JP2010177168A - Recycling treatment method and device of lead storage battery - Google Patents

Recycling treatment method and device of lead storage battery Download PDF

Info

Publication number
JP2010177168A
JP2010177168A JP2009021522A JP2009021522A JP2010177168A JP 2010177168 A JP2010177168 A JP 2010177168A JP 2009021522 A JP2009021522 A JP 2009021522A JP 2009021522 A JP2009021522 A JP 2009021522A JP 2010177168 A JP2010177168 A JP 2010177168A
Authority
JP
Japan
Prior art keywords
electrode body
temperature
current
regeneration
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009021522A
Other languages
Japanese (ja)
Other versions
JP4608581B2 (en
Inventor
Takaharu Nakamura
隆治 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ACM HOKKAIDO KK
Original Assignee
ACM HOKKAIDO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ACM HOKKAIDO KK filed Critical ACM HOKKAIDO KK
Priority to JP2009021522A priority Critical patent/JP4608581B2/en
Publication of JP2010177168A publication Critical patent/JP2010177168A/en
Application granted granted Critical
Publication of JP4608581B2 publication Critical patent/JP4608581B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a recycling treatment method in which recycling treatment of a lead storage battery is carried out stably in a short time, and a device. <P>SOLUTION: An aqueous solution containing carboxymethyl cellulose sodium salt is injected into an electrolytic solution 2 in order to carry out a recycling treatment in the lead storage battery 1, in which a positive electrode body 3 carrying lead dioxide and a negative electrode body 4 carrying lead are immersed into the electrolytic solution 2 containing dilute sulfuric acid. A frequency formed by a signal voltage in which trigger signals with different voltage values are combined together, transmits a regenerative current of 5 to 12 kHz from the positive electrode body 3 to the negative electrode body 4, and heats the electrolytic solution 2 to be maintained in a temperature state of 50 to 60°C, and in the case temperature state of the electrolytic solution 2 is elevated to 60 to 70°C, stops supply of the regenerative current. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、充放電を繰り返すことにより充電容量が低下した鉛蓄電池を再生する再生処理方法及び装置に関する。   The present invention relates to a regeneration processing method and apparatus for regenerating a lead storage battery having a reduced charge capacity by repeating charging and discharging.

充電及び放電を繰り返して行うことができる二次電池が多方面で用いられているが、二次電池の中でも鉛蓄電池は安定した出力が得られるとともに安価に製造できることから、車両用として広く使用されている。   Secondary batteries that can be repeatedly charged and discharged are used in many fields, but among secondary batteries, lead-acid batteries are widely used for vehicles because they provide stable output and can be manufactured at low cost. ing.

鉛蓄電池は、充電及び放電を繰り返して使用していると、次第に充電容量が低下するようになり、充電容量が当初の半分以下に低下すると製品寿命が到来したとして新品に交換されるようになっている。   Lead-acid batteries gradually decrease in charge capacity when used repeatedly for charge and discharge, and when the charge capacity decreases to less than half of the original, they are replaced with new ones as the product life has come to an end. ing.

こうした鉛蓄電池の製品寿命を左右するといわれているのが、鉛蓄電池の内部で進行するサルフェーションという現象である。鉛蓄電池は、二酸化鉛を担持する正極体及び鉛を担持する負極体を希硫酸を含む電解液に浸漬しているが、充放電を繰り返すうちに負極体の表面に硫酸鉛の硬い結晶が生じるようになる。こうした負極体表面への硫酸鉛の蓄積現象がサルフェーションと一般に称されている。   What is said to affect the product life of such a lead storage battery is a phenomenon called sulfation that proceeds inside the lead storage battery. In a lead-acid battery, a positive electrode body supporting lead dioxide and a negative electrode body supporting lead are immersed in an electrolytic solution containing dilute sulfuric acid, but a hard crystal of lead sulfate is generated on the surface of the negative electrode body as charging and discharging are repeated. It becomes like this. Such an accumulation phenomenon of lead sulfate on the surface of the negative electrode body is generally referred to as sulfation.

サルフェーションが進行していくと、負極体の表面が硫酸鉛の蓄積により覆われるようになっていく。硫酸鉛はほとんど電気的に導通せず溶解度も低いため、サルフェーションが進行して負極体が硫酸鉛で覆われた鉛蓄電池は充放電が十分行うことができず、製品寿命が尽きたものとして取り扱われる。   As the sulfation proceeds, the surface of the negative electrode body is covered by the accumulation of lead sulfate. Since lead sulfate is hardly electrically conductive and has low solubility, lead storage batteries in which sulfation has progressed and the negative electrode body is covered with lead sulfate cannot be fully charged and discharged, and are treated as having expired. It is.

