、排気された空気の逆流、及び棚部2外からの空気の流れ込みが防止される。
また流量絞り部材11の傾斜角度を各導出口8bにおいて調整することにより、全てのエア導出口8からの排気量をより均等にすることができる。
Further, as described above, the air outlet 8b is flat and has a hollow structure with a predetermined length. Further, as shown in the sectional view of FIG. A plate-like flow rate restricting member 11 is provided as a restricting means for limiting the pressure.
Thereby, the inside of the hollow structure becomes a positive pressure state from the downstream side of the exhaust, and the backflow of the exhausted air and the inflow of air from the outside of the shelf 2 are prevented.
Further, the exhaust amount from all the air outlets 8 can be made more uniform by adjusting the inclination angle of the flow restrictor 11 at each outlet 8b.

また、このようなバッファユニット100がクリーンルーム内に設置され、その天井から清浄空気がダウンフローにより供給される場合、図1に示すように筐体1の上面には空気導入のためのスリット1cが形成されているため、筐体1の上方から筐体1内に清浄空気が供給される。また、筐体1の下部には、排気スリット1dが形成されているため、供給された清浄空気は棚部2の周囲に回り込み、筐体1下部の排気スリット1dから排気される。
ここで、図2に示すように、筐体1内の四隅付近における内壁面(もしくはケーシング20の外壁面でもよい)には、棚部2の各側面と筐体1の内面とが対向する各空間を仕切る仕切り板12(仕切り部材)が設けられる。
この仕切り部材12が設けられることにより、空気導出口8からの排気がケーシング20の他の側面側に回り込むことがなく、基板搬入出口2a,2bからの載置部6への排気の流れ込みを防ぐことができる。
When such a buffer unit 100 is installed in a clean room and clean air is supplied from the ceiling by downflow, a slit 1c for introducing air is formed on the upper surface of the housing 1 as shown in FIG. Since it is formed, clean air is supplied into the housing 1 from above the housing 1. Further, since an exhaust slit 1d is formed in the lower part of the casing 1, the supplied clean air circulates around the shelf 2 and is exhausted from the exhaust slit 1d at the lower part of the casing 1.
Here, as shown in FIG. 2, the inner wall surface (or the outer wall surface of the casing 20) in the vicinity of the four corners in the housing 1 may face each side surface of the shelf 2 and the inner surface of the housing 1. A partition plate 12 (partition member) that partitions the space is provided.
By providing the partition member 12, the exhaust from the air outlet 8 does not flow around to the other side of the casing 20, thereby preventing the exhaust from flowing into the placement unit 6 from the substrate loading / unloading ports 2 a and 2 b. be able to.

また、エア導入口7から棚部2内に導入された清浄空気は、ケーシング20に設けられた基板搬入出口2a、2bからも排気される。この排気流は、筐体1とケーシング20との間の隙間空間を流れ、筐体1下部の排気スリット1dから排気される。このため、クリーンルームから供給される清浄空気のみよりも筐体1内を効率的に空気洗浄することができる。
また、各載置部6に対して基板Gの搬入出を行う際、昇降機構3により棚部2が筐体1内で昇降移動すると、昇降機構3の周囲空間が圧縮膨張するため空気の巻き上がりが生じる。しかしながら、この空気の巻き上がりが生じても、各載置部6には、FFU4により十分な流量の清浄空気が流れ、各間口から排気されているため、棚部2内へダストが流れ込むことはない。
また、FFU4が稼働停止しても、FFU4の下流に位置する棚部4内は陽圧状態であるため、ダストの流れ込みが防止される。
The clean air introduced into the shelf 2 from the air inlet 7 is also exhausted from the substrate loading / unloading ports 2 a and 2 b provided in the casing 20. The exhaust flow flows through a gap space between the casing 1 and the casing 20 and is exhausted from the exhaust slit 1d at the lower portion of the casing 1. For this reason, the inside of the housing | casing 1 can be air-cleaned more efficiently than only the clean air supplied from a clean room.
Further, when the substrate G is carried into and out of each placement unit 6, if the shelf 2 is moved up and down in the housing 1 by the lifting mechanism 3, the surrounding space of the lifting mechanism 3 is compressed and expanded, so that the air is wound. A rise occurs. However, even if this air roll-up occurs, clean air with a sufficient flow rate flows through the FFU 4 to each placement unit 6 and is exhausted from each front, so that dust does not flow into the shelf 2. Absent.
Further, even if the FFU 4 stops operating, the inside of the shelf 4 located downstream of the FFU 4 is in a positive pressure state, so that dust can be prevented from flowing in.