こうして製品寿命が尽きた鉛蓄電池を再生処理して再使用することが提案されている。例えば、特許文献1では、電極表面に硫酸鉛の析出した鉛蓄電池に対して充電電圧よりも高い電圧で1〜8Aの直流パルス電流を流して析出した硫酸鉛を減少させ、炭素コロイド粒子を含む炭素懸濁液を電解液に用いて直流電圧を印加する鉛蓄電池の再生方法が記載されている。また、特許文献2では、0.5〜1分の休止期間を挟み、ベース電流及びパルス周波数1〜5kHzの方形波のパルス電流を重畳した充電電流を5〜10分間印加する充電期間を周期的に繰り返す鉛蓄電池の再生処理方法が記載されている。また、特許文献3では、充電器からの浮動充電電流と再生装置からの直流のベース電流、方形波のパルス電流とを重畳する充電電流を浮動充電方式によって稼働中の蓄電池に供給し、時系列的に採取する蓄電池の各セルの電圧データに基づいて蓄電池の再生処理の進行を監視する蓄電池の再生処理方法が記載されている。   It has been proposed to recycle and reuse a lead storage battery whose product life has expired. For example, in Patent Document 1, a lead storage battery in which lead sulfate is deposited on the electrode surface is supplied with a DC pulse current of 1 to 8 A at a voltage higher than the charging voltage to reduce the deposited lead sulfate and include carbon colloid particles. A method for regenerating a lead-acid battery using a carbon suspension as an electrolyte and applying a DC voltage is described. Further, in Patent Document 2, a charging period in which a charging current in which a base current and a square wave pulse current with a pulse frequency of 1 to 5 kHz are superimposed is applied for 5 to 10 minutes with a pause period of 0.5 to 1 minute is periodically inserted. The method for regenerating a lead-acid battery is described repeatedly. Further, in Patent Document 3, a charging current that superimposes a floating charging current from a charger, a DC base current from a regenerator, and a square-wave pulse current is supplied to an operating storage battery by a floating charging method, and time series A storage battery regeneration processing method is described in which the progress of the storage battery regeneration process is monitored based on the voltage data of each cell of the storage battery that is collected automatically.

特許第3510795号公報Japanese Patent No. 3510775 特許第3723795号公報Japanese Patent No. 3723895 特開2007−80552号公報JP 2007-80552 A

上述した先行文献では、パルス電流を印加することでサルフェーションにより蓄積した硫酸鉛を除去できるが、パルス電流による発熱により電解液の温度が上昇するため温度上昇を抑える必要がある。例えば、特許文献2に示すように、休止期間を挟んで充電電流を印加することで温度上昇を抑えることができるが、その分再生処理時間が長時間かかるようになる。   In the above-mentioned prior art, lead sulfate accumulated by sulfation can be removed by applying a pulse current. However, since the temperature of the electrolyte rises due to heat generated by the pulse current, it is necessary to suppress the temperature rise. For example, as shown in Patent Document 2, an increase in temperature can be suppressed by applying a charging current with a pause period in between, but a longer regeneration processing time is required.

そこで、本発明は、鉛蓄電池を短時間で安定して再生処理を行うことができる再生処理方法及び装置を提供することを目的とするものである。   Then, this invention aims at providing the reproduction | regeneration processing method and apparatus which can perform the reproduction | regeneration process stably for a lead storage battery in a short time.

本発明に係る鉛蓄電池の再生処理方法は、二酸化鉛を担持する正極体及び鉛を担持する負極体を希硫酸を含む電解液内に浸漬させた鉛蓄電池の再生処理方法であって、前記電解液にカルボキシメチルセルロースナトリウム塩を含む水溶液を注入し、電圧値の異なるトリガ信号を組み合せた信号電圧により生成された周波数5kHz〜12kHzの再生電流を前記正極体から前記負極体に流して前記電解液を50℃〜60℃の温度状態に維持するように加熱し、前記再生電流を印加した状態で前記電解液が60℃〜70℃の温度状態に上昇した場合に前記再生電流の供給を停止することを特徴とする。さらに、前記水溶液が注入された前記電解液は、カルボキシメチルセルロースナトリウム塩の濃度が0.5重量%〜1.0重量%であることを特徴とする。   The regeneration processing method for a lead storage battery according to the present invention is a regeneration processing method for a lead storage battery in which a positive electrode body supporting lead dioxide and a negative electrode body supporting lead are immersed in an electrolyte containing dilute sulfuric acid. An aqueous solution containing carboxymethylcellulose sodium salt is injected into the solution, and a regeneration current having a frequency of 5 kHz to 12 kHz generated by a signal voltage obtained by combining trigger signals having different voltage values is flowed from the positive electrode body to the negative electrode body, and the electrolyte solution is supplied. Heating to maintain a temperature state of 50 ° C. to 60 ° C., and stopping the supply of the regeneration current when the electrolyte rises to a temperature state of 60 ° C. to 70 ° C. with the regeneration current applied. It is characterized by. Furthermore, the electrolytic solution into which the aqueous solution is injected has a concentration of carboxymethyl cellulose sodium salt of 0.5 wt% to 1.0 wt%.