以上のように、本発明に係る実施の形態によれば、バッファユニット100においては、FFU4の作動により清浄空気が生成され、清浄空気は通風路5を通ってエア導入口7から棚部5の各載置部6に供給され、供給された清浄空気は主に、各段に設けられたエア導出口8から排気される。
この構成により下流側に排気装置を設けなくても、各段の載置部6には十分な流量の清浄空気の流れを形成し、棚部2内の清浄度を確保することができる。
したがって、従来のようにクリーンルームにおけるFFUの配置を考慮しなくてもよく、クリーンルーム側の制約を受けずに製造ラインを設置することができる。
また、排気装置を設ける必要が無いため、設備コストの増加を抑制し、且つ、排気装置を設けることにより生じる不具合(稼働停止時の逆流等)を無くすことができる。
As described above, according to the embodiment of the present invention, in the buffer unit 100, clean air is generated by the operation of the FFU 4, and the clean air passes through the ventilation path 5 from the air inlet 7 to the shelf 5. The supplied clean air is supplied to each placement unit 6 and is mainly exhausted from the air outlet 8 provided in each stage.
With this configuration, a clean air flow with a sufficient flow rate can be formed on the mounting portions 6 of each stage without providing an exhaust device on the downstream side, and the cleanliness in the shelf portion 2 can be ensured.
Therefore, it is not necessary to consider the arrangement of the FFU in the clean room as in the prior art, and the production line can be installed without being restricted by the clean room.
In addition, since there is no need to provide an exhaust device, an increase in equipment costs can be suppressed, and problems (such as backflow when operation is stopped) caused by providing the exhaust device can be eliminated.

尚、前記実施の形態においては、清浄空気供給手段としてのFFU4が棚部2の(ケーシング20の)上面に設けられた例を示したが、本発明に係る基板バッファユニットにあっては、その形態に限定されるものではない。例えば、清浄空気供給手段としての前記FFU4は棚部2の(ケーシング20の)側面に設けられてもよい。
また、本発明を多段式のエレベータバッファ装置に適用する例を示したが、本発明は、その形態に限定されるものではない。例えば、多段式でなくても一段の基板バッファ装置でもよく、また、棚部2の昇降機構3を用いず、ロボットアーム等により複数の基板の搬入出を行うバッファ装置にも適用することができる。
In the above embodiment, the example in which the FFU 4 as the clean air supply means is provided on the upper surface (of the casing 20) of the shelf 2 is shown. However, in the substrate buffer unit according to the present invention, The form is not limited. For example, the FFU 4 as the clean air supply means may be provided on the side surface (of the casing 20) of the shelf 2.
Moreover, although the example which applies this invention to a multistage type elevator buffer apparatus was shown, this invention is not limited to the form. For example, a single-stage substrate buffer device may be used instead of a multi-stage type, and the present invention can also be applied to a buffer device that carries in and out a plurality of substrates by a robot arm or the like without using the lifting mechanism 3 of the shelf 2. .

1 筐体
2 棚部
3 昇降機構
4 FFU(清浄空気供給手段)
5 通風路
6 載置部
7 エア導入口(空気導入口)
8 エア導出口(空気導出口)
12 仕切り部材
13 コロ搬送シャフト(基板搬送手段)
14 シャフト回転駆動機構(搬送駆動手段)
15 カバー部材(駆動系排気手段)
16 排気管(駆動系排気手段)
20 ケーシング
100 基板バッファユニット
G ガラス基板(基板)
DESCRIPTION OF SYMBOLS 1 Case 2 Shelf part 3 Lifting mechanism 4 FFU (clean air supply means)
5 Ventilation path 6 Placement part 7 Air inlet (air inlet)
8 Air outlet (air outlet)
12 partition member 13 roller transport shaft (substrate transport means)
14 Shaft rotation drive mechanism (conveyance drive means)
15 Cover member (drive system exhaust means)
16 Exhaust pipe (drive system exhaust means)
20 Casing 100 Substrate buffer unit G Glass substrate (substrate)

Claims (7)

基板搬送路を搬送される基板を一時的に収容し、前記基板搬送路から退避させる基板バッファユニットにおいて、
前記基板搬送路の途中に設けられ、基板を載置する載置部を有すると共に、前記基板搬送路から外れた所定位置に移動可能に設けられた箱状の棚部と、
前記箱状の棚部の上面または側面に設けられ、浄化された清浄空気を供給する清浄空気供給手段と、
前記清浄空気供給手段と前記棚部の一側面とを接続する通風路とを備え、
前記清浄空気供給手段から供給された清浄空気は、前記箱状の棚部の一側面に設けられた空気導入口から前記載置部に供給され、前記箱状の棚部における前記空気導入口とは反対側の側面に設けられた空気導出口から排気されることを特徴とする基板バッファユニット。
In the substrate buffer unit that temporarily accommodates the substrate transported through the substrate transport path and retracts from the substrate transport path,
A box-shaped shelf provided in the middle of the substrate transport path, having a placement unit for placing the substrate, and movably provided at a predetermined position off the substrate transport path;
Clean air supply means that is provided on the upper surface or the side surface of the box-shaped shelf and supplies purified clean air;
An air passage that connects the clean air supply means and one side of the shelf;
The clean air supplied from the clean air supply means is supplied from the air inlet provided on one side of the box-shaped shelf to the placement unit, and the air inlet in the box-shaped shelf Is a substrate buffer unit which is exhausted from an air outlet provided on the opposite side surface.
前記箱状の棚部は、内部に複数の前記棚部が多段に設けられた箱状のケーシングを有し、
前記ケーシングの一側面において、前記空気導入口は、多段に設けられた各載置部に対応して複数設けられ、
清浄空気を前記複数の空気導入口に分配する分配整流部材が前記通風路に設けられていることを特徴とする請求項1に記載された基板バッファユニット。
The box-shaped shelf has a box-shaped casing in which a plurality of the shelves are provided in multiple stages.
In one side of the casing, a plurality of the air inlets are provided corresponding to each mounting portion provided in multiple stages,
2. The substrate buffer unit according to claim 1, wherein a distribution rectifying member for distributing clean air to the plurality of air inlets is provided in the ventilation path.
前記空気導入口に設けられ、該空気導入口から前記載置部上に供給される清浄空気を扇状に拡げる拡張整流部材を備えることを特徴とする請求項1または請求項2に記載された基板バッファユニット。   3. The substrate according to claim 1, further comprising an extended rectifying member provided at the air introduction port and configured to expand the clean air supplied from the air introduction port onto the mounting portion in a fan shape. 4. Buffer unit. 前記空気導出口は、前記箱状の棚部における前記空気導入口とは反対側の側面に複数形成されると共に、その断面は中空構造であって、
前記箱状の棚部は、
前記載置部に対する基板の搬入出を行うための基板搬送手段と、
前記載置部上に供給される清浄空気の下流側に設けられ、前記基板搬送手段を駆動する搬送駆動手段と、
前記中空構造の空気導出口と分離され、前記搬送駆動手段に供給された清浄空気のみを排気する駆動系排気手段とを備えることを特徴とする請求項1乃至請求項3のいずれかに記載された基板バッファユニット。
A plurality of the air outlets are formed on the side surface of the box-shaped shelf opposite to the air inlets, and the cross section has a hollow structure,
The box-shaped shelf is
A substrate transfer means for carrying the substrate in and out of the placement unit;
A transport driving means that is provided on the downstream side of the clean air supplied on the placement section and drives the substrate transport means;
4. The drive system exhaust unit according to claim 1, further comprising a drive system exhaust unit that exhausts only clean air that is separated from the hollow air outlet and is supplied to the transport drive unit. Substrate buffer unit.
前記複数の空気導出口にはそれぞれ、該空気導出口を流れる空気流量を制限する流量絞り手段が設けられていることを特徴とする請求項4に記載された基板バッファユニット。   5. The substrate buffer unit according to claim 4, wherein each of the plurality of air outlets is provided with a flow restriction means for restricting a flow rate of air flowing through the air outlet. 少なくとも前記棚部のケーシングを覆う筐体を備え、前記筐体と前記棚部のケーシングとの間の隙間空間において、
前記空気導入口と前記空気導出口とがそれぞれ形成された棚部の一側面と、該一側面に対向する前記筐体の内側面との間の隙間空間をそれぞれ独立に形成するための仕切り部材が、前記筐体の内壁に設けられることを特徴とする請求項2乃至5のいずれかに記載された基板バッファユニット。
In a gap space between the casing and the casing of the shelf, including a casing that covers at least the casing of the shelf,
A partition member for independently forming a gap space between one side surface of the shelf portion in which the air inlet port and the air outlet port are respectively formed and the inner side surface of the casing facing the one side surface The substrate buffer unit according to claim 2, wherein the substrate buffer unit is provided on an inner wall of the housing.
少なくとも前記棚部のケーシングを覆う筐体を備え、前記筐体と前記棚部のケーシングとの間の隙間空間において、
前記空気導入口と前記空気導出口とがそれぞれ形成された棚部の一側面と、該一側面に対向する前記筐体の内側面との間の隙間空間をそれぞれ独立に形成するための仕切り部材が、前記ケーシングの外壁に設けられることを特徴とする請求項2乃至5のいずれかに記載された基板バッファユニット。
In a gap space between the casing and the casing of the shelf, including a casing that covers at least the casing of the shelf,
A partition member for independently forming a gap space between one side surface of the shelf portion in which the air inlet port and the air outlet port are respectively formed and the inner side surface of the casing facing the one side surface The substrate buffer unit according to claim 2, wherein the substrate buffer unit is provided on an outer wall of the casing.
JP2009022813A 2009-02-03 2009-02-03 Substrate buffer unit Expired - Fee Related JP4884486B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009022813A JP4884486B2 (en) 2009-02-03 2009-02-03 Substrate buffer unit
CN2010100034264A CN101794720B (en) 2009-02-03 2010-01-15 Substrate buffering unit
TW099102131A TWI425585B (en) 2009-02-03 2010-01-26 Substrate buffering unit
KR1020100009351A KR20100089770A (en) 2009-02-03 2010-02-02 Substrate buffering unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009022813A JP4884486B2 (en) 2009-02-03 2009-02-03 Substrate buffer unit