本発明に係る鉛蓄電池の再生処理装置は、二酸化鉛を担持する正極体及び鉛を担持する負極体を希硫酸を含む電解液内に浸漬させた鉛蓄電池の再生処理装置であって、電圧値の異なるトリガ信号を組み合せた信号電圧により生成された周波数5kHz〜12kHzの再生電流を前記正極体から前記負極体に流す電流印加手段と、前記電解液の温度を検知する温度検知手段と、カルボキシメチルセルロースナトリウム塩を含む水溶液を注入した前記電解液に前記電流印加手段により前記再生電流を流して前記温度検知手段の検知温度が50℃〜60℃の温度状態を維持するように加熱するとともに前記温度検知手段の検知温度が60℃〜70℃に上昇した場合に電流の供給を停止する制御手段とを備えていることを特徴とする   The regeneration processing device for a lead storage battery according to the present invention is a regeneration processing device for a lead storage battery in which a positive electrode body supporting lead dioxide and a negative electrode body supporting lead are immersed in an electrolyte containing dilute sulfuric acid. Current applying means for flowing a reproduction current having a frequency of 5 kHz to 12 kHz generated by a signal voltage obtained by combining different trigger signals from the positive electrode body to the negative electrode body, a temperature detecting means for detecting the temperature of the electrolytic solution, and carboxymethylcellulose The regeneration current is supplied by the current application means to the electrolyte into which an aqueous solution containing a sodium salt is injected, and the temperature detection means is heated to maintain a temperature state of 50 ° C. to 60 ° C. and the temperature detection And a control means for stopping the supply of current when the detected temperature of the means rises to 60 ° C. to 70 ° C.

上記のような構成を有することで、カルボキシメチルセルロースナトリウム塩を含む水溶液を電解液に注入して電圧値の異なるトリガ信号を組み合せた信号電圧により生成された周波数5kHz〜12kHzの再生電流を正極体から負極体に流すことで、電極体に蓄積した硫酸鉛を除去するとともにサルフェーションの核となる鉛の結晶を破壊し、電極体の表面を修復するように作用する。   By having the above configuration, an aqueous solution containing carboxymethylcellulose sodium salt is injected into the electrolyte solution, and a reproduction current having a frequency of 5 kHz to 12 kHz generated by a signal voltage obtained by combining trigger signals having different voltage values is generated from the positive electrode body. By flowing through the negative electrode body, the lead sulfate accumulated in the electrode body is removed, and the lead crystal that is the nucleus of the sulfation is destroyed to act to repair the surface of the electrode body.

こうした負極体の表面修復作用を継続させるために電解液の温度を50℃〜60℃の温度状態に維持するように加熱する必要がある。電圧値の異なるトリガ信号を組み合せた信号電圧により生成された再生電流を用いることで印加する再生電流の周波数を容易に変更することができるため、50℃〜60℃の温度状態に維持する再生電流をきめ細かく設定することが可能となる。そのため、鉛蓄電池の規格に応じて電解液の温度を50℃〜60℃の温度状態に維持する再生電流を的確に設定して、短時間で安定した再生処理を行うことができる。   In order to continue the surface repairing action of the negative electrode body, it is necessary to heat the electrolyte so that the temperature of the electrolytic solution is maintained at a temperature of 50 ° C to 60 ° C. Since the frequency of the reproduction current to be applied can be easily changed by using the reproduction current generated by the signal voltage obtained by combining the trigger signals having different voltage values, the reproduction current maintained at a temperature state of 50 ° C. to 60 ° C. Can be set in detail. Therefore, the regeneration current for maintaining the temperature of the electrolytic solution in a temperature state of 50 ° C. to 60 ° C. can be accurately set according to the standard of the lead storage battery, and stable regeneration processing can be performed in a short time.

また、電解液の温度を50℃〜60℃の温度状態に維持する再生電流を印加しながら再生処理を行い、再生処理が完了すると電解液の温度が上昇するようになるため、電界液が60℃〜70℃の温度状態に上昇した場合に再生電流の供給を停止すれば、再生処理を確実に完了させることができる。   In addition, the regeneration process is performed while applying a regeneration current that maintains the temperature of the electrolytic solution at a temperature of 50 ° C. to 60 ° C. When the regeneration process is completed, the temperature of the electrolytic solution rises. If the supply of the regeneration current is stopped when the temperature rises to from 70 ° C. to 70 ° C., the regeneration process can be completed reliably.

本発明に係る実施形態に関する概略構成図である。It is a schematic block diagram regarding embodiment which concerns on this invention. 発生するトリガ信号の信号波形に関する模式図である。It is a schematic diagram regarding the signal waveform of the trigger signal to generate | occur | produce. 再生電流の信号波形に関する模式図である。It is a schematic diagram regarding the signal waveform of the reproduction current. 鉛蓄電池を再生処理するためのフローである。It is a flow for carrying out reproduction processing of a lead storage battery.

以下、本発明に係る実施形態について詳しく説明する。なお、以下に説明する実施形態は、本発明を実施するにあたって好ましい具体例であるから、技術的に種々の限定がなされているが、本発明は、以下の説明において特に本発明を限定する旨明記されていない限り、これらの形態に限定されるものではない。   Hereinafter, embodiments according to the present invention will be described in detail. The embodiments described below are preferable specific examples for carrying out the present invention, and thus various technical limitations are made. However, the present invention is particularly limited in the following description. Unless otherwise specified, the present invention is not limited to these forms.

図1は、本発明に係る実施形態に関する概略構成図である。再生処理を行う鉛蓄電池1は、ケース内に複数のセルが隔壁により区画されて収容されており、公知の構成を備えている。各セルの内部には、電解液2が貯留されており、電解液2には正極体3及び負極体4が浸漬された状態で取り付けられている。   FIG. 1 is a schematic configuration diagram relating to an embodiment of the present invention. The lead storage battery 1 that performs the regenerating process includes a plurality of cells that are partitioned by a partition and accommodated in a case. The electrolytic solution 2 is stored inside each cell, and the positive electrode body 3 and the negative electrode body 4 are attached to the electrolytic solution 2 while being immersed therein.

正極体3は、鉛製の板状電極体を多孔質に形成して表面積を増加させ、その表面全体に二酸化鉛の層を形成している。また、負極体4は、多孔質の鉛製板状電極体から構成される。電解液2としては、一般に希硫酸が用いられる。   The positive electrode body 3 has a plate-like electrode body made of lead made porous to increase the surface area, and a lead dioxide layer is formed on the entire surface. The negative electrode body 4 is composed of a porous lead plate electrode body. As the electrolytic solution 2, dilute sulfuric acid is generally used.

鉛蓄電池1を充電する場合には、電極体が電解液中の水を取り込んで硫酸を放出するようになり、放電する場合には、電解液中の硫酸が電極体と反応して水が生成されるようになる。こうした充放電を繰り返していくと、電極体の表面に硫酸鉛が析出して蓄積されるようになり、電極体が硫酸鉛により電気的な導通が阻害されるようになる。そのため、電極体の放電面積が小さくなって放電容量が低下し、充電時には電極体の抵抗が増加して発熱するようになる。   When the lead storage battery 1 is charged, the electrode body takes in water in the electrolytic solution and releases sulfuric acid, and when discharged, the sulfuric acid in the electrolytic solution reacts with the electrode body to generate water. Will come to be. When such charge and discharge are repeated, lead sulfate is deposited and accumulated on the surface of the electrode body, and electrical conduction of the electrode body is inhibited by lead sulfate. For this reason, the discharge area of the electrode body is reduced, the discharge capacity is reduced, and the resistance of the electrode body is increased during charging to generate heat.

本実施形態では、こうして性能が劣化した鉛蓄電池1を再生処理するために、鉛蓄電池1の規格に対応した電圧を印加するための電源部10及び整流回路11を備えている。電源部10は、商用電源から変圧器等を用いて所定の電圧に変圧し、整流回路11により規格電圧に対応した直流電圧が出力される。   In this embodiment, in order to regenerate the lead storage battery 1 whose performance has been deteriorated in this way, a power supply unit 10 and a rectifier circuit 11 for applying a voltage corresponding to the standard of the lead storage battery 1 are provided. The power supply unit 10 transforms the commercial power supply to a predetermined voltage using a transformer or the like, and the rectifier circuit 11 outputs a DC voltage corresponding to the standard voltage.

整流回路11は、パワーデバイスからなるスイッチング素子12、フィードバック抵抗器13、電流計14を介して正極体3の端子3aに接続されている。負極体4の端子は、接地されており、正極体3の端子3aとの間に電圧計15が接続されている。   The rectifier circuit 11 is connected to the terminal 3 a of the positive electrode body 3 via a switching element 12 made of a power device, a feedback resistor 13, and an ammeter 14. A terminal of the negative electrode body 4 is grounded, and a voltmeter 15 is connected between the terminal 3 a of the positive electrode body 3.

制御回路20は、電圧値の異なる2つのトリガ信号を組み合わせた再生信号を発生させる。図2は、発生するトリガ信号の信号波形に関する模式図である。この例では、電圧値V1のトリガ信号を所定間隔で発生させた信号波形T1及び電圧値V2のトリガ信号を所定間隔で発生させた信号波形T2を用いて交互にトリガ信号を組み合わせ信号波形T3を合成して再生信号として出力する。V1は、V2よりも大きい値に設定されており、再生電流の実効値に合わせて設定することが好ましい。 The control circuit 20 generates a reproduction signal obtained by combining two trigger signals having different voltage values. FIG. 2 is a schematic diagram relating to the signal waveform of the generated trigger signal. In this example, the combination of trigger signals alternately with a voltage value V 1 of the signal waveform T 2 where the trigger signal of the signal waveform T 1 and a voltage value V 2 which is generated at predetermined intervals a trigger signal is generated at predetermined intervals and it outputs a signal waveform T 3 as synthesized and reproduced signal. V 1 is set to a value larger than V 2 and is preferably set according to the effective value of the reproduction current.

こうした電圧値の異なるトリガ信号を組み合わせた再生信号を用いることで信号波形の周波数を簡単に変更することができるとともに高周波数に設定することも容易に行うことができる。この場合、再生信号の周波数は0Hz〜12kHzまで設定することができ、出力する信号波形の周波数を途中でランダムに変更することも簡単に行うことが可能で、再生処理する鉛蓄電池に対してテストを行う場合等に有用である。   By using a reproduction signal in which trigger signals having different voltage values are combined, the frequency of the signal waveform can be easily changed and can be easily set to a high frequency. In this case, the frequency of the regenerative signal can be set from 0 Hz to 12 kHz, and the frequency of the output signal waveform can be easily changed at random along the way. This is useful when

再生信号の周波数については、12kHz以上の高周波数に設定することも可能であるが、周波数が12kHzを超えると再生効率が低下してくることから、周波数を12kHzまでに設定するようにしている。鉛蓄電池は回路的にはコンデンサとみることができるが、12kHzを超える高周波数の電流を印加した場合コンデンサとしての充電作用が機能しなくなることから、再生効率が低下すると考えられる。   The frequency of the reproduction signal can be set to a high frequency of 12 kHz or higher. However, if the frequency exceeds 12 kHz, the reproduction efficiency is lowered, so the frequency is set to 12 kHz. Although the lead storage battery can be regarded as a capacitor in terms of circuit, it is considered that when a high-frequency current exceeding 12 kHz is applied, the charging function as a capacitor stops functioning, and the regeneration efficiency is lowered.

また、トリガ信号の立ち上り及び立下りに発生するエッジ信号波形は、信号波形T1の立ち上り及び立下りがそれぞれ信号波形T2の立ち下り及び立上りに重なることで互いに相殺されるようになる。 Further, the edge signal waveforms generated at the rising and falling edges of the trigger signal are canceled out by overlapping the rising and falling edges of the signal waveform T 1 with the falling and rising edges of the signal waveform T 2 , respectively.

トリガ信号を合成した再生信号はインバータ回路21を介して可変抵抗器22に入力されて電圧値が調整される。電圧値が調整された再生信号は増幅回路23の一方の入力端子に入力される。増幅回路23の他方の端子には制御回路20からオン・オフ信号が入力され、オン信号が入力されている場合に増幅回路23から再生信号が出力される。   The reproduction signal obtained by synthesizing the trigger signal is input to the variable resistor 22 via the inverter circuit 21 and the voltage value is adjusted. The reproduction signal whose voltage value has been adjusted is input to one input terminal of the amplifier circuit 23. An ON / OFF signal is input from the control circuit 20 to the other terminal of the amplifier circuit 23, and a reproduction signal is output from the amplifier circuit 23 when an ON signal is input.

増幅回路23から出力された再生信号は、増幅回路24に入力される。増幅回路24から出力された再生信号はスイッチング素子12に入力されて再生信号に対応した再生電流が負極体3に流れるようになる。その際にフィードバック抵抗器13に流れた再生電流を増幅回路24にフィードバックすることで再生電流を安定した状態で流すことができる。その際に、充電回路の等価回路におけるLCR分で高周波領域がカットされてエッジ部分が丸みを帯びた正弦波に近い波形に整形される。   The reproduction signal output from the amplifier circuit 23 is input to the amplifier circuit 24. The reproduction signal output from the amplifier circuit 24 is input to the switching element 12 so that a reproduction current corresponding to the reproduction signal flows through the negative electrode body 3. At this time, the reproduction current flowing through the feedback resistor 13 is fed back to the amplifier circuit 24, so that the reproduction current can flow in a stable state. At that time, the high frequency region is cut by LCR in the equivalent circuit of the charging circuit, and the edge portion is shaped into a waveform close to a rounded sine wave.

再生電流は、図3に示すように、直流分I1及び周波数分I2を有する波形となる。例えば、10Aの電流を印加する場合には、直流分を4Aに設定し、周波数分を実効値で6Aとなるように設定すればよい。こうした設定は、トリガ信号の電圧値及び周波数の設定により簡単に行うことができる。 As shown in FIG. 3, the reproduction current has a waveform having a direct current component I 1 and a frequency component I 2 . For example, when a current of 10 A is applied, the direct current component may be set to 4 A and the frequency component may be set to be 6 A as an effective value. Such setting can be easily performed by setting the voltage value and frequency of the trigger signal.

モードスイッチ25は、鉛蓄電池の規格に応じて選択されることで、再生処理する鉛蓄電池に対応した選択信号を制御回路20に出力し、制御回路20では、入力された選択信号に基づいて再生信号を発生させる。   The mode switch 25 is selected according to the standard of the lead storage battery, and outputs a selection signal corresponding to the lead storage battery to be regenerated to the control circuit 20, and the control circuit 20 regenerates based on the input selection signal. Generate a signal.

温度測定装置30は、鉛蓄電池の各セルに設けられた電解液の温度を検知する温度センサ31からの検知信号を測定して制御回路20に送信する。制御回路20では、再生電流の印加後に急激に温度が上昇した場合や再生電流を印加後再生処理が完了して温度が60℃〜70℃に上昇した場合に再生電流の供給を停止する。   The temperature measuring device 30 measures a detection signal from a temperature sensor 31 that detects the temperature of the electrolytic solution provided in each cell of the lead storage battery, and transmits it to the control circuit 20. The control circuit 20 stops the supply of the regeneration current when the temperature suddenly rises after the regeneration current is applied or when the regeneration process is completed after the regeneration current is applied and the temperature rises to 60 ° C. to 70 ° C.

再生処理される鉛蓄電池では、所定周波数の再生電流を正極体3から負極体4に流すことで、発熱するようになる。鉛蓄電池は、等価回路ではコンデンサとして取り扱うことができるため、再生電流の周波数を上昇させることで発熱量を増加させて電解液の温度を効率よく上昇させることが可能となる。   In a lead storage battery to be regenerated, a regenerative current having a predetermined frequency is passed from the positive electrode body 3 to the negative electrode body 4 to generate heat. Since the lead storage battery can be handled as a capacitor in the equivalent circuit, it is possible to increase the heat generation amount by increasing the frequency of the regenerative current and efficiently increase the temperature of the electrolytic solution.

また、再生処理する鉛蓄電池の電解液に予めカルボキシメチルセルロースナトリウム塩を含む水溶液を注入しておくことで、電極体に蓄積した硫酸鉛を除去するとともにサルフェーションの核となる鉛の結晶を破壊することができる。水溶液を注入した電解液のカルボキシメチルセルロースナトリウム塩の濃度は、0.5重量%〜1.0重量%であることが好ましい。カルボキシメチルセルロースナトリウム塩の濃度が0.5重量%よりも低いと、サルフェーションの修復効果が十分得られず、1.0重量%を超えると再生処理された鉛蓄電池の充放電性能に影響が生じるようになる。   Also, by pre-injecting an aqueous solution containing sodium carboxymethylcellulose into the electrolyte of the lead storage battery to be regenerated, lead sulfate accumulated in the electrode body is removed and lead crystals that are the core of sulfation are destroyed. Can do. The concentration of carboxymethyl cellulose sodium salt in the electrolytic solution into which the aqueous solution has been injected is preferably 0.5% by weight to 1.0% by weight. If the concentration of carboxymethylcellulose sodium salt is lower than 0.5% by weight, a sufficient sulfation repair effect cannot be obtained. If it exceeds 1.0% by weight, the charge / discharge performance of the regenerated lead-acid battery may be affected. become.

その際に、電解液の温度を50℃〜60℃に維持することで、こうしたカルボキシメチルセルロースナトリウム塩の修復作用を促進させて再生処理時間を短縮することができる。電解液の温度を50℃〜60℃に維持するためには、再生電流の周波数を調整して簡単に設定することができる。この場合、周波数5kHz〜12kHzの再生電流を印加して効率よく加熱し、電解液の温度を50℃〜60℃に維持することが可能となる。   At that time, by maintaining the temperature of the electrolytic solution at 50 ° C. to 60 ° C., the repairing action of such sodium carboxymethyl cellulose can be promoted and the regeneration treatment time can be shortened. In order to maintain the temperature of the electrolytic solution at 50 ° C. to 60 ° C., the frequency of the regeneration current can be adjusted and set easily. In this case, it is possible to efficiently apply a regeneration current having a frequency of 5 kHz to 12 kHz and maintain the temperature of the electrolyte at 50 ° C. to 60 ° C.

図4は、鉛蓄電池を再生処理するためのフローである。まず、回収された使用済の鉛蓄電池の受入検査を行う(S100)。回収された鉛蓄電池は、規格及び製造日等を確認し、容器本体や各セル等の外観検査を行い、検査結果によりショートしているもの等の再生不能と判断されたものは除外される。   FIG. 4 is a flow for regenerating the lead storage battery. First, an acceptance inspection of the collected used lead storage battery is performed (S100). The collected lead-acid batteries are checked for standards and date of manufacture, and the appearance of the container body and each cell is inspected, and those that are judged to be unrecyclable, such as those that are short-circuited based on the inspection results, are excluded.

そして、検査結果により問題のないものは洗浄されて充電試験が行われる(S101)。まず、各セルの電圧及び比重が測定されて通電可能かチェックされ、通電可能なものに対しては公知の充電器が鉛蓄電池に接続されて規格に対応した充電電圧が印加されて充電試験が行われる。充電期間中の各セルの電圧、比重及び電界液の温度が測定されて充電特性がチェックされる。充電試験後に公知の放電器が接続されて放電試験が行われる(S102)。放電期間中の各セルの電圧及び放電時間が測定されて放電特性がチェックされる。   Then, those having no problem according to the inspection result are washed and a charge test is performed (S101). First, the voltage and specific gravity of each cell is measured to check whether it can be energized. For those that can be energized, a known charger is connected to the lead storage battery and a charging voltage corresponding to the standard is applied to perform a charging test. Done. The charging characteristics are checked by measuring the voltage, specific gravity and temperature of the electrolysis solution of each cell during the charging period. After the charge test, a known discharger is connected and a discharge test is performed (S102). The discharge characteristics are checked by measuring the voltage and discharge time of each cell during the discharge period.

こうした充電試験及び放電試験において、電解液の液濁が生じたセルや極端に放電時間の短いセルは不良セルとして別の再生済セルと交換する。   In such a charge test and discharge test, a cell in which the electrolyte solution is turbid or a cell having an extremely short discharge time is replaced with another regenerated cell as a defective cell.

次に、不良セルを交換した鉛蓄電池に対して再生処理を行う(S103)。上述したように、鉛蓄電池の電解液を50℃〜60℃に維持できる再生電流をテストにより設定しておき、鉛蓄電池の電解液にカルボキシメチルセルロースナトリウム塩を含む水溶液を注入し、カルボキシメチルセルロースナトリウム塩の濃度を0.5重量%〜1.0重量%に設定する。   Next, a regeneration process is performed on the lead storage battery whose defective cell has been replaced (S103). As described above, a regeneration current capable of maintaining the electrolyte of the lead storage battery at 50 ° C. to 60 ° C. is set by a test, an aqueous solution containing carboxymethyl cellulose sodium salt is injected into the electrolyte of the lead storage battery, and carboxymethyl cellulose sodium salt Is set to 0.5 wt% to 1.0 wt%.

水溶液を注入後再生電流を印加する。再生電流を印加することで電界液が加熱されて温度が上昇していくが、電解液の温度は温度測定装置30により常時測定されて急激に温度が上昇したセルがあると警告信号が制御回路20に送信される。   A regeneration current is applied after injecting the aqueous solution. By applying the regenerative current, the electrolysis solution is heated and the temperature rises. However, if there is a cell in which the temperature of the electrolyte solution is constantly measured by the temperature measuring device 30 and the temperature rises rapidly, a warning signal is sent to the control circuit. 20 is transmitted.

再生処理が正常に行われているセルについては、6〜7時間の再生処理が行われて充電が完了する。その際に、充電期間中は電解液が50℃〜60℃で推移するが、充電完了により電解液の温度が60℃〜70℃に上昇するため、電解液の温度推移をチェックすることで再生処理が完了したことを確認することができる。正常に再生処理が行われていない場合には、再生電流の印加により急激に電解液の温度が上昇していき、約80℃で電解液が沸騰するようになるため、再生処理ができないセルを不良セルとして除去し、再生済みのセルと交換する。   For cells in which regeneration processing is normally performed, regeneration processing is performed for 6 to 7 hours, and charging is completed. At that time, the electrolytic solution changes at 50 ° C to 60 ° C during the charging period, but the temperature of the electrolytic solution rises to 60 ° C to 70 ° C upon completion of charging. It can be confirmed that the processing is completed. When the regeneration process is not performed normally, the temperature of the electrolyte solution suddenly increases due to the application of the regeneration current, and the electrolyte solution boils at about 80 ° C. Remove as defective cell and replace with regenerated cell.

こうして再生処理が行われた鉛蓄電池に対して、再生後の充放電試験が行われる(S104)。充放電を複数回繰り返して行い、各セルの電圧、比重、電解液の温度を測定し、測定値が基本設定値を満たしているか性能検査を行う(S105)。性能検査で問題のないものは再生鉛蓄電池として出荷される。   A charge / discharge test after regeneration is performed on the lead storage battery thus subjected to regeneration processing (S104). Charging / discharging is repeated a plurality of times, and the voltage, specific gravity, and electrolyte temperature of each cell are measured, and a performance test is performed to determine whether the measured value satisfies the basic set value (S105). Those with no problems in performance inspection are shipped as recycled lead-acid batteries.

本発明に基づいて再生処理された鉛蓄電池と公知の再生液を用いて再生処理された鉛蓄電池とを3回充放電を繰り返してCCA値を測定したところ、再生処理前に比べて本発明では50%上昇していたが、公知のものでは20%の上昇であった。この結果、本発明による再生処理は、従来の再生処理に比べて格段に再生効率が高いことが示された。   When the CCA value was measured by repeating charge and discharge three times for a lead storage battery regenerated according to the present invention and a lead storage battery regenerated using a known regenerating liquid, the present invention compared to before the regenerating process. It was up 50%, but the known one was up 20%. As a result, it was shown that the reproduction processing according to the present invention has much higher reproduction efficiency than the conventional reproduction processing.

1 鉛蓄電池
2 電解液
3 正極体
4 負極体
10 電源部
11 整流回路
12 スイッチング素子
13 フィードバック抵抗器
14 電流計
15 電圧計
20 制御回路
21 インバータ
22 可変抵抗器
23 増幅回路
24 増幅回路
25 モードスイッチ
30 温度測定装置
31 温度センサ
DESCRIPTION OF SYMBOLS 1 Lead acid battery 2 Electrolyte 3 Positive electrode body 4 Negative electrode body
10 Power supply
11 Rectifier circuit
12 Switching element
13 Feedback resistor
14 Ammeter
15 Voltmeter
20 Control circuit
21 Inverter
22 Variable resistor
23 Amplifier circuit
24 Amplifier circuit
25 Mode switch
30 Temperature measuring device
31 Temperature sensor

Claims (3)

二酸化鉛を担持する正極体及び鉛を担持する負極体を希硫酸を含む電解液内に浸漬させた鉛蓄電池の再生処理方法であって、前記電解液にカルボキシメチルセルロースナトリウム塩を含む水溶液を注入し、電圧値の異なるトリガ信号を組み合せた信号電圧により生成された周波数5kHz〜12kHzの再生電流を前記正極体から前記負極体に流して前記電解液を50℃〜60℃の温度状態に維持するように加熱し、前記再生電流を印加した状態で前記電解液が60℃〜70℃の温度状態に上昇した場合に前記再生電流の供給を停止することを特徴とする鉛蓄電池の再生処理方法。   A regeneration method for a lead storage battery in which a positive electrode body supporting lead dioxide and a negative electrode body supporting lead are immersed in an electrolyte containing dilute sulfuric acid, and an aqueous solution containing carboxymethylcellulose sodium salt is injected into the electrolyte A regeneration current having a frequency of 5 kHz to 12 kHz generated by a signal voltage obtained by combining trigger signals having different voltage values is passed from the positive electrode body to the negative electrode body so as to maintain the electrolyte in a temperature state of 50 ° C to 60 ° C. A regeneration method for a lead storage battery, wherein the supply of the regeneration current is stopped when the electrolyte rises to a temperature of 60 ° C. to 70 ° C. with the regeneration current applied. 前記水溶液が注入された前記電解液は、カルボキシメチルセルロースナトリウム塩の濃度が0.5重量%〜1.0重量%であることを特徴とする請求項1に記載の再生処理方法。   2. The regeneration processing method according to claim 1, wherein the electrolyte solution into which the aqueous solution is injected has a carboxymethyl cellulose sodium salt concentration of 0.5 wt% to 1.0 wt%. 二酸化鉛を担持する正極体及び鉛を担持する負極体を希硫酸を含む電解液内に浸漬させた鉛蓄電池の再生処理装置であって、電圧値の異なるトリガ信号を組み合せた信号電圧により生成された周波数5kHz〜12kHzの再生電流を前記正極体から前記負極体に流す電流印加手段と、前記電解液の温度を検知する温度検知手段と、カルボキシメチルセルロースナトリウム塩を含む水溶液を注入した前記電解液に前記電流印加手段により前記再生電流を流して前記温度検知手段の検知温度が50℃〜60℃の温度状態を維持するように加熱するとともに前記温度検知手段の検知温度が60℃〜70℃に上昇した場合に電流の供給を停止する制御手段とを備えていることを特徴とする鉛蓄電池の再生処理装置。   A lead-acid battery regeneration processing device in which a positive electrode body supporting lead dioxide and a negative electrode body supporting lead are immersed in an electrolyte containing dilute sulfuric acid, which is generated by a signal voltage obtained by combining trigger signals having different voltage values. Current applying means for flowing a reproduction current having a frequency of 5 kHz to 12 kHz from the positive electrode body to the negative electrode body, temperature detecting means for detecting the temperature of the electrolytic solution, and the electrolytic solution into which an aqueous solution containing carboxymethylcellulose sodium salt has been injected. The regeneration current is supplied by the current application means to heat the temperature detection means so that the temperature detected by the temperature detection means is maintained at a temperature of 50 ° C. to 60 ° C. and the temperature detection temperature of the temperature detection means is increased to 60 ° C. to 70 ° C. And a control means for stopping the supply of electric current in the event of failure.
JP2009021522A 2009-02-02 2009-02-02 Lead storage battery regeneration processing method and apparatus Active JP4608581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009021522A JP4608581B2 (en) 2009-02-02 2009-02-02 Lead storage battery regeneration processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009021522A JP4608581B2 (en) 2009-02-02 2009-02-02 Lead storage battery regeneration processing method and apparatus

Publications (2)

Publication Number Publication Date
JP2010177168A true JP2010177168A (en) 2010-08-12
JP4608581B2 JP4608581B2 (en) 2011-01-12

Family

ID=42707875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009021522A Active JP4608581B2 (en) 2009-02-02 2009-02-02 Lead storage battery regeneration processing method and apparatus

Country Status (1)

Country Link
JP (1) JP4608581B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311587A (en) * 2013-05-27 2013-09-18 张修斌 Preparation method of repairing solution of lead-acid storage battery
CN109378533A (en) * 2018-10-18 2019-02-22 陈明 A kind of high-capacity lead-acid storage battery instrument for repairing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311587A (en) * 2013-05-27 2013-09-18 张修斌 Preparation method of repairing solution of lead-acid storage battery
CN109378533A (en) * 2018-10-18 2019-02-22 陈明 A kind of high-capacity lead-acid storage battery instrument for repairing

Also Published As

Publication number Publication date
JP4608581B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP3510795B2 (en) How to recycle lead-acid batteries
CN103490114A (en) Storage battery charging regenerator
KR20060090939A (en) Lead battery regenerating apparatus and method of the same
JP7244456B2 (en) SECONDARY BATTERY STATE DETERMINATION METHOD AND SECONDARY BATTERY STATE DETERMINATION DEVICE
CN113437370A (en) Storage battery efficiency maintenance method and equipment based on resonant pulse repair technology
JP4608581B2 (en) Lead storage battery regeneration processing method and apparatus
WO2006057083A1 (en) Used lead battery regenerating/new lead battery capacity increasing method
CN104160545B (en) The power reservoir capacity deterioration preventing of secondary cell and regeneration and electric power storage measuring device
KR101567036B1 (en) Reproducing apparatus of industrial battery and Reproduction method of industrial storage battery using the same apparatus
WO2013071508A1 (en) Smart sealed valve-regulated lead-acid storage battery device
CN105785270B (en) A kind of battery pack string energy state traffic coverage measurement method
KR101956457B1 (en) Regeneration method of nickel-hydrogen battery
TWI618330B (en) Electronic device, battery module and charging and discharging method
JP3221455U (en) Charging device for secondary battery
CN102457077A (en) Apparatus and method for recycling and charging simultaneously a battery
JP5289595B2 (en) Regenerative charging device for removing electrode insulator deactivation film based on charge / discharge
KR20150053181A (en) Control method of battery charger
KR20150053182A (en) Battery charger
JP2018038186A (en) Regeneration/charging apparatus and method for secondary cell
KR20130053106A (en) Battery recycling apparatus using high pressure pulse
KR20120010805A (en) Method for recoverying and charging battery
Khanal et al. Effect of pulse charging in lead acid batteries used in electric vehicles of Nepal
JP4293587B2 (en) Lead-acid battery regeneration method and apparatus used therefor
JP2009048870A (en) Secondary battery regeneration method
RU59337U1 (en) DEVICE FOR RESTORING THE BATTERY

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101008

R150 Certificate of patent or registration of utility model

Ref document number: 4608581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250