Publications (2)

Publication Number Publication Date
JP2010182744A true JP2010182744A (en) 2010-08-19
JP4884486B2 JP4884486B2 (en) 2012-02-29

Family

ID=42587312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009022813A Expired - Fee Related JP4884486B2 (en) 2009-02-03 2009-02-03 Substrate buffer unit

Country Status (4)

Country Link
JP (1) JP4884486B2 (en)
KR (1) KR20100089770A (en)
CN (1) CN101794720B (en)
TW (1) TWI425585B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101940686B1 (en) * 2017-01-17 2019-01-22 무진전자 주식회사 Apparatus for wafer treatment
CN110225868B (en) * 2017-02-07 2021-02-26 村田机械株式会社 Storage repository
CN108861274A (en) * 2018-07-17 2018-11-23 苏州富纳艾尔科技有限公司 The warehouse style feed mechanism of intelligence manufacture flexible production line
KR102032923B1 (en) * 2019-01-07 2019-10-16 무진전자 주식회사 Apparatus for wafer treatment
KR20210108136A (en) * 2020-02-25 2021-09-02 엘지전자 주식회사 Cleaning Appliance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10120109A (en) * 1996-10-17 1998-05-12 Sanki Eng Co Ltd Inline type paper sheet stocker
JP2002289678A (en) * 2001-03-28 2002-10-04 Sanki Sangyo Setsubi Kk Board stock device
JP2005210118A (en) * 2004-01-20 2005-08-04 Alcatel Station for controlling and purging mini-environment
JP2007250671A (en) * 2006-03-14 2007-09-27 Tokyo Electron Ltd Substrate buffer device, substrate buffering method, substrate processor, control program, and computer readable storage medium
JP2008218687A (en) * 2007-03-05 2008-09-18 Asyst Technologies Japan Inc Stocker for semiconductor substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10120109A (en) * 1996-10-17 1998-05-12 Sanki Eng Co Ltd Inline type paper sheet stocker
JP2002289678A (en) * 2001-03-28 2002-10-04 Sanki Sangyo Setsubi Kk Board stock device
JP2005210118A (en) * 2004-01-20 2005-08-04 Alcatel Station for controlling and purging mini-environment
JP2007250671A (en) * 2006-03-14 2007-09-27 Tokyo Electron Ltd Substrate buffer device, substrate buffering method, substrate processor, control program, and computer readable storage medium
JP2008218687A (en) * 2007-03-05 2008-09-18 Asyst Technologies Japan Inc Stocker for semiconductor substrate

Also Published As

Publication number Publication date
TWI425585B (en) 2014-02-01
TW201036091A (en) 2010-10-01
CN101794720B (en) 2012-05-30
KR20100089770A (en) 2010-08-12
CN101794720A (en) 2010-08-04
JP4884486B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
JP6349750B2 (en) EFEM
JP4884486B2 (en) Substrate buffer unit
JP5673480B2 (en) Substrate processing equipment
JP5562759B2 (en) Substrate processing equipment
KR100687008B1 (en) Apparatus for transporting substrates capable of sucking and exhausting particles effectively
JP3754905B2 (en) Substrate dryer
JP4647378B2 (en) Drying equipment
JP2010272828A (en) Storage room of liquid crystal substrate
JP3818434B2 (en) Purified air storage system
US8388296B2 (en) Vertical carousel and vertical transportation method using the vertical carousel
JP2004269214A (en) Purified air circulating type storage equipment
JP2017052679A (en) Method and apparatus for producing glass plate
JP4062437B2 (en) Substrate cleaning apparatus and substrate processing facility
JP2008172080A (en) Treatment apparatus and method of discharging cleaning gas in the device
JP2007280885A (en) Plasma treatment device
JP2007173364A (en) Substrate treatment apparatus
JP3355117B2 (en) Semiconductor manufacturing equipment
JP4262505B2 (en) Airflow control method
JPH0888155A (en) Interface box in local cleaning and clean room therefor
JP4186129B2 (en) Plate-shaped body transfer device
CN101826448B (en) Substrate buffering unit
TW402527B (en) Carrying and dust-removal device for substrates
JP2004331395A (en) Transport device for plates
JP3507599B2 (en) Substrate processing equipment
JP6262634B2 (en) Substrate processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